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A Derivation of the EM algorithm

In this section we describe how to estimate the label prior on the target distribution, pt(y, z) =
pt(m) = πm, using the unlabeled data Dx

t . There are several approaches to this, including a moment
matching method called black box shift learning [Lipton et al., 2018] and an MLE approach based
on the EM algorithm [Saerens et al., 2002]. In [Alexandari et al., 2020], they show that the MLE
approach is much better, provided the classifier is calibrated. (See also [Garg et al., 2020] for a unified
analysis of these two approaches.)

Since our augmented label space is expanded to include both class labels y and meta-data z, the
number of labels M can be large, which can result in problems when computing the MLE. We
therefore expand the previous approach to compute the MAP estimate, using a Dirichlet prior of the
form

Dir(π|α) =
1

B(α)

M∏
m=1

παm−1
m (1)

where B(α) is the normalization constant. Note that the MLE solution can be recovered by setting
α = 1, which represents a uniform prior.

The goal is to maximize the (unnormalized) log posterior of π given the unlabeled target data X:

L(X;π) = log pt(π,X) (2)
= log pt(X|π) + logDir(π|α) (3)

=

N∑
n=1

log pt(xn|π) + logDir(π|α) (4)

=

N∑
n=1

log

[
M∑

m=1

πmpt(xn|m)

]
+ logDir(π|α) (5)

The first term can be rewritten as

∑
n

log

[
M∑

m=1

πmps(xn|m)

]
=

∑
n

log

[
M∑

m=1

πm
ps(m|xn)ps(xn)

ps(m)

]
(6)

=
∑
n

log
∑
m

ps(m|x)
ps(m)

πm + const (7)

This objective is a sum of logs of a linear function of π, as is the log prior. This needs to be maximized
subject to the affine constraints πm ≥ 0 and

∑M
m=1 πm = 1, so the problem is concave, with a

unique global optimum [Alexandari et al., 2020].

One way to compute this optimum is to use EM. Let πj be the estimate of π at iteration j; we
initialize with π0

m = ps(m). First note that

pt(xn,mn) = ps(xn|mn)pt(mn) =

M∏
m=1

[ps(xn|m)π(m)]
I(mn=m) (8)

Hence the complete data log posterior is given by

L(X,M;π) =

N∑
n=1

M∑
m=1

I (mn = m) log[πmps(xn|m)] + logDir(π|α) (9)
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so the expected complete data log posterior is

Q
(
π,π(j)

)
= EM[L(X,M;π)|X,π(j)] (10)

=

N∑
n=1

M∑
m=1

p(mn = m|X,πj) log(πmps(xn|m)) + logDir(π|α) (11)

=

M∑
m=1

N j
m log(πmps(xn|m)) +

M∑
m=1

(αm − 1) logπm − logB(α) (12)

=

M∑
m=1

N j
m logπm +

M∑
m=1

N j
m log ps(xn|m)︸ ︷︷ ︸

const

+

M∑
m=1

(αm − 1) logπm + const (13)

where we drop constants wrt π, and where we defined the expected counts to be

N j
m =

N∑
n=1

p(mn = m|xn,π
j) (14)

Hence in the E step we just need to compute the posterior responsibilities for each label:

p(mn = m|xn,π
j) =

πj(m)ps(xn|m)∑M
m′=1 π

j(m′)ps(xn|m′)
=

πj(m)ps(m|xn)/ps(m)∑M
m′=1 π

j(m′)ps(m′|xn)/ps(m′)
(15)

We plug this into Equation (14) and then maximize Equation (13), using a Lagrange multiplier to
enforce the sum to one constraint. We then get the following (see e.g., Sec 4.2.4 of Murphy [2022]
for the derivation):

π̂j+1
m =

Ñ j
m∑M

m′=1 Ñ
j
m′

(16)

where Ñ j
m are the prior pseudo counts plus the expected empirical counts:

Ñ j
m = N j

m + αm − 1 (17)

At convergence, we have
pt(y, z) = π̂J

y,z (18)
If we assume that the class label prior is constant, and only the distribution of auxiliary labels has
changed, then we can write

pt(y, z) = ps(y)pt(z|y) (19)
where

pt(z|y) =
pt(y, z)∑
z′ pt(y, z′)

(20)

However, we do not make this fixed label assumption in our experiments.
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Figure 1: Samples from ColoredMNIST. (a): y = 1, z = 0. (b) y = 1, z = 1.

Figure 2: Samples from CheXpert. Left: Female patient without effusion. Right: Male patient with
effusion.

B Datasets

In this section we discuss the datasets in more detail.

B.1 Colored MNIST

We show some sample images in Figure 1.

B.2 CheXpert

We show some sample images in Figure 2. We list all the target attributes in Table 1. To test the
difficult of each task, we train a logistic regression model for each attribute on the embeddins. (We
get similar results using an MLP.) The resulting AUC scores are shown in Table 1. This shows we can
reliably predict all the attributes from the embeddings. The table also shows the marginal distribution
of each attribute. Many labels are highly skewed, which means accuracy would be a poor measure of
the predictive performance.

Interestingly, we see that we can predict sex with an AUC of 0.973, which is higher than the AUC for
effusion (0.861). To understand why, note that we only use frontal scans; consequently breasts are
often visible in female patients, and this is often easier to detect visually than detecting the disease
itself (see Figure 2), providing a possible “shortcut” for models to exploit.

Attribute AUC Prob.
NO_FINDING 0.873 0.909
ENLARGED_CARDIOMEDIASTINUM 0.652 0.942
CARDIOMEGALY 0.843 0.867
AIRSPACE_OPACITY 0.711 0.480
LUNG_LESION 0.761 0.963
PULMONARY_EDEMA 0.848 0.696
CONSOLIDATION 0.683 0.911
PNEUMONIA 0.742 0.973
ATELECTASIS 0.694 0.815
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Attribute AUC Prob.
PNEUMOTHORAX 0.883 0.875
EFFUSION 0.861 0.508
PLEURAL_OTHER 0.752 0.987
FRACTURE 0.784 0.962
SUPPORT_DEVICES 0.900 0.420
GENDER 0.973 0.586
AGE_AT_CXR 0.914 0.492
PRIMARY_RACE 0.731 0.459
ETHNICITY 0.681 0.728

Table 1: Metrics for all the attributes in the CheXpert dataset. (a) AUC using Logistic Regression
on CXR embeddings. (b) Baseline prior probability for each attribute, illustrating the severe class
imbalance for many attributes.
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Figure 3: Performance on Colored MNIST using an uncalibrated tree classifier. TTSLA still improves
the performance of the base model.

C Extra results

In this section, we include some extra experimental results.

C.1 Colored MNIST using gradient boosted tree classifier

In Figure 3, we show the results of various methods on the Colored MNIST dataset, where we use a
Gradient Boosting Classification Tree as our base classifier, instead of a DNN. In particular, we use
the HistGradientBoostingClassifier from scikit-learn [Pedregosa et al., 2011] with default
parameters. The results are qualitatively similar to the DNN case.

C.2 The benefits of calibration

In Figure 4 we show the results on CheXpert if we remove the calibration step for our base classifier.
Compared to ??, we see that the overall AUC of all the methods is worse, and the variance is larger. 2

However, the rank ordering of the methods is the same. It is notable that a large gap opens up between
the Oracle curve and the TTLSA implementations. This suggests that calibration primarily improves
estimation of pt(y, z) estimation via EM, because the Oracle curve in this subfigure corresponds to
using the correct weights with the uncalibrated ps(y, z|x) model.

C.3 CheXpert using CNN on raw pixels

In Figure 5 we show the result of various methods when applied to CheXpert images, as opposed to
using embeddings. We use a ResNet-50 that was pretrained on Imagenet, which we then fine tune
on CheXpert images by replicating the gray-scale image along all 3 RGB channels. The qualitative
conclusions are the same as in the embedding case.

C.4 More results on the benchmark datasets

In Table 2 and Table 3 we report the per-group accuracy on the benchmark datasets.

2For a binary classification problem, calibration will not change the AUC, but since we derive the posterior
over class labels by marginalizing a 4-way joint, p(y|x) =

∑1
z=0 p(y, z|x), calibration can help.
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Figure 4: Performance across target domains on CheXpert embeddings, following the setup of
Figure ??. (a) Results using calibration. Performance mirrors those in Figure ??. (b) Results without
calibration. We see that calibration both improves performance and decreases variability between
runs.
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Figure 5: Performance on CheXpert using raw image (pixel) input instead of embeddings. These
results are with calibration.
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Group label (Y, Z)
Data Method (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
CelebA ERM 86.71 (0.67) 92.65 (0.79) 96.80 (0.18) 80.83 (1.46)

gDRO 92.71 (0.05) 92.33 (0.09) 92.63 (0.35) 87.36 (0.47)
SUBG 91.76 (0.22) 91.91 (0.55) 90.96 (0.33) 87.22 (1.38)

LA 91.43 (0.11) 94.77 (0.08) 95.88 (0.12) 84.72 (0.58)
TTLSA 97.59 (0.18) 98.78 (0.03) 80.70 (1.22) 51.25 (0.27)

Waterbirds ERM 98.95 (0.13) 86.57 (0.48) 86.02 (0.13) 95.76 (0.16)
gDRO 93.46 (0.22) 88.00 (0.88) 90.15 (0.10) 92.06 (0.34)
SUBG 90.76 (0.69) 88.96 (0.19) 91.28 (0.35) 91.36 (0.24)

LA 94.43 (1.63) 88.38 (0.36) 91.32 (0.43) 93.15 (0.54)
TTLSA 94.59 (0.44) 93.68 (0.73) 95.72 (0.29) 97.12 (0.19)

MultiNLI ERM 80.75 (0.79) 94.94 (0.11) 83.18 (0.47) 78.05 (1.31) 81.98 (0.48) 68.60 (0.40)
gDRO 80.36 (0.63) 85.27 (0.25) 82.48 (0.59) 81.21 (1.30) 79.39 (1.34) 76.87 (1.28)
SUBG 69.63 (0.17) 82.85 (0.19) 74.39 (0.21) 79.68 (0.17) 69.84 (0.48) 68.40 (1.33)

LA 81.63 (1.15) 87.79 (1.99) 84.36 (0.89) 80.95 (2.03) 78.77 (1.09) 76.33 (1.45)
TTLSA 80.24 (0.87) 94.74 (0.58) 81.73 (2.45) 73.90 (1.72) 82.40 (1.49) 63.76 (2.15)

CivilComments ERM 92.23 (0.42) 90.38 (0.46) 68.57 (1.07) 68.32 (0.97)
gDRO 83.94 (0.70) 79.92 (0.33) 80.97 (0.63) 81.09 (0.42)
SUBG 79.79 (0.56) 79.14 (0.34) 82.52 (0.46) 76.56 (0.25)

LA 84.45 (0.16) 79.27 (1.17) 83.00 (0.95) 84.20 (0.99)
TTLSA 85.53 (1.35) 74.94 (1.96) 84.34 (2.36) 84.61 (2.21)

Table 2: Per-group accuracy on the benchmark datasets, where model selection is based on the
worst (Y,Z) group accuracy on a validation set. Numbers in parentheses signify the standard error
calculated based on 4 replication runs.

Group label (Y,Z)
Data Method (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
CelebA ERM 96.54 (0.21) 99.58 (0.05) 86.47 (0.89) 40.28 (2.24)

gDRO 95.48 (0.14) 96.76 (0.14) 87.10 (0.34) 68.75 (1.14)
SUBG 95.45 (0.39) 95.93 (0.44) 79.81 (1.30) 67.64 (4.66)

LA 95.25 (0.55) 98.96 (0.49) 88.77 (1.81) 43.47 (12.05)
TTLSA 97.68 (0.13) 98.99 (0.07) 80.21 (1.04) 47.36 (1.81)

Waterbirds ERM 99.42 (0.11) 90.27 (1.24) 80.61 (2.51) 94.16 (0.84)
gDRO 97.04 (1.44) 92.84 (1.07) 83.84 (2.47) 89.10 (0.82)
SUBG 96.98 (0.29) 95.88 (0.42) 82.87 (1.51) 83.33 (1.86)

LA 98.23 (0.15) 92.42 (0.36) 85.98 (1.06) 92.91 (0.19)
TTLSA 99.06 (0.11) 93.61 (1.04) 87.66 (0.40) 95.02 (0.92)

MultiNLI ERM 82.43 (0.06) 95.47 (0.08) 83.62 (0.03) 77.14 (0.16) 80.45 (0.09) 67.36 (0.54)
gDRO 80.37 (0.82) 86.32 (0.64) 81.06 (0.72) 78.22 (0.60) 81.22 (0.22) 78.83 (0.29)
SUBG 68.30 (2.00) 83.95 (2.28) 75.72 (1.68) 79.40 (1.37) 69.91 (1.55) 66.44 (2.23)

LA 82.74 (0.06) 92.92 (0.34) 83.97 (0.44) 79.88 (0.55) 79.77 (0.34) 71.49 (0.95)
TTLSA 81.86 (0.19) 96.52 (0.11) 83.89 (0.37) 76.07 (0.71) 80.51 (0.17) 56.60 (1.36)

CivilComments ERM 96.00 (0.38) 95.63 (0.53) 55.27 (1.88) 52.21 (2.43)
gDRO 89.59 (0.68) 86.60 (0.86) 71.56 (1.64) 71.94 (1.33)
SUBG 81.43 (1.09) 80.67 (1.28) 80.80 (1.34) 76.05 (0.44)

LA 84.45 (0.16) 79.27 (1.17) 83.00 (0.95) 84.20 (0.99)
TTLSA 91.53 (0.58) 87.18 (1.70) 70.14 (2.69) 71.32 (2.82)

Table 3: Per-group accuracy on the benchmark datasets, where model selection is based on the
average (Y,Z) group accuracy on a validation set. Numbers in parentheses signify the standard error
calculated based on 4 replication runs.

C.5 Training with partial group labels

In this section, we evaluate an extension of our method where not all training samples have group
labels z. In particular, we first train an ERM model to predict z on samples with group labels z,
calculate p(z|x) for training samples with missing z, and then fit a new p(y, z|x) model on the
augmented data. In particular, we represent each (y, z) target as a one-hot vector when z is known,
and use a soft (predicted) encoding when z is unknown. We train with cross entropy loss. The use of
soft labels may have the benefits of self-distillation Pham et al. [2022]. The validation set is always
fully labeled for the purpose of hyperparameter tuning.

The results (on the 4 benchmark datasets) are shown in Table 4. The accuracy barely drops as
missingness increases, which means our method is robust to the deficiency in group labels z.
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Missingness
Data 0 0.5 0.75 0.875 0.9375
CelebA 84.72 / 95.55 78.33 / 95.68 77.78 / 95.37 79.44 / 94.44 77.22 / 95.20
Waterbirds 88.38 / 95.23 87.63 / 93.98 88.79 / 94.41 88.65 / 94.67 91.28 / 95.05
MultiNLI 76.33 / 82.60 74.87 / 79.55 74.72 / 82.49 76.05 / 82.61 78.75 / 81.72
CivilComments 79.27 / 85.03 76.26 / 85.87 73.87 / 83.55 73.41 / 84.57 66.64 / 80.36

Table 4: Accuracy of the worst / average (y, z) group on the benchmark datasets with partial training
z labels, where model selection is based on average z accuracy. The Missingness columns stand for
the proportion of training set with missing labels, e.g. 0.75 means only 25% of the training samples
have z labels.
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D Potential negative societal impacts

The proposed method in this work yields a model that can adapt to a new distribution and improves
the performance at test time by exploiting spurious correlations to create a label shift correction
technique that adapts to changes in the marginal distribution p(y, z) using unlabeled samples from
the target domain. In this way, there are potential societal benefits to our method, especially when z
corresponds to a socially salient attribute, such as a protected class. However, use cases of this type
require caution, especially given the limitations discussed in ??. Further, as we discuss in a footnote
in the main text, our method does not address concerns about cases where making decisions on the
basis of z is discouraged or forbidden for a priori reasons. Given these limitations, there is a potential
that the existence of adaptation methods of this type could be used to downplay the potential dangers
of misusing sensitive information in machine learning systems. Here, we hope researchers and
practitioners will instead acknowledge that, while beneficial use cases of z information exist, (1) there
is a need to validate empirically that a particular use of z information is actually socially beneficial,
and (2) there are valid reasons why one might want to avoid using z information altogether. Further,
there is a potential risk that if the measurement quality of the labels y, z shift across distributions, such
that they measure distinct concepts, or exhibit substantially different noise properties (i.e., become
biased, or exhibit more outliers), our framework might absorb them during adaptation and eventually
the outcomes of the system might be biased as well.
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E Invariance Equivalences and Conditions

In this section, we review connections that have been established between risk invariance, ERM on
balanced data, “separation” between a predictor f(X) and the spurious factor Z, and worst-(y, z)-
group performance. These results are useful for understanding why the application of logit adjustment
at training time often yields a predictor that exhibits approximately invariant risk across the test sets
that we study in our experiments.

E.1 Key Concepts

Risk invariance A predictor is risk-invariant with respect to a loss function ℓ and a family of
test distributions Q iff it has the same risk EQ[ℓ(f(X), Y )] for each Q ∈ Q. The results we
discuss apply to test distribution families that preserve both the generative distribution and the label
distribution of the source distribution; that is, Q is the set of distributions such that Q(Y ) = P (Y )
and Q(X | Y, Z) = P (X | Y, Z) for each Q ∈ Q. This formulation allows Q(Z | Y ) can change.
This is is the family is considered in Makar et al. [2022] and Makar and D’Amour [2022], and is
called a “causally compatible” family in Veitch et al. [2021], or a correlation shift in Yi et al..

Pure spuriousness The data generating process in Figure 1 is purely spurious if there exists some
sufficient statistic e(X) such that (1) Y ⊥ X | e(X) and (2) e(X) ⊥ Z | Y . In words, if we know
e(X), there is no further dependence between Y and X , and further, e(X) does not depend on the
spurious factor Z except through Z’s marginal dependence with Y . This is consistent with a causal
model where the influence of Y on X is totally mediated by e(X), and Z has no causal effect on
e(X).

Veitch et al. [2021] coined the term “purely spurious” in a context of a full counterfactual model
of data generation, to refer to data generating processes where the portions of X that are causally
related to Y and Z can be separated in a specific sense. Makar et al. [2022] consider the special case
of pure spuriousness in the context of the anti-causal model in Figure 1. (They do not use the term
“purely spurious” as the work in Veitch et al. [2021] was concurrent; Makar and D’Amour [2022]
makes the connection explicit.) Here, we use formalism from Makar et al. [2022] to present the idea
to minimize conceptual overhead.

Note that when the data X is rich, such as images are long passes of text, pure spuriousness is
more plausible (or a better approximation to reality) because there is less possibility of descructive
interfecence between Y and Z in the generation of X . Specifically, the simplest examples where
pure spuriousness fails are ones where X is very low-content: e.g., Y and Z are binary, and
X := Y OR Z.

Separation Separation is a concept popularized in the literature on ML fairness [Barocas et al., 2019,
Chapter 3], which stipulates that the predictor f(X) should satisfy the the conditional independence
f(X)Z ⊥ |Y . When Z is a sensitive attribute, this condition stipulates that the predictor f(X)
should contain no more information about Z than one could glean from knowing Y alone.

Data balancing Idrissi et al. [2022] study predictors trained on data subsampled so that the
(Y, Z) distribution is uniform; they call this data-balancing. Makar et al. [2022] and Makar and
D’Amour [2022] study a similar predictors optimized on a similar “ideal” distribution, where
Q(Y,Z) = P (Y )P (Z) for some source distribution P . This distribution does not “balance” the
marginals of Y and Z, but it eliminates the marginal correlation between Y and Z.

Worst group performance Sagawa et al. [2020] define groups in terms of (z, y) values. The group
conditional risk is Rz,y = EQ[ℓ(f(X), Y ) | Z = z, Y = y]. Note that for all families of test sets
that we consider, the group-conditional risks are equal for all Q. Worst group risk minimization
attempts to minimize the group conditional risk of the worst subgroup. Saerens et al. [2002] propose
a distributionally robust optimization algorithm for performing this minimization.

E.2 Connections

In the purely spurious setting, there are several connections and near-equivalences between risk
invariance, separation, optimality on balanced data, and worst group risk minimization.
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Yi et al. establish that for label distribution preserving target families, a predictor f(X) that satisfies
separation f(X) ⊥ Z | Y will have invariant risk across the family Q defined above. Notably, this
result does not require pure spuriousness.

Under pure spuriousness, the separation condition achieves a certain optimality. Veitch et al. [2021],
Theorem 4.3 establishes that in the purely spurious case, the minimax optimal across the family Q
satisfies separation f(X) ⊥ Z | Y . Similarly, under pure spuriousness, Makar and D’Amour [2022],
Proposition 2, establishes that the optimal risk-invariant predictor satisfies separation.

Interestingly, this result establishes a connection between optimality under balanced data, separation,
and optimal risk invariance. Specifically, Makar et al. [2022], Proposition 1 establishes that the
optimal model for the “ideal” uncorrelated distribution for which Q(Y,Z) = P (Y )P (Z) achieves
risk invariance across the family Q. Thus, minimizing risk under a separation constraint targets a
similar predictor to the predictor that one would target simply optimizing on balanced data. Makar and
D’Amour [2022] shows that the near-equivalence holds up empirically, such that learning algorithms
targeted at efficiently learning the optimal predictor on balanced data can satisfy both risk invariance
and separation criteria.

Idrissi et al. [2022] establish that, empirically, models trained to minimize risk on balanced data
also yield favorable worst-group performance, showing that subsamping can be particularly effective.
Sagawa et al. [2020] explore similar ideas, focusing on reweighting strategies, which both they
and Idrissi et al. [2022] find to work relatively poorly with neural models in the data regimes they
study. Sagawa et al. [2020] further establish that under certian convexity conditions, there does exist
a reweighting of the data that optimizes worst-group performance, but provide a counterexample
showing that this is not always the case with non-convex losses.

Based on the above results, in the purely spurious case, one can establish the following, for Q with a
uniform distribution on Y :

1. There exists a predictor f∗(X) that is optimal on the ideal balanced data, is the optimal
risk-invariant predictor, and satisfies separation f(X) ⊥ Z | Y .

2. For all Q ∈ Q, the group-specific risks are equal within labels, i.e., EQ[ℓ(f
∗(X), Y ) | Y =

y, Z = z] = EQ[ℓ(f
∗(X), Y ) | Y = y, Z = z′] for all y.

The latter fact does not imply that f∗(X) also optimizes worst-group risk, but it does imply that the
worst group cannot be the worst due to a spurious correlation between Y and Z. This is because, for
a fixed label value y, the risks of (y, z) subgroups are the same.
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