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Supplementary materials arrangement:

• Section 1 provides an overview of the public resources available to facilitate reproducibility
and outlines the licenses associated with the EFWI data and released code.

• Section 2 explains the particular method we utilized for elastic seismic forward modeling,
which enabled us to generate the seismic data.

• Section 3 provides detailed information on the format and naming conventions used for
EFWI.

• Section 4 provides a comprehensive description of the intricate architecture of ElasticNet,
ElasticGAN, and ElasticTransformer.

• Section 5 outlines the specific training details employed for ElasticNet, ElasticGAN, and
ElasticTransformer.

• Section 6 showcases the benchmark results achieved by ElasticGAN and ElasticTransformer.
• Section 7 explores an ablation study focusing on the impacts of independently inverting VP

and VS, thereby sidelining their coupling effects, utilizing the EFWI datasets.
• Section 8 delves into an ablation study investigating the interdependencies and influence of

variations in VP and VS structures on seismic data.
• Section 9 presents comprehensive computational details regarding elastic forward modeling.
• Section 10 presents a comparison between EFWI and OPENFWI.

1 EFWI Public Resources and Licenses

To ensure the reliability of reproducing EFWI benchmarks, we have established several accessible
resources. These resources are summarized in the following list. Additionally, our dedicated team
is actively engaged in maintaining the platform and incorporating future advancements based on
valuable feedback from the community.

∗Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.



• Website: https://efwi-lanl.github.io
• Dataset URL: https://efwi-lanl.github.io/#dataset

Codes and pretrained model will be released upon approval by Los Alamos National Laboratory and
U.S. Department of Energy.

2 Seismic Data Generation

In EFWI, the seismic source and receiver geometries remain aligned with the OPENFWI dataset [1],
except that the grid spacing is reduced to 5m in order to preserve the stability of elastic wave
propagation. Each velocity map is associated with a total of 5 seismic sources and 70 receivers,
which are evenly distributed on the upper surface. This configuration ensures an abundance of
source-receiver pairs for the purpose of seismic data generation.

Our Python forward modeling algorthm follows the Matlab code at https://csim.kaust.edu.sa/
files/ErSE328.2013/LAB/Chapter.FD/lab.fdpsv/lab2.html. The seismic data is simulated
from the velocity maps using finite-difference solver [2] with the elastic equations [3] with a 2nd-order
accuracy in time and a 4th-order accuracy in space. A 350 grids absorbing boundary [4] is adopted to
avoid the reflections from the model boundaries. This method provides a robust and computationally
efficient mean of generating accurate seismic data that align with the VP and VS models. The point
source function utilized in this study is a Ricker wavelet with a central frequency of 15 Hz. This
particular wavelet is applied to the vertical component of particle displacement.

3 EFWI Datasets: Illustration, Format, Naming

The EFWI datasets are organized into eight folders, namely FVA, FVB, CVA, CVB, FFA, FFB, CFA,
and CFB. These folders contain the datasets EFVA, EFVB, ECVA, ECVB, EFFA, EFFB, ECFA,
and ECFB, respectively. The examples of VP, VS velocity maps, along with seismic data ux and uz

in EFWI are shown in Figure 1 to 4.

Format: All samples in EFWI are stored in .npy format. The velocity maps, denoted as VP and
VS, as well as the Poisson’s ratio Pr, and the seismic data ux and uz , are all stored separately in
individual files for preservation. Each file contains a single NumPy array of 500 samples. The shapes
of the arrays in velocity map files, Poisson’s ratio, and seismic data files are (500, 1, 70, 70) and (500,
5, 1000, 70), respectively.

Naming: The naming of files can be described as {vp|vs|pr|data_x|data_z}_{i}.npy, where
vp, vs, pr, data_x and data_z specify whether a file stores VP, VS, Pr, ux or uz , i is the index of
a file (start from 0) among the ones with the same n. Here are several examples:

• vp_3.npy is the third file among all the files with VP velocity maps.
• vs_1.npy is the first file among all the files with VS velocity maps.
• pr_4.npy is the fourth file among all the files with Poisson’s ratio Pr maps.
• data_x_1.npy is the file that contains the seismic data x component ux corresponding to

the velocity maps in vp_1.npy and vs_1.npy.
• data_z_1.npy is the file that contains the seismic data z component uz corresponding to

the velocity maps in vp_1.npy and vs_1.npy.

4 EFWI Benchmarks: Network Architecture

4.1 ElasticNet

ElasticNet is an encoder-decoder structural CNN network built upon InversionNet [5]. The architec-
ture consists of two encoders that take seismic data ux and uz as inputs, representing the horizontal
and vertical components respectively. The encoder comprises a stack of 14 CNN layers. The first
layer has a kernel size of 7× 1, while the subsequent six layers have a kernel size of 3× 1. To reduce
the data dimension to the size of the velocity map, a stride of 2 is applied every other layer. Following
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Figure 1: Examples of VP and VS maps, along with seismic data ux and uz , in EFVA and ECVA. The star
markers indicate the source locations.

Figure 2: Examples of VP and VS maps, along with seismic data ux and uz , in EFVB and ECVB. The star
markers indicate the source locations.

this, six additional CNN layers with a kernel size of 3× 3 are employed to extract spatial-temporal
features from the compressed data. In these layers, the data is down-sampled every other layer using
a stride of 2. Afterward, a CNN layer with an 8× 9 kernel size is used to flatten the feature maps
into a latent vector of size 512. The latent vectors from both encoders are concatenated and passed
through two decoders to obtain P- and S-wave velocity maps, denoted as VP and VS respectively.
In the decoder, the latent vector undergoes a deconvolutional layer to generate a 5× 5× 512 tensor
using a kernel size of 5. This is followed by a convolutional layer with the same number of input and
output channels. This deconvolution-convolution process is repeated four times using a kernel size of
4 for the deconvolutional layers. As a result, a feature map of size 80× 80× 32 is obtained. Finally,
the feature map is center-cropped using a 70× 70 window, and a 3× 3 convolutional layer is applied
to generate a single-channel velocity map. The overall architecture consists of 14 CNN layers in the
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Figure 3: Examples of VP and VS maps, along with seismic data ux and uz , in EFFA and ECFA. The star
markers indicate the source locations.

Figure 4: Examples of VP and VS maps, along with seismic data ux and uz , in EFFB and ECFB. The star
markers indicate the source locations.

encoder and 11 layers in the decoder. All the convolutional and deconvolutional layers are followed
by batch normalization, and the activation function used is leakyReLU.

4.2 ElasticGAN

ElasticGAN is extended from the VelocityGAN architecture [6] with an encoder-decoder CNN
network as the generator, while the discriminator is a fully-CNN network. Note that the generator
allows for other model architecture, though we adopt ElasticNet for the consistency on performance
evaluation. The discriminator takes the generated velocity maps (VP, VS) as two inputs and classifies
them into fake or true predictions. Each encoder of the discriminator has 9 convolution layers with
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LeakyReLU activation but not any normalization. The training process follows the common practice
using the Wasserstein distance with gradient penalty, in addition to the pixel-wise ℓ1 or ℓ2 loss.

4.3 ElasticTransformer

ElasticTransformer follows a similar seismic-encoder and velocity-decoder architecture design as
the SimFWI described in [7]. It consists of two two-layer transformer encoders that take ux and uz

as inputs and two two-layer transformer decoders to output VP and VS separately. The patch size
of seismic data is 100× 10, and the patch size of velocity maps is 10× 10. The dimension of the
encoder is 132 with 12 heads, and the dimension of the decoder is 516 with 16 heads. Similarly to
SimFWI, we employ a linear layer to project the embedding of ux and uz into a 128-dimensional
space, separately. These projected embeddings are then concatenated and fed through two separate
2-piece Maxout layers to obtain the latent representations. Subsequently, two additional linear
layers are utilized to map each latent representation to the appropriate dimensions of the respective
decoders. Unlike the linear upsampler utilized at the end of the velocity decoder in [7], we stack four
upsampling and 3× 3 convolution blocks to construct the upsampler. Each block increases the size
of the feature map by a factor of two and reduces the dimension by half. In the end there is another
3× 3 convolution layer to generate the single-channel velocity map.

5 EFWI Benchmarks: Training Configuration

This section presents the training configurations that have been implemented to ensure reproducibility.
All experiments are conducted using NVIDIA Tesla V100 GPUs. We maintain consistent hyper-
parameters across all datasets for ElasticNet, ElasticGAN, and ElasticTransformer. The AdamW
optimizer [8] is employed with a weight decay of 1× 10−4 and momentum parameters β1 = 0.9 and
β2 = 0.999 to update all models. During the training process, we apply min-max normalization to
rescale the velocity maps and seismic data within the range of [−1, 1]. The velocity values for VP

maps range from 1500m/s to 4500m/s, while the velocity values for VS range from 612m/s to
3000 m/s. The learning rate is set to 1× 10−3 for ElasticNet, ElasticGAN and ElasticTransformer.
For ElasticNet and ElasticGAN, there are no weight decay and the batch size is set as 128. For
ElasticTransformer, the weight decay is 0.05 and the batch size is 256.

6 EFWI Benchmarks: ElasticGAN and ElasticTransform

The benchmarks of ElasticGAN and ElasticTransform on EFWI are given in Table 1 and Table 2.
ElasticGAN demonstrates superior performance in predicting VP and VS compared to ElasticNet,
but for Pr, the outcomes of ElasticGAN are inferior to ElasticNet. Among the three models,
ElasticTransform yields the best results for simple datasets such as EFV A, EFFA, and ECFA.
However, as the complexity of velocity maps increases, ElasticTransformer becomes the poorest
performing model.

7 Independent vs. Joint Inversion: Impact on Pr Maps

This experiment seeks to explore the implications of independent versus joint inversion of VP and
VS on the precision of predicted Pr maps, thereby underscoring the importance of considering the
relationship between VP and VS, as well as the coupling of P and S waves.

Figure 5: Examples of independent inversion results of ECFA dataset: from left to right: ground truth VP,
ground truth VS, ground truth Pr, predicted VP, predicted VS, and predicted Pr.
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Table 1: Quantitative results of ElasticGAN on EFWI datasets.

Dataset Loss
ElasticGAN

Vp Vs Pr
MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

EFVA ℓ1 0.0540 0.0882 0.9057 0.0444 0.0809 0.8856 0.0571 0.1129 0.6814
ℓ2 0.0506 0.0774 0.8736 0.0403 0.0623 0.9016 0.0620 0.0960 0.5066

EFVB ℓ1 0.1087 0.2012 0.8064 0.0818 0.1520 0.8146 0.0757 0.1329 0.5806
ℓ2 0.1177 0.1975 0.7887 0.0815 0.1458 0.8080 0.0817 0.1289 0.4764

ECVA ℓ1 0.0983 0.1594 0.7661 0.0817 0.1331 0.7717 0.0693 0.1258 0.5699
ℓ2 0.1014 0.1524 0.7284 0.0783 0.1204 0.7762 0.0847 0.1309 0.4398

ECVB ℓ1 0.1968 0.3293 0.6170 0.1469 0.2427 0.6470 0.0881 0.1505 0.4622
ℓ2 0.2077 0.3218 0.6069 0.1574 0.2386 0.6237 0.1067 0.1563 0.3639

EFFA ℓ1 0.0846 0.1452 0.8464 0.0725 0.1204 0.8447 0.0812 0.1394 0.5954
ℓ2 0.0598 0.1015 0.8864 0.0494 0.0833 0.8883 0.0592 0.1017 0.6206

EFFB ℓ1 0.1177 0.1781 0.6992 0.0883 0.1373 0.7411 0.0543 0.1016 0.6347
ℓ2 0.1268 0.1798 0.6387 0.0921 0.1338 0.7386 0.0690 0.1102 0.4747

ECFA ℓ1 0.0813 0.1471 0.8291 0.0683 0.1234 0.8164 0.0567 0.1179 0.6601
ℓ2 0.0736 0.1176 0.8311 0.0602 0.0989 0.8479 0.0716 0.1148 0.5066

ECFB ℓ1 0.1639 0.2366 0.6096 0.1199 0.1741 0.6549 0.0621 0.1055 0.5780
ℓ2 0.1639 0.2326 0.6064 0.1208 0.1726 0.6549 0.0593 0.1009 0.6076

Table 2: Quantitative results of ElasticTransformer on EFWI datasets.

Dataset Loss
ElasticTransformer

Vp Vs Pr
MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑ MAE↓ RMSE↓ SSIM↑

EFVA ℓ1 0.0326 0.0676 0.9359 0.0232 0.0514 0.9386 0.0351 0.0772 0.7891
ℓ2 0.0337 0.0670 0.9389 0.0240 0.0511 0.9413 0.0367 0.0761 0.7810

EFVB ℓ1 0.0830 0.1794 0.8510 0.0595 0.1269 0.8609 0.0692 0.1303 0.6464
ℓ2 0.0871 0.1810 0.8466 0.0641 0.1305 0.8531 0.0723 0.1319 0.6166

ECVA ℓ1 0.0826 0.1448 0.8000 0.0648 0.1109 0.7967 0.0959 0.1450 0.4650
ℓ2 0.0853 0.1398 0.8068 0.0659 0.1070 0.8103 0.1034 0.1467 0.4633

ECVB ℓ1 0.1772 0.3129 0.6548 0.1294 0.2249 0.6777 0.1225 0.1983 0.3934
ℓ2 0.1838 0.2933 0.6670 0.1354 0.2144 0.6898 0.1363 0.1951 0.3588

EFFA ℓ1 0.1190 0.1765 0.8827 0.0779 0.1178 0.8513 0.1544 0.1898 0.6129
ℓ2 0.1153 0.1634 0.8868 0.0671 0.1023 0.8691 0.1418 0.1780 0.6322

EFFB ℓ1 0.1120 0.1760 0.7048 0.0802 0.1277 0.7492 0.0960 0.1478 0.4316
ℓ2 0.1161 0.1716 0.7272 0.0819 0.1247 0.7644 0.0886 0.1330 0.4950

ECFA ℓ1 0.0372 0.0924 0.9100 0.0365 0.0878 0.8768 0.0422 0.1048 0.7003
ℓ2 0.0601 0.1100 0.8961 0.0498 0.0909 0.8710 0.0621 0.1127 0.6258

ECFB ℓ1 0.1863 0.2727 0.5560 0.1388 0.2045 0.6002 0.1433 0.2101 0.3203
ℓ2 0.1787 0.2532 0.5750 0.1302 0.1863 0.6283 0.1284 0.1842 0.3578

The procedure involves the individual training of two separate InversionNets utilizing the EFWI

dataset. One InversionNet is tasked with the prediction of VP maps, while the other focuses on the
prediction of VS maps. Subsequently, the independently predicted VP and VS outputs are used to
compute the Poisson’s ratio maps. The derived maps are then statistically compared to the ground
truth Pr maps. Further details of these metrics are provided in Table 5 in the main article.

The outcome reveals a significantly higher MAE and MSE, coupled with lower SSIM values for Pr
maps reconstructed from independent VP/VS predictions when juxtaposed with those reconstructed
from joint inversion (Table 3 in the main article). Specifically, the SSIM for the Pr map reconstructed
from independent inversion in the "EFVA" set is 2% less than the ElasticNet joint inversion result in
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the ℓ1 case and 6% in the ℓ2 case. Even in comparison to the InversionNet results in Table 5 in the
main article, the Pr performance decrement is still significant. Additionally, both the MAE and MSE
of the independent inversion exceed those of the joint inversion result by 60% and by 72% of the
independent same structural inversion result. An example visualized comparison is shown in Figure 5.
Of critical importance is the observation that key targets of the inversion, the reservoir thin layers, are
misplaced at incorrect depths and exhibit distorted spatial shapes in the independent inversion. This
misrepresentation could lead to erroneous reservoir exploration, with potentially severe economic
ramifications.

Consequently, this experiment reinforces the necessity of incorporating the VP-VS relationship and
the P-S wave coupling in the imaging and targeting of reservoirs. Ignoring the elastic wave coupling
and focusing solely on single-parameter inversion is deemed unviable.

8 Investigating P- and S-waves Coupling via Machine Learning

The primary objective of this experiment is to elucidate the coupling effects of P and S waves in
seismic data. Specifically, we evaluate the feasibility of a VP-only data-driven FWI that overlooks
VS structural alterations. The experimental design is detailed below:

Training: We utilize OPENFWI’s InversionNet, which is trained using the Z-component seismic data
sourced from EFWI. This setup is identical to the benchmarks set by the OPENFWI’s InversionNet,
with the exception that our input seismic data incorporates elastic effects. The output is confined to
the VP maps. We utilize 48, 000 and 24, 000 training samples for the "EFault" and "EV el" families,
respectively, and reserve the remaining samples for testing. Training samples of the "ECFA" set are
shown in Figure 6.

Figure 6: Examples of independent inversion of ECFA training set: from left to right: ground truth VP,
ground truth VS, ground truth seismic data z-component uZ. All used for independent VP, VS trainings.

Testing: The testing phase is divided into two steps: 1) We use the aforementioned reserved test
sets as a benchmark to evaluate the performance of InversionNet. 2) We then generate a new elastic
seismic dataset by eradicating the thin layer reservoir structure in the Poisson maps, leading to paired
VP/VS maps with identical structures, shown in Figure 7. This new dataset is identical to the original
EFWI dataset, save for the minor alterations in VS structure and the corresponding changes in seismic
data. Consequently, the performance differences between the two testing sets should solely reflect the
effects of differing VS structures.

Our observations show a discernible performance decline when testing datasets with differing VS

structures. For instance, in the "EFVA" set, the new dataset averagely increase by 343% in MAE,
and 296% in RMSE compared to the baseline, while SSIM drops by 7% in both ℓ1 and ℓ2 cases. A
detailed account of these statistical metrics is provided in the main article Table 5 and 6.

Conversely, we performed a reciprocal experiment: training on VS-only and testing using the EFWI

dataset, followed by further testing with altered VP structures in the thin reservoir layer. The observed
outcomes mirror those of the first experiment. With a VS-only InversionNet, when VP structures are
altered slightly in the testing sets, the network’s performance notably diminishes. For instance, in
the complex case like the "ECFB" set, the MAE and RMSE for the new dataset increase by 120%
and 89% compared to the baseline in the ℓ1 case and increase by 115% and 88% in the ℓ2 cases,
respectively, while SSIM decreases by 7% in both ℓ1 and ℓ2 cases, respectively. The decrement is even
large when compared to the ElasticGAN (Table 1) and the ElasticTransform (Table 2) benchmarks.
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Figure 7: Examples of independent inversion results of changed structural ECFA dataset: from left to right:
changed structural velocities VS(VP) for independent VP(VS) test, corresponding data z-component uZ with
changed VS(VP), corresponding data difference, predicted VP(VS) with changed uZ as input.

It worth mentioning that the diminished Pr prediction performance is based on the same level of Vp
and Vs predictions for acoustic and elastic cases. Furthermore, the reservoir layer is not distinctly
identifiable in the Pr maps, which could result in significant errors in reservoir estimation, potentially
causing substantial economic loss. Detailed statistical metrics are listed in the main article Table 5
and 6.

In summary, single-parameter data-driven inversion, which neglects the coupling of P and S waves,
results in substantial degradation of inversion performance. Consequently, the simultaneous prediction
of VP and VS by considering the coupling of P and S waves proves to be indispensable.

9 Computational Cost in Elastic Forward Modeling

The adoption of the elastic approximation reintroduces the concern of computational costs. In the
context of data-driven elastic FWI, a significant portion of the computational expenses arises from
the construction of the training set. In contrast to elastic forward modeling, which generates particle
displacement components ux and uz from velocity maps VP and VS, acoustic forward modeling
focuses solely on generating stress p from the P-wave velocity map VP. The acoustic forward
modeling process is governed by the acoustic wave equation, which can be expressed as follows:

∇2p− 1

VP
2

∂2p

∂t2
= s, (1)

where ∇2 = ∂2

∂x2 + ∂2

∂z2 , VP is P-wave velocity map, p is pressure field and s is source term.

When comparing elastic approximation to acoustic approximation, the generation of seismic data
imposes substantially higher memory and computational burdens across multiple factors [9].

• Velocity Maps: In an acoustic medium, only the P-wave velocity is sufficient to characterize
the properties of the medium at a specific location. However, in an elastic medium, two
parameters (the P-wave and S-wave velocities), are needed for an accurate description.

• Seismic data: Seismic data in the domain of an elastic medium consists of the stress tensor
encompassing horizontal and vertical components. Conversely, seismic data within an
acoustic scenario primarily encompasses pressure, denoting a scalar quantity. Thus The
memory required to store the elastic wavefield is at least twice of the acoustic wavefield.

• Wave Equation: The computational burden associated with solving the equation of motion
and constitutive equations is notably reduced in acoustic modeling compared to elastic
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Table 3: Dataset comparison between EFWI and OPENFWI
Dataset EFWI OPENFWI

Dataset Families EVel, EFault Vel, Fault, Style, Kimberlina
Wave Equation Elastic Acoustic

Total Size 0.69 TB 1.83 TB
Total Sample 168 K 256 K

Input Particle displacement ux and uz Pressure p
Output VP and VS VP

Target Obtain decoupled VP and VS maps Obtain accurate VP maps

modeling. Specifically, the computational cost of elastic modeling is found to be three to six
times higher than that of acoustic modeling when both are implemented on an identical grid.

• Stability: In order to mitigate numerical dispersion, it is necessary for the grid size to
correspond to the minimum velocity within the model, with the minimum Vs for elastic
cases, and the minimum Vp for acoustic cases. Consequently, elastic modeling requires a
finer grid spacing compared to acoustic modeling. In the context of 2D simulations, the
relationship between the number of times the wave equation needs to be solved for acoustic
simulations (Nacoustic) and elastic simulations (Nelastic) is expressed as follows:

Nelastic

Nacoustic
=

(
V min
P

V min
S

)3

(2)

The ratio between VP and VS usually ranges from 1.4 to 2.1 [10, 11, 12], which make
Nelastic

Nacoustic
ranges from 2.7 to.9.3.

Elastic wave propagation simulations generally necessitate at least twice the memory compared
to acoustic simulations. The computational demands can range from approximately 4.2 to 55.8
times higher. Consequently, the computation and memory requirements for generating EFWI are
significantly greater than those of OPENFWI.

10 EFWI vs OPENFWI

While EFWI is constructed upon the foundations of OPENFWI, there remain notable distinctions
between these two datasets. Beyond the computational expenses associated with the wave equation
discussed in Section 9, Table 3 enumerates additional contrasts. Despite the fact that the data size of
EFWI is smaller than that of OPENFWI, the inherent complexity of the elastic wave equation makes
solving for both VP and VS from particle displacements ux and uz significantly more challenging
than solving solely for VP from pressure p.
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