
Bottleneck Structure in Learned Features:
Low-Dimension vs Regularity Tradeoff

Anonymous Author(s)
Affiliation
Address
email

1 Corrections1

1.1 First Correction2

Theorem 1 (Theorem 3 from the main). For all inputs x where RankJf(x) = R(0)(f ; Ω), we have3

R(1)(f) ≥ 2 log |Jf(x)|+, furthermore:4

1. If R(0)(f ◦ g) = R(0)(f) = R(0)(g), then R(1)(f ◦ g) ≤ R(1)(f) +R(1)(g).5

2. If R(0)(f + g) = R(0)(f) +R(0)(g), then R(1)(f + g) ≤ R(1)(f) +R(1)(g).6

3. If PImATΩ and AΩ are k = RankA dimensional and completely positive (i.e. they can be7

embedded with an isometric linear map into Rm
+ for some m), then R(1)(x 7→ Ax; Ω) =8

2 log |A|+ .9

Proof. For the first bound, we remember that R(f ; Ω, L) ≥ L ∥Jf∥2/L
2/L, therefore10

R(1)(f ; Ω) = lim
L→∞

R(f ; Ω, L)−LR(0)(f ; Ω) ≥ lim
L→∞

L

RankJf(x)∑
i=1

si(Jf(x))
2
L−1 ≥

RankJf(x)∑
i=1

2 log si(Jf(x))

where we used s
2
L − 1 = e

2
L log s − 1 ≥ 2

L log s.11

(1) Since R(f ◦ g; Ω, L1 + L2) ≤ R(f ;L1) +R(g;L2), we have12

R(1)(f ◦ g; Ω) = lim
L1+L2→∞

R(f ◦ g; Ω, L1 + L2)− (L1 + L2)R
(0)(f ◦ g; Ω)

≤ lim
L1→∞

R(f ; Ω, L1)− L1R
(0)(f ; Ω) + lim

L2→∞
R(g; Ω, L2)− L2R

(0)(f ; Ω)

= R(1)(f ; Ω) +R(1)(g; Ω).

(2) Since R(f + g; Ω, L) ≤ R(f ; Ω, L) +R(g; Ω, L), we have13

R(1)(f + g; Ω) = lim
L→∞

R(f + g; Ω, L)− LR(0)(f + g; Ω)

≤ lim
L→∞

R(f ; Ω, L)− LR(0)(f ; Ω) + lim
L→∞

R(g; Ω, L)− LR(0)(g; Ω)

= R(1)(f ; Ω) +R(1)(g; Ω).

(3) By the first bound, we know that R(1)(x 7→ Ax; Ω) ≥ 2 log |A|+, we now need to show14

R(1)(x 7→ Ax; Ω) ≤ 2 log |A|+. Let us define the set of completely positive representations as the15
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set of bilinear kernels K(x, y) = xTBTBy such that Bx has non-negative entries for all x ∈ Ω (we16

say that a kernel K is completely positive over Ω if it can be represented in this way for some choice17

of B). The set of completely positive representations is convex, since for K(x, y) = xTBTBy and18

K̃(x, y) = xT B̃T B̃y, we have19

K(x, y) + K̃(x, y)

2
= xT

(
1√
2
B

1√
2
B̃

)T ( 1√
2
B

1√
2
B̃

)
y.

The conditions that there are Oin and Oout with OT
inOin = PImAT and OT

outOout = PImA such that20

OinΩ ∈ Rk1
+ and OoutAΩ ∈ Rk2

+ is equivalent to saying that the kernels Kin(x, y) = xTPImAT y21

and Kout(x, y) = xTATAx are completely positive over Ω.22

By the convexity of completely positive representations, the interpolation Kp = pKin+(1−p)Kout23

is completely positive for all p ∈ [0, 1]. Now choose for all depths L and all layers ℓ = 1, . . . , L− 124

a matrix BL,ℓ such that Kp= ℓ
L
(x, y) = xTBT

L,ℓBL,ℓy and then choose the weights Wℓ of the depth25

L network as26

Wℓ = BL,ℓB
+
L,ℓ−1,

using the convention BL,0 = Idin
and BL,L = Iout. By induction, we show that for any input27

x ∈ Ω the activation of the ℓ-th hidden layer is BL,ℓx. This is true for ℓ = 1, since W1 = BL,1 and28

therefore p(1)(x) = BL,1x which has positive entries so that q(1)(x) = σ
(
p(1)(x)

)
= BL,1x. Then29

by induction30

p(ℓ)(x) = Wℓq
(ℓ−1)(x) = BL,ℓB

+
L,ℓ−1BL,ℓ−1x = BL,ℓx,

which has positive entries, so that again q(ℓ)(x) = σ
(
p(ℓ)(x)

)
= BL,ℓx. In the end, we get31

p(L)(x) = Ax as needed.32

Let us now compute the Frobenius norms of the weight matrices ∥Wℓ∥2F =33

Tr

[
BT

L,ℓBL,ℓ

(
BT

L,ℓ−1BL,ℓ−1

)+]
as L → ∞, remember that BT

L,ℓBL,ℓ =
ℓ
LPImAT +(1− ℓ

L )A
TA,34

therefore the matrices BT
L,ℓBL,ℓ and BT

L,ℓ−1BL,ℓ−1 converge to each other, so that at first or-35

der BT
L,ℓBL,ℓ

(
BT

L,ℓ−1BL,ℓ−1

)+
converges to PImAT , so that ∥Wℓ∥2F → RankA, so that36 ∑L

ℓ=1 ∥Wℓ∥2F −LRankA converges to a finite value as L → ∞. To obtain this finite limit, we need37

to study approximate the next order38

∥Wℓ∥2F − RankA =

RankA∑
i=1

2 log si(Wi) +O(L−2)

= log
∣∣∣BT

L,ℓBL,ℓ

(
BT

L,ℓ−1BL,ℓ−1

)+∣∣∣
+
+O(L−2)

= log
∣∣BT

L,ℓBL,ℓ

∣∣
+
− log

∣∣BT
L,ℓ−1BL,ℓ−1

∣∣
+
+O(L−2).

But as we sum all these second order terms, they cancel out, and we are left with39

L∑
ℓ=1

∥Wℓ∥2F − LRankA = 2 log |A|+ − 2 log |IImAT |+ +O(L−1).

We have therefore build parameters θ that represent the function x 7→ Ax with parameter norm40

∥θ∥2 = LRankA+2 log |A|++O(L−1), which upper bounds the representation cost, thus implying41

that R(1)(x 7→ Ax; Ω) ≤ 2 log |A|+ as needed.42

1.2 Identity43

Proposition 2 (Proposition 4 from the main). For a domain with RankJ(id; Ω) =44

RankBN (id; Ω) = k, then Ω is k-planar if R(1)(id; Ω) = 0.45

Proof. We will show that for any two points x, y ∈ Ω with k-dim tangent spaces, their tangent46

spaces must match if R(1)(id; Ω) = 0.47
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Let A = Jα(L−1)(x)|TxΩ and B = Jα(L−1)(y)|TyΩ be the be the Jacobian of the last hidden48

activations restricted to the tangent spaces, we know that49

PTxΩ = WLA

PTyΩ = WLB

so that given any weight matrix WL whose image contains TxΩ and TyΩ, we can write50

A = W+
L PTxΩ

B = W+
L PTyΩ.

Without loss of generality, we may assume that the span of TxΩ and TyΩ is full output space, and51

therefore that WLW
T
L is invertible.52

Now we now that any parameters that represent the identity on Ω and has A = Jα(L−1)(x)|TxΩ and53

B = Jα(L−1)(y)|TyΩ must have parameter norm at least54

∥WL∥2F + k(L− 1) + max
{
2 log |A|+ , 2 log |B|+

}
.

Subtracting kL and taking L → ∞, we obtain that55

R(1)(id; Ω) ≥ min
WL

∥WL∥2F − k +max
{
2 log

∣∣W+
L PTxΩ

∣∣
+
, 2 log

∣∣W+
L PTyΩ

∣∣
+

}
.

If we optimize WL only up to scaling (i.e. optimize aWL over a) we see that at the optimum, we56

always have ∥WL∥2F = k. This allows us to rewrite the optimization as57

R(1)(id; Ω) ≥ min
∥WL∥2

F=k,
max

{
2 log

∣∣W+
L PTxΩ

∣∣
+
, 2 log

∣∣W+
L PTyΩ

∣∣
+

}
.

The only way to put the first term inside the maximum to 0 is to have WLW
T
L = PTxΩ, but this58

leads to an exploding second term if PTxΩ ̸= PTyΩ.59

Under the assumption of uniform Lipschitzness, one can show a stronger version of the above:60

Proposition 3. For a C-uniformly Lipschitz sequence of ReLU networks representing the function61

f , we have62

R(1)(f) ≥ log |Jf(x)|+ + log |Jf(y)|+ + C−2 ∥Jfθ(x)− Jfθ(y)∥∗ .

Proof. The decomposition of the difference63

Jfθ(x)− Jfθ(y) =

L−1∑
ℓ=1

WLDL−1(y) · · ·Wℓ+1 (Dℓ(x)−Dℓ(y))WℓDℓ−1(x) · · ·D1(x)W1,

for the wℓ × wℓ diagonal matrices Dℓ(x) = diag(σ̇(α̃ℓ(x))), implies the bound64

∥Jfθ(x)− Jfθ(y)∥∗ ≤
L−1∑
ℓ=1

∥WLDL−1(y) · · ·Dℓ+1(y)∥op ∥Wℓ+1 (Dℓ(x)−Dℓ(y))Wℓ∥∗ ∥Dℓ−1(x) · · ·D1(x)W1∥op

≤ C2

2

L−1∑
ℓ=1

(
∥Wℓ+1 (Dℓ(x)−Dℓ(y))∥2F + ∥(Dℓ(x)−Dℓ(y))Wℓ∥2F

)
since ∥AB∥∗ ≤ ∥A∥2

F+∥B∥2
F

2 .65

Now since66

L ∥Jfθ(x)∥
2/L
2/L ≤ 1

2

L∑
ℓ=1

∥WℓDℓ−1(x)∥2F

L ∥Jfθ(x)∥
2/L
2/L ≤ 1

2

L∑
ℓ=1

∥Dℓ(x)Wℓ∥2F

3



with the convention D0(x) = Idin and DL(x) = Idout . We obtain that67

L ∥Jfθ(x)∥
2/L
2/L + L ∥Jfθ(y)∥

2/L
2/L ≤ 1

2

L∑
ℓ=1

∥WℓDℓ−1(x)∥2F + ∥WℓDℓ−1(y)∥2F + ∥Dℓ(x)Wℓ∥2F + ∥Dℓ(y)Wℓ∥2F

≤
L∑

ℓ=1

2 ∥Wℓ∥2F − 1

2
∥Wℓ (Dℓ−1(x)−Dℓ−1(y))∥2F − 1

2
∥(Dℓ(x)−Dℓ(y))Wℓ∥2F .

This implies the bound68

∥θ∥2 ≥
L ∥Jfθ(x)∥

2/L
2/L + L ∥Jfθ(y)∥

2/L
2/L

2
+ C−2 ∥Jfθ(x)− Jfθ(y)∥∗

and thus69

R(1)(f) ≥ log |Jf(x)|+ + log |Jf(y)|+ + C−2 ∥Jfθ(x)− Jfθ(y)∥∗ .
70

1.3 Second Correction71

Proposition 4 (Proposition 11 from the main). If there is a limiting representation as L → 0 in the72

optimal representation of f , then R(2)(f) ≥ 0. Furthermore:73

1. If R(0)(f ◦ g) = R(0)(f) = R(0)(g) and R(1)(f ◦ g) = R(1)(f) + R(1)(g), then74 √
R(2)(f ◦ g) ≤

√
R(2)(f) +

√
R(2)(g).75

2. If R(0)(f + g) = R(0)(f)+R(0)(g) and R(1)(f + g) = R(1)(f)+R(1)(g), then R(2)(f +76

g) ≤ R(2)(f) +R(2)(g).77

3. If ApΩ is k = RankA-dimensional and completely positive for all p ∈ [0, 1], where Ap has78

its non-zero singular taken to the p-th power, then R(2)(x 7→ Ax; Ω) = 1
2

∥∥log+ ATA
∥∥2.79

Proof. We start from the inequality80

R(f ◦ g; Ω, Lf + Lg) ≤ R(f ; g(Ω), Lf ) +R(g; Ω, Lg).

We subtract (Lf +Lg)R
(0)(f ◦ g) +R(1)(f ◦ g) divide by Lf +Lg and take the limit of increasing81

depths Lf , Lg with limLg,Lf→∞
Lf

Lf+Lg
= p ∈ (0, 1) to obtain82

R(2)(f ◦ g; Ω) ≤ 1

1− p
R(2)(f ; g(Ω)) +

1

p
R(2)(g; Ω). (1)

If Kp is the limiting representation at a ratio p ∈ (0, 1), we have R(2)(f ; Ω) = 1
pR

(2)(Kp; Ω) +83

1
1−pR

(2)(Kp → f ; Ω) and p must minimize the RHS since if it was instead minimized at a different84

ratio p′ ̸= p, one could find a lower norm representation by mapping to Kp in the first p′L layers and85

then back to the outputs. Now there are two possiblities, either R(2)(Kp; Ω) and R(2)(Kp → f ; Ω)86

are non-negative in which case the minimum is attained at some p ∈ (0, 1) and R(2)(f ; Ω) ≥ 0, or87

one or both is negative in which case the above is minimized at p ∈ {0, 1} and R(2)(f ; Ω) = −∞.88

Since we assumed p ∈ (0, 1), we are in the first case.89

(1) To prove the first property, we optimize the RHS of 1 over all possible choices of p (and assuming90

that R(2)(f ; g(Ω)), R(2)(g; Ω) ≥ 0) we obtain91 √
R(2)(f ◦ g; Ω) ≤

√
R(2)(f ; g(Ω)) +

√
R(2)(g; Ω).

(2) This follows from the inequality R(f + g; Ω, L) ≤ R(f ; g(Ω), L)+R(g; Ω, L) after subtracting92

the R(0) and R(1) terms, dividing by L and taking L → ∞.93

(3) If A = USV T , one chooses Wℓ = UℓS
1
LUT

ℓ−1 with U0 = V , UL = U and Uℓ chosen so that94

UℓS
ℓ
LV TΩ ∈ Rnℓ

+ , choosing large enough widths nℓ. This choice of representation of A is optimal,95
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i.e. its parameter norm matches the representation cost LTr
[
S

2
L

]
= LRankA + 2 log |A|+ +96

1
2L

∥∥log+ ATA
∥∥2 +O(L−2).97

We know that98

lim
L→∞

R(1)(αℓ1 → αℓ2 ; Ω) = R(1)(fθ; Ω) lim
L→∞

ℓ2 − ℓ1
L

99

1

p
R(2)(α; Ω) +

1

1− p
R(2)(α → f ; Ω) ≥ R(2)(f ; Ω)

100

1

p
R(2)(α; Ω) +

1

1− p
R(2)(α → f ; Ω) ≥ R(2)(f ; Ω)

101

2 Local Minima Stability102

In this section we motivate the assumption that the Jacobian Jα̃ℓ(x) is uniformly bounded in oper-103

ator norm as L → ∞. The idea is that solutions with a blowing up Jacobian Jα̃ℓ(x) correspond to104

very narrow local minima.105

The narrowness of a local minimum is related to the Neural Tangent Kernel (or Fisher matrix). We106

have that107

Tr
[
Θ(L)(x, x)

]
=

L∑
ℓ=1

∥αℓ−1(x)∥2 ∥J(α̃ℓ → fθ)(x)∥2F .

If the Jacobian Jα̃ℓ(x) blows up, it is reasonable to expect both ∥αℓ−1(x)∥2 and ∥J(α̃ℓ → fθ)(x)∥2F108

to blow up too:109

1. If ∥Jα̃ℓ−1(x)∥op is very large then small variation of the inputs x can lead to very large110

preactivations ∥α̃ℓ−1(x)∥2 and thus activations ∥αℓ−1(x)∥2 (if we use the ReLU one needs111

to also assume α̃ℓ−1(x) does not have mostly negative entries).112

2. Since det Jα̃ℓ(x) is bounded, a blowing up top singular value ∥Jα̃ℓ(x)∥op implies that the113

k-th singular value must implode for k = RankBN (fθ; Ω). More precisely, if ∥Jα̃ℓ(x)∥op114

is of order Lγ for γ > 1, then the k-th singular value is of order L− γ
k−1 or less, and since115

Jfθ(x) = J(α̃ℓ → fθ)(x)Jα̃ℓ(x)

we need ∥J(α̃ℓ → fθ)(x)∥op to be at least of order L
γ

k−1 so that the k-th singular value of116

Jfθ(x) remains of order 1.117

This suggests that in non-uniformly Lipschitz sequences, the NTK would blow up at a rate faster than118

L, whereas uniformly Lipschitz sequence have a NTK of order L. In simpler terms non-uniformly119

Lipschitz sequences of local minima are infinitely narrower than their uniformly Lipschitz coun-120

terpart, which suggests that finite learning rate GD is naturally biased towards uniformly Lipschitz121

local minima.122

Theorem 5 (Theorem 5 from the main). For any point x, we have123 ∥∥∂2
xyΘ(x, x)

∥∥
op

≥ 2L ∥Jfθ(x)∥2−
2/L

op

where ∂2
xyΘ(x, x) is understood as a dindout × dindout matrix.124

Furthermore, for any two points x, y such that the pre-activations of all neurons of the network125

remain constant on the segment [x, y], then either ∥Θ(x, x)∥op or ∥Θ(y, y)∥op is lower bounded by126

L
4 ∥x− y∥2

∥∥∥Jfθ(x) y−x
∥x−y∥

∥∥∥2−2/L

2
.127
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Proof. (1) For any point x, we have128

∂x,y
(
vTΘ(x, x)v

)
[u, u] =

L∑
ℓ=1

uTWT
1 D1(x) · · ·Dℓ−1(x)

2 · · ·D1(x)W1uv
TWLDL−1(x) · · ·Dℓ(x)

2 · · ·DL−1(x)W
T
L v

=

L∑
ℓ=1

∥Dℓ−1(x) · · ·D1(x)W1u∥22 ∥Dℓ(x) · · ·DL−1(x)WLv∥22 .

On the other hand, we have129 ∣∣vTJfθ(x)u∣∣ = ∣∣vTWLDL−1(x) · · ·D1(x)W1u
∣∣

≤ ∥Dℓ(x) · · ·D1(x)W1u∥2 ∥Dℓ(x) · · ·DL−1(x)WLv∥2 ,
where we used the fact that Dℓ(x)Dℓ(x) = Dℓ(x). This applies to the case ℓ = L and ℓ = 1 too,130

using the definition DL(x) = Idout and D0(x) = Idin . This implies131

∂2
xy

(
vTΘ(x, x)v

)
[u, u] ≥

∣∣vTJfθ(x)u∣∣2 L∑
ℓ=1

∥Dℓ−1(x) · · ·D1(x)W1u∥22
∥Dℓ(x) · · ·D1(x)W1u∥22

≥
∣∣vTJfθ(x)u∣∣2 L( ∥u∥22

∥WLDL−1(x) · · ·D1(x)W1u∥22

) 1
L

≥ L

∣∣vTJfθ(x)u∣∣2
∥Jfθ(x)u∥

2/L
2

.

where we used the geometric/arithmetic mean inequality for the second inequality.132

If u, v are right and left singular vectors of Jfθ(x) with singular value s, then the above bound133

equals Ls2−
2
L .134

(2) Now let us consider a segment γ(t) = (1 − t)x + ty between two points x, y with no changes135

of activations on these paths (i.e. Dℓ(γ(t)) is constant for all t ∈ [0, 1]). Defining u = y−x
∥y−x∥ and136

v = Jfθ(x)u
∥Jfθ(x)u∥ , we have137

∂tv
TΘ(γ(t), γ(t))v = ∥x− y∥ ∂x

(
vTΘ(γ(t), γ(t))v

)
[u] + ∥x− y∥ ∂y

(
vTΘ(γ(t), γ(t))v

)
[u]

and since ∂xxΘ(γ(t), γ(t)) = 0 and ∂yyΘ(γ(t), γ(t)) = 0 for all t ∈ [0, 1], we have138

∂2
t

(
vTΘ(γ(t), γ(t))v

)
= 2 ∥x− y∥2 ∂2

xy

(
vTΘ(γ(t), γ(t))v

)
[u, u] ≥ 2L ∥x− y∥2 ∥Jfθ(x)u∥2−

2/L
2 .

Since vTΘ(γ(t), γ(t))v ≥ 0 for all t ∈ [0, 1] then either139

vTΘ(x, x)v ≥ L

4
∥x− y∥2 ∥Jfθ(x)u∥2−

2/L
2

or140

vTΘ(y, y)v ≥ L

4
∥x− y∥2 ∥Jfθ(x)u∥2−

2/L
2 .

141

Now for the proof that rank-underestimating functions require exploding Jacobians:142

Proposition 6 (Proposition 7 from the main). Let f∗ : Ω → Rdin for a bounded domain Ω and with143

RankJ(f
∗; Ω) = m, then with high prob. over the sampling of N i.i.d. inputs x1, . . . , xN ∈ Ω, any144

BN-rank function f̂ = h ◦ g that fits the data f̂(xi) = f∗(xi) must satisfy145

sup
x∈Ω

∥Jg(x)∥op sup
z∈g(Ω)

∥Jh(z)∥op = Ω
(
N

1
m− 1

k

)
.

Proof. Writing zi = g(xi) ∈ g(Ω) ⊂ Rk, the shortest path through z1, . . . , zN has length at most146

of order diamg(Ω)N1− 1
k [2]. But this path is mapped by h to a path through the random points147

y1, . . . , yN which must have length of order at least N1− 1
m with high probability [1] since the148

support of the distribution of the yis is m-dimensional. This implies the proposition.149

6



3 Representation Geodesics150

Theorem 7 (Theorem 9 from the main). Consider a sequence (θL)L of representations of a function151

f : Ω → Rdout with R(0)(f ; Ω) = RankJ(f ; Ω) and R(1)(f ; Ω) < ∞. Then any accumulating152

representation Kp at a ratio p is k-planar, i.e. there are k features ϕ1, . . . , ϕk such that Kp(x, y) =153

ϕ(x)Tϕ(y).154

Proof. Let Kp be an accumulating representation, then it must satisfy R(1)(Kp → Kp; Ω) = 0:155

for any M we can find M sequences
(
ℓ
(1)
L

)
L
, . . . ,

(
ℓ
(M)
L

)
L

each separated by an infinite amount156

of layers as L → ∞ that all converge to the representation Kp; if R(1)(Kp → Kp) > 0 then the157

overall first correction would be infinite, since R(1)(limL→∞ fθL ; Ω) ≥ MR(1)(Kp → Kp; Ω) for158

all M . Then by Proposition 2 we obtain that Kp must be k-planar.159

4 Technical Results160

4.1 Regularity Counterexample161

We guve here an example of a simple function whose optimal representation geodesic does not162

converge, due to it being not uniformly Lipschitz:163

Example 8. The function f : Ω → R3 with Ω = [0, 1]3 defined by164

f(x, y, z) =

{
(x, y, z) if x ≤ y

(x, y, z + a(x− y)) if x > y

satisfies R(0)(f ; Ω) = 3 and R(1)(f ; Ω) = 0. The optimal representations of f are not uniformly165

Lipschitz as L → ∞.166

Proof. While we are not able to identify exactly the optimal representation geodesic for the function167

f , we will first show that R(1)(f ; Ω) = 0, and then show that the uniform Lipschitzness of the168

optimal representations would contradict with Proposition 3.169

(1) Since the Jacobian takes two values inside R3
+, either the identity I3 or

(
1 0 0
0 1 0
1 −1 1

)
, we170

know by Theorem 1 that R(1)(f ; Ω) ≥ 2 log |I3|+ = 0. We therefore only need to construct a171

sequence of parameters of different depths that represent f with a squared parameter norm of or-172

der 3L + o(1). For simplicity, we only do this construction for even depths (the odd case can be173

constructed similarly). We define:174

Wℓ =

 eϵ 0 0
0 eϵ 0
0 0 e−2ϵ

 for ℓ = 1, . . . ,
L

2
− 1

WL
2
=


1 0 0
0 1 0
0 0 1

e−
L−2

2 ϵ −e−
L−2

2 ϵ 0

 for ℓ =
L

2
+ 2, . . . , L

Wℓ =

 1 0 0 0
0 1 0 0
0 0 1 e−(L−2)ϵ

 for ℓ =
L

2
+ 2, . . . , L

Wℓ =

 e−ϵ 0 0
0 e−ϵ 0
0 0 e2ϵ

 for ℓ =
L

2
+ 2, . . . , L

7



We have for all x ∈ R3
+175

αL
2 −1(x) =

 e
L−2

2 ϵx1

e
L−2

2 ϵx2

e−(L−2)ϵx3


and176

αL
2
(x) =


e

L−2
2 ϵx1

e
L−2

2 ϵx2

e−(L−2)ϵx3

σ(x1 − x2)


and177

αL
2 +1(x) =

 e
L−2

2 ϵx1

e
L−2

2 ϵx2

e−(L−2)ϵ (x3 + σ(x1 − x2))


and178

fθ(x) =

(
x1

x2

x3 + σ(x1 − x2)

)
.

The norm of the parameters is179

L− 2

2
(2e2ϵ + e−4ϵ) + (3 + 2e−(L−2)ϵ) + (3 + e−2(L−2)ϵ) +

L− 2

2
(2e−2ϵ + e4ϵ)

= 3L+ 2
(
e2ϵ − 1

)
+ (e−4ϵ − 1) + 2e−(L−2)ϵ + e−2(L−2)ϵ + 2

(
e−2ϵ − 1

)
+ (e4ϵ − 1)

If we take ϵ = L−γ for γ ∈ ( 12 , 1), then the terms 2e−(L−2)ϵ and e−2(L−2)ϵ decay exponentially (at180

a rate of eL
1−γ

), in addition the terms 2
(
e2ϵ − 1

)
+ (e−4ϵ − 1) and 2

(
e−2ϵ − 1

)
+ (e4ϵ − 1) are of181

order L−2γ . This proves that R(1)(f ; Ω) = 0.182

(2) Let us now assume that the optimal representation of f is C-uniform Lipschitz for some constant183

C, then by Proposition 3, we have that184

R(1)(f ; Ω) ≥ log |I3|+ + log

∣∣∣∣∣
(

1 0 0
0 1 0
1 −1 1

)∣∣∣∣∣
+

+ C−2

∥∥∥∥∥I3 −
(

1 0 0
0 1 0
1 −1 1

)∥∥∥∥∥
∗

> 0,

which contradicts with the fact that R(1)(f ; Ω) = 0.185

4.2 Extension outside FPLFs186

Since all functions represented by finite depth and width networks are FPLFs, the representation187

cost of any such function is infinite. But we can define the representation cost of a function f188

that is the limit of a sequence of FPLF as the infimum over all sequences fi → f converging of189

limi→∞ R(fi; Ω) (for some choice of convergence type that implies convergence of the Jacobians190

Jfi(x) → Jf(x)). Note that since the representation cost R(f ; Ω) is lower semi-continuous, i.e.191

lim inff→f0 R(f ; Ω) ≥ R(f0; Ω), this does not change the definition of the representation cost on192

the space of FPLFs.193

The definitions of the decomposition R(0), R(1), R(2) can also be similarly extended, and one can194

check that the properties described in Theorem 1 of [3] and Theorems 1 and [] of this paper all195

extend as well.196
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