
Appendix of “Complex-valued Neurons Can Learn More but
Slower than Real-valued Neurons via Gradient Descent”

A Preliminaries

In this section, we first summarize frequently used notations in the following table.

Table 4: Frequently used notations.

Notation Description

Cd the d-dimensional complex space
E expectation
I(·) the indicator function
L the expected square loss of learning a neuron
N (0, I) the standard Gaussian distribution
O,Ω,Θ asymptotic notations
Pr probability
PQ(x) the projection of x on Q
R2d the 2d-dimensional real space
Re(z) the real part of a complex number z
t the iteration index of gradient descent
U(a, b) the uniform distribution on the interval [a, b]
v the weight vector of a learning neuron
w the weight vector of a target neuron
x an input vector in R2d

xi the i-th coordinate of x
xC xC = (x1; . . . ;xd) + (xd+1; . . . ;x2d)i ∈ Cd
xC the complex conjugate of xC
θa,b the angle between a and b
θz the argument of a complex number z
σψ(z) the real part of the symmetrical version of zReLU activation function
η the step size of gradient descent
τ the ReLU activation function τ(x) = max{0, x}
ψ the learnable parameter of the symmetrical version of zReLU activation function
∇ gradient
‖ · ‖ the 2-norm of a vector

We then give some basic lemmas that help us calculate the closed form of the expected loss.
Lemma 7. Let d = 1. For any w,v ∈ R2d, and a 6 b 6 a+ 2π, we have

A(w,v, a, b) = Ex∼N (0,I)

[
w>x · v>x · I(θx ∈ [a, b])

]
=
‖w‖‖v‖

4π
[2(b− a) cos θw,v + sin(θw + θv − 2a)− sin(θw − θv − 2b)] .

Proof. According to the probability density function of Gaussian distribution, we can calculate A in
the polar coordinate system as

A(w,v, a, b) =
‖w‖‖v‖

2π

∫ ∞
0

∫ b

a

r3e−
1
2 r

2

cos(θw − φ) cos(θv − φ) dφ dr

=
‖w‖‖v‖

π

∫ b

a

cos(θw − φ) cos(θv − φ) dφ

=
‖w‖‖v‖

4π
[2(b− a) cos θw,v + sin(θw + θv − 2a)− sin(θw − θv − 2b)] ,

where the second and third equalities hold from integrating over r and φ, respectively. Thus, we have
completed the proof.
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Lemma 8. Let d = 1. For anyw,v ∈ R2d, denote by θ = θw,v the angle between w and v. Then
for any ψw, ψv ∈ [0, π/2], define ψm = min{ψw, ψv}. Then we have

B(w,v, ψw, ψv) = Ex∼N (0,I)

[
σψw(w>CxC)σψv (v>C xC)

]
=


‖w‖‖v‖

2π cos θw,v[2ψm + sin(2ψm)] , θw,v ∈ [0, |ψv − ψw|] ,
‖w‖‖v‖

4π [2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)
− sin(θw,v − 2ψw)] , θw,v ∈ [|ψv − ψw|, ψv + ψw] ,

0 , θw,v ∈ [ψv + ψw, π] .

Proof. We only consider the case of ψw 6 ψv . The other case ψw > ψv can be proven similarly. We
prove the conclusion by discussion.

1. Suppose θw,v ∈ [0, ψv − ψw]. Then Lemma 7 leads to

B(w,v, ψw, ψv) = A(w,v, θw − ψw, θw + ψw) =
‖w‖‖v‖

2π
cos θw,v[2ψw + sin(2ψw)] .

2. Suppose θw,v ∈ [ψv − ψw, ψv + ψw] and θw 6 θv . Then one knows from Lemma 7 that
B(w,v, ψw, ψv) = A(w,v, θv − ψv, θw + ψw)

=
‖w‖‖v‖

4π
[2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)− sin(θw,v − 2ψw)] .

3. Suppose θw,v ∈ [ψv − ψw, ψv + ψw] and θw > θv . Based on Lemma 7, we have
B(w,v, ψw, ψv) = A(w,v, θw − ψw, θv + ψv)

=
‖w‖‖v‖

4π
[2(ψw + ψv − θw,v) cos θw,v − sin(θw,v − 2ψv)− sin(θw,v − 2ψw)] .

4. Suppose θw,v ∈ [ψv + ψw, π]. Then the support of σψw(w>CxC) does not overlap with that of
σψv (v>C xC), which leads to B(w,v, ψw, ψv) = 0.

Combining the cases above completes the proof.

B Proof of Theorem 1

In the main part of this section, we provide the closed form of the loss, definition of the ideal region,
and the detailed proof of Theorem 1. Subsection B.1 presents the optimization behaviors in the ideal
region. Subsection B.2 proves several convergence rate lemmas. Subsection B.3 gives some technical
lemmas to bound small terms in the proof.

Let w = (w1, w2). According to the spherical symmetry, we assume v = (1, 0) without loss of
generality. According to Lemma 8, the expected loss can be calculated by

Lcr(w, ψ) =
1

2
B(w,w, ψ, ψ)−B(w,v, ψ, π/2) +

1

2
B(v,v, π/2, π/2)

=


1
4 −

1
4π [sin(2ψ) + 2ψ][1− (w1 − 1)2 − w2

2] , θ ∈ [0, π/2− ψ] ,
1
4 −

1
2π [ 1

2 sin(2ψ)w1 − 1
2 cos(2ψ)|w2|+ 1

2 |w2|+ (π2 + ψ − θ)w1]
+ 1

4π [sin(2ψ) + 2ψ](w2
1 + w2

2) , θ ∈ (π/2− ψ, π/2 + ψ) ,
1
4 + 1

4π [2ψ + sin(2ψ)](w2
1 + w2

2) , θ ∈ [π/2 + ψ, π] ,
(3)

where θ = θw,v = arccos(w1/
√
w2

1 + w2
2). For any R ∈ (0, 1), define

D1 = {(w, ψ) | ‖w − v‖ 6 R,ψ ∈ [0, π/2], θ ∈ [0, π/2− ψ]} ,
D2 = {(w, ψ) | ‖w − v‖ 6 R,ψ ∈ [0, π/2], θ ∈ (π/2− ψ, π/2 + ψ)} .

Let D = D1 ∪D2 denote the ideal region, i.e.,
D = {(w, ψ) | ‖w − v‖ 6 R,ψ ∈ [0, π/2], θ ∈ [0, π/2 + ψ]} .

We are now ready to prove Theorem 1.

Proof of Theorem 1. The proof is divided into four steps.

Step 1: D is closed under gradient descent. Before considering the convergence, we prove the
maintenance of inclusion by mathematical induction, i.e., (w0, ψ0) ∈ D indicates (wt, ψt) ∈ D.
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1. Base case. The conclusion holds for t = 0 from the condition.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then based on Lemmas 11

and 12, one knows

−6(ψ∗ − ψk) 6 ∇ψLcr(wk, ψk) 6 −1−R2

4π
(ψ∗ − ψk)

2 6 0 , (4)

where ψ∗ = π/2, the first inequality holds based on the induction hypothesis and |w2,k| 6 1, and
the third inequality holds from R < 1. Thus, the updating rule ψk+1 = ψk − η∇ψLcr(wk, ψk)
with η ∈ (0, 1/(12π)) leads to

π

2
> ψ∗ − ψk > ψ∗ − ψk+1 > (1− 6η)(ψ∗ − ψk) > 0 , (5)

where the first and fourth inequalities hold from the induction hypothesis. Meanwhile, Lemmas 9
and 10 imply

‖wk+1 − v‖ 6
(

1− η

24π
[sin(2ψk) + 2ψk]

)
‖wk − v‖ 6 R . (6)

Combining Eqs. (5) and (6), the conclusion holds for t = k + 1.

Therefore, mathematical induction implies (wt, ψt) ∈ D when (w0, ψ0) ∈ D.

Step 2: parameters converge to the global minimum in D. The convergence process consists of
two stages. In stage I, we deal with the convergence of ψ when (w0, ψ0) ∈ D. Based on Eq. (4) and
the updating rule ψk+1 = ψk − η∇ψLcr(wk, ψk), one knows

ψ∗ − ψt+1 6 (ψ∗ − ψt)
[
1− η(1−R2)

4π
(ψ∗ − ψt)

]
.

Define at = η(1−R2)(ψ∗−ψt)/(4π). Then we obtain at+1 6 at(1−at). From ψ∗−ψt ∈ [0, π/2]
and η < 1/(12π) 6 4, one knows at ∈ [0, 1/2]. Thus, applying Lemma 14 to at leads to

ψ∗ − ψt =
4πat

η(1−R2)
6

4π

η(1−R2)(t+ 1)
. (7)

In stage II, we consider the convergence of w when (w0, ψ0) ∈ D. Based on Eq. (7), choosing
T1 > 16dη(1−R2)e−1 leads to ψ∗−ψt 6 π/4 for any t > T1, i.e., ψt > π/4 for any t > T1. Thus,
for any t > T1, Eq. (6) indicates

‖wt − v‖ 6
(

1− η

48

)
‖wt−1 − v‖ 6

(
1− η

48

)t−T1

, (8)

where the first inequality holds from the monotonic increasing of sin(x) + x and ψt > π/4, and the
second inequality holds because of ‖wT1 − v‖ 6 R < 1.

Step 3: the loss converges to 0 in D. We estimate the convergence of the expected loss when
(w0, ψ0) ∈ D. For any (w, ψ) ∈ D, define non-negative quantities ∆w = ‖w−v‖ and ∆ψ = ψ∗−ψ.
We provide an upper bound for Lcr by discussion.

1. Suppose (w, ψ) ∈ D1. Then we have

Lcr(w, ψ) 6
1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) 6

1

2π
∆3
ψ +

1

4
∆2
w , (9)

where the first inequality holds based on sin(2ψ)+2ψ = sin(2∆ψ)+2ψ∗−2∆ψ > 2ψ∗−2∆3
ψ ,

and the second inequality holds from non-negative ∆ψ .
2. Suppose (w, ψ) ∈ D2. The expected loss can be rewritten as

Lcr(w, ψ) =
1

4
− 1

4π
[sin(2ψ) + 2ψ](1−∆2

w)

+
1

4π
[(cos(2ψ)− 1)|w2|+ (sin(2ψ) + 2ψ + 2θ − 2ψ∗)w1]

6
1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) +

1

4π
[(π + 2θ − 2ψ∗)w1]

6
1

4
− 1

2π
(ψ∗ −∆3

ψ)(1−∆2
w) +

1

2π
∆w(1 + ∆w)

6
1

2π
∆3
ψ +

1

2π
∆w +

1

2
∆2
w ,

(10)
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where the first inequality holds from π > sin(2ψ) + 2ψ > 2ψ∗− 2∆3
ψ and cos(2ψ)− 1 6 0, the

second inequality holds based on θ 6 tan θ 6 ∆w and w1 6 1 + ∆w, and the third inequality
holds from ∆ψ > 0.

Combining Eqs. (9) and (10), one knows that the following holds for any (w0, ψ0) ∈ D and t > T1

Lcr(wt, ψt) 6
1

2π
∆3
ψ,t + ∆w,t 6

32π3

η3(1−R2)3t3
+
(

1− η

48

)t−T1

, (11)

where the first inequality holds from ∆2
w 6 ∆w, and the second inequality holds by Eqs. (7) and (8).

Step 4: initialization falls into D with constant probability. Let p0 = Pr[(w0, ψ0) ∈ D] for
simplicity. From ψ0 ∼ U(0, π/2), the requirement ψ ∈ [0, π/2] is satisfied. Denote by p(w) the
probability density function of N (0, I2). Then one has

p0 = Pr[‖w0 − v‖ 6 R] =

∫
w∈B(v,R)

p(w) dw > µ(B(v, R)) min
w∈B(v,R)

p(w) >
R2

16
. (12)

Let R2 = 1/2. We obtain from Eqs. (11) and (12) that

Pr

[
Lcr(wt, ψt) 6

8000

η3t3
+
(

1− η

48

)t+1−32/η
]
>

1

32
,

which completes the proof.

B.1 Optimization Behaviors

The following two lemmas indicate the linear convergence of w in D1 and D2, respectively.
Lemma 9. Let w′ = w − η∇wLcr(w, ψ). If (w, ψ) ∈ D1 and η ∈ (0, 4), then we have

‖w′ − v‖ 6
(

1− η

4π
[sin(2ψ) + 2ψ]

)
‖w − v‖ .

Proof. For any (w, ψ) ∈ D1, one has

〈∇wLcr(w, ψ),w− v〉 =

〈
1

4π
[sin(2ψ) + 2ψ](w − v),w − v

〉
=

1

4π
[sin(2ψ) + 2ψ]‖w− v‖2 .

Meanwhile,

‖∇wLcr(w, ψ)‖2 =
1

(4π)2
[sin(2ψ) + 2ψ]2‖(w − v)‖2 .

Then according to Lemma 13 and ψ ∈ [0, π/2], for any η ∈ (0, 4), one has

‖w′ − v‖ 6
(

1− η

4π
[sin(2ψ) + 2ψ]

)
‖w − v‖ ,

which completes the proof.
Lemma 10. Let w′ = w − η∇wLcr(w, ψ). If (w, ψ) ∈ D2 and η ∈ (0, 1/(12π)), then we have

‖w′ − v‖ 6
(

1− η

24π
[sin(2ψ) + 2ψ]

)
‖w − v‖ .

Proof. Firstly, we prove the strong convexity in D2. For any (w, ψ) ∈ D2, one has

2π〈∇wLcr(w, ψ),w − v〉

= −
[

1

2
sin(2ψ) +

(π
2

+ ψ − θ
)

+
w1|w2|
w2

1 + w2
2

]
(w1 − 1) + [sin(2ψ) + 2ψ]w1(w1 − 1)

−
[
−1

2
cos(2ψ) +

1

2
− w2

1

w2
1 + w2

2

]
|w2|+ [sin(2ψ) + 2ψ]w2

2

= [sin(2ψ) + 2ψ]‖w − v‖2 −R1 −R2 ,

(13)

where

R1 =

[(π
2
− ψ − θ

)
− 1

2
sin(2ψ)

]
(w1 − 1) and R2 =

[
1

2
− 1

2
cos(2ψ)− w1

w2
1 + w2

2

]
|w2| .
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According to Lemmas 15 and 16, Eq. (13) can be bounded by

〈∇wLcr(w, ψ),w−v〉 > 1

2π

(
1

2
− 1

π

)
[sin(2ψ)+2ψ]‖w−v‖2 >

1

12π
[sin(2ψ)+2ψ]‖w−v‖2 .

(14)
Secondly, we provide an upper bound of gradient in D2. For any (w, ψ) ∈ D2, the gradient satisfies

4π2‖∇wLcr(w, ψ)‖2 = T1 + T2 ,

where

T1 =

(
[sin(2ψ) + 2ψ]w1 −

1

2
sin(2ψ)−

(π
2

+ ψ − θ
)
− w1|w2|
w2

1 + w2
2

)2

,

T2 =

([
1

2
cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2) + [sin(2ψ) + 2ψ]w2

)2

.

From Lemmas 17 and 18, one knows

‖∇wLcr(w, ψ)‖2 6 [sin(2ψ) + 2ψ]‖w − v‖2 . (15)

Finally, based on Eqs. (14) and (15) and Lemma 13, we conclude

‖w′ − v‖ 6

√
1−

(
1

6π
− η
)
η[sin(2ψ) + 2ψ]‖w − v‖ 6

(
1− η

24π
[sin(2ψ) + 2ψ]

)
‖w − v‖ ,

where the first inequality holds based on
√

1− x 6 1− x/2 for any x ∈ [0, 1] and η ∈ (0, 1/(12π)).
Thus, we have completed the proof.

The following two lemmas depict the gradient with respect to ψ in D1 and D2, respectively.
Lemma 11. Let ψ′ = ψ − η∇ψLcr(w, ψ). If (w, ψ) ∈ D1, then

− 1

π

(π
2
− ψ

)2

6 ∇ψLcr(w, ψ) 6 −1−R2

4π

(π
2
− ψ

)2

.

Proof. For any (w, ψ) ∈ D1, one has

∇ψLcr(w, ψ) = − 1

2π
[cos(2ψ) + 1](1− ‖w − v‖2) .

For any ψ ∈ [0, π/2], we have 1
2 (π/2− ψ)2 6 cos(2ψ) + 1 6 2(π/2− ψ)2. Meanwhile, one has

0 6 ‖wt − v‖ 6 R. Thus, the gradient with respect to ψ can be bounded by

− 1

π

(π
2
− ψ

)2

6 ∇ψLcr(w, ψ) 6 −1−R2

4π

(π
2
− ψ

)2

,

which completes the proof of the lower bound.
Lemma 12. If (w, ψ) ∈ D2, then

−2
(π

2
− ψ

)2

− 2
(π

2
− ψ

)
|w2| 6 ∇ψLcr(w, ψ) 6 −1−R2

2

(π
2
− ψ

)2

.

Proof. The gradient of Lcr with respect to ψ in D2 can be calculated by

2π∇ψLcr(w, ψ) = [1 + cos(2ψ)]w2
1 − [1 + cos(2ψ)]w1 + [1 + cos(2ψ)]w2

2 − sin(2ψ)|w2|
= [1 + cos(2ψ)][‖w − v‖2 − 1] + [1 + cos(2ψ)]w1 − sin(2ψ)|w2| .

(16)

Firstly, we prove the upper bound for∇ψLcr(w, ψ). It is observed that

[1 + cos(2ψ)]w1 − sin(2ψ)|w2| 6 2 cosψ(w1 sin θ − |w2| cos θ) = 0 ,

where the first inequality holds based on π/2 > ψ > π/2− θ > 0, and the first equality holds from
w1 = r cos θ and |w2| = r sin θ. Substituting Eq. (24) into Eq. (16), we obtain

2π∇ψLcr(w, ψ) 6 [1 + cos(2ψ)][‖w − v‖2 − 1] 6 −1−R2

2

(π
2
− ψ

)2

,
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where the second inequality holds according to 1 + cos(2ψ) > 1
2 (π/2− ψ)2 for any ψ ∈ [0, π/2]

and ‖w − v‖ 6 R.

Secondly, we verify the lower bound for ∇ψLcr(w, ψ). It is observed that

2π∇ψLcr(w, ψ) > −[1 + cos(2ψ)]− sin(2ψ)|w2|

> −2
(π

2
− ψ

)2

− sin(2ψ)|w2|

> −2
(π

2
− ψ

)2

− 2
(π

2
− ψ

)
|w2| ,

where the first inequality holds because of [1 + cos(2ψ)]w1 > 0 and ‖w − v‖ > 0, the second
inequality holds according to 1 + cos(2ψ) 6 2(π/2− ψ)2, and the third inequality holds based on
sin(2ψ) 6 π − 2ψ for ψ ∈ [0, π/2]. Thus, we have completed the proof.

B.2 Convergence Rate Lemmas

The following lemma provides a sufficient condition for linear convergence of gradient descent.
Lemma 13. If there exist two constants c1 and c2 such that

〈∇f(w),w − v〉 > c1‖w − v‖2 and ‖∇f(w)‖2 6 c2‖w − v‖2 ,

then w′ = w − η∇f(w) with η ∈ (0, 2c1/c2) and c =
√

1− 2c1η + c2η2 ∈ (0, 1) satisfies

‖w′ − v‖ 6 c‖w − v‖ .

Proof. It is observed that
‖w′ − v‖2 = ‖w − η∇f(w)− v‖2

= ‖w − v‖2 − 2η〈∇f(w),w − v〉+ η2‖∇f(w)‖2

6 (1− 2c1η + c2η
2)‖w − v‖2 .

For η ∈ (0, 2c1/c2), the coefficient 1−2c1η+c2η
2 is smaller than 1, which completes the proof.

The following lemma gives a sufficient condition for convergence with an inversely proportional rate.
Lemma 14. Let {at}∞t=0 ⊂ [0, 1/2] represent a real-valued sequence.

1. If at+1 6 at(1− at), then at 6 1
t+1 .

2. If at+1 > at(1− at), then at > a0
t+1 .

Proof. We prove the first conclusion by mathematical induction.

1. Base case. For t = 0, the conclusion holds from a0 6 1/2 6 1.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then it is observed that

at+1 6
1

k + 1

(
1− 1

k + 1

)
=

k

(k + 1)2
6

1

k + 2
,

where the first inequality holds from the induction hypothesis and the monotonicity of x(1− x)
for x ∈ [0, 1/2]. Thus, the conclusion holds for t = k + 1.

Therefore, mathematical induction completes the proof of the first conclusion.

We proceed to verify the second conclusion by mathematical induction.

1. Base case. For t = 0, the conclusion holds from a0 > a0.
2. Induction. Suppose that the conclusion holds for t = k with k ∈ N. Then one has

at+1 >
a0

k + 1

(
1− a0

k + 1

)
=
a0(k + 1− a0)

(k + 1)2
>

a0

k + 2
,

where the first inequality holds from the induction hypothesis and the monotonicity of x(1− x)
for x ∈ [0, 1/2], and the second inequality holds based on a0 6 1/2. Thus, the conclusion holds
for t = k + 1.

Therefore, mathematical induction completes the proof.
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B.3 Technical Lemmas

We present upper bounds for some small terms used in the proof.

Lemma 15. Let R1 =
[(
π
2 − ψ − θ

)
− 1

2 sin(2ψ)
]

(w1 − 1). If (w, ψ) ∈ D2, then

R1 6
1

2
[sin(2ψ) + 2ψ]‖w − v‖2 .

Proof. Let r =
√
w2

1 + w2
2 denote the norm of w. Then according to the definition of θ, one has

w1 = r cos θ and |w2| = r sin θ. Thus, we can rewrite R1 as

R1 =

[(π
2
− ψ − θ

)
− 1

2
sin(2ψ)

]
(r cos θ − 1) .

We provide the upper bound for R1 by discussion.

1. Suppose r cos θ − 1 > 0. Based on the definition of D2, we have π
2 − ψ − θ 6 0. Meanwhile,

ψ ∈ [0, π/2] indicates sin(2ψ) > 0. Thus, one knows R1 6 0.
2. Suppose r cos θ − 1 < 0. R1 can be rewritten as

R1 =
1

2
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) + R̃ , (17)

where

R̃ =
1

2
[sin(2ψ) + 2ψ]r(cos θ − r) +

(π
2
− θ
)

(r cos θ − 1) .

If cos θ − r 6 0, it is observed that R̃ 6 0 because of ψ, θ ∈ [0, π/2] and r cos θ − 1 < 0. If
cos θ − r > 0, then

R̃ 6
π

2
r(cos θ − r) +

(π
2
− θ
)

(r cos θ − 1) = −π
2
r2 + (π − θ) cos θr −

(π
2
− θ
)

=: f(r) ,

where the inequality holds since sin(2ψ) + 2ψ is monotonically increasing. The discriminant of
f is

∆(θ) = (π − θ)2 cos2 θ − π(π − 2θ) 6
1

π2
θ2(π − 2θ)(2θ − 3π) ,

where the first inequality holds since cos2 θ 6 1− 4θ2/π2 on [0, π/2]. According to θ ∈ [0, π/2],
one knows ∆(θ) 6 0, which indicates f(r) 6 0, and thus, R̃ 6 0 when cos θ − r 6 0.
Combining the cases above, we obtain R̃ 6 0, which, together with Eq. (17), implies R1 6
1
2 [sin(2ψ) + 2ψ](1− 2r cos θ + r2).

Combining the cases above, one knows

R1 6
1

2
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) =

1

2
[sin(2ψ) + 2ψ]‖w − v‖2 ,

which completes the proof.

Lemma 16. Let R2 =
[

1
2 −

1
2 cos(2ψ)− w1

w2
1+w2

2

]
|w2|. If (w, ψ) ∈ D2, then

R2 6
1

π
[sin(2ψ) + 2ψ]‖w − v‖2 .

Proof. Let r =
√
w2

1 + w2
2 denote the norm of w. Then according to the definition of θ, one has

w1 = r cos θ and |w2| = r sin θ. Thus, we can rewrite R2 as

R2 =
[r

2
(1− cos(2ψ))− cos θ

]
sin θ .

We provide the upper bound for R2 by discussion.

1. Suppose r
2 [1− cos(2ψ)]− cos θ 6 0. From θ ∈ [0, π/2], we have R2 6 0.
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2. Suppose r
2 [1− cos(2ψ)]− cos θ > 0. It is observed that r < 2 cos θ since ‖w − v‖2 6 r2

0 < 1
holds from the definition of D2. Thus, the supposition indicates cos θ < r

2 [1 − cos(2ψ)] <
[1− cos(2ψ)] cos θ, which, together with θ ∈ [0, π/2], implies ψ > π/4. It is observed that

f(r) =
1

2
(1− 2r cos θ + r2)− (r − cos θ) sin θ =

1

2
(r − cos θ − sin θ)2 > 0 ,

which indicates

1

π
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) >

1

2
(1− 2r cos θ + r2) > (r − cos θ) sin θ > R2 ,

where the first inequality holds from ψ > π/4, and the third inequality holds because of
cos(2ψ) > −1.

Combining the cases above, we obtain

R2 6
1

π
[sin(2ψ) + 2ψ](1− 2r cos θ + r2) =

1

π
[sin(2ψ) + 2ψ]‖w − v‖2 ,

which completes the proof.

Lemma 17. Let T1 =
(

[sin(2ψ) + 2ψ]w1 − 1
2 sin(2ψ)−

(
π
2 + ψ − θ

)
− w1|w2|

w2
1+w2

2

)2

. If (w, ψ) ∈
D2, then we have

T1 6 7π[sin(2ψ) + 2ψ]‖w − v‖2 .

Proof. It is observed that T1 =
[
[sin(2ψ) + 2ψ](w1 − 1) + T11 + T12

]2
with

T11 =
1

2
sin(2ψ) +

(
ψ + θ − π

2

)
and T12 = − w1|w2|

w2
1 + w2

2

. (18)

Firstly, denote by r0 ∈ (0, 1) a parameter determined later and we calculate an upper bound for T11

by discussion.

1. Suppose |w1 − 1|+ |w2| > r0. Then one has

|T11| 6
1

2
sin(2ψ) + ψ 6

1

2r0
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] ,

where the first inequality holds from θ 6 π
2 .

2. Suppose |w1 − 1|+ |w2| 6 r0. Then it is observed that w1 > 1− r0 + |w2| > 0. Thus,

r =
√
w2

1 + w2
2 >

√
(1− r0)2 + 2|w2|(|w2|+ 1− r0) > 1− r0 ,

where the second inequality holds because of r0 6 1. Then we can bound |w2| from below as

|w2| = r sin θ > (1− r0) sin θ >
1− r0

2
θ , (19)

where the second inequality holds since θ 6 2 sin θ for all θ ∈ [0, π/2]. Meanwhile, we bound θ
from above as

θ 6 tan θ =
|w2|
w1

6

(
1− r0

|w2|
+ 1

)−1

6

(
1− r0

r0
+ 1

)−1

= r0 , (20)

where the second inequality holds from w1 > 1− r0 + |w2|, and the third inequality holds based
on |w2| 6 r0. Then we obtain an upper bound of T11 as follows

|T11| 6 θ 6
2|w2|
1− r0

6
4ψ|w2|

(1− r0)(π − 2r0)
6

2

(1− r0)(π − 2r0)
[sin(2ψ)+2ψ][|w1−1|+|w2|] ,

where the first inequality holds from the monotonicity of 1
2 sin(2ψ) + ψ and ψ 6 π

2 , the second
inequality holds from Eq. (19), and the third inequality holds based on ψ > π

2 − θ and Eq. (20).
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Combining the cases above, we have proven

|T11| 6 max

{
1

2r0
,

2

(1− r0)(π − 2r0)

}
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] .

Choosing r0 = 1
4

[
π + 6−

√
pi2 + 4π + 36

]
, we obtain an upper bound of T11 as follows

|T11| 6
3

2
[sin(2ψ) + 2ψ][|w1 − 1|+ |w2|] . (21)

Secondly, we provide an upper bound for T12. We claim and prove by discussion that

|w2| 6 2
√
w2

1 + w2
2(|w1 − 1|+ |w2|) . (22)

1. Suppose w1 6 1/2. Then it is observed that |w1 − 1| > 1/2, which implies

|w2| 6
√
w2

1 + w2
2 6

√
w2

1 + w2
2 · 2|w1 − 1| 6 2

√
w2

1 + w2
2(|w1 − 1|+ |w2|) .

2. Suppose w1 > 1/2. Then one has
√
w2

1 + w2
2 > 1/2, which indicates

|w2| 6 |w1 − 1|+ |w2| 6 2
√
w2

1 + w2
2(|w1 − 1|+ |w2|) .

From the definition of D2, one has π
2 > ψ > π

2 − θ > 0, which indicates

ψ > sinψ > sin
(π

2
− θ
)

= cos θ =
w1√

w2
1 + w2

2

. (23)

Then we obtain an upper bound of |T12| as

|T12| 6
2w1√
w2

1 + w2
2

(|w1−1|+|w2|) 6 2ψ(|w1−1|+|w2|) 6 [sin(2ψ)+2ψ](|w1−1|+|w2|) , (24)

where the first inequality holds according to Eq. (22), and the second inequality holds based on
Eq. (23). Finally, combining Eqs. (21) and (24), we conclude

T1 6
[∣∣[sin(2ψ) + 2ψ](w1 − 1)

∣∣+ max{|T11|, |T12|}
]2

6 7π[sin(2ψ) + 2ψ]‖w − v‖2 ,

where the first inequality holds based on T11 > 0 and T12 6 0, and the second inequality holds
because of sin(2ψ) + 2ψ 6 π for any ψ ∈ [0, π/2]. Thus, we have completed the proof.

Lemma 18. Let T2 =
([

1
2 cos(2ψ)− 1

2 +
w2

1

w2
1+w2

2

]
sgn(w2) + [sin(2ψ) + 2ψ]w2

)2

. If (w, ψ) ∈
D2, then we have

T2 6 7π[sin(2ψ) + 2ψ]‖w − v‖2 .

Proof. From cos θ = w1/
√
w2

1 + w2
2 , one has cos(π − 2θ) = 1− 2 cos2 θ = 1− 2w2

1/(w
2
1 + w2

2).
Thus, we have∣∣∣∣[1

2
cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2)

∣∣∣∣ =
1

2
| cos(2ψ)− cos(π − 2θ)| 6 ψ + θ − π

2
6 T11 ,

where the first inequality holds because of | cos a− cos b| 6 |a− b|, and the second inequality holds
based on the definition of T11 in Eq. (18) and sin(2ψ) > 0. Recalling the upper bound of T11 in
Eq. (21), we obtain

T2 6

(∣∣∣∣[1

2
cos(2ψ)− 1

2
+

w2
1

w2
1 + w2

2

]
sgn(w2)

∣∣∣∣+ |[sin(2ψ) + 2ψ]w2|
)2

6 7π[sin(2ψ) + 2ψ]‖w − v‖2 ,

which completes the proof.
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C Proof of Theorem 2

In the main part of this section, we present the closed form of the loss, definition and properties of
the ideal region, and the detailed proof of Theorem 2. Subsection C.1 provides the optimization
behaviors. Subsection C.2 gives some convergence rate lemmas.

According to Lemma 8, the expected square loss Lcc can be calculated by

Lcc(w, ψw) =
1

2
B(w,w, ψw, ψw)−B(w,v, ψw, ψv) +

1

2
B(v,v, ψv, ψv) . (25)

For R ∈ (0, 1), ψl ∈ [0, δl], and ψu ∈ [π/2− δu, π/2], define

D1 = {(w, ψw) | ‖w − v‖∞ 6 R,ψw ∈ [ψl, ψu], θw,v ∈ [0, |ψw − ψv|]} ,
D2 = {(w, ψw) | ‖w − v‖∞ 6 R,ψw ∈ [ψl, ψu], θw,v ∈ (|ψw − ψv|, ψw + ψv)} .

Let D = D1 ∪D2 indicate the ideal region, i.e.,

D = {(w, ψw) | ‖w − v‖∞ 6 R,ψw ∈ [ψl, ψu], θw,v ∈ [0, ψw + ψv]} .

By spherical symmetry, we assume v = (1, 0) without loss of generality in the rest proof. For
conciseness, define sw = sin(2ψw) + 2ψw and sv = sin(2ψv) + 2ψv. The following lemma
discusses the properties of the ideal region, concerning the closeness of the region under gradient
descent and the probability that an initialization falls into this region.
Lemma 19. Let ψv ∈ [7π/20, 2π/5]. If we choose the parameters as

R =
1

25
, ψl = ψv −

109

100
R , ψu = ψv +

109

100
R , and 0 < η 6

1

120
R ,

then all conditions in Lemmas 20-25 are satisfied. If w0 ∼ N (0, I2) and ψw,0 ∼ U(0, π/2), then

Pr [(w0, ψw,0) ∈ D] > 10−5 .

Proof. We first prove that all conditions in the lemmas are satisfied.

• Lemma 20. It is observed that the first condition holds from

η 6
1

120
R =

1

120
· 1

25
< 2 .

According to ψu > ψv > π/4, we have ψv sin(2ψu) 6 ψu sin(2ψv), which implies

sv >
ψvsu
ψu

=
ψvsu

ψv + 109R/100
>

7πsu/20

7π/20 + 109R/100
> (1−R)su > (1−R)sw ,

where the fourth inequality holds since sw is monotonic. Thus, the second condition is satisfied.
• Lemma 21. The first condition η < 2 has been satisfied above. It is observed that ψl >

7π/20−109R/100. Thus, The second condition holds from ψl/20 > 7π/400−109R/2000 > R.
The third condition holds since

max{ψu − ψv, ψv − ψl} =
109R

100
6

5Rψl
3

.

• Lemma 22. The only condition η < 2 has been satisfied.
• Lemma 23. The first condition holds because of R = 1/25 6 1/2. The second condition holds

based on cos2 ψv > cos2(2π/5) > 1/25. The third condition holds from η 6 R/120 6 3R/2.
• Lemma 24. The first conditionR 6 1/2 has been satisfied above. The second and third conditions

hold because of
π

3
min{ψu − ψv, ψv − ψl} =

π

3
· 109R

100
>

R

120
> η .

• Lemma 25. The first condition R 6 1/2 has been satisfied above. The second one holds from

arcsinR+ 9η 6
101R

100
+

3R

40
6

109R

100
= ψu − ψv .
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We then prove the second conclusion. Let p0 = Pr[(w0, ψw,0) ∈ D] for simplicity. Then we have

p0 = Pr[ψl 6 ψw,0 6 ψu] · Pr[1−R 6 w1 6 1 +R] · Pr[−R 6 w2 6 R]

=
109R

50
· 1

2
[erf(1 +R)− erf(1−R)] · erf(R)

> 10−5 ,

where erf(x) denotes the error function. Thus, we have completed the proof.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let R, ψl, and ψu be the same as those in Lemma 19. Suppose that
(w0, ψw,0) ∈ D. Then Lemma 19 implies (wt, ψw,t) ∈ D for any t ∈ N. The proof of con-
vergence is divided into several stages.

Step 1: w2 converges to 0. In stage I, we consider the convergence of w2,t when (w0, ψw,0) ∈ D.
From Lemmas 22 and 23, the optimization behaviors of w2 is the combination of minimizing
a contraction mapping or an almost absolute function. Thus, Lemma 26 with r1 = r2 = R,
c3 = sw/(2π), gl = (cos2 ψv −

√
2R)/(2π), and gu = 2/3 implies

|w2| 6
c22(cos2 ψv −

√
2R)

4πc1t
6

c22
4πc1t

for t ∈ N+ . (26)

Step 2: ψw converges to ψv . In stage II, we prove the convergence of ψw,t when (w0, ψw,0) ∈ D.
From Lemmas 24 and 25, the convergence of ψw is limited by that of w2, i.e., ψw tends to the
global minimum with constant-order gradient when the error of ψw is larger than that of w2, while
becomes far away from the global minimum otherwise. Then Lemma 27 with r1 = r2 = 109R/100,
a = c22(cos2 ψv −

√
2R)/(4πc1), gl = cos2 ψu/(4π), and gu = 9 indicates

|ψw − ψv| 6

[
c22(cos2 ψv −

√
2R)

4πc1
+ 9c2

]
1

t
6

10c22
c1t

for t ∈ N+ . (27)

Step 3: w1 converges to 1. In stage III, we investigate the convergence ofw1,t when (w0, ψw,0) ∈ D.
From Lemmas 20 and 21, the gradient points to the global minimum with a remainder controlled by
the error of w1 and ψw. Then Lemma 28 with dl = 1/4, du = 1/2, and e = 20c22/(πc1) leads to

|w1 − 1| 6 20c32
πc1t

for t ∈ N+ . (28)

Step 3: the expected loss converges to 0. We now estimate the convergence of the expected square
loss when (w0, ψw,0) ∈ D. For any (w, ψw) ∈ D, define non-negative quantities ∆w = ‖w − v‖
and ∆ψ = |ψw − ψv|. We provide an upper bound for Lcc by discussion.

1. Suppose (w, ψw) ∈ D1. Then we have

4πLcc(w, ψw) = ‖w‖2sw − 2‖w‖‖v‖ cos θw,vsm + ‖v‖2sv
6 ‖w‖2(sv + s∆)− 2‖w‖‖v‖(1−∆2

w)(sv − s∆) + ‖v‖2sv
6 4(‖w‖2 + 2‖w‖‖v‖)∆ψ + (sv + 2‖w‖‖v‖)∆2

w

6 32∆ψ + 8∆2
w ,

where the first inequality holds from sw 6 sv + s∆, cos θw,v >
√

1−∆2
w > 1 − ∆2

w, and
sm > sv−s∆ with s∆ = 2∆ψ+sin(2∆ψ), the second inequality holds since |‖w‖−‖v‖| 6 ∆2

w
and s∆ 6 4∆ψ , and the third inequality holds based on ‖w‖ 6 2 and sv 6 π.

2. Suppose (w, ψw) ∈ D2. Let θ = θw,v . Then one knows

4πLcc(w, ψw) = ‖w‖2sw + ‖v‖2sv
− ‖w‖‖v‖[2(ψw + ψv − θ) cos θ + sin(2ψw − θ) + sin(2ψv − θ)]

= sv(‖w‖ − ‖v‖)2 + (‖w‖2 − ‖w‖‖v‖ cos θ)(sw − sv)
+ ‖w‖‖v‖θ cos θ + 2‖w‖‖v‖sv(1− cos θ) .
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Then according to |‖w‖ − ‖v‖| 6 ∆w, sw − sv 6 4∆ψ, θ 6 arcsin ∆w 6 2∆w, and
cos θ > 1−∆2

w, we have

4πLcc 6 4
∣∣‖w‖2 − ‖w‖‖v‖ cos θ

∣∣∆ψ + 2‖w‖‖v‖ cos θ∆w + (1 + 2‖w‖‖v‖)sv∆2
w

6 16∆ψ + 5∆w ,

where the second inequality hodls based on ‖w‖ 6 2, sv 6 π, and ∆w 6
√

2R =
√

2/25.

Combining the cases above, one knows from ∆w 6 5/8 that for any (w, ψw) ∈ D, the loss satisfies

Lcc(w, ψw) 6 32∆ψ + 5∆w .

Then based on (wt, ψw,t) ∈ D and Eqs. (26)-(28), we obtain from c2 > 1 that

Lcc(wt, ψw,t) 6
320c22
c1t

+
5c22

4πc1t
+

100c32
πc1t

6
400c32
c1t

,

which holds with probability at least 10−5 from Lemma 19. Thus, we have completed the proof.

C.1 Optimization behaviors

The following two lemmas consider the gradient with respect to w1 in D1 and D2, respectively.

Lemma 20. Letw1 = w1−η∇w1
Lcc(w, ψw) with (w, ψw) ∈ D1. If η ∈ (0, 2) and (1−R)sw 6 sv ,

then we have

∇w1
Lcc(w, ψw) =

sw
2π

(w1 − 1) +
1

2π
[sw −min{sw, sv}] and |w′1 − 1| 6 R .

Proof. For any (w, ψw) ∈ D1, one has

∇w1
Lcc(w, ψw) =

sw
2π

[w1 −min{sw, sv}] =
sw
2π

(w1 − 1) + r , (29)

where r denotes a remainder defined by r = 1
2π [sw −min{sw, sv}]. Then Eq. (29) implies

|w′1 − 1| 6
∣∣∣1− ηsw

2π

∣∣∣ |w1 − 1|+ |ηr| 6
(

1− ηsw
2π

)
R+

η

2π
[sw −min{sw, sv}] , (30)

where the first inequality holds from the triangle inequality, and the second inequality holds based on
1− ηsw/(2π) > 0 and |w1 − 1| 6 R. We proceed to complete the proof by discussion.

• Suppose that min{sw, sv} = sw. Then Eq. (30) implies

|w′1 − 1| 6
(

1− ηsw
2π

)
R 6 R ,

where the second inequality holds from η > 0 and sw > 0.
• Suppose that min{sw, sv} = sv . Then one knows from Eq. (30) that

|w′1 − 1| 6
(

1− ηsw
2π

)
R+

η(sw − sv)
2π

6 R ,

where the second inequality holds because of (1−R)sw 6 sv .

Combining the cases above completes the proof.

Lemma 21. Let w1 = w1 − η∇w1
Lcc(w, ψw) with (w, ψw) ∈ D2. If η ∈ (0, 2), R 6 ψl/20 and

max{ψu − ψv, ψv − ψl} 6 5Rψl/3, then we have

∇w1
Lcc(w, ψw) =

sw − θw,v
2π

(w1−1)+
1

4π
[(sw−sv)+2(θw,v−sin θw,v)] and |w′1−1| 6 R .

Proof. For any (w, ψw) ∈ D2, the gradient of Lcc with respect to w1 can be calculated by

∇w1
Lcc =

sw − θw,v
2π

(w1− 1) +
1

4π
[(sw− sv) + 2(θw,v − sin θw,v)] =

sw − θw,v
2π

(w1− 1) + r ,
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where r denotes a remainder defined by r = [(sw − sv) + 2(θw,v − sin θw,v)]/(4π). Then we have

|w′1 − 1| 6
∣∣∣∣1− η(sw − θw,v)

2π

∣∣∣∣ |w1 − 1|+ |ηr| 6 R+ η

[
|r| − R(sw − θw,v)

2π

]
, (31)

where the first inequality holds from the triangle inequality, and the second inequality holds based on
η(sw − θw,v) 6 ηsw 6 2π and |w1 − 1| 6 R. It is observed that

sw − θw,v >
7

2
ψl − θw,v >

7

2
ψl − 2R , (32)

where the first inequality holds based on sw > 2ψl + sin(2ψl) and sinψl > 3ψl/4 for ψl 6 π/4,
and the second inequality holds from θw,v 6 arcsinR 6 2R. Meanwhile, one has

|r| 6 1

4π
|sw − sv|+

1

2π
|θw,v − sin θw,v| 6

max{ψu − ψv, ψv − ψl}
π

+
2R3

3π
, (33)

where the first inequality holds from the triangle inequality, and the second inequality holds according
to the 4-Lipschitzness of 2θ+ sin(2θ), θ− sin θ 6 θ3/6 for any θ > 0, and θw,v 6 2R. Substituting
Eqs. (32) and (33) into Eq. (31), we obtain

|w′1 − 1| 6 R+
η

12π

[
12 max{ψu − ψv, ψv − ψl}+ 8R3 + 12R2 − 21Rψl

]
6 R ,

where the second inequality holds from max{ψu − ψv, ψv − ψl} 6 5Rψl/3 and R 6 ψl/20 6 1.
Thus, we have completed the proof.

The following two lemmas focus on the gradient with respect to w2 in D1 and D2, respectively.
Lemma 22. Let w′2 = w2 − η∇w2

Lcc(w, ψw) with (w, ψw) ∈ D1. If η ∈ (0, 2), then we have

|w′2| 6
(

1− ηsw
2π

)
|w2| and |w′2| 6 R .

Proof. For any (w, ψw) ∈ D1, one has∇w2
Lcc(w, ψw) = sww2

2π . Thus, we have

w′2 =
(

1− ηsw
2π

)
w2 . (34)

According to sw ∈ [0, π] and η ∈ (0, 2), the coefficient 1− ηsw/(2π) is positive and smaller than 1.
Based on (w, ψw) ∈ D1, one knows |w2| 6 R. Then Eq. (34) implies

|w′2| =
(

1− ηsw
2π

)
|w2| 6 R ,

which completes the proof.

Lemma 23. Let w′2 = w2 − η∇w2
Lcc(w, ψw) with (w, ψw) ∈ D2. If R 6 1/2,

√
2R 6 cos2 ψv,

and η 6 3R/2, then we have

cos2 ψv −
√

2R

2π
6 ∇w2Lcc(w, ψw)sgn(w2) 6

2

3
and |w′2| 6 R .

Proof. For any (w, ψw) ∈ D2, the gradient of Lcc with respect to w2 can be calculated by

∇w2
Lcc(w, ψw) =

1

2π
sww2 +

1

4π

(
cos(2ψw) + cos(2ψv) +

2w2
1√

w2
1 + w2

2

)
sgn(w2) . (35)

Since (w, ψw) ∈ D2, one knows that |w1 − 1| 6 R and |w2| 6 R. Thus, we have

2(1−
√

2R) 6
2(1−R)2√

(1−R)2 +R2
6

2w2
1√

w2
1 + w2

2

6 2(1 +R) ,

where the first inequality holds because of R ∈ [0, 1/2]. Then we have

cos(2ψw) + cos(2ψv) +
2w2

1√
w2

1 + w2
2

6 1 + cos(2ψv) + 2(1 +R) 6 5 , (36)
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where the second inequality holds based on R 6 1/2. Meanwhile, one has

cos(2ψw)+cos(2ψv)+
2w2

1√
w2

1 + w2
2

> −1+cos(2ψv)+2(1−
√

2R) = 2(cos2 ψv−
√

2R) . (37)

It is observed that 0 6 sw|w2| 6 π
2 since sw ∈ [0, π] and |w2| 6 R 6 1

2 . Then substituting Eqs. (36)
and (37) into Eq. (35), we obtain

cos2 ψv −
√

2R

2π
6 ∇w2Lcc(w, ψw)sgn(w2) 6

1

4
+

5

4π
6

2

3
.

Thus, one knows from Eq. (35) that

|w′2| =
∣∣|w2| − η∇w2

Lcc(w, ψw)sgn(w2)
∣∣ 6 max{|w2|, η∇w2

Lcc(w, ψw)sgn(w2)} 6 R ,

where the first inequality holds from |a− b| 6 max{a, b} for non-negative numbers a and b, and the
second inequality holds based on |w2| 6 R and η 6 3R/2. Thus, we have completed the proof.

The following two lemmas investigate the gradient with respect to ψw in D1 and D2, respectively.
Lemma 24. Let ψ′w = ψw−η∇ψwLcc(w, ψw) with (w, ψw) ∈ D1. IfR 6 1/2, η 6 π(ψu−ψv)/3,
and η 6 π(ψv − ψl)/3, then we have

cos2 ψu
4π

6 sgn(ψw − ψv)∇ψwLcc(w, ψw) 6
3

π
and ψ′w ∈ [ψl, ψu] .

Proof. For any (w, ψw) ∈ D1, the gradient of Lcc with respect to ψw can be calculated by

∇ψwLcc(w, ψw) =

{
− 1

2π [1 + cos(2ψw)][1− ‖w − v‖2] , ψw < ψv ,
1

2π [1 + cos(2ψw)]‖w‖2 , ψw > ψv ,

where the gradient at ψw = ψv can be any subgradient. For any (w, ψw) ∈ D2, we have ψw ∈
[ψl, ψu], which indicates 2 cos2 ψu 6 1 + cos(2ψw) 6 2. Meanwhile, all points in D2 satisfies
1− 2R2 6 1− ‖w − v‖2 6 1 and (1−R)2 6 ‖w‖2 6 (1 +R)2 +R2. Thus, the gradient of Lcc

with respect to ψw can be bounded by

cos2 ψu
4π

6 sgn(ψw − ψv)∇ψwLcc(w, ψw) 6
3

π
,

where the first and second inequalities holds based on R 6 1/2. Then ψ′w satisfies

ψ′w = ψw − η∇ψwLcc(w, ψw) 6 max

{
ψw, ψv +

3η

π

}
6 ψu ,

where the first inequality holds from discussing the relation between ψw and ψv, and the second
inequality holds based on ψw 6 ψu and η 6 π(ψu − ψv)/3. Meanwhile, one has

ψ′w = ψw − η∇ψwLcc(w, ψw) > min

{
ψw, ψv −

3η

π

}
> ψl ,

where the first inequality holds from discussing the relation between ψw and ψv, and the second
inequality holds based on ψw > ψl and η 6 π(ψv − ψl)/3. Thus, we have completed the proof.
Lemma 25. Letψ′w = ψw−η∇ψwLcc(w, ψw) with (w, ψw) ∈ D2. IfR 6 1/2 and arcsinR+9η 6
ψu − ψv , then we have

−9 6 −2
(π

2
− ψw

)2

−2
(π

2
− ψw

)
|w2| 6 ∇ψwLcc 6 −1

4

(π
2
− ψw

)2

and ψ′w ∈ [ψl, ψu] .

Proof. For any (w, ψw) ∈ D1, the gradient of Lcc with respect to ψw can be calculated by

∇ψwLcc(w, ψw) =
‖w‖2

2π
[1 + cos(2ψw)]− ‖w‖

2π
[cos θw,v + cos(θw,v − 2ψw)] .

It is observed that the above expression is the same as the gradient of Lcr with respect to ψ in
Eq. (16). The only difference comes from the domain ofw, which is ‖w−v‖ 6 R in Lemma 12 and
‖w − v‖∞ 6 R here. Then according to ‖x‖ 6

√
2‖x‖∞ in R2, one knows from Lemma 12 that

−9 6 −2
(π

2
− ψw

)2

− 2
(π

2
− ψw

)
|w2| 6 ∇ψwLcc(w, ψw) 6 −1

4

(π
2
− ψw

)2

,
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where the first inequality holds according to |π/2−ψw| 6 π/2 and |w2| 6 1, and the third inequality
holds based on R 6 1/2. Then ψ′w satisfies

ψ′w 6 ψw + 9η 6 ψv + θw,v + 9η 6 ψu ,

where the second inequality holds from the condition θw,v > |ψw − ψv| in the definition of D2, and
the third inequality holds according to

θw,v 6 arcsinR 6 ψu − ψv − 9η .

Meanwhile, it is observed that the gradient is always negative, which implies ψ′w > ψw > ψl. Thus,
we have completed the proof.

C.2 Convergence Rate Lemmas

This section presents some sufficient conditions for convergence with an inversely proportional rate.
Lemma 26. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R indicates
the convex domain satisfying B(x∗, r1) ⊂ K ⊂ B(x∗, r2). Suppose that there exist constants
c1, c3, gl, gu such that c1 6 r1/gu and for any x ∈ K, at least one of the following holds.

1. |x′−x∗| 6 (1− c3η)|x−x∗| and (x′−x∗)(x−x∗) > 0 with x′ = x−η∇f(x) and η ∈ (0, c1].

2. gl 6 sgn(x− x∗)∇f(x) 6 gu for any x 6= x∗ and |∇f(x∗)| 6 gu.

Then for any c2 > max{1/c3, 2r2/gl, 2c1gu/gl}, the sequence {xt}∞t=1 generated by gradient
descent xt+1 = xt − ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t} satisfies

xt ∈ K and |xt − x∗| 6
a

t
with a =

c22gl
2c1

.

Proof. Firstly, we prove xt ∈ K. Suppose xt ∈ K for t = k. We prove xk+1 ∈ K by discussion.

1. If the first condition holds, then xk+1 is a convex combination of xk and x∗. Thus, xk+1 ∈ K.
2. If the second condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then xk+1 is a convex

combination of xk and x∗. Thus, xk+1 ∈ K.
3. If the third condition holds and sgn(xk+1 − x∗) 6= sgn(xk − x∗), then one knows from ηt 6 c1

and |∇f(x)| 6 gu that |xk+1 − x∗| 6 c1gu 6 r1, where the second inequality holds based on
c1 6 r1/gu. Thus, B(x∗, r1) ⊂ K leads to xk+1 ∈ K.

Combining the cases above, x0 ∈ K and mathematical induction completes the proof of xt ∈ K.

Secondly, we prove |xt − x∗| 6 a/t. Let t0 = c2/c1. According to c2 > 2c1gu/gl > 2c1, one
knows t0 > 2. For t < t0, it is observed that

|xt − x∗| 6 r2 6
a

t0
6
a

t
,

where the first inequality holds based on K ⊂ B(x∗, r2), the second inequality holds because of
a = c22gl/(2c1) > r2t0. Thus, the conclusion holds for any t < t0. Suppose that |xk − x∗| 6 a/k
holds for k > t0 − 1. We then prove |xk+1 − x∗| 6 a/(k + 1) by discussion.

1. If the first condition holds, then we have

|xk+1 − x∗| 6
(

1− c2c3
k + 1

)
a

k
6

a

k + 1
,

where the first inequality holds based on the first condition and the induction hypothesis, and the
second inequality holds from c2 > 1/c3. Thus, the conclusion holds for t = k + 1.

2. If the second condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then one knows

|xk+1 − x∗| 6
a

k
− c2gl
k + 1

6
a

k + 1
,

where the first inequality holds from the induction hypothesis and the second condition, and the
second inequality holds because of

a

k
− c2gl
k + 1

− a

k + 1
=
a− c2glk
k(k + 1)

=
c2gl(t0/2− k)

k(k + 1)
6 0 ,
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where the first equality holds based on c2 > 1/c3, the second equality holds from the choice of a
and t0, and the first inequality holds from t0 > 2 and k > t0 − 1 > t0/2. Thus, the conclusion
holds for t = k + 1.

3. If the second condition holds and sgn(xk+1 − x∗) 6= sgn(xk − x∗), then it is observed that

|xk+1 − x∗| 6
c2gu
k + 1

6
a

k + 1
,

where the first inequality holds from the second condition, and the second inequality holds based
on a = c22gl/(2c1) > c2gu. Thus, the conclusion holds for t = k + 1.

Combining the cases above, we have completed the proof.
Lemma 27. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R indicates
the convex domain satisfying B(x∗, r1) ⊂ K ⊂ B(x∗, r2). Let {θt}∞t=0 be a positive sequence
bounded by θt 6 a/t. Suppose that there exist constants gl, gu such that for any x ∈ K, the following
holds

1. If |xt − x∗| > θt, then gl 6 sgn(xt − x∗)∇f(xt) 6 gu.

2. If |xt − x∗| 6 θt, then |∇f(xt)| 6 gu.

Let c1 > 0, and c2 > max{2r2/gl, 2c1}. Suppose that the sequence {xt}∞t=1 generated by gradient
descent xt+1 = xt − ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t} satisfies xt ∈ K for any
t ∈ N+. Then the following holds for any t ∈ N+

|xt − x∗| 6
b

t
with b = max

{
2a+ c2gu,

c22gl
2c1

}
.

Proof. Let t0 = 2b/(c2gl) > c2/c1 > 2. For any 0 < t < t0, it is observed that

|xt − x∗| 6 r2 6
c2gl

2
=

b

t0
6
b

t
.

Thus, the conclusion holds for 0 < t < t0. Suppose that |xk − x∗| 6 b/k holds for k > t0 − 1. We
then prove |xk+1 − x∗| 6 b/(k + 1) by discussion.

1. If the first condition holds and sgn(xk+1 − x∗) = sgn(xk − x∗), then we have

|xk+1 − x∗| 6 |xk − x∗| − ηk+1gl 6
b

k
− c2gl
k + 1

6
b

k + 1
,

where the second inequality holds from the induction hypothesis, and the third inequality holds
based on b = c2glt0/2 and t0/2 6 t0 − 1 6 k. Thus, the conclusion holds for t = k + 1.

2. If the first condition holds and sgn(xk+1 − x∗) 6= sgn(xk − x∗), then we have

|xk+1 − x∗| 6 ηk+1gu 6
c2gu
k + 1

6
b

k + 1
,

which implies that the conclusion holds for t = k + 1.
3. If the second condition holds, then one knows

|xk+1 − x∗| 6 |xk − x∗|+ ηk+1gu 6
a

k
+

c2gu
k + 1

6
b

k + 1
,

where the second inequality holds based on |xk+1 − x∗| 6 θk+1 6 a/(k + 1), and the third
inequality holds because of b > 2a+ c2gu. Thus, the conclusion holds for t = k + 1.

Combining the cases above, we have completed the proof.
Lemma 28. Let f : K → R represent a function with a global minimum x∗, where K ⊂ R indicates
the convex domain satisfying K ⊂ B(x∗, R). Let {xt}∞t=1 denote the sequence generated by gradient
descent xt+1 = xt−ηt∇f(xt) with x0 ∈ K and ηt = min{c1, c2/t}, satisfying xt ∈ K for t ∈ N+.
Suppose that the gradient satisfies∇f(xt) = d(xt − x∗) + rt, where dl 6 d 6 du and |rt| 6 e/t. If
c1 6 1/du and c2 > 2/dl, then we have

|xt − x∗| 6
c

t
with c = max

{
c2R

c1
, c2e

}
.
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Proof. Let t0 = c2/c1. We prove the conclusion by mathematical induction.

1. Base case. For 0 < t 6 t0, it is observed that

|xt − x∗| 6 R 6
c

t0
6
c

t
.

Thus, the conclusion holds for 0 < t 6 t0.
2. Induction. Suppose that |xk − x∗| 6 c/k holds for k > t0 − 1. Then we have

|xk+1 − x∗| = |(1− dηk)(xk − x∗)− ηkrk| 6 (1− dηk)|xk − x∗|+ ηk|rk| ,

where the first inequality holds based on dηk 6 c1du 6 1. Then the induction hypothesis leads to

|xk+1 − x∗| 6
(

1− 2

k

)
c

k
+
c2e

k2
6

c

k + 1
,

where the first inequality holds according to c2dl > 2, and the second inequality holds based on
c > c2e. Thus, the conclusion holds for t = k + 1.

Therefore, mathematical induction completes the proof.

D Proof of Theorem 4

We begin the proof with two lemmas. For any non-zero vector a in R2 and θ ∈ [0, π], define
S(a, θ) = {x ∈ R2 | θx ∈ [θa − θ, θa + θ]} as the sector region with central angle 2θ that is
symmetric with respect to a. Let Na,θ represent the truncated standard Gaussian distribution on
S(a, θ), of which the probability density function is

p(x) =

{
1
2θ e−

1
2‖x‖

2

, x ∈ S(a, θ) ,
0 , otherwise .

The following lemma provides a lower bound for the expected squared inner product on S(a, θ).

Lemma 29. Let d = 1. For any w ∈ R2d, non-zero a ∈ R2d, and θ ∈ [0, π/2], we have

Ex∼Na,θ

[(
w>x

)2]
>
θ2

3
‖w‖2 .

Proof. Let θw indicate the phase of w, i.e., w = ‖w‖(sin θw + cos θwi). Then calculating the
expectation in the polar coordinate system leads to

Ex∼Na,θ

[(
w>x

)2]
=
‖w‖2

2θ

∫ +∞

0

∫ θa+θ

θa−θ
r3(cos θw cosφ+ sin θw sinφ)2e−

1
2 r

2

dφ dr

=
‖w‖2

θ

[
θ +

1

2
sin(2θ) cos(2θa,w)

]
,

(38)

where the second equality holds based on integrating over r and φ separately, and the identity
cos(θa − θw) = cos θa,w. The expectation in Eq. (38) can be further bounded by

Ex∼Na,θ

[(
w>x

)2]
= ‖w‖2

[(
1− 1

2θ
sin(2θ)

)
+

1

θ
sin(2θ) cos2 θa,w

]
>

(
1− 1

2θ
sin(2θ)

)
‖w‖2

>
θ2

3
‖w‖2 ,

where the first inequality holds according to θ ∈ [0, π/2], and the second inequality holds because of
sin(x) 6 x− x3/12 for all θ ∈ [0, π/2]. Thus, we have completed the proof.

The following lemma provides a lower bound for expressing a complex-valued vector with four
real-valued vectors under a symmetric constant.
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Lemma 30. Let vk ∈ Rd with k ∈ [4] and v ∈ Rd. If v1 + v3 = v2 + v4, then we have
4∑
k=1

‖vi − v · I(k = 1)‖2 >
1

4
‖v‖2 .

Proof. According to the generalized mean inequality, one knows
4∑
k=1

‖vi−v·I(k = 1)‖2 >
1

4

(
4∑
k=1

‖vi − v · I(k = 1)‖

)2

>
1

4
‖(v1−v)−v2+v3−v4‖2 =

1

4
‖v‖2 ,

where the second inequality holds because of the triangle inequality, and the first equality holds based
on the condition v1 + v3 = v2 + v4. Thus, we have completed the proof.

We are now ready to prove Theorem 4.

Proof of Theorem 4. We define Nα,W =
∑n
i=1 αiτ(w>i x) for simplicity. From d = 1, the weight

vectorwi is a 2-dimensional real-valued vector. Let θwi = arctan(w−1
i,1wi,2) ∈ (−ψ, 2π−ψ] denote

the phase of wi. We assume θv = 0 without loss of generality. Denote by ΘW the π/2-symmetrical
phase set induced from W and ψ, i.e.,

ΘW =

{
θwi +

(j − 1)π

2

∣∣∣∣ i ∈ [n], j ∈ [4]

}
∪
{
iψ +

(j − 1)π

2

∣∣∣∣ i ∈ {−1,+1}, j ∈ [4]

}
.

It is observed that there is an integer m 6 n+ 2 such that |ΘW| = 4m. We sort all phases in ΘW as

ΘW = {θi}4mi=1 with − ψ < θ1 < · · · < θ4m = 2π − ψ .
Let Nβ,U represent an arbitrary two-layer RVNN with weight phases from ΘW, i.e.,

Nβ,U(x) =

4m∑
i=1

βiτ(u>i x) with θui = θi .

It is observed that Nβ,U degenerates to Nα,W with suitable parameters. Thus, the expected square
loss Lrc can be bounded as

Lrc(α,W) >
1

2
inf
β,U

Ex∼N (0,I)

[(
Nβ,U(x)− σψ(v>C xC)

)2]
=

1

2
inf
β,U

4m∑
i=1

∆θi
π

Ex∼N (ai,∆θi)

[(
Nβ,U(x)− σψ(v>C xC)

)2]
,

(39)

where ∆θi = (θi − θi−1)/2 and ai = e(θi−∆θi)i with θ0 = θ4(n+1). The indices can be divided into
m groups as Ii = {i+ (k− 1)m | k ∈ [4]} with i ∈ [m]. Denote by iψ the index of ψ, i.e., θiψ = ψ.
Then Eq. (39) becomes

Lrc(α,W) >
1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

Ex∼N (aj ,∆θj)

[(
Nβ,U(x)− σψ(v>C xC)

)2]
=

1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

Ex∼N (aj ,∆θj)

[(
(vj − v · I(j 6 iψ))>x

)2]
,

(40)

where the first inequality holds since ∆θj remains the same in Ii, the second inequality holds based
on the activation regions of ReLU and zReLU, and the definition of vj as follows

vj =

j+m−1∑
l=j−m

βφ(l)uφ(l) with φ(l) =

{
l + 4m , l 6 0 ,
l , 0 < l 6 4m ,
l − 4m , l > 4m .

(41)

Applying Lemma 29 to Eq. (40), we obtain

Lrc(α,W) >
1

2
inf
β,U

m∑
i=1

∆θi
π

∑
j∈Ii

(∆θj)
2

3
‖vj − v · I(j 6 iψ)‖2

>
1

2
inf
β,U

min{iψ,m}∑
i=max{1,iψ−m+1}

(∆θi)
3

3π

4∑
k=1

‖vi,k − v · I(k = 1)‖2 ,
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where the second inequality holds based on the definition of vi,k = vi+(k−1)(n+1) and ∆θj = ∆θi
for any j ∈ Ii. Based on Eq. (41), one has vi,1 + vi,3 = vi,2 + vi,4. Then Lemma 30 implies

Lrc(α,W) >
1

2
inf
β,U

min{iψ,m}∑
i=max{1,iψ−m+1}

(∆θi)
3

3π
· 1

4
‖v‖2

>
‖v‖2

24π(n+ 1)2

 min{iψ,m}∑
i=max{1,iψ−m+1}

∆θi

3

=
‖v‖2 min{2ψ, π − 2ψ}3

24π(n+ 1)2
,

where the second inequality holds because of the generalized mean inequality. Thus, we have
completed the proof.

E Proof of Theorem 6

We begin with a lemma providing a lower bound for convergence.
Lemma 31. If there exists a constant c such that

〈∇f(w),w − v〉 6 c‖w − v‖2 ,

then w′ = w − η∇f(w) with η ∈ (0, 1/(2c)) satisfies

‖w′ − v‖ >
√

1− 2cη‖w − v‖ .

Proof. From the updating rule, it is observed that

‖w′ − v‖2 > ‖w − v‖2 − 2η〈w − v,∇f(w)〉 > (1− 2cη)‖w − v‖2 ,

which completes the proof.

We then prove Theorem 6.

Proof of Theorem 6. Denote by R = ‖w0−v‖. The convergence analysis consists of several stages.

Stage 1: the error of ψ decreases below a threshold fast. By the same arguments as those in
the proof of Theorem 1, η ∈ (0, 1/(12π)) indicates (wt, ψt) ∈ D for any t ∈ N. Recalling the
convergence of ψ in Eq. (7), we have ψt > π/4 when t > d16η−1(1−R2)−1e. From Eq. (4), one
knows ∇ψLcr(wt, ψt) > −6(ψ∗ − ψt). Then we have

〈∇ψLcr(wt, ψt), ψ
∗ − ψt〉 > −6(ψ∗ − ψt)2 .

Then we obtain from η ∈ (0, 1/12) and Lemma 31 that

ψ∗ − ψt > (1− 12η)t/2(ψ∗ − ψ0) . (42)

Thus, one has

(1− 12η)t/2(ψ∗ − ψ0) 6 ψ∗ − ψt 6
π

4
with t > T1 = 16η−1(1−R2)−1 .

Step 2: both errors of w and ψ decrease below small constants fast. Based on Eq. (8), we have

‖wt − v‖ 6
(

1− η

48

)t−T1

for t > T1 , (43)

which, together with Eqs. (7) and (42), implies that

(1− 12η)t/2(ψ∗ − ψ0) 6 ψ∗ − ψt 6
1

384
and |w2| 6 ‖wt − v‖ 6

1

384
,

with t > T2 = max

{
T1 +

ln 384

ln(1 + η/48)
,

3200π

η(1−R2)

}
.

(44)
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Step 3: w converges faster than ψ. For any t > T2, Lemmas 11 and 12 imply

〈∇ψLcr(wt, ψt), ψt − ψ∗〉 6 2(ψ∗ − ψt)3 + 2(ψ∗ − ψt)2|w2,t| 6
1

96
(ψ∗ − ψt)2 ,

where the second inequality holds based on Eq. (44). Then Lemma 31 indicates

ψ∗ − ψt+1 >
√

1− η/48(ψ∗ − ψt) for t > T2 ,

which, together with Eq. (43), indicates

|ww,t| 6 ‖wt − v‖ 6 ψ∗ − ψt with t > T3 = 2T1 +
T2 ln(1− 12η) + 2 ln(ψ∗ − ψ0)

ln(1− η/48)
. (45)

Step 4: ψ converges with an inversely proportional rate. For any t > T3, it is observed from
Lemmas 11, 12, and Eq. (45) that

∇ψLcr(wt, ψt) > −4(ψ∗ − ψ)2 .

Let at = 4η(ψ∗−ψt). Then the updating rule implies at+1 > at(1− at). Choosing η ∈ (0, 1/(4π))
guarantees at ∈ [0, 1/2]. Then Lemma 14 indicates

ψ∗ − ψt >
(1− 12η)T3/2(ψ∗ − ψ0)

t− T3 + 1
for t > T3 . (46)

Step 5: the loss converges to 0 with an inversely proportional rate. Define non-negative quantities
∆w = ‖w − v‖ and ∆ψ = ψ∗ − ψ. We provide a lower bound for Lcr by discussion.

1. Suppose (w, ψ) ∈ D1. Then we have

Lcr(w, ψ) >
1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w) =

1

8π
∆3
ψ +

1

8π
∆2
w(2π −∆3

ψ) >
1

8π
∆3
ψ , (47)

where the first inequality holds based on sin(2ψ)+2ψ = sin(2∆ψ)+2ψ∗−2∆ψ 6 2ψ∗−∆3
ψ/2

for any ψ ∈ [0, π/2], and the second inequality holds from ∆ψ 6 π/2.
2. Suppose (w, ψ) ∈ D2. The expected loss can be rewritten as

Lcr(w, ψ) =
1

4
− 1

4π
[sin(2ψ) + 2ψ](1−∆2

w)

+
1

4π
[(cos(2ψ)− 1)|w2|+ (sin(2ψ) + 2ψ + 2θ − 2ψ∗)w1]

>
1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w) +

1

4π
[(cos(2ψ)− 1)|w2|]

>
1

4
− 1

8π
(4ψ∗ −∆3

ψ)(1−∆2
w)− 1

2π
∆w

>
1

8π
∆3
ψ −

1

2π
∆w ,

(48)

where the first inequality holds from sin(2ψ)+2ψ 6 2ψ∗−∆3
ψ/2 and sin(2ψ)+2ψ+2θ−2ψ∗ >

0, the second inequality holds based on cos(2ψ)− 1 > −2 and |w2| 6 ∆w.

Combining Eqs. (47) and (48), one knows that the following holds for any (w0, ψ0) ∈ D and t > T3

Lcr(wt, ψt) >
1

8π
∆3
ψ,t −

1

2π
∆w,t >

(1− 12η)3T3/2(ψ∗ − ψ0)3

8π(t− T3 + 1)3
− 1

2π

(
1− η

48

)t−T3

,

where the second inequality holds from Eqs. (43) and (46). Thus, we have completed the proof.

F Simulation Experiments

Experimental settings. A training set of size 7,000 and a test set of size 3,000 are generated by a
randomly initialized target neuron (can be a real-valued or a complex-valued neuron). After random
initialization, a complex-valued neuron and a real-valued neuron are trained by gradient descent with
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the empirical mean square loss and a learning rate of 0.1 for 100 epochs (or 300 epochs when the loss
does not converge).

Experimental results. It should be noticed that a complex-valued neuron cannot always learn a target
neuron. From the theoretical formulation, our convergence rate holds with a small constant probability.
From the loss landscape, there exist constant pieces in the parameter space, i.e., the complex-valued
neuron does not learn anything after initialization. Thus, we cannot expect a complex-valued neuron
to learn a target neuron all the time. In the experiments, we train the complex-valued neuron with
several random initializations and find that our theoretical conclusions occur in experiments. This
phenomenon verifies our theories and also motivates a novel learning algorithm for CVNNs, as
discussed in the conclusion part.
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