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A Adversarial training in the overparametrized regime

A.1 Additional proofs

The next lemma was used in the proof of Theorem 1. It formalizes the equivalence between the
minimum-norm solution of y = Xβ and the dual problem we need to solve to obtain α̂.

Lemma 1. The following equivalence hold

min
y=Xβ

∥β∥∗ = max
∥α⊤X∥≤1

α⊤y. (S.1)

Furthermore, β̂ and α̂ be the arguments at optimality if and only if α̂⊤X ∈ ∂∥β̂∥∗.

Proof of Lemma 1. By strong duality:

min
y=Xθ

∥θ∥∗ = max
α

min
θ

(∥θ∥∗ + αT (y −Xθ)) = max
α

(
αTy +min

θ
(∥θ∥∗ − αTXθ)

)
Now, the Fenchel conjugate of ∥ · ∥∗ is the indicator function on the ball of the norm ∥ · ∥. Hence, we
obtain the result.
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A.2 Results on the robustness gap and adversarial training

Next we provide a proof of Proposition 2.

Proof of Proposition 2. Using Theorem 4, for any distribution on (x, y)

Ex,y

[
max

∥∆x∥≤δ
(y − (x+∆x)⊤β|2)

]
= Ex,y

[
(|y − x⊤β|+ δ∥β∥∗)2

]
= Ex,y

[
(y − x⊤β)2

]
+ 2δ∥β∥∗Ex,y

[
|y − x⊤β|

]
+ δ2∥β∥2∗,

Now, since 0 ≤ Ex,y

[
|yi − x⊤

i β|
]
≤
√

Ex,y

[
|yi − x⊤

i β|2
]

(by Jensen inequality), we have that

Ex,y

[
(y − x⊤β)2

]
+δ2∥β∥2∗ ≤ Ex,y

[
(|y − x⊤β|+ δ∥β∥∗)2

]
≤
(√

Ex,y

[
(yi − x⊤

i β)
2
]
+ δ∥β∥∗

)2

.

If we denote, Radv
∗ (β; δtest, ∥ · ∥) = Ey,x

[
max∥∆xi∥≤δtest(y − (x+∆x)⊤β)2

]
i.e., the expected

adversarial squared error and R∗(β) = (y0 − (x0 +∆x0)
⊤β)2 the expected squared error in the

absence of an adversary on a new test point. We can rewrite it as:

R∗(β) + δ2∥β∥2∗ ≤ Radv
∗ (β; δ, ∥ · ∥) ≤

(√
R∗(β) + δ∥β∥∗

)2
.

Rearranging:

√
Radv

∗ (β; δ, ∥ · ∥)−
√
R∗(β) ≤ δ∥β∥∗ ≤

√
Radv

∗ (β; δ, ∥ · ∥)−R∗(β). (S.2)

Now for the empirical adversarial distribution:

Radv(β̂; δ̄, ∥ · ∥) = 1

n

n∑
i=1

(|yi − x⊤
i β̂|+ δ̄∥β∥∗)2

= δ̄2∥β∥2∗

where the last step follows from considering that β̂ is an interpolator (hence yi − x⊤
i β̂ = 0,∀i).

Plugging this result back into (S.2). Let δ = δtest and δ′ = δtrain

The next result holds for mismatched ℓ∞ and ℓ2-adversarial attacks

Proposition 7. Let β̂ be the minimum ∥ · ∥∗-norm interpolator, than√
Radv

∗ (β; δtest, ∥ · ∥∞)−
√
R∗(β) ≤

√
p
δtest
δ̄

√
Radv(β; δ̄, ∥ · ∥2) (S.3)

Proof. A similar derivation as in the proof of Proposition 2 yields:√
Radv

∗ (β̂; δ, ∥ · ∥∞)−
√
R∗(β) ≤ δ∥β̂∥1 ≤

√
Radv

∗ (β̂; δ, ∥ · ∥∞)−R∗(β̂)

Radv(β̂; δ̄, ∥ · ∥2) = δ̄2∥β̂∥22.

Now since ∥β̂∥2 ≤ ∥β̂∥1 ≤ √
p∥β̂∥2 the result follows for δ = δtest.

A.3 Bounds on δ̄

We point that although the exact value of δ̄ requires the solution of the dual problem. It is easy to
come up with upper and lower bounds that depend only on X . On the one hand, by construction
∥X⊤α̂∥ ≤ 1, hence,

1

∥α̂∥∞
≥ ∥X⊤α̂∥

∥α̂∥∞
.
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On the other hand, X⊤α̂ ∈ ∂∥β̂∥∗ such that α̂⊤Xβ̂ = ∥β̂∥∗. Hence a simple application of Hölder
inequality yields:

∥Xβ̂∥1
∥β̂∥∗

≥ 1

∥α̂∥∞
Now since, nδ̄ = 1

∥α̂∥∞
we have that:

inf
u∈Rn

∥X⊤u∥
∥u∥∞

≤ nδ̄ ≤ sup
v∈Rm

∥Xv∥1
∥v∥∗

For instance, for ℓ∞-adversarial attacks, this speciallize to

inf
u∈Rn

∥X⊤u∥∞
∥u∥∞

≤ nδ̄ ≤ sup
v∈Rm

∥Xv∥1
∥v∥1

Let, σ1(X) ≥ · · · ≥ σn(X) singular values of the matrix X ∈ Rn×m. We have that σ1(X) =

supv∈Rm
∥Xv∥2

∥v∥2
and σn(X) = infu∈Rn

∥X⊤u∥2

∥u∥2
Now we can use standard norm inequalities, let

w ∈ Rm: ∥w∥2 ≤ ∥w∥1 ≤
√
m∥w∥2 and ∥w∥∞ ≤ ∥w∥2 ≤

√
m∥w∥∞ to obtain, that for for

ℓ∞-adversarial attacks:
1√
m
σn(X) ≤ nδ̄ ≤

√
mσ1(X)

Similarly ℓ2-adversarial attacks one can show that σn ≤ nδ̄ ≤
√
mσ1.

It is also possible to establish a relationship with the minimum-norm interpolator. Let β̂ be the
minimum norm interpolators, using Hölder inequality

∥β̂∥∗ = α̂⊤y ≤ ∥α̂∥∞∥y∥1
And it follows that :

δ̄∥β̂∥∗ ≤ 1

n
∥y∥1

Now, if we assume that the data was generated as yi = x⊤
i β

∗ + εi for i = 1, · · · , n. From Hölder
inequality and the definition of the dual problem

α̂TXβ∗ ≤ ∥α̂TX∥∥β∗∥∗ ≤ ∥β∗∥∗ (S.4)

Now:

∥β̂∥∗
(a)
= α̂Ty

(b)
= α̂TXβ∗ + α̂Tε

(c)
≤ ∥β∗∥∗ + α̂Tε

≤ ∥β∗∥∗ + ∥α̂∥∞∥ε∥1

= ∥β∗∥∗ +
1

n

∥ε∥1
δ̄

where (a) follows Lemma 1, (b) follows from the data model definition and finaly (c) follows from
Eq. (S.4).

A.4 Linear maps and random projections

As an extension, we consider the following framework: We consider a matrix S ∈ Rp×d that
maps from the input space Rd to a feature space Rp. For instance, in Bach [40] this scenario—
with the entries of S sampled from a Rademacher distribution—is used to study the phenomena
of double-descent. For this case, the adversarial problem consists of finding a parameter β̂ that
minimizes:

Radv
S (β; δ, ∥ · ∥) = 1

n

n∑
i=1

max
∥∆xi∥≤δ

|yi − (xi +∆xi)
⊤S⊤β|2. (S.5)

Equation (S.5) also allow for reformulation:
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Proposition 8 (Dual formulation: linear maps). Let ∥ · ∥∗ be the dual norm of ∥ · ∥, then

Radv
S (β; δ, ∥ · ∥) = 1

n

n∑
i=1

(
|yi − x⊤

i S
⊤β|+ δ∥S⊤β∥∗

)2
. (S.6)

this is a direct consequence of the more general result Theorem 7. We also have the following theorem
relating the adversarial training solution to the minimum ∥ · ∥∗-norm interpolator.

Theorem 5. Assume the matrix XS⊤ ∈ Rn×p has full row rank (i.e., rank(XS⊤) = n). The
minimum-norm solution

β̂ = argmin
β

∥S⊤β∥∗ subject to XS⊤β = y, (S.7)

minimizes the adversarial risk Radv
S (θ, δ, ∥ · ∥) if and only if δ ∈ (0, δ̄]. For δ̄ = 1

n∥α̂∥∞
where

α̂ denote the solution of the dual problem max∥α⊤XP ∥≤1 α
⊤y, where P = S⊤(SS⊤)−1S.

B Adversarial training and parameter shrinking methods

B.1 Background

The subderivative of a function ω : Rp → R evaluated at a point β0 is the set

∂ω(β0) = {v ∈ Rp : ω(β)− ω(β0) ≥ v(β − β0) ∀β ∈ Rp}.
In this section, for convenience, we will drop the two last arguments of Radv(β; δ, ∥ · ∥) and denote it
only by Radv(β). Let Li(β) = |yi − xT

i β|+ δ∥β∥∗, then the partial derivative of Radv with respect
to β is

∂Radv(β) =
2

n

n∑
i=1

Li(β)∂Li(β), where ∂Li(β) = xi∂|x⊤
i β − yi|+ δ∂∥β∥∗, (S.8)

where

∂|a| =


{1} if a > 0

{−1} if a < 0

{γ : γ ∈ [−1, 1]} if a = 0,

and:
∂∥β∥∗ =

{
α : ∥α∥ ≤ 1,αTβ = ∥β∥∗

}
. (S.9)

Since, Radv(β) is a convex function of β, we have that β̂ is a solution of minRadv(β) iff
0 ∈ ∂Radv(β̂).

B.2 Zero solution to adversarial training: Proposition 3

Proposition 3 stated that The zero solution β̂ = 0 minimizes the adversarial training iff δ ≥ ∥X⊤y∥
∥y∥1

.
Indeed, one can notice from Figure 3 and Figures S.2 and S.3 there is a threshold of δ, such that for
all δ above such threshold the solution is identical to zero. We provide proof for this theorem next.

Proof of Proposition 3. On the one hand,

∂Radv(0) =
2

n

n∑
i=1

|yi|(xi∂|yi|+ δ∂∥0∥∗).

In matrix form:
∂Radv(0) =

2

n

(
X⊤y + δ∥y∥1∂∥0∥∗

)
where we used that |yi|∂|yi| = yi. Now, ∂∥0∥∗ = {α : ∥α∥ ≤ 1}, hence for z ∈ ∂∥0∥∗, we obtain
from triangular inequality that:

∥X⊤y∥ − δ∥y∥1 ≤
∥∥∥X⊤y + δ∥y∥1z

∥∥∥ .
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On the one hand, if ∥X⊤y∥
∥y∥1

> δ, the left-hand-side of the above inequality is larger than zero, and

0 ̸∈ ∂Radv(0). On the other hand, if ∥X⊤y∥
∥y∥1

≤ δ, we have z = XTy/(δ∥y∥1) ∈ ∂∥0∥∗ (since
∥z∥ ≤ 1), and:

X⊤y + δ∥y∥1z = 0.

Therefore 0 ∈ ∂Radv(0) and the proof is complete.

B.3 On the similarities of regularization paths: Proposition 4 and extensions

The next phenomenon we want to explain is the similarity between Lasso and ℓ∞-adversarial attacks
regularization paths. As well as the similarities between ridge and ℓ2-adversarial attacks regularization
paths.

Theorem 6. Let β̂(δ) be the minimizer of Radv(β; δ, ∥ · ∥), define the vector s(δ) = sign(y −
Xβ̂(δ)). Assume that yi ̸= x⊤

i β̂(δ) for every i. If X⊤s(δ) = 0 than β̂(δ) is a minimizer of

1

n
∥Xβ − y∥22 +

(
δ∥β∥∗ +

1

n
s(δ)⊤y

)2

, (S.10)

Proof. We will prove first that if X⊤s(δ) = 0, than a minimizer of Radv(β; δ, ∥ · ∥) is also a
minimizer of:

1

n
∥Xβ − y∥22 +

(
δ∥β∥∗ +

1

n
s(δ)⊤y

)2

(S.11)

is also a minimizer of Radv(β; δ, ∥ · ∥). Multiplying the terms in (S.8) and putting into matrix form:

1

2
∂Radv(β) =

1

n
X⊤(Xβ−y)+

δ∥β∥∗
n

X⊤∂||Xβ−y||1 +
(
1

n
∥Xβ − y∥1 + δ∥β∥∗

)
δ∂∥β∥∗

Now, we have that ∂||Xβ̂ − y||1 = {−s(δ)} and that ∥Xβ̂ − y∥1 = s(δ)⊤(y −Xβ̂) = s(δ)⊤y,
hence:

1

2
∂Radv(β̂) =

1

n
X⊤(Xβ̂ − y) +

(
δ∥β̂∥∗ +

1

n
s(δ)⊤y

)
δ∂∥β̂∥∗

The left-hand side is the subderivative of (S.11) evaluated at β̂. Since β̂ is the minimizer of Radv(β̂),
than 0 ∈ ∂Radv(β̂) and it follows that β̂ is also a minimizer of (S.11).

Proposition 4 is weaker than necessary. But we choose it to be part of the main text instead instead of
Theorem 6 because it has a cleaner interpretation: it only depends on the norm of β̂ and not on its
direction. And X⊤1 = 0 has the interpretation that the data has been normalized. The proof follows
directly from the Theorem.

Proof of Proposition 4. We can use the Hölder inequality |x⊤
i β̂| ≤ ∥β̂∥∗∥xi∥, to show that if

∥β̂∥∗∥xi∥ ≤ |yi| than |x⊤
i β̂(δ)| ≤ |yi| for all i. In this case, s(δ) = sign(y). If additionally if

y > 0, the Theorem implies that as long as X⊤1 = 0 then β̂(δ) is the minimizer of:

1

n
∥Xβ − y∥22 +

(
δ∥β∥∗ +

1

n
∥y∥1

)2

.

We notice that the theorem conclusion holds even under the (less strict) condition, |x⊤
i β̂(δ)| ≤ |yi|

for every i. Figure 1 highlights the part of the regularization path for which this condition holds.
Showing that even for values of δ for which this condition does not hold, the regularization paths are
still extremely similar.
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Figure S.1: Regularization paths: diabetes dataset. On the horizontal axis, we give the ∥β̂∥1. On
the vertical axis, we show the coefficients of the learned linear model. The hashed area gives the
values of β̂ for which |x⊤

i β̂(δ)| ≤ |yi| for every i.

This can be explained from the same argument use in Theorem 6. Assume the hypothesis that
the covariates {xi}ni=1 are i.i.d. and are sampled from a symmetric and zero-mean distribution,
i.e. x ∼ −x and E [x] = 0. In this case, we notice that if s ∈ {−1, 1} then by symmetry of
the distribution sx ∼ x, and we have that E [sx] = 0. Now, from the law of large numbers,
1
n

∑
sixi → 0 as n → 0. Let β̂ be the solution of

1

n
∥Xβ − y∥22 +

(
δ∥β∥∗ +

1

n
s⊤y

)2

.

The same argument used in the proof of Theorem can than be used to show that in this case
∂Radv(β̂) → 0 as n → ∞. Hence, for large enought n both problems have approximately the same
solution.

B.4 Regularization path for Gaussian covariates

10−2 10−1 100 101 102 103 104 105

1/_

−0.5

0.0

0.5

co
ef

fic
ie

nt
s

(a) Lasso regression

10−1 100 101 102 103 104

1/X

−0.5

0.0

0.5

(b) ℓ∞-adversarial training

Figure S.2: Regularization paths: Gaussian covariates. Lasso and ℓ∞-adversarial training. On the
horizontal axis, we give the inverse of the regularization parameter (in log scale). On the vertical axis
we show the coefficients of the learned linear model.
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Figure S.3: Regularization paths: Gaussian covariates. Ridge regression and ℓ2-adversarial
training. On the horizontal axis, we give the inverse of the regularization parameter (in log scale). On
the vertical axis we show the coefficients of the learned linear model.
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B.5 Additional details on Figure 1: relationship between ∥β̂∥1 and λ and δ

Figure S.4(a) illustrate the relationship between ∥β̂∥1 and λ and δ. Figure S.4(b-c) shows the same
coefficients as in Figure 1, but considers 1/λ and 1/δ is the x-axis instead of ∥β̂∥1.
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(a) Regularization parameter vs ∥β̂∥1
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Figure S.4: Regularization parameter vs ∥β̂∥1. In (a), we show the relationship between λ and δ

and ∥β̂∥1. In (b), we show the regularization paths estimated in the Diabetes dataset [18] for Lasso
with 1/λ in the x-axis; and, in (c) for ℓ∞-adversarial attacks, with 1/δ in the x-axis.

C Relation to robust regression and square-root Lasso

C.1 Proof of Proposition 5

Proof. It follows from noting that

Radv
p (β; δ) =

1

n
max

∆∈Rp(δ)
∥y − (X +∆)β∥22 =

1

n

(
max

∆∈Rp(δ)
∥y − (X +∆)β∥2

)2

.

Where the first equality follows from the definition of adversarial training and the last equality
from the fact that the function h(z) = 1

nz
2 is monotonically increasing for z ≥ 0. Repeating the

same argument, but now for the minimization, implies that Radv
p (β; δ) has the same minimizer as

max∆∈Rp ∥y − (X +∆)β∥2.

C.2 Error bounds for ℓ∞-adversarial training for sparse recovery (Proof of Theorem 2)

In this section, we will consider exclusively the empirical ℓ∞-adversarial risk:

Radv(β; δ, ∥ · ∥∞) =
1

n

n∑
i=1

(
|yi − x⊤

i β|+ δ∥β∥1
)2

.

For convenience, we will denote it only Radv(β) in this section and we denote β̂ the minimizer of
this optimization problem. Moreover, we assume that the data was generated as:

yi = x⊤
i β

∗ + εi, (S.12)

where β∗ is the parameter vector used to generate the data. Again we denote X the matrix of vectors
xi stacked and y and ε the vectors of stacked outputs and noise components respectively. In this
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case, Theorem 2 states that for δ > δ∗ = 3∥X⊤ε∥∞
∥ε∥1

, the prediction error of ℓ∞-adversarial training
satisfies the bound:

1

n
∥X(β̂ − β∗)∥22 ≤ 8δ∥β∗∥1

(
1

n
∥ε∥1 + 10δ∥β∗∥1

)
.

We present the proof for this result next.

Proof of Theorem 2. Let Li(β) = |yi − xT
i β|+ δ∥β∥1, then

∂Radv(β) =
2

n

n∑
i=1

Li(β)∂Li(β),where ∂Li(β) = xi∂|yi − x⊤
i β|+ δ∂∥β∥1.

Multiplying the terms and expanding

1

2
∂Radv(β) =

1

n
X⊤(Xβ−y)+

δ∥β∥1
n

X⊤∂∥Xβ−y∥1+
(
1

n
∥Xβ − y∥1 + δ∥β∥1

)
δ∂∥β∥1.

Now, since 0 ∈ ∂Radv(β̂) we must have ẑ ∈ ∂∥Xβ − y∥1 and ŵ ∈ ∂∥β∥1 such that:

0 =
1

n
X⊤(Xβ̂ − y) +

δ∥β̂∥1
n

X⊤ẑ + δ

(
1

n
∥Xβ̂ − y∥1 + δ∥β̂∥1

)
ŵ. (S.13)

Let us denote,
∆̂ = β̂ − β∗.

Taking the dot product of both sides of Eq (S.13) with ∆̂, making the substitution Xβ̂−y = X∆̂−ε
and rearranging we find that

1

n
∥X∆̂∥22 =

1

n
(X∆̂)⊤ε− δ∥β̂∥1

n
(X∆̂)⊤ẑ − δ

(
1

n
∥X∆̂− ε∥1 + δ∥β̂∥1

)
∆̂

⊤
ŵ. (S.14)

Next, we bound each of the terms highlighted above. From (S.9), since ŵ ∈ ∂∥β̂∥1, we have that
ŵ⊤β̂ = ∥β̂∥1 and ŵ⊤β∗ ≤ ∥ŵ∥∞∥β∗∥1 ≤ ∥β∗∥1. Therefore:

−ŵ⊤∆̂ ≤ ∥β∗∥1 − ∥β̂∥1.

Similarly, since ẑ ∈ ∂∥X⊤β − y∥1, we have that

−ẑ⊤X∆̂ = −ẑ⊤(X∆̂− ε)− ẑ⊤ε ≤ −∥X∆̂− ε∥1 + ∥ε∥1.

Moreover, we have that:

1

n
(X∆̂)⊤ε

(a)
≤ 1

n
∥X⊤ε∥∞∥∆̂∥1

(b)
≤ δ

3n
∥ε∥1∥∆̂∥1,

where step (a) follows from Hölder inequality and step (b) from the condition imposed in the theorem
that ∥ε∥1δ > 3∥Xε∥∞. Plugging these results back into (S.14) and rearranging

1

n
∥X∆̂∥22 ≤ δ

3n
∥ε∥1∥∆̂∥1 +

δ

n
(∥ε∥1 − 2∥X∆̂− ε∥1)∥β̂∥1+

δ

n
∥X∆̂− ε∥1∥β∗∥1 + δ2∥β̂∥1(∥β∗∥1 − ∥β̂∥1).

On the one hand:

∥ε∥1 − 2∥X∆̂− ε∥1
(a)
≤ ∥ε∥1 − 3

2∥X∆̂− ε∥1
(b)
≤ 3

2∥X∆̂∥1 − 1
2∥ε∥1,

where, in step (a) we use the trivial fact that − 3
2 > −2. The number 3

2 is arbitrary and
other values −2 < α < −1 should also work. In step (b), we use the triangular inequality:
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∥X∆̂− ε∥1 ≥ ∥ε∥1 − ∥X∆̂∥1. On the other hand, also using the triangular inequality, we have
that: ∥X∆̂− ε∥1 ≤ ∥X∆̂∥1 + ∥ε∥1. Hence:

1

n
∥X∆̂∥22 ≤ δ

3n
∥ε∥1∥∆̂∥1 +

δ

n

(
3
2∥X∆̂∥1 − 1

2∥ε∥1
)
∥β̂∥1+

δ

n
(∥X∆̂∥1 + ∥ε∥1)∥β∗∥1 + δ2∥β̂∥1(∥β∗∥1 − ∥β̂∥1).

Rearranging the right-hand-side of the above inequality:

1

n
∥X∆̂∥22 ≤ δ

3n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+

δ

n
∥X∆̂∥1

(
∥β∗∥1 +

3

2
∥β̂∥1

)
+ δ2∥β̂∥1(∥β∗∥1 − ∥β̂∥1).

Finally, using that the norm inequality : ∥X∆̂∥1 ≤
√
n∥X∆̂∥2, we obtain

1

n
∥X∆̂∥22 ≤ δ

3n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+

δ√
n
∥X∆̂∥2

(
∥β∗∥1 +

3

2
∥β̂∥1

)
+ δ2∥β̂∥1(∥β∗∥1 − ∥β̂∥1).

Notice that the above inequality is a second-order inequality of the type y2 ≤ by + c, where
y = 1√

n
∥X∆̂∥2 and b and c can be read by inspection. Since y ≥ 0 we must have b2 + 4c ≥ 0,

hence:

0 ≤ 4

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+ 4δ2∥β̂∥1

(
∥β∗∥1 − ∥β̂∥1

)
+ δ2

(
∥β∗∥1 +

3

2
∥β̂∥1

)2

≤ 4

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+ δ2

(
∥β∗∥21 + 7∥β̂∥1∥β∗∥1 −

7

4
∥β̂∥21

)
.

Factoring the leftmost term we obtain:

0 ≤ 4

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+ δ2

(
∥β∗∥1 + c1∥β̂∥1

)(
∥β∗∥1 − c2∥β̂∥1

)
, (S.15)

where c1 =
√
14 + 7

2 ≤ 7.5 and c2 =
√
14 − 7

2 ≥ 0.2. Using the triangular inequality
∥∆̂∥1 ≤ ∥β∗∥1 + ∥β̂∥1, and the above inequality can be written as

0 ≤ 4

3

δ

n
∥ε∥1

(
4∥β∗∥ − 1

2
∥β̂∥1

)
+ δ2

(
∥β∗∥1 + 7.5∥β̂∥1

)(
∥β∗∥1 − 0.2∥β̂∥1

)
.

Hence:
∥β̂∥1 ≤ 8∥β∗∥1, (S.16)

otherwise, the right-hand side of the inequality would be negative. Now we use the following
proposition to obtain a bound on y2 = 1

n∥X∆̂∥22.

Proposition 9. Let y, b, c ∈ R and b2 + 4c ≥ 0, if y2 ≤ by + c then y2 ≤ b2 + 2c.

Which yields:

1

n
∥X∆̂∥22 ≤ 2

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+

2δ2∥β̂∥1
(
∥β∗∥1 − ∥β̂∥1

)
+ δ2

(
∥β∗∥1 +

3

2
∥β̂∥1

)2

.
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Rearranging it we obtain:

1

n
∥X∆̂∥22 ≤ 2

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+ δ2

(
∥β∗∥21 + 7∥β̂∥1∥β∗∥1 +

1

4
∥β̂∥21

)
≤ 2

3

δ

n
∥ε∥1

(
∥∆̂∥1 + 3∥β∗∥ − 3

2
∥β̂∥1

)
+ δ2

(
∥β∗∥1 + c1∥β̂∥1

)(
∥β∗∥1 + c2∥β̂∥1

)
,

where c1 = 7
2 +

√
12 ≤ 7 and c2 = 7

2 −
√
12 ≥ 0.04. Now since ∥β̂∥1 ≤ 8∥β∗∥1 and ∥∆̂∥1 ≤

∥β∗∥1 + ∥β̂∥1 ≤ 9∥β∗∥1,

1

n
∥X∆̂∥22 ≤ 2

3

δ

n
∥ε∥1 (9∥β∗∥1 + 3∥β∗∥) + δ2 (∥β∗∥1 + (7 · 8)∥β∗∥1) (∥β∗∥1 + (0.04 · 8)∥β∗∥1)

≤ 8

n
δ∥β∗∥1∥ε∥1 + 76δ2∥β∗∥21

≤ 8δ∥β∗∥1
(
1

n
∥ε∥1 + 10δ∥β∗∥1

)
.

Proof of Proposition 9. For completeness, we provide proof for the proposition. The inequality can
be rewritten as: −y2 + by + c ≥ 0 for b, c ≥ 0. For this type of inequality, it follows that:

y ≤ b+
√
b2 + 4c

2
.

Therefore:

y2 ≤

(
b+

√
b2 + 4c

2

)2
(a)
≤ b2 + (b2 + 4c)

2
= b2 + 2c,

where (a) uses that: (r + s)2 ≤ 2(r2 + s2) for any r, s ≥ 0.

C.3 High-dimensional analysis

We follow the same development as [31, example 7.14].

Assumption. Assume ε has i.i.d. N (0, σ2) entries and that the matrix X is fixed with maximum
entry of X equals to M .

Satisfying the conditions of Theorem 3. Under our assumptions

max
j=1,··· ,m

∥xj∥2√
n

(a)
≤ max

j=1,··· ,m
∥xj∥∞ ≤ M.

where step (a) follows from the inequality between the norms. Now, ∥X⊤ε
n ∥∞ is a the maximum over

p zero-mean Gaussian variable with variance at most M2σ2

n . From standard Gaussian tail bounds:∥∥∥X⊤ε

n

∥∥∥
∞

≤ Mσ

√
2 log(p/γ)

n
(S.17)

with probability greater than 1− 2γ. Hence, if we set λ = KMσ
√

log p
n for an appropriate constant

K we will have with high probability that ∥X⊤ε
n ∥∞ ≤ λ, satisfying the the condition on Theorem 3.

Satisfying the conditions of Theorem 2. Now, we will analyze the condition for which the assump-
tion of Theorem 2 is satisfied. That is, what values of δ yield with high probability ∥X⊤ε∥∞ ≤ δ∥ε∥1.
We have that

E
[
1

n
∥ε∥1

]
=

1

n

n∑
i=1

E [|εi|]
(a)
=

√
2

π
σ,

x



where step (a) relied on the fact that |εi| is a rectified Gaussian variable. Moreover, since the rectified
Gaussian is a sub-Gaussian variable with proxy-variance 2σ2, from a Hoeffding-type of bound

1

n
∥ε∥1 ≥

(√ 2

π
− 2

√
log(1/γ)

n

)
σ

with probability greater than 1− 2γ. We combine this result with the (S.17) to obtain that we can

set: δ = KM
√

log p
n , for an appropriate constant K and we will (with high-probability) satisfy the

condition ∥X⊤ε∥∞ ≤ δ∥ε∥1.

D Numerical experiments

Here we provide some additional descriptions of the numerical experiments.

1. Isotropic Gaussian features As mentioned in the main text, we consider Gaussian noise and co-
variates: ϵi ∼ N (0, σ2) and xi ∼ N (0, r2Ip) and the output is computed as a linear combination
of the features contaminated with additive noise: yi = xT

i β+ ϵi. In the experiments, unless stated
otherwise, we use the parameters σ = 1 and r = 1.

2. Latent-space features model The “latent space” feature model is described in Hastie et al.
[26, Section 5.4]. The features x are noisy observations of a lower-dimensional subspace of
dimension d. A vector in this latent space is represented by z ∈ Rd. This vector is indirectly
observed via the features x ∈ Rp according to

x = Wz + u,

where W is an p× d matrix, for p ≥ d. We assume that the responses are described by a linear
model in this latent space

y = θ⊤z + ξ,

where ξ ∈ R and u ∈ Rp are mutually independent noise variables. Moreover, ξ ∼ N (0, σ2
ξ )

and u ∼ N (0, Ip). We consider the features in the latent space to be isotropic and normal
z ∼ N (0, Id) and choose W such that its columns are orthogonal, W⊤W = p

dId, where the

factor p
d is introduced to guarantee that the signal-to-noise ratio of the feature vector x (i.e. ∥Wz|22

∥u∥2
2

)
is kept constant. In the experiments, unless stated otherwise, we use the parameters σξ = 1 and
the latent dimension fixed d = 1.

3. Random Fourier features model [43] The features are obtained by the nonlinear transformation
z 7→ x:

x =

√
2

p
cos(Wz + b),

where each entry of W is independently sampled from a normal distribution N (0, σw) and each
entry from b is sampled from a uniform distribution U [0, 2π) the pair. We apply the random
Fourier feature map to inputs of the Diabetes dataset [18]. The outputs are kept unaltered. In the
experiments, unless stated otherwise, we use the parameter σw = 0.01.

4. Random projections model [40] We consider Gaussian noise and covariates: ϵ ∼ N (0, σ2) and
x ∼ N (0, Id) and the output is computed as a linear combination of the features contaminated
with additive noise: y = x⊤S⊤β+ϵ, where S is a random projection matrix of varying dimension.
The entries of S are randomly sampled from Rademacher distribution as in the experiments in [40].
In the experiments, unless stated otherwise, we use the σ = 1.

5. Phenotype prediction from genotype. We consider Diverse MAGIC wheat dataset [44] from
the National Institute for Applied Botany. The dataset contains the whole genome sequence data
and multiple phenotypes for a population of 504 wheat lines. We use a subset of the genotype to
predict one of the continuous phenotypes. We have integer input with values indicating whether
each one of the 1.1 million nucleotides differs or not from the reference value. Closely located
nucleotides tend to be correlated and we consider z a pruned version provided by [44]. To generate
the features we subsample p from the sequence z, such that the input to the model is x = Wz,
where W is a matrix containing ones or zeros, such that each row of W ∈ Rp×d have p nonzero
entries, i.e., W1 = p1.
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Examples 1, 2, 4 are synthetic datasets. Examples 3 and 5 are real datasets combined with a feature
map strategy. We point out that example 4 requires a (slightly) different mathematical formulation,
which we cover in Appendix A.4. The results for the random projection model are presented
separately in Figure S.11. The other figures refer to examples 1, 2, 3, 5.
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Figure S.5: Threshold δ̄ vs. number of features.
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Figure S.6: (Minimum ℓ2-norm interpolator) MSE on test set vs. number of features. We show
both the MSE in the absence of an adversary (Test MSE), and in the presence of an ℓ2-adversarial
attack (Adv. MSE). The adversarial radius of the evaluation is δtest = 0.01E [∥x∥2]
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Figure S.7: (Minimum ℓ1-norm interpolator) MSE on test set vs. number of features. We show
both the MSE in the absence of an adversary (Test MSE), and in the presence of an ℓ∞-adversarial
attack (Adv. MSE). The adversarial radius of the evaluation is δtest = 0.01E [∥x∥1]
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Figure S.8: Training MSE vs regularization parameter. Left: for ridge and ℓ2-adversarial training.
Right: for Lasso and ℓ∞-adversarial training The error bars give the median and the 0.25 and 0.75
quantiles obtained from numerical experiment (5 realizations).
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(a) Gaussian features
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Figure S.9: Test MSE vs regularization parameter. Left: for ridge and ℓ2-adversarial training.
Right: for Lasso and ℓ∞-adversarial training. The error bars give the median and the 0.25 and 0.75
quantiles obtained from numerical experiment (5 realizations).
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Figure S.10: Adversarial Test MSE vs regularization parameter. Left: for ridge and ℓ2-adversarial
training. Right: for Lasso and ℓ∞-adversarial training. The error bars give the median and the 0.25
and 0.75 quantiles obtained from numerical experiment (5 realizations).
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Figure S.11: Random projections Left: the results for ℓ∞-adversarial training. Right: the results for
ℓ2-adversarial attacks. In (a) we show the threshold as a function of the number of features. Unlike
Figures 2 and S.5, we do not give a reference, that is because the input x is fixed, so it does make
sense to consider δ in absolute terms. (b) the train MSE as a function of 1/δ for the number of
features fixed p = 200. (c) the test MSE as a function of 1/δ. We consider an input of dimension
d = 1000.
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Figure S.12: Test MSE (MSE) under fixed adversarial radius in MAGIC dataset. We study a choice
of adversarial radius inspired by Theorem 2. For ℓ∞-adversarial training, we use δ = 0.5∥Xξ∥∞/∥ξ∥1

for ξ a vector with zero-mean normal entries. We use a random ξ, since we do not know the true
additive noise. Even with this approximation, ℓ∞-adversarial training performs comparably with
Lasso with the regularization parameter set using 5-fold cross-validation doing a full search among
the hyperparameter space. We use a similar method for setting the square-root Lasso parameter,
setting λ = 0.1∥Xξ∥∞/∥ξ∥2. The value 0.5 and 0.1 were set empirically, after finding out that the
value 3 used in the theorem was too conservative.
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E Results for general loss functions

E.1 Proof of Theorem 4

In the proof, we will use the Fenchel conjugate of L, where L∗ : R → R is defined as:

L∗(u) := sup
z
{uz − L(z)}

Proof. Using Fenchel–Moreau theorem the assumption on the loss imply that L(z) = supu{uz −
L∗(u)} for all z. Let z = x⊤β,

max
∥∆x∥≤δ

L((x+∆x)⊤β) = max
∥∆x∥≤δ

sup
u
(ux⊤β + u∆x⊤β − L∗(u))

= sup
u

(
ux⊤β + max

∥∆x∥≤δ
(u∆x⊤β)− L∗(u)

)
= sup

u

(
ux⊤β + δ∥β∥∗|u| − L∗(u)

)
= max

s∈{−1,1}
sup
u

(
u(x⊤β + sδ∥β∥∗)− L∗(u)

)
Applying Fenchel–Moreau theorem again we obtain the desired result.

E.2 Extension to linear maps

We consider here a matrix S ∈ Rp×d maps from the input space Rd to a feature space Rp (The
setting described in Appendix A.4). And that the parameter vector is estimated in this features space.
In this case, the following extension holds:

Theorem 7. Let L : R → R be convex and lower-semicontinuous, than for every δ

max
∥∆x∥≤δ

L((x+∆x)⊤S⊤β) = max
s∈{−1,1}

L
(
x⊤S⊤β + δs∥S⊤β∥∗

)
. (S.18)

the proof follows the same steps and is omitted here.

E.3 Application to dimensionality reduction

In this example, we discuss how to formulate an adversarial dimensionality reduction algorithm from
principal component analysis (PCA) loss function. PCA finds a projection matrix P that transforms
a given input x ∈ Rm into a lower-dimensional representation z = Px ∈ Rd, with d < m.
Conversely, given a lower-dimensional representation, the original input space can be reconstructed
with the inverse transformation x̂ = P⊤z. Principal components analysis can be formulated as the
minimization of

1

n

n∑
i=1

∥xi + P dP
⊤
d xi∥22. (S.19)

for P ∈ Rm×d a matrix with orthonormal columns P d = [p1, · · · ,pd]. Alternatively, it can be
viewed as sequentially minimizing:

1

n

n∑
i=1

∥x̃i + pdpd
⊤x̃i∥22 subject to P (d−1)pd = 0 and ∥pd∥2 = 1 (S.20)

where x̃i = xi − P (d−1)P
⊤
(d−1)xi. Moreover, minimizing (S.20) is equivalent to minimize

1
n

∑n
i=1 L(x̃

⊤
i pd) for L(x̃⊤pd) = −(x̃⊤pd)

2. With the formulation of PCA we just described, the
adversarial extension follows naturally. One can obtain that for this loss function s∗ = −sign(x̃⊤pd)
and that

max
∥∆x∥≤δ

∥(1 + pdpd
⊤)(x̃+∆x)∥22 = −

(
|x̃⊤pd| − δ∥pd∥∗

)2
.
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For the special case of ℓ2-adversarial disturbance, ∥pd∥2 = 1 hence:

max
∥∆x∥2≤δ

∥(1 + pdpd
⊤)(x̃+∆x)∥22 = −

(
|x̃⊤pd| − δ

)2
.
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