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Abstract
In this paper, we prove the first Bayesian regret bounds for Thompson Sampling in
reinforcement learning in a multitude of settings. We simplify the learning problem
using a discrete set of surrogate environments, and present a refined analysis of the
information ratio using posterior consistency. This leads to an upper bound of order
Õ(H

√
dl1T ) in the time inhomogeneous reinforcement learning problem where

H is the episode length and dl1 is the Kolmogorov l1−dimension of the space of
environments. We then find concrete bounds of dl1 in a variety of settings, such as
tabular, linear and finite mixtures, and discuss how how our results are either the
first of their kind or improve the state-of-the-art.

1 Introduction
Reinforcement Learning (RL) is a sequential decision-making problem in which an agent interacts
with an unknown environment typically modeled as a Markov Decision Process (MDP) [38, 8]. The
goal of the agent is to maximize its expected cumulative reward. This problem has a variety of
applications, including robotics, game playing, resource management, and medical treatments. The
key challenge in RL is to balance the so-called exploration-exploitation trade-off efficiently: exploring
unseen state-action pairs to gain more knowledge about the unknown environment or exploiting the
current knowledge to maximize the expected cumulative reward. Two efficient approaches have
been developed to control this trade-off: optimism in the face of uncertainty (OFU) and Thompson
Sampling (TS) (or Posterior Sampling (PS)). OFU constructs a confidence set of statistically plausible
MDPs that includes the true MDP with high probability and plays an optimistic policy according to
the MDP with maximum gain from this set [5, 40]. TS samples a statistically plausible MDP from a
posterior distribution and plays the optimistic policy of the sampled MDP [29, 31]. In this work, we
focus on the latter, and by combining an information theoretical approach first introduced by [36]
with analysis based on posterior consistency tools, we prove state-of-the-art Bayesian regret bounds
in a variety of settings.

In this paper, we start by defining the Bayesian RL problem, where transition and reward functions are
Bayesian and time inhomogeneous. The Bayesian RL problem we consider is more comprehensive
than in previous works, as we allow for both Bayesian transition and Bayesian rewards, and do
not make any assumption on their individual prior. To simplify the learning problem, we utilize
the notion of surrogate environments, which is a discretization of the environments space, and its
learning task and TS regret is a proxy to that of the main problem. The construction of the surrogate
environments was first introduced by [18] with an incorrect proof, which is fixed in our work by
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defining the surrogate environments through an optimization. Of main importance is the size of
this new environment space. The Bayesian regret decomposes to the product of two terms, one
being the cumulative mutual information of the environment and history traversed by the policy. By
the well-known entropy estimation of the mutual information, this significant factor in the regret is
connected to the l1−dimensions (dl1) of the transition and reward functions space, which can be
more succinctly interpreted as the l1−dimension dl1 of the environment space. The latter is in turn
estimated by the size of the space of surrogate environments.

The information ratio, representing a trade-off of exploration/exploitation, is the other significant
term in the decomposition of the TS Bayesian regret. In an improvement to [18], our novel analysis
of this ratio based on posterior consistency tools, shows that this trade-off is bounded by H3/2, where
H is the episode length. This bound is general and independent of the dimension of transition/reward
function space at each step, which is is a key factor behind the advantage of our regret bound, such as
the
√
SA advantage in the tabular case compared to [18], or the lack of any restriction on the prior

(e.g., Dirichlet prior) compared to [31]. Following a further refined approach, we finally estimate
the TS Bayesian regret to be Õ(λ

√
dl1T ) for large enough T in the time inhomogeneous setting.

Here, a new term ‘value diameter’ λ, which is the average difference of the optimal value functions
at different states, is used in bounding the information ratio, where instead of H3/2, we have the
smaller term λH1/2. Bounding the information ratio with λ is a conceptual contribution of our work,
which shows that the ratio is bounded by a value-dependent term, which is in nature different from
H but always ≤ H + 1. Further, there exists another bound for λ; in environments where states are
reachable from one another in D steps, we have λ ≤ D + 1. In ‘well-connected’ MDPs, one could
have D ≪ H , implying an improvement over the H3/2 information ratio bound.

Our generic bound is abstract in terms of dl1 , so we estimate it in more explicit terms for useful
applications. [18] have bounded dl1 in the tabular and linear case without formalizing this notion, and
while for tabular MDPs, dl1 was bounded by SAH , for linear MDPs with feature space dimension
df , we investigate their claim of the bound dfH . Detailed in Appendix G, we show a counterexample
to their analysis, and we manage to find a correct estimate in this setting. We also introduce finite
mixtures MDPs and are the first to prove a TS Bayesian regret of order Õ(λ

√
HmT ), where m is the

number of mixtures.

Lastly, we note that our regret bound of order Õ(λ
√
dl1T ) is the first in the general nonlinear time

inhomogeneous Bayesian RL setting for TS, and generalizing [31, Conj. 1], we conjecture it to be
optimal if λ can be replaced by Õ(

√
H).

Related work. Since the introduction of information ratio by [35, 36], a new line of research
has emerged to provide tighter regret bounds for TS. The general approach involves factoring the
Bayesian regret into two components: an information ratio that captures the trade-off between optimal
action selection and information gain, and a cumulative information gain term that depends on the
target environment and the history of previous observations. Then, both components are bounded
separately using information theoretic tools.

In the bandit setting, this analysis has been used to bound Bayesian regret for TS [14, 9], as well as
that of a new algorithm called information-directed sampling (IDS) [35, 26, 23, 19, 20]. This analysis
has also been used in partial monitoring [25, 24] and RL with a specific Dirichlet prior and additional
assumptions [28, 27] or when the true environment is too complicated to learn [4]. More recently,
[18] studied the Bayesian regret of TS in RL without any prior assumptions for tabular MDP. This is
the closest work to our paper and we discuss our generalization in detail in Section 5.

The Bayesian tabular MDP case has also been studied with the additional Dirichlet prior assumption
in [31], where they achieve a regret bound matching ours. In an independent approach, the first
non-linear Bayesian RL model was considered by [16] with a regret bound of dH3/2T 1/2 where d
is a notion of dimension of their model, but their results were limited to Gaussian process settings
with linear kernels. Finally, [11] considered general non-linear Bayesian RL models and introduced
an algorithm that obtains dH1+α/2T 1−α/2 where α is a tuning parameter and d is the dimension of
S ×A× S.

It is worth noting that there is another line of work that incorporates confidence regions into TS
to achieve Bayesian regret bounds that can match the best possible frequentist regret bounds by
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UCB in both bandit settings [35] and RL [31, 30, 32, 12]. However, this technique often results in a
sub-optimal Bayesian regret, as the best bound known for UCB itself is not optimal.

Table 1: Bayesian regret bounds for TS (i.e. PSRL)

Reference Tabular Linear General Comments
[29]

√
H3S2AL - - -

[30] - - L∗√dKdEHL
Uses Eluder dimension
Lipschitz assumption

[31]
√
H3SAL - - Dirichlet prior

[28]
√
H3SAL - - Assumptions on prior

[12] L∗
√
H3S2A2L - L∗γ

√
HL

Assumptions on regularity & noise
Lipschitz assumption

[18]
√
H4S2A2L - - -

This paper λ
√
H2SAL λ

√
dl1HL λ

√
dl1HL

Assumptions 1 & 2
Holds in the limit L→∞

As discussed in Section 4.3 of [16], the Lipschitz term L∗, which is used in the grayed papers in the
table, may grow exponentially in episode length. Note that [18] claims a regret bound for the linear setting.
However, as discussed in Appendix G.1, their proof is incorrect.

While our work’s emphasis is on theoretical guarantees for TS, we discuss here the experiments using
this algorithm. Previous works on PSRL [35, 26, 23, 20, 31] come with extensive experiments on TS
(and/or its variants), and discussions on computational efficiency of PSRL. In particular, experiments
in [31] support the assertion that “PSRL dramatically outperforms existing algorithms based on OFU”.
In addition, PSRL with oracle access has been shown to be the most performant, esp. when compared
to recent OFU based UCBVI/UCBVI-B, or even variants of PSRL such as Optimistic PSRL [39, Fig.
1.3]. However, an important limitation in experiments is the need for oracle access to an optimal
policy, and that can not be always satisfied efficiently. Nevertheless, clever engineering can make TS
work even in large scale Deep RL. Indeed, for general RL settings, the recent work [37] shows how to
implement TS in Deep RL on the Atari benchmark and concludes that “Posterior Sampling Deep RL
(PSDRL) significantly outperforms previous state-of-the-art randomized value function approaches,
its natural model-free counterparts, while being competitive with a state-of-the-art (model-based)
reinforcement learning method in both sample efficiency and computational efficiency”. In summary,
experiments in the literature provide enough support for the empirical performance of TS.

2 Preliminaries
2.1 Finite-horizon MDP
We follow the literature’s conventions in our notation and terminology to avoid confusion when
comparing results. The environment is a tuple E = (S, µS ,A, µA, H, {Ph}Hh=1, {rh}Hh=1), where S
is the topological measurable state space, A is the topological measurable action space, µS and µA
are base probability measures on S andA respectively,H is the episode length, Ph : S×A → ∆S,µS
is the transition probability kernel, and rh : S ×A → ∆[0,1],Lebesgue is the reward function, where
we fix the convention r(s, a) := Ex[r(x|s, a)] =

∫ 1

0
xr(x|s, a) dx as we mostly deal with its mean

value. Notice that ∆X,µ is the set of probability distributions over X that are absolutely continuous
with respect to µ. We will use ∆X when the base measure is clear from the context. We assume S,
A are known and deterministic while the transition probability kernel and reward are unknown and
random. Throughout the paper, the implicit dependence of Ph and rh on E should be clear from the
context.

Let ΘPh be the topological function space of Ph and ΘP = ΘP1 × · · ·×ΘPH be the full function space.
The space ΘPh is assumed to be separable and equipped with prior probability measure ρPh yielding
the product prior probability measure ρP = ρP1 ⊗ · · · ⊗ ρPH for ΘP . The exact same definition with
similar notations ΘRh , ρ

R
h , ρ

R,ΘR applies for the reward function. Notice the explicit assumption of
time inhomogeneity in these definitions, with all ‘layers’ h being independent. The two sets define
the set of all environments parametrized by Θ = Θ1 × · · · ×ΘH where Θh = ΘPh ×ΘRh . Note that
the prior is assumed to be known to the learner. This setting implies that an environment E sampled
according to the prior ρ = ρP ⊗ ρR is essentially determined by its transition and reward functions
pair {(Ph, rh)}Hh=1. We simplify the notation to view Θ as the set of all environments, i.e., saying
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E ∈ Θ should be viewed as {(Ph, rh)}Hh=1 ∈ Θ. The space of all possible real-valued functions
{(Ph, rh)}Hh=1 has a natural vector space structure. Therefore it is meaningful to discuss the notion
of the convex combination of environments. We assume that Θ is a convex subspace of the space of
all possible environments. This assumption is not restrictive, since we may replace any environment
space with its convex hull. Note that we do not assume that the support of the prior is convex.

Remark 1. The case of joint prior may be of interest, but to our knowledge all prior works also take
ρP , ρR to be independent.

Agent, policy and history. An agent starts at an initial state sℓ1, which is fixed for all episodes ℓ. It
observes a state sℓh at layer h episode ℓ, takes action aℓh, and receives reward rℓh. The environment
changes to the next random state sℓh+1 with probability Ph(sℓh+1|sℓh, aℓh). The agent stops acting at
sH+1 and the environment is reset to its initial state.

We defineHℓ,h as the history (sℓ1, a
ℓ
1, r

ℓ
1, . . . , s

ℓ
h, a

ℓ
h, r

ℓ
h). Denote by Dℓ = (H1,H , . . . ,Hℓ−1,H) the

history up to episode ℓ, where D1 := ∅. Finally, let Ωh =
∏h
i=1(S × A × [0, 1]) be the set of all

possible histories up to layer h.

A policy π is represented by stochastic maps (π1, . . . , πH) where each πh : Ωh−1 × S → ∆A,µA .
Let ΠS denote the entire stationary policy class, stationary meaning a dependence only on the current
state and layer and let Π ⊆ ΠS .

Value and state occupancy functions. Define the value function V E
h,π as the value of the policy π

interacting with E at layer h:

V E
h,π(s) := EE

π

[
H∑

h′=h

rh′(sh′ , ah′)

∣∣∣∣sh = s

]
, (1)

where EE
π denotes the expectation over the trajectory under policy, transition, and reward functions

π, Ph, rh. The value function at step H + 1 is set to null, V E
H+1,π(·) := 0. We assume there is a

measurable function π∗
E : Θ → Π such that V E

h,π∗
E
(s) = maxπ∈Π V

E
h,π(s), ∀s ∈ S, h ∈ [H]. The

optimal policy π∗ is a function of E , making it a random variable in the Bayesian setting. Lastly,
let the state-action occupancy probability measure be PE

π(sh = s, ah = a), also known as the state
occupancy measure under policy π and environment E . It follows from the definitions that this
measure is absolutely continuous with respect to µS×A := µS × µA. Let dEh,π(s, a) denote the
Radon–Nikodym derivative so that we have dEh,π(s, a) dµS×A = dPE

π(sh = s, ah = a). We will
assume throughout the paper that this density dEh,π(s, a) is measurable and upper bounded for all
π, E , s, a, h. The upper bound is a reasonable assumption, and it happens trivially in the tabular
case (dEh,π(s, a) ≤ SA). This also happens, e.g., when one assumes that the maps (E , s, a, s′, h) 7→
P E
h (s

′|s, a) and (π, s, a, h) 7→ πh(a|s) are continuous and Θ, S , A and the set of all optimal policies
(as a subset of Π) are compact.

2.2 Bayesian regret
We formulate the expected regret over L episodes and T = LH total steps in an environment E as

RL(E , π) = E

[
L∑
ℓ=1

(
V E
1,π∗

E
(sℓ1)− V E

1,πℓ(s
ℓ
1)
)]

, (2)

where the expectation is over the randomness of π = {πℓ}ℓ. The Bayesian regret is BRL(π) =
E[RL(E , π)]. For Thompson Sampling (TS), the algorithm selects the optimal policy of a given
sample Eℓ picked from the posterior Eℓ ∼ P(E ∈ ·|Dℓ):

πℓTS = argmaxπ∈ΠV
Eℓ
1,π(s

ℓ
1) . (3)

Importantly, the law of TS aligns with the posterior, i.e., P(E|Dℓ) = P(πℓTS = π∗
E |Dℓ).

Remark 2. Note that P(πℓTS = π∗
E |Dℓ) is a probability for a specific measure on the space of optimal

policies. To ensure that
∫
Π∗ P(π∗|Dℓ)dρΠ∗ = 1, we need an appropriate measure ρΠ∗ on Π∗. Given

the law of TS, the natural choice for this measure is the push-forward of the prior measure ρ under
the map star : Θ→ Π∗, where star(E) = π∗

E .
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2.3 Notations
For Bayesian RL, conditional expressions involving a given history Dℓ are widely used. We adopt the
notation in [18] to refer to such conditionals; let Pℓ(·) := P(·|Dℓ), Eℓ[·] := E[·|Dℓ]. We can rewrite
the Bayesian regret as

BRL(π) =

L∑
ℓ=1

E
[
Eℓ
[
V E
1,π∗

E
(sℓ1)− V E

1,π(s
ℓ
1)
]]

(4)

and define the conditional mutual information Iℓ(X;Y ) := DKL(P((X,Y ) ∈ ·|Dℓ)||P(X ∈ ·|Dℓ)⊗
P(Y ∈ ·|Dℓ)). For a random variable χ and random policy π, the following will be involved in the
information ratio:

Iπℓ (χ;Hℓ,h) := Iℓ(χ;Hℓ,h|π) = Eπ[DKL(Pℓ((χ,Hℓ,h) ∈ ·|π)||Pℓ(χ ∈ ·|π)⊗ Pℓ(Hℓ,h ∈ ·|π))] ,
(5)

Note that E[Iℓ(X;Y )] = I(X;Y |Dℓ). To clarify, Pℓ(Hℓ,h ∈ ·|π) is the probability of Hℓ,h being
generated under π within some environment. Given that the histories under consideration are
generated by the TS algorithm, they are always generated in the true environment E under an optimal
policy π∗

E′ . For π = πℓTS, this can be computed as Pℓ(Hℓ,h|π) =
∫
E P (Hℓ,h|π, E) dPℓ(E), where

P (Hℓ,h|π, E) is an expression in terms of transition and reward functions of E and π.

Finally, we define Ēℓ as the mean MDP where P Ēℓ
h (·|s, a) = Eℓ[P E

h (·|s, a)] is the mean of posterior
measure, and similarly for rĒℓh (·|s, a) = Eℓ[rEh(·|s, a)]. We note that under the independence
assumption across layers, the same is given for the state-occupancy density dĒℓh,π = Eℓ[dEh,π].

3 Bayesian RL problems
Definition 1. A Bayesian RL in this paper refers to the time-inhomogeneous finite-horizon MDP
with independent priors on transition and reward functions, as described in Section 2.1.

The Bayesian RL problem is the task of finding an algorithm π with optimal Bayesian regret as
defined in Eq. (4). Below we list the variations of this problem. A setting considered by most related
works such as [31, 16] is the following:

Definition 2. The time (reward) homogeneous Bayesian RL refers to the Bayesian RL setting
where the prior ρP (ρR) is over the space ΘP (ΘR) containing the single transition (reward) function
P (r) defining E , i.e., all layers have the same transition (reward) functions.

Definition 3. The tabular Bayesian RL is a Bayesian RL where S,A are finite sets.

Definition 4 (Linear MDP [41, 22]). Let ϕP : S ×A → Rd
P
f , ϕR : S ×A → Rd

R
f be feature maps

with bounded norm ∥ϕP (s, a)∥2, ∥ϕR(s, a)∥2 ≤ 1. The linear Bayesian RL is a Bayesian RL where
for any E = {(P E

h , r
E
h)}Hh=1 ∈ Θ, there exists vector-valued maps ψP,Eh (s), ψR,Eh (s) with bounded

l2−norm such that for any (s, a) ∈ S ×A,

P E
h (·|s, a) = ⟨ϕP (s, a), ψ

P,E
h (·)⟩ , rEh(·|s, a) = ⟨ϕR(s, a), ψ

R,E
h (·)⟩ (6)

A restricted version of the finite mixtures called linear mixture was first considered in [6] in the
frequentist setting. Here, we consider the general setting.

Definition 5. The finite mixtures Bayesian RL is a Bayesian RL where for any h ∈ [H] there exists

fixed conditional distributions {ZPh,i : S ×A → ∆S}
mPh
i=1 and {ZRh,i : S ×A → ∆[0,1]}

mRh
i=1, such that

for any environment E given by {(P E
h , r

E
h)}Hh=1, there exists parametrized probability distributions

aP,Eh : S ×A → ∆mPh
,aR,Eh : S ×A → ∆mRh

such that

P E
h (·|s, a) =

mPh∑
i=1

aP,Eh,i (s, a)Z
P
h,i(·|s, a), rEh(·|s, a) =

mRh∑
i=1

aR,Eh,i (s, a)Z
R
h,i(·|s, a) (7)
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4 Surrogate learning
Next, we define the discretized surrogate learning problem, and bound the size of the surrogate
environments space, a significant term in the regret. To do so, we need to first define the Kolmogorov
dimension of a set of parametrized distributions, esp. working out the case of l1−distance. In the
definitions below, we implicitly assume any required minimal measurability assumptions on the
involved sets.

Definition 6. Given a set F of O−parametrized distributions P : O → ∆(S) over a set S where
both O,S are measurable. Let M(·, ·) : F × F → R≥0 be a distance, i.e., M(P,Q) ≥ 0

=←→
P = Q. Then its right ε−covering number is the size KM(ε) of the smallest set CM(ε) =
{P1, . . . , PKM(ε)} ⊂ F such that

∀P ∈ F , ∃Pj ∈ CM(ε) : M(P, Pj) ≤ ε . (8)

The potential asymmetry ofM (e.g., KL-divergence) requires the notion of left/right covering number.
The right covering number will be the default, so covering number will always refer to that.

Definition 7. Let dM(ε) = log(KM(ε)). Define the KolmogorovM−dimension dM of F as

dM = lim sup
ε→0

dM(ε)

log( 1ε )
. (9)

For l1(P,Q) := supo∈O ||P (·|o) − Q(·|o)||1, applying Definition 6 to the sets ΘPh ,Θ
R
h with O =

S × A, and denote the respective covering numbers by LPh (ε), L
R
h (ε) corresponding to covering

sets CPh (ε), CRh (ε). Similarly applying Eq. (9) and denote the corresponding l1−dimensions by
dPl1,h(ε), d

R
l1,h

(ε), dPl1,h, d
R
l1,h

and dPl1 :=
∑
h d

P
l1,h

, dRl1 :=
∑
h d

R
l1,h

. The sums dl1,h := dPl1,h +

dRl1,h, dl1 := dPl1 + dRl1 can be interpreted as the l1−dimension of Θh and Θ, i.e., the environment
space.

Remark 3. We can also apply this framework to the KL-divergence, by MKL(P,Q) :=
supo∈ODKL(P (·|o)||Q(·||o)). This was implicitly used by [18] to prove their regret bound in
the tabular case. Note that Pinsker’s lemma (Lemma 9) implies that the KL-divergence is larger
than the squared total variance, and the latter is trivially larger than the l1 distance. Therefore,
l1−dimension is smaller than dMKL

, allowing for tighter regret bounds.

We now revisit the definition of ε−value partitions and show their existence is guaranteed by finite
l1−covering numbers. These partitions are the origins of surrogate environments.

Definition 8. Given ε > 0, an ε−value partition for a Bayesian RL problem is a partition {Θk}Kk=1
over Θ such that for any k ∈ [K] and E , E ′ ∈ Θk,

V E
1,π∗

E
(sℓ1)− V E′

1,π∗
E
(sℓ1) ≤ ε . (10)

A layered ε−value partition is one where the transition functions are independent over layers after
conditioning on k. Throughout this paper, we will only consider layered ε−value partition. We define
Ksurr(ε) as the minimum K for which there exists a layered ε−value partition.

Inspired by Eq. (9), we define the surrogate dimension as dsurr = lim supε→0
Ksurr(ε)
log(1/ε) .

Lemma 1. Given a Bayesian RL, we have Ksurr(ε) ≤
∏
h L

P
h (ε/(2H)2) × LRh (ε/(4H)). This

implies dsurr ≤ dl1 .

The above is proved in Appendix B. It is hard to find dsurr, but one can estimate dl1 , and according to
the above, this acts as a proxy for Ksurr. This is useful as the regret relates to Ksurr. But to show
this, we need to construct surrogate environments inside each partition, and show that learning those
is almost equivalent to the original problem. Let ζ be a discrete random variable taking values in
{1, · · · ,Ksurr(ε)} that indicates the partition E lies in, such that ζ = k if and only if E ∈ Θk.

Lemma 2. For any ε−value partition and any ℓ ∈ [L], there are random environments Ẽ∗ℓ ∈ Θ with
their laws only depending on ζ,Dℓ, such that

Eℓ
[
V E
1,π∗

E
(sℓ1)− V E

1,πℓTS
(sℓ1)

]
− Eℓ

[
V

Ẽ∗
ℓ

1,π∗
E
(sℓ1)− V

Ẽ∗
ℓ

1,πℓTS
(sℓ1)

]
≤ ε . (11)
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The expectation in both equations is over E and πℓTS ∈ {π∗
E′}E′∈Θ, with both sampled independently

∼ Pℓ(·), and the K different values of Ẽ∗ℓ . The second expectation over (Ẽ∗ℓ , E) is over pairs that are
in the same partition, i.e., Ẽ∗ℓ , E are independent only after conditioning on ζ.

We note that the proof in [18, App. B.1] contains the use of a lemma that does not apply to construct
the law of the environment Ẽ∗ℓ . More details is provided in Appendix C, where we find Ẽ∗ℓ by
minimizing an expected value of πℓTS.

5 Bayesian regret bounds for Thompson Sampling
5.1 General Bayesian regret bound
We start by introducing the notion of value diameter.

Definition 9. Given the environment E , its value diameter is defined as

λE := max
1≤h≤H

(sup
s
V E
h,π∗

E
(s)− inf

s
V E
h,π∗

E
(s)) + max

1≤h≤H,s∈S,a∈A
(rsuph (s, a)− rinfh (s, a)),

where rsuph (s, a) (and rinfh (s, a)) is the supremum (and infimum) of the set of rewards that are
attainable under the distribution rh(s, a) with non-zero probability. As a special case, if rewards are
deterministic, then we have rsuph (s, a) = rinfh (s, a) for all s, a. The (average) value diameter over Θ
is denoted by λ := EE∼ρ[λ

2
E ]

1/2.

As the value function is between 0 and H , we have λE ≤ H + 1 implying λ ≤ H + 1. Note that
value diameter is closely related to the notion of diameter commonly defined in finite RL problems.
Strictly speaking, for a time-homogeneous RL, it is straightforward to see that the value diameter is
bounded from above by one plus the diameter [33].

We now discuss the assumptions surrounding our results. The main technical assumption of this
paper is the existence of consistent estimators, which as we will see in Appendix K, is closely related
to the notion of posterior consistency:

Assumption 1. There exists a strongly consistent estimator of the true environment given the history.

Roughly speaking, we assume that with unlimited observations under TS, it is possible to find the
true environment. For this assumption to fail, we need to have two environments that produce the
same distribution over histories under TS and are therefore indistinguishable from the point of view
of TS. The precise description of this assumption is detailed in Appendix K.

Another necessary technical assumption is that almost all optimal policies visit almost all state action
pairs in their respective environment.

Assumption 2. For almost every environment E ∈ Θ and almost every (s, a) ∈ S × A and every
h ∈ [H], we have

dEh,π∗
E
(s, a) ̸= 0.

Recall that, for any environment E ∈ Θ, the policy π∗
E is the optimal policy of E within the policy

class Π. Therefore, one example of how the above assumption holds is when Π is the set of ε-greedy
algorithms and transition functions of environments assign non-zero probability to every state. Under
these assumptions, we discuss our main result and its corollaries.

Theorem 3. Given a Bayesian RL problem, for all ε > 0, we have

BRL(πTS) ≤ 2λ
√

log(Ksurr(ε))T + Lε+ T0 (12)

where T0 does not depend on T . This can be further upper bounded by

BRL(πTS) ≤ Õ(λ
√
dl1T ) . (13)

for large enough T . Given a homogeneous l1 dimension dhom = dl1,h,∀h, this simplifies to

BRL(πTS) ≤ Õ(λ
√
HdhomT ) . (14)

Remark 4. For all regret bounds, we will replace λ ≤ H + 1 to compare our result. For the case
of homogeneous dimensions, we obtain Õ(H3/2

√
dhomT ). Crucially, our main result shows a new

conceptual understanding of the information ratio by bounding it by two terms of different nature: H
and λ, where the latter can be bounded by either the largest diameter of the environments or H .
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Remark 5. Despite not impacting the asymptotics, the impact of T0 can be large depending on the
structure of the RL problem, and could be dominant even for large T s in practice.

Remark 6. Considering time as a part of the state observation, one could apply this regret analysis
to particular time-homogeneous settings. However, this mapping of time-inhomogeneous RLs
to homogeneous ones is not surjective, hence the result above does not readily extend to time-
homogeneous settings.

While [16] were the first to consider a nonlinear Bayesian RL model, their bound is limited to the
Gaussian process (with linear kernel) setting, while ours in the nonlinear time inhomogeneous setting
makes no assumptions on the prior and is the first such bound. Our novel analysis allow us to upper
bound the information ratio by λ

√
H instead of, for example H3/2

√
SA ([18]) in the tabular case,

improving the regret bound by a square root relevant to the dimension d of the problem.

The detailed proof is given in Appendix D. Following [18], the regret (4) is rewritten using Lemma 2
to reduce the problem into its surrogate, and we use the well-known information-ratio trick by
multiplying and dividing by the mutual information. We follow that with a Cauchy-Schwarz,
summarized below

BRL(πTS) ≤ E

 L∑
ℓ=1

Eℓ
[
V

Ẽ∗
ℓ

1,π∗
E
(sℓ1)− V

Ẽ∗
ℓ

1,πℓTS
(sℓ1)

]
√
Iπ
ℓ
TS
ℓ (Ẽ∗ℓ ;Hℓ,H)

√
Iπ
ℓ
TS
ℓ (Ẽ∗ℓ ;Hℓ,H)

+ Lε (15)

≤

√√√√√√E

 L∑
ℓ=1

(
Eℓ
[
V

Ẽ∗
ℓ

1,π∗
E
(sℓ1)− V

Ẽ∗
ℓ

1,πℓTS
(sℓ1)

])2
Iπ
ℓ
TS
ℓ (Ẽ∗ℓ ;Hℓ,H)

E

[
L∑
ℓ=1

Iπ
ℓ
TS
ℓ (Ẽ∗ℓ ;Hℓ,H)

]
+ Lε (16)

Note the cost ε at each episode (Lemma 2) in the first inequality, yielding the overall error Lε. Then,

we can bound the mutual information appearing in the regret term by E
[∑L

ℓ=1 I
πℓTS
ℓ (Ẽ∗ℓ ;Hℓ,H)

]
=

I
πℓTS
ℓ (Ẽ∗ℓ ;Dℓ) ≤ I

πℓTS
ℓ (ζ;Dℓ) ≤ H(ζ) ≤ log(Ksurr(ε)), where we used the mutual information chain

rule, followed by data processing inequality to substitute Ẽ∗ℓ → ζ, and finally used the trivial bound
by the entropy. But the main novelty of our approach lies in our control of the first term

Γℓ(π
ℓ
TS) :=

(
Eℓ
[
V

Ẽ∗
ℓ

1,π∗
E
(sℓ1)− V

Ẽ∗
ℓ

1,πℓTS
(sℓ1)

])2
Iπ
ℓ
TS
ℓ (Ẽ∗ℓ ;Hℓ,H)

(17)

called the information ratio. In our analysis, we have the following bound on its expectation.

E[Γℓ(πℓTS) | E0] ≤ E

∑
h

∫ Eℓ
[
(λEd

Ēℓ
h,π∗(s, a))2

]
Eℓ
[
dĒℓh,π∗(s, a)

] µS×A | E0

 ,
where the average is taken over all histories Dℓ that are generated from running TS on the true
environment E0, and we have introduced the smaller term λE instead of H in [18]. While [18]
essentially bound the above only in the tabular setting with SAH3, we manage to generally bound the
above with a more precise bound using Doob’s consistency theorem. Assumption 1 allows us to use
Doob’s consistency theorem to conclude that for almost every environment E0, almost every infinite
sequence of histories (Dℓ)∞ℓ=1 sampled from E0, and every integrable function f , the posterior mean
Eℓ[f(E)] = E[f(E) | Dℓ] converges to f(E0). In particular, we conclude that E[Γℓ(πℓTS) | E0] tends
to λ2E0

H in the limit, allowing us to claim that for large enough ℓ, the expected information ratio
E[Γℓ(πℓTS)] is uniformly bounded by 2E[λ2E ]H = 2λ2H . As there are L many such ratios, the two
bounds together yield 2

√
λ2HL ·

√
log(Ksurr(ε))+Lε. This bound is true for large enough ℓ, giving

the additional additive term T0 in the theorem. Since this term is additive, applying Lemma 1 to
bound log(Ksurr(ε)), we have successfully shown the asymptotic behavior of the regret, independent
of the prior, is of order Õ(H

√
dl1T ).

5.2 Applications
In each application below, the challenge is to bound dl1 using the specifics of the model, and except
for the case of tabular Bayesian RL, such analysis has not been carried out rigorously. We formalize
the corollaries and show they are state-of-the-art compared to the literature.
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Tabular RL. The result below follows from Theorem 3; the main contribution comes from our
new information ratio bound, followed by the estimate Õ(( 1ε )

SAH) of Ksurr(ε) ([18]).

Corollary 4. Given a tabular Bayesian RL problem, for large enough T ,

BRL(πTS) ≤ Õ(λ
√
HSAT ) , (18)

where the polylogarithmic terms are explicitly in terms of H,S,A,L.

We observe that our result matches [31] when their result in the time homogeneous setting (Defini-
tion 2) is extended to time inhomogeneous. However, in that paper, the authors assume a Dirichlet
based prior which we do not.

Linear RL. A previous state-of-the-art Õ(dfH
3/2
√
T ) was claimed by [18] to hold for linear

Bayesian RLs with deterministic reward. We note:

• As in the previous cases, their proof in bounding their information ratio includes a factor of
df , which ours avoids.

• We show that the proof bounding Ksurr(ε) in [18, App. B.4] is incorrect, starting with a
wrong application of Cauchy-Schwarz and a wrong mutual information in their definition of
information ratio. We provide counterexamples for the estimates found therein to substantiate
our claim (see Appendix G.1).

To state our own corollary in this case, we need to define a few notions. Let dfl1 = dP,fl1 + dR,fl1
be the

sum of the l1−dimensions of the feature map space {ψP,Eh }E∈Θ, {ψR,Eh }E∈Θ where the l1−distance
between feature maps is defined as l1(ψE

h , ψ
E′

h ) =
∫
s
∥ψE

h − ψE′

h ∥1µS . Our corollary also provides a
concrete bound in the case of mixture linear Bayesian RL where the feature maps are themselves a
sum of finitely many fixed feature maps. This means for all E ∈ Θ, we have

ψP,Eh =

mPh∑
i=1

aP,Eh,i Ψ
P
h,i(s), ψ

R,E
h =

mRh∑
i=1

aR,Eh,i Ψ
R
h,i(s) (19)

where {ΨPh,i(s)}
mPh
i=1, {ΨRh,i(s)}

mRh
i=1 are finitely many fixed feature maps and ∀E , h :∑

i |a
P,E
h,i |2,

∑
i |a

R,E
h,i |2 ≤ Ca for some constantCa > 0. LetM =MP+MR =

∑
hm

P
h +
∑
hm

R
h .

Corollary 5. For a linear Bayesian RL, for large enough T ,

BRL(πTS) ≤ Õ(λ
√
dfl1T ). (20)

Given a linear Bayesian RL with finitely many states and total feature space dimension df = dPf +dRf ,
we have dl1 ≤ 2dfHS, yielding for large enough T ,

BRL(πTS) ≤ Õ(λ
√
HdfST ). (21)

Given a mixture linear Bayesian RL, for large enough T ,

BRL(πTS) ≤ Õ(λ
√
MT ) , (22)

The proof is given in Appendix G. The fact that dl1 appears instead of df in the general
bound is not counter-intuitive, as we should expect the complexity of the feature map space
{ψP,Eh (s)}E∈Θ,h∈[H], {ψR,Eh (s)}E∈Θ,h∈[H] to play a role in the regret, especially as this space can be
very complex, and model very different environments that can not be grouped in the same ε−value
partition.

Therefore, opposite to the claim made by [18], this complexity can not be captured by simply df
except maybe in degenerate cases, such as when S is finite, which is our second statement. More
generally, if each feature map ψP,Eh (s), ψR,Eh (s) can be characterized with a vector of uniformly
bounded norm aP,Eh ∈ RmPh ,aR,Eh ∈ RmRh , then we can bound the regret in terms of mP

h ,m
R
h ’s, as

is done in Eq. (22) (the finite state case corresponds to mP
h = dPf S,m

R
h = dRf S).
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Finite mixtures RL. To state our finite mixtures model result, we need to set the following
notations. Let dml1 = dm,Pl1

+ dm,Rl1
=
∑
h d

m,P
l1,h

+
∑
h d

m,R
l1,h

correspond to the total l1−dimension of
the space of mixtures coefficient maps {aP,Eh (s, a)}E∈Θ, {aR,Eh (s, a)}E∈Θ with l1− distance defined
as l1(aE

h,a
E′

h ) = sups,a ∥aE
h(s, a) − aE′

h (s, a)∥1. Define also the restricted finite mixtures model
where aP,Eh ,aR,Eh are vectors in RmPh ,RmRh independent of (s, a) and let M = MP + MR =∑

hm
P
h +

∑
hm

R
h .

Corollary 6. Given a finite mixtures Bayesian RL problem, for large enough T ,

BRL(πTS) ≤ Õ(λ
√
dml1T ) . (23)

Assuming the restricted finite mixtures model, for large enough T ,

BRL(πTS) ≤ Õ
(
λ
√
MT

)
. (24)

which, given a uniform dimension m = mP
h = mR

h , yields Õ(λ
√
HmT ).

We prove the above in Appendix H, deriving it from our generic bound, after relating the
l1−dimension dl1 of the environment space to that of the mixtures coefficients. To the best of
our knowledge, this is the first bound for finite mixtures Bayesian RL problems. We note that in a
previous work ([6]), a restricted version of finite mixtures, like in Eq. (24), was considered in the
frequentist setting.

We finish this section by proposing the following conjecture, in line with [31, Conj. 1].

Conjecture 7. For the Bayesian RL, the following is true and optimal for all T :

BRL(πTS) ≤ O
(
inf
ε>0

(
√
H log(Ksurr(ε))T + Lε)

)
. (25)

where the constant factor is independent of the prior. This means there exists a Bayesian RL problem
such that BRL(πTS) = Ω̃(

√
HdsurrT ). All polylogarithmic terms are in terms of H, dsurr, T .

Note that the above coincides with the lower bound for the (model-based) time inhomogeneous
frequentist setting; see e.g., [21] for the proven lower bound for the tabular case. This is also

√
H

higher (this factor being baked in dsurr) than that of the time homogeneous frequentist setting, which
is expected, according to [21, App. D]. Note that in this conjecture, the λ in our bound is replaced by√
H , and the conjecture is not for T large enough, but for all T . Supporting this conjecture requires

experiments where TS can be exactly implemented assuming access to an oracle which provides the
optimal policy for a query environment. Simulations have been performed for the similar [31, Conj.
1] in the time homogeneous case. Our conjecture is similar but with the additional expected factor of√
H due to time inhomogeneity, thus their simulation also supports the above.

6 Conclusions
In this paper, we have addressed the Bayesian Reinforcement Learning (RL) problem in the context
of time inhomogeneous transition and reward functions. By considering both Bayesian transition
and Bayesian rewards without prior assumptions, we have extended the scope of previous works,
making our formulation more comprehensive. To simplify the learning problem, we have introduced
surrogate environments, which discretize the environment space. We have established a connection
between the size of this new environment space and the l1-dimensions of the transition and reward
functions space, providing insights into the l1-dimension of the environment space denoted by dl1 .
We have employed posterior consistency tools to analyze the information ratio, which captures the
trade-off between exploration and exploitation. We conjecture that (at least a weakened version
of) our posterior consistency assumption should hold in general, which is left for future work. Our
analysis has resulted in a refined approach to estimate the Bayesian regret in Thompson Sampling
(TS), yielding a regret bound of Õ(λ

√
dl1T ) for large enough time steps T . The result is specialized

to linear, tabular, and finite mixtures MDPs.

Limitations: While the paper provides asymptotic generic regret bound for TS in a generalized setup
which improve the state of the art results, finding lower bounds, esp. one dependent on λ, are left
open. In addition, the issue of prior misspecificity is not discussed and left for future studies.
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