
A Proof and Derivations

A.1 Proof of Theorem 2.1

The existence is straightforward, since FD(p̃d||q̃θ∗) = 0 → p̃d = q̃θ∗ , we can simply let q(x) =
pd(x), which makes

∫
q(x)p(x̃|x) dx =

∫
pd(x)p(x̃|x) dx = p̃d. To show the uniqueness, we denote

density k(ϵ) = N (0, σ2I), so q̃θ(x̃) and p̃d(x) can be written as convolutions

q̃θ(x̃) = q ∗ k, p̃d(x̃) = pd ∗ k, (20)

we then have

p̃d = q̃θ ⇔ q ∗ k = pd ∗ k ⇔ F(q)F(k) = F(pd)F(k), (21)

where F denotes the Fourier transform. Since the Fourier transform of a Gaussian is also a Gaussian,
so F(k) > 0 everywhere, we have

p̃d = q̃θ∗ ⇔ F(q)���F(k) = F(pd)���F(k)⇔ F(q) = F(pd)⇔ q = pd. (22)

Therefore, q = pd is the unique distribution that makes p̃d = q̃θ. This technique has also been
used to construct spread KL divergence (we denote as K̃L) [46], which is defined as K̃L(pd||qθ) ≡
KL(pd ∗ k||qθ ∗ k) where k(ϵ) = N(0, σ2I), to train implicit model qθ. Different from the DSM
situation, when K̃L(pd||qθ) = 0, the underlying model qθ = pd is directly available, whereas the
EBM q̃θ trained by DSM learns to be the noisy distribution q̃θ = pd ∗ k.

A.2 General Conditions Characterising the Existence of the Clean Model

In the previous section, we assume for a flexible neural network parameterized fθ, the energy-based
model q̃θ(x̃) = exp(−f(x̃))/Z(θ) trained by Equation 5 can recover the target noisy data distribution
q̃θ∗ = p̃d so there exists an underlying model q such that q̃θ∗ = q ∗ k and q = pd. This assumption is
commonly used in the literature on score-based methods. For example, in the score-based diffusion
models literature [32, 13, 2], for any data x ∈ RD, the score function ∇x̃ log q̃θ(x̃) is usually
parameterized by a neural network NNθ(·) : RD → RD. However, this parameterization cannot
guarantee NNθ(x̃) is a conservative vector field, or in other words, there doesn’t exist a distribution
q̃θ(x̃) such that∇x̃q̃θ(x̃) = ∇x̃ log q̃θ(x̃) and ∇2

x̃ log q̃(x̃) is symmetric [29, 30]. Therefore, perfect
score estimation∇x̃ log p̃d(x̃) = ∇x̃ log q̃θ(x̃) is implicitly assumed to allow an EBM interpretation.

However, the underlying clean model doesn’t always exist for imperfect model q̃θ ̸= p̃d. We here
provide the sufficient and necessary conditions which guarantee the existence of the underlying clean
model.
Theorem A.1 (Necessary and Sufficient conditions for the existence of the underlying clean model.).
For a model q̃θ with the convolutional noise distribution k(ϵ) = N (0, σ2I), there exists an underlying
model q such that q ∗ k = q̃ if and only if F(q̃θ)/F(k) is positive semi-definite 7. Additionally, the
underlying distribution q can be written as

q = F−1(F(q̃θ)/F(k)), (23)

where F−1 is the inverse Fourier transform. This theorem is a straightforward corollary of Bochner’s
Theorem 8. However, for the energy model q̃θ(x̃) ∝ exp (−fθ(x̃)), it’s difficult to design a func-
tioning family of f that satisfies the positive semi-definite condition and have the tractable score
function at the same time 9. We thus leave the design of better energy function parameterizations as a
promising future direction.

7A continuous function f : Rd → C is positive semi-definite if for all n ∈ N, all sets of pairwise distinct
centers X = {x1, ..., xN} ∈ Rd and all α ∈ CN ,

∑N
i=1

∑N
j=1 αiαjf(xi − xj) ≥ 0, see [41, Definition 6.1]

8Bochner’s Theorem [41, Theorem 6.6]: A continuous function f : Rd → C is positive semi-definite if and
only if it is the Fourier transform of a finite non-negative Borel measure on Rd.

9For example, one can define a noisy energy-based model q̃θ = exp(−fθ(x̃))/Z(θ) with −fθ(x̃) =∫
(gθ(x) + 1/σ2||x̃ − x||22) dx, which always allows an underlying clean energy-based model qθ(x) =

exp (−gθ(x))/Z(θ) such that q̃θ(x̃) = qθ(x) ∗ k with k(ϵ) = N (0, σ2I). However, the score function
∇x̃ log q̃(x̃) = −∇x̃fθ(x̃) is intractable in this case.
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A.3 Proof of Theorem 2.2

Derivation of the Mean Identity

We let q̃θ(x̃) =
∫
k(x̃|x)qθ(x) dx̃, where k(x̃|x) = N (0, σ2I), we have

∇x̃ log q̃θ(x̃) =
∇x̃q̃θ(x̃)

q̃θ(x̃)
=

∫
∇x̃k(x̃|x)qθ(x) dx

qθ(x)

= − 1

σ2

∫ (
(x̃− x)

k(x̃|x)qθ(x)
q̃θ(x̃)

)
dx

=⇒ σ2∇x̃ log q̃θ(x̃) + x̃ =

∫
x
k(x̃|x)qθ(x)

q̃θ(x̃)
dx = ⟨x⟩qθ(x|x̃)

where we define the model denoising posterior using Bayes rule qθ(x|x̃) ≡ k(x̃|x)qθ(x)/q̃θ(x̃). The
second equality is due to the following Gaussian distribution property

∇x̃k(x̃|x) =
1√
2πσ2

∇x̃e
−(x̃−x)2

2σ2 = − x̃− x

σ2

1√
2πσ2

e
−(x̃−x)2

2σ2 = − x̃− x

σ2
k(x̃|x). (24)

Derivations of the Analytical Full Covariance Identity

We have derived the mean identity

µq(x̃) ≡ ⟨x⟩qθ(x|x̃) = σ2∇x̃ log q̃θ(x̃) + x̃. (25)

Taking the gradient over x in both side and scaling with σ2, we have

σ2∇xµq(x̃) = σ4∇2
x̃ log q̃θ(x̃) + σ2I. (26)

We can also expand the hessian of the log q̃θ(x̃):

∇2
x̃ log q̃θ(x̃) = −

1

σ2

∫
∇x̃

(
(x̃− x)

k(x̃|x)pθ(x)
p̃θ(x̃)

)
dx

= − 1

σ2

∫
k(x̃|x)pθ(x)

p̃θ(x̃)
dx+

1

σ2

∫
(x̃− x)

∇x̃k(x̃|x)p̃θ(x̃)pθ(x)−∇p̃θ(x̃)k(x̃|x)pθ(x)
p̃2θ(x̃)

=⇒ σ2∇2
x̃ log q̃θ(x̃) + 1 =

∫
(x̃− x)

∇x̃k(x̃|x)pθ(x)−∇ log q̃θ(x̃)k(x̃|x)pθ(x)
q̃θ(x̃)

dx

=

∫
(x̃− x)

− 1
σ2 (x̃− x)k(x̃|x)pθ(x) + 1

σ2 (x̃− ⟨x⟩pθ(x|x̃))k(x̃|x)pθ(x)
q̃θ(x̃)

dx

=⇒ σ4∇2
x̃ log q̃θ(x̃) + σ2I =

∫ (
−(x̃− x)2 + (x̃− x)(x̃− ⟨x⟩pθ(x|x̃))

)
pθ(x|x̃) dx

= ⟨x2⟩pθ(x|x̃) − ⟨x⟩
2
pθ(x|x̃) ≡ Σq(x̃)

Therefore, we obtain the analytical full covariance identity.

Σq(x̃) = σ2∇x̃µq(x̃). (27)

A.4 Proof of Theorem 2.3

Lemma A.2 (KL to Gaussian [2]). Let p(x) be a distribution with mean µp and covariance Σp and
q(x) = N (µq,Σq), denote the differential entropy as H(p) ≡ −

∫
p(x) log p(x) dx, we have

KL(p||q) = KL(N (µp,Σp)||q) + H(N (µp,Σp))−H(p) (28)

The proof can be found in [2] Lemma 2.

We can then prove Theorem 2.3. Since p(x̃|x)pd(x) = p(x|x̃)p̃d(x̃), where p̃d(x̃) =∫
pd(x)p(x̃|x) dx, we have

KL(p(x̃|x)pd(x)∥q(x|x̃)p̃d(x̃)) = ⟨KL(p(x|x̃)||q(x|x̃))⟩p̃(x̃) (29)
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Assume Gaussian distribution q(x|x̃) = N (µq(x̃),Σq(x̃))and denote the mean and covariance of the
true posterior are µp(x̃) and Σp(x̃), then the optimal q∗ is

q∗ = argmin
q

KL(p(x̃|x)pd(x)∥q(x|x̃)p̃d(x̃)) (30)

= argmin
q

〈
KL(p(x|x̃)||q(x|x̃))

〉
p̃(x̃)

(31)

= argmin
q

〈
KL(N (µp,Σp)||q(x|x̃)) + H(N (µp,Σp))−H(p(x|x̃))

〉
p̃(x̃)

(32)

= argmin
q

〈
KL(N (µp,Σp)||q(x|x̃))

〉
p̃(x̃)

+ const.. (33)

Therefore, the optimal q(x|x̃) = N (µq(x̃),Σq(x̃)) under the joint KL has the mean and covariance
µ∗
q(x̃) = µp(x̃),Σ

∗
q(x̃)) = Σp(x̃).

B Connection to Analytical DDPM

Paper [2] considers the constrained variational family qθ(x|x̃) = N (µθ(x̃), σ
2
qI) and derive the

optimal σ∗
q as

σ∗2
q = argmin

σq

KL(p(x̃|x)pd(x)∥qθ(x|y))p̃d(x̃)) =
1

d

〈
Tr

(
Covq(x|x̃)[x]

)〉
p̃d(x̃)

, (34)

which can also be rewritten using the score function

σ∗2
q = σ2 − σ4

d

〈
∥sqθ (x̃)∥

2
2

〉
p̃d(x̃)

. (35)

To make a deep connection, we can also plug our analytical full covariance (Equation 11) into
Equation 17

σ∗2
q = σ2 +

σ4

d
Tr

〈
∇2

x log qθ(x̃)
〉
p̃d(x̃)

= σ2 − σ4

d
Tr

〈
sqθ (x̃)sqθ (x̃)

T
〉
p̃d(x̃)

= σ2 − σ4

d

〈
∥sqθ (x̃)∥

2
2

〉
p̃d(x̃)

, (36)

which recovers Equation 18, where the first equality is due to the well-known Fisher information
identity [9].

C Experiments

All the experiments conducted in this paper are run on one single NVDIA GTX 3090.

C.1 Effect of the Single Noise Choice on MNIST

Figure 10 shows the samples generated by our method with the EBM trained with difference
σ ∈ {0.3, 0.5, 0.8} in the noise distribution p(x̃|x), we can find the image quality also heavily
depends on the choice of the noise scale and σ = 0.5 achieves the best visual quality, we then use
this hyper-parameter in the subsequent comparisons.

C.2 Multi-level Noise Details

For full details on the architecture and noise schedule used in the multi-level noise experiments in
Section 5, we refer to Appendix B of [33]. For our multi-level Gibbs sampling procedure, we used 3
Gibbs steps at each noise level and 3 Rademacher samples for each diagonal Hessian computation.
Following [33], we used a total of 232 noise levels, distributed according to their proposed geometric
schedule, and applied a final denoising step in which the mean of the clean distribution conditioned
on the final output of the sampling procedure is returned (the final output of the sampling procedure
is a sample from the noised distribution from the noise distribution at the smallest noise level). This
denoising step was previously found to improve FID scores [16] significantly.
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(a) σ = 0.3 (b) σ = 0.5 (c) σ = 0.8

Figure 10: Sample comparisons with different σ value.

Figure 11: Mode Collapse visualization of 25 Markov chains, we plot the samples every 20 Gibbs
steps, we can find less modes are covered if we run the Gibbs sampling for a longer time.
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