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Abstract

We propose a general class of sample based explanations of machine learning
models, which we term generalized representers. To measure the effect of a
training sample on a model’s test prediction, generalized representers use two
components: a global sample importance that quantifies the importance of the
training point to the model and is invariant to test samples, and a local sample
importance that measures similarity between the training sample and the test
point with a kernel. A key contribution of the paper is to show that generalized
representers are the only class of sample based explanations satisfying a natural
set of axiomatic properties. We discuss approaches to extract global importances
given a kernel, and also natural choices of kernels given modern non-linear models.
As we show, many popular existing sample based explanations could be cast as
generalized representers with particular choices of kernels and approaches to extract
global importances. Additionally, we conduct empirical comparisons of different
generalized representers on two image and two text classification datasets.

1 Introduction

As machine learning becomes increasingly integrated into various aspects of human life, the demand
for understanding, interpreting, and explaining the decisions made by complex AI and machine
learning models has grown. Consequently, numerous approaches have been proposed in the field
of Explainable AI (XAI). Feature based explanations interpret models by identifying the most
relevant input features [1–4], while sample based explanations do so via the most relevant training
samples [5–8]. Although different methods emphasize different aspects of the model, some may even
have conflicting philosophies [9]. To address this issue, there have been growing calls within the
XAI community for more objective or normative approaches [10–12], which could help align XAI
techniques more effectively with human needs.

One of the most straightforward approaches to assess the effectiveness of explanations is by evaluating
their utility in downstream applications [13, 14]. However, such evaluations can be costly, particularly
during the development stages of explanations, as they often necessitate the involvement of real
human users. As a result, a well-grounded, axiom-based evaluation can be beneficial for designing
and selecting explanations for implementation. Axioms can be viewed as theoretical constraints that
dictate how explanations should behave in response to specific inputs. A notable example is the
Shapley value [15], which originated in cooperative game theory and has gained popularity in XAI
due to its appealing axiomatic properties. Nonetheless, while axiomatic approaches have been widely
applied in identifying significant features [4, 16, 17], feature interactions [18, 19], and high-level
concepts [20], they have not been extensively discussed in sample based explanations.
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In this work, we propose a set of desirable axioms for sample based explanations. We then show that
any sample based attributions that satisfy (a subset of) these axioms are necessarily the product of two
components: a global sample importance, and a local sample importance that is a kernel similarity
between a training sample and the test point. We term the explanations in this form generalized
representers.

We note that the efficiency axiom (detailed in the sequel) can only be satisfied if the model function
lies in the RKHS subspace spanned by the training kernel representers, which is indeed typically the
case. Otherwise, we could ask for the smallest error in satisfying the efficiency axiom which can
be cast as an RKHS regression problem. Thus, given a kernel, extracting global importances can
be cast as solving an RKHS regression problem, by recourse to RKHS representer theorems [21].
We additionally also propose tracking representers that scalably compute the global importance by
tracking kernel gradient descent trajectories.

The class of generalized representers allow for the user to specify a natural kernel given the model they
wish to explain, perhaps drawn from domain knowledge. We discuss some natural automated choices
given modern non-linear models. Specifically, we discuss the kernel with feature maps specified
by last-layer embeddings, neural tangent kernels [22], and influence function kernels [5]. Many
existing sample-based explanation methods such as representer point selection [7], and influence
functions [5] can be viewed as specific instances of the broad class of generalized representers. As
we show, TracIn [6] could be viewed as a natural extension of generalized representers that uses
multiple kernels, and computes multiple corresponding global and local importances. We empirically
compare different choices of generalized representers for neural networks on two image and two text
classification datasets.

1.1 Related work

Axiomatic attribution in XAI: The most common line of work that incorporates axioms in the
design of explanations is the family of Shapley values [15], that originates from cooperative game
theory. This line of work first tackles the attribution problem by converting it into a set value
function and then applying the Shapley value. The Shapley value is widely used in feature-based
explanations [4, 16, 23], feature-interaction explanations [18, 19], concept-based explanations [20]
and sample-based explanations [8].

We note that the axiomatic framework for sample-based explanations in data Shapley [8] has distinct
purposes and interpretations to ours. Generalized representers assess the significance of training
samples with respect to a specific test sample’s prediction. In contrast, data Shapley assesses
training sample importance via training loss and can be directly adapted to orginal Shapley value
axioms. Consequently, while there are shared axiomatic principles between the two frameworks, the
generalized representers require a different approach due to their additional focus on a specific test
sample. We will delve into a detailed comparison of these distinctions in Section 3.

Sample based explanations: Existing sample-based explanation approaches can be separated
into retraining-based and gradient-based approaches [24]. Retraining-based approaches are based
on the measurement of the difference between a model prediction with and without a group of
training samples [8, 25–34]. Gradient-based methods estimate data influence based on similarities
between gradients. The majority of methods build upon the three theoretical frameworks, namely:
(1) Representer theorems [7, 35–37], (2) Hessian-based influence functions [5, 38–45], and (3)
Decomposing the training loss trajectory [6, 46–48]. In this work, we show that most gradient-based
methods can be viewed as generalized representers.

2 Problem Definition

We consider the task of explaining a supervised machine learning model f : Rd
7! R, given inputs

x 2 Rd, where d is the input dimension.2 We are interested in explaining such models f(·) in terms
of the training points D := {(xi, yi)}ni=1 with each training sample (xi, yi) 2 Rd

⇥ R. We denote
a sample explanation functional �D : F ⇥ D ⇥ Rd

7! Rn, as a mapping that takes a real-valued

2Note that we assume a single-dimensional output for notational convenience. In the appendix, we show that
our development can be extended to vector-valued outputs by using vector-output kernel functions.
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model f 2 F , training data points D, and an arbitrary test data point x 2 Rd as input, and outputs
a vector of explanation weights [�D(f, (x1, y1),x), · · · ,�D(f, (xn, yn),x)] 2 Rn with each value
corresponding to an importance score of each training sample to the test point. In the sequel, we will
suppress the explicit dependence on the entire set of training points in the notation for the explanation
functional and the dependence on the training label yi. Also, to make clear that the first data point
argument is the training sample, and the second is the test sample, we will use �(f,xi ! x) 2 R to
denote the sample explanation weight for xi to explain the prediction of the model f(·) for the test
point x.

3 Axioms for Sample based Explanations

In this section, we begin by presenting a collection of axioms that describe various desirable charac-
teristics of sample based explanations.
Definition 1 (Efficiency Axiom). For any model f , and test point x 2 Rd, a sample based explanation
�(·) satisfies the efficiency axiom iff:

nX

i=1

�(f,xi ! x) = f(x).

The efficiency axiom entails that the sum of the attributions to each training sample together adds up
to the model prediction at the test point. This is a natural counterpart of the efficiency axioms used in
the Shapley values [49].
Definition 2 (Self-Explanation Axiom). A sample based explanation �(·) satisfies the self-explanation
axiom iff there exists any training point xi having no effect on itself, i.e. �(f,xi ! xi) = 0, the
training point should not impact any other points, i.e. �(f,xi ! x) = 0 for all x 2 Rd.

The self-explanation axiom states that if the label yi does not even have an impact on the model’s
prediction for xi, it should not impact other test predictions. This axiom shares a similar intuition as
the dummy axiom in the Shapley values [15] since both axioms dictate that explanations should be
zero if a training sample has no impact on the model. However, the self-explanation axiom requires a
different theoretical treatments due to the additional focus in generalized representers of explaining a
model prediction on a particular test sample.
Definition 3 (Symmetric Zero Axiom). A sample explanation �(·) satisfies the symmetric zero axiom
iff any two training points xi,xj such that if �(f,xi ! xi) 6= 0 and �(f,xj ! xj) 6= 0, then

�(f,xi ! xj) = 0 =) �(f,xj ! xi) = 0.

The symmetric-zero axiom underscores the bidirectional nature of "orthogonality“. It emphasizes
that if a sample has no impact on another sample, this lack of correlation is mutual and implies that
they are orthogonal.
Definition 4 (Symmetric Cycle Axiom). A sample explanation �(·) satisfies the symmetric cycle
axiom iff for any set of training points xt1 , ...xtk , with possible duplicates, and xtk+1 = xt1 , it holds
that:

kY

i=1

�(f,xti ! xti+1) =
kY

i=1

�(f,xti+1 ! xti).

Let us first consider the vacuous case of two points: x1,x2, for which the axiom is the tautology that:
�(f,x1 ! x2)�(f,x2 ! x1) = �(f,x2 ! x1)�(f,x1 ! x2). Let us next look at the case with
three points: x1,x2,x3, for which the axiom entails:

�(f,x1 ! x2)�(f,x2 ! x3)�(f,x3 ! x1) = �(f,x3 ! x2)�(f,x2 ! x1)�(f,x1 ! x3).

It can be seen that this is a generalization of simply requiring that the explanations be symmetric as
in the symmetry axiom in the Shapley values. In fact, the unique explanation satisfying this and other
listed axioms is in general not symmetric. The axiom could also be viewed as a conservation or path
independence law, in that the flow of explanation based information from a point xi to itself in a
cycle is invariant to the path taken.
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Definition 5 (Continuity Axiom). A sample based explanation �(·) satisfies the continuity axiom iff
it is continuous wrt the test data point x, for any fixed training point xi:

lim
x0!x

�(f,xi ! x0) = �(f,xi ! x).

Such continuity is a minimal requirement on the regularity of the explanation functional, and which
ensures that infinitesimal changes to the test point would not incur large changes to the explanation
functional.
Definition 6 (Irreducibility Axiom). A sample explanation �(·) satisfies the irreducibility axiom iff
for any number of training points x1, ...,xk,

det

0

B@

�(f,x1,x1) �(f,x1,x2) ... �(f,x1,xk)
�(f,x2,x1) �(f,x2,x2) ... �(f,x2,xk)

... ... ... ...

�(f,xk,x1) �(f,xk,x2) ... �(f,xk,xk)

1

CA � 0.

A sufficient condition for an explanation �(·) to satisfy the irreducibility axiom is for

|�(f,xi ! xi)| >
X

j 6=i

|�(f,xi ! xj)|, (1)

since this makes the matrix above strictly diagonally dominant, and since the diagonal entries are
non-negative, by the Gershgorin circle theorem, the eigenvalues are all non-negative as well, so that
the determinant in turn is non-negative.

The continuity and irreducibility axiom primarily serves a function-analytic purpose by providing
sufficient and necessary conditions of a kernel being a Mercer kernel, which requires that the kernel
function be continuous and positive semi-definite.

We are now ready to investigate the class of explanations that satisfy the axioms introduced above.
Theorem 7. An explanation functional �(f, ·, ·) satisfies the continuity, self-explanation, symmetric
zero, symmetric cycle, and irreducibility axioms for any training samples D containing n training
samples (xi, yi) 2 Rd

⇥ R for all i 2 [n] iff

�(f,xi ! x) = ↵iK(xi,x) 8i 2 [n], (2)

for some ↵ 2 Rn and some continuous positive-definite kernel K : Rd
⇥ Rd

7! R.

This suggests that a sample explanation �(f,xi ! x) = ↵iK(xi,x) has two components: a weight
↵i associated with just the training point xi independent of test points, and a similarity K(xi,x)
between the training and test points specified by a Mercer kernel. Following Yeh et al. [7], we term
the first component the global importance of the training sample xi and the second component the
local importance that measures similarities between training and test samples.

Once we couple this observation together with the efficiency axiom, one explanation that satisfies
these properties is:

f(x) =
nX

j=1

�(f,xi ! x) =
nX

j=1

↵iK(xi,x) , for any x 2 Rp
. (3)

This can be seen to hold only if the target function f lies in the RKHS subspace spanned by the kernel
evaluations of training points. When this is not necessarily the case, then the efficiency axiom (where
the sum of training sample importances equals the function value) exactly, cannot be satisfied exactly.
We can however satisfy the efficiency axiom approximately with the approximation error arising
from projecting the target function f onto the RKHS subspace spanned by training representers.

This thus provides a very simple and natural framework for specifying sample explanations: (1)
specify a Mercer kernel K(·, ·) so that the target function can be well approximated by the corre-
sponding kernel machine, and (2) project the given model onto the RKHS subspace spanned by
kernel evaluations on the training points. Each of the sample explanation weights then has a natural
specification in terms of global importance associated with each training point (arising from the
projection of the function onto the RKHS subspace, which naturally does not depend on any test
points), as well as a localized component that is precisely the kernel similarity between the training
and test points.
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4 Deriving Global Importance Given Kernel Functions

The previous section showed that the class of sample explanations that satisfy a set of key axioms
naturally correspond to an RKHS subspace. Thus, all one needs, in order to specify the sample
explanations, is to specify a Mercer kernel function K and solve for the corresponding global
importance weights ↵. In this section, we focus on the latter problem, and present three methods to
compute the global importance weights given some kernel K.

4.1 Method 1: Projecting Target Function onto RKHS Subspace

The first method is to project the target function onto the RKHS subspace spanned by kernel
evaluations on the training points. Given the target function f , loss function L : R ⇥ R 7! R
and training dataset D = {(xi, yi)}ni=1 (potentially, though not necessarily used to train f ), and a
user-specified Mercer kernel K, our goal is to find a projection f̂K of the target model onto the RKHS
subspace defined by Hn = span({K(xi, ·)}ni=1)). To accomplish this, we formulate it as a RKHS
regression problem:

f̂K = argmin
fK2HK

(
1

n

nX

i=1

L(fK(xi), f(xi)) +
�

2
kfKk

2
HK

)
, (4)

where HK as the RKHS defined by kernel K, k · kHK : HK 7! R is the RKHS norm, and � is
a regularization parameter that controls the faithfulness and complexity of the function f̂K . The
loss function L can be chosen as the objective function used to train the target function f to closely
emulate the behavior of target function f and its dependence on the training samples D. By the
representer theorem [21], the regularization term kfKk

2
HK

added here ensures that the solution lies
in the RKHS subspace Hn spanned by kernel evaluations. Indeed, by the representer theorem [21],
the minimizer of Eqn.(4) can be represented as f̂K(·) =

P
n

i=1 ↵iK(xi, ·) for some ↵ 2 Rn, which
allows us to reparameterize Eqn.(4):

↵̂ = argmin
↵2Rn

8
<

:
1

n

nX

i=1

L

0

@
nX

j=1

↵jK(xi,xj), f(xi)

1

A+
�

2
↵
>K↵

9
=

; , (5)

where K 2 Rn⇥n is the kernel gram matrix defined as Kij = K(xi,xj) for i, j 2 [n], and we
use the fact that kfKkHK = h

P
n

i=1 ↵iK(xi, ·),
P

n

i=1 ↵iK(·,xi)i
1
2 =

p

↵>K↵. By solving the
first-order optimality condition, the global importance ↵ must be in the following form:

Proposition 8. (Surrogate derivative) The minimizer of Eqn.(4) can be represented as f̂K =P
n

i=1 ↵̂iK(xi, ·), where

↵̂ 2 {↵
⇤ + v | v 2 null(K)} and ↵

⇤

i
= �

1

n�

@L(f̂K(xi), f(xi))

@f̂K(xi)
, 8i 2 [n]. (6)

We call ↵⇤

i
the surrogate derivative since it is the derivative of the loss function with respect to the

surrogate function prediction.

↵
⇤

i
can be interpreted as the measure of how sensitive f̂K(xi) is to changes in the loss function.

Although the global importance ↵ solved via Eqn.(5) may not be unique as indicated by the above
results, the following proposition ensures that all ↵̂ 2 {↵

⇤ + v | v 2 null(K)} result in the same
surrogate function f̂K =

P
n

i=1 ↵
⇤

i
K(xi, ·).

Proposition 9. For any v 2 null(K), the function fv =
P

n

i=1 viK(xi, ·) specified by the span of
kernel evaluations with weights v is a zero fucntion, such that fv(x) = 0 for all x 2 Rd.

The proposition posits that adding any v 2 null(K) to ↵
⇤ has no effect on the function f̂K . Therefore,

we use ↵
⇤ to represent the global importance as it captures the sensitivity of the loss function to the

prediction of the surrogate function.
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4.2 Method 2: Approximation Using the Target Function

Given the derivation of global importance weights ↵⇤ in Eqn.(6), we next consider a variant replacing
the surrogate function prediction f̂K(xi) with the target function prediction f(xi):
Definition 10 (Target derivative). The global importance computed with derivatives of the loss
function with respect to the target function prediction is defined as:

↵
⇤

i
= �

@L(f(xi), yi)

@f(xi)
, 8i 2 [n], (7)

where L(·, ·) is the loss function used to train the target function.

A crucial advantage of this variant is that we no longer need solve for an RKHS regression problem.
There are several reasons why this approximation is reasonable. Firstly, the loss function in Eqn.(4)
encourages the surrogate function to produce similar outputs as the target function, so that f̂K(xi)
is approximately equal to f(xi). Secondly, when the target function exhibits low training error,
which is often the case for overparameterized neural networks that are typically in an interpolation
regime, we can assume that f(xi) is close to yi. Consequently, the target derivative can serve as an
approximation of the surrogate derivative in Eqn.(6). As we will show below, the influence function
approach [5] is indeed as the product between the target derivative and the influence function kernel.

4.3 Method 3: Tracking Gradient Descent Trajectories

Here, we propose a more scalable variant we term tracking representers that accumulates changes in
the global importance during kernel gradient descent updates when solving Eqn.(4). Let � : Rd

7! H

be a feature map corresponding to the kernel K, so that K(x,x0) = h�(x),�(x0)i. We can then
cast any function in the RKHS as fK(x) = h✓,�(x)i for some parameter ✓ 2 H. Suppose we
solve the unregularized projection problem in Eqn.(4) via stochastic gradient descent updates on the
parameter ✓: ✓(t) = ✓

(t�1)
�

⌘
(t)

|B(t)|

P
i2B(t) r✓L(f✓(xi), f(xi))�(xi)|✓=✓(t�1) , where we use B

(t)

and ⌘
(t) to denote the minibatch and the learning rate. The corresponding updates to the function

is then given by “kernel gradient descent” updates: f
(t)
K

(x) = f
(t�1)
K

(x) � ↵itK(xi,x), where

↵it =
⌘
(t)

|B(t)|

P
i2B(t)

@L(f(t�1)
K (xi),f(xi))

@f
(t�1)
K (xi)

. The function at step T can then be represented as:

f
(T )
K

(x) =
nX

i=1

↵
(T )
i

K(xi,x) + f
(0)
K

(x) with ↵
(T )
i

= �

X

t:i2B(t)

⌘
(t)

|B(t)|

@L(f (t�1)
K

(xi), f(xi))

@f
(t�1)
K

(xi)
. (8)

Definition 11 (Tracking representers). Given a finite set of steps T , we term the global importance
weights obtained via tracking kernel gradient descent as tracking representers:

↵
⇤

i
= �

X

t2[T ] : i2B(t)

⌘
(t)

|B(t)|

@L(f (t�1)
K

(xi), f(xi))

@f
(t�1)
K

(xi)
. (9)

We note that one can draw from standard correspondences between gradient descent with finite
stopping and ridge regularization (e.g. [50]), to in turn relate the iterates of the kernel gradient
descent updates for any finite stopping at T iterations to regularized RKHS regression solutions for
some penalty �. The above procedure thus provides a potentially scalable approach to compute the
corresponding global importances: in order to calculate the global importance ↵

(T )
i

, we need to
simply monitor the evolution of ↵(t)

i
when the sample xi is utilized at iteration t. In our experiment,

we use the following relaxation for further speed up:

↵
⇤

i
= �

X

t2[T ] : i2B(t)

⌘
(t)

|B(t)|

@L(f (t�1)(xi), yi)

@f (t�1)(xi)
, (10)

where we assume the target model is trained with (stochastic) gradient descent, f (t)(xi) denotes the
target model at tth iteration during training, and B

(t) and ⌘
(t) are the corresponding mini-batch and

learning rate. Similar to the intuition of replacing the surrogate derivative with to target derivative,
we track the target model’s training trajectory directly instead of solving Eqn.(4) with kernel gradient
descent.
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5 Choice of Kernels for Generalized Representers

Previously, we discussed approaches for deriving global importance given user-specified kernels,
which can in general be specified by domain knowledge relating to the model and the application
domain. In this section, we discuss natural choices of kernels for modern non-linear models. Moreover,
we show that existing sample based explanation methods such as representer points [7] and influence
functions [5] could be viewed as making particular choices of kernels when computing general
representers. We also discuss TracIn [6] as a natural extension of our framework to multiple rather
than a single kernel.

5.1 Kernel 1: Penultimate-layer Embeddings

A common method for extracting a random feature map from a neural network is to use the embed-
dings of its penultimate layer [7, 51, 52]. Let �⇥1 : Rd

7! R` denote the mapping from the input to
the second last layer. The target model f can be represented as

f(x) = �⇥1(x)
>
⇥2, (11)

where ⇥2 2 R` is the weight matrix of the last layer. That is, we treat the deep neural network as a
linear machine on top of a learned feature map. The kernel function is then defined as KLL(x, z) =
h�⇥1(x),�⇥1(z)i, 8x, z 2 Rd. This is the case with most deep neural network architectures, where
the feature map �⇥1 is specified via deep compositions of parameterized layers that take the form of
fully connected layers, convolutional layers, or attention layers among others. While the last-layer
weight matrix ⇥2 may not lie in the span of {�✓1(xi)}ni=1, we may solve the its explanatory surrogate
function using Eqn.(4).
Corollary 12. (Representer point selection [7]) The minimizer of Eqn.(4), instantiated with
KLL(x, z) = h�⇥1(x),�⇥1(z)i, 8x, z 2 Rd, can be represented as

f̂K(·) =
nX

i=1

↵iKLL(xi, ·), where ↵i = �
1

n�

@L(f̂K(xi), f(xi))

@f̂K(xi)
, 8i 2 [n]. (12)

The above corollary implies that ⇥̂2 =
P

n

i=1 ↵i�✓1(xi). In other words, the RKHS regularization
in Eqn.(4) can be expressed as kfKk

2
HK

= k⇥2k
2, which is equivalent to L2 regularization. Conse-

quently, the representer point selection method proposed in Yeh et al. [7] can be generalized to our
framework when we use last-layer embeddings as feature maps.

5.2 Kernel 2: Neural Tangent Kernels

Although freezing all layers except for the last layer is a straightforward way to simplify neural
networks to linear machines, last-layer representers may overlook influential behavior that is present
in other layers. For example, Yeh et al. [53] shows that representation in the last layer leads to
inferior results for language models. On the other hand, neural tangent kernels (NTK) [22] have been
demonstrated as a more accurate approximation of neural networks [54–56]. By using NTKs, we use
gradients with respect to model parameters as feature maps and approximate neural networks with
the corresponding kernel machines. This formulation enables us to derive a generalized representer
that captures gradient information of all layers.

For a neural network with scalar output f✓ : Rd
7! R parameterized by a vector of parameters

✓ 2 Rp, the NTK is a kernel K : Rd
⇥ Rd

7! R defined by the feature maps �✓(x) =
@f✓(x)

@✓
:

KNTK,✓(x, z) =

⌧
@f✓(x)

@✓
,
@f✓(z)

@✓

�
. (13)

Connection to TracIn [6]: TracIn measures the change in model parameters from the start to the
end of training. While it is intractable due to the need to store model parameters of all iterations,
Pruthi et al. [6] used checkpoints(CP) as a practical relaxation: given model parameters ✓

(t) and
learning rates ⌘

(t) at all model checkpoints t = 0, · · · , T , the formulation of TracInCP is given
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below3:

�TracInCP(f✓, (xi, yi) ! x) = �

TX

t=0

⌘
(t) @L(f✓(xi), yi)

@✓

>
@f✓(x)

@✓

���
✓=✓(t)

= �

TX

t=0

⌘
(t) @L(f✓(xi), yi)

@f✓(xi)

���
✓=✓(t)

| {z }
global importance

KNTK,✓(t)(xi,x)| {z }
local importance

. (14)

When the learning rate is constant throughout the training process, TracInCP can be viewed as a
generalized representer instantiated with target derivative as global importances and NTK (Eqn.(13))
as the kernel function, but uses different kernels on different checkpoints.

5.3 Kernel 3: Influence Function Kernel

The influence functions [5] can also be represented as a generalized representer with the following
kernel:

KInf,✓(x, z) =

⌧
@f✓(x)

@✓
,
@f✓(z)

@✓

�

H
�1
✓

=
@f✓(x)>

@✓
H

�1
✓

@f✓(z)

@✓
, (15)

where H✓ = 1
n

P
n

i=1
@
2
L(f✓(xi),yi)

@✓2 is the Hessian matrix with respect to target model parameters.
The influence function then can be written as:

�Inf(f✓, (xi, yi) ! x) = �
@L(f✓(xi), yi)

@✓
H

�1
✓

@f✓(x)

@✓
= ��@L(f✓(xi), yi)

@f✓(xi)| {z }
global importance

KInf,✓(xi,x)| {z }
local importance

. (16)

Therefore, the influence function can be seen as a member of generalized representers with target
derivative global importance (Definition 10) and the influence function kernel. Influence func-
tions [57] were designed to measure how would the model’s predictions change if a training input
were perturbed for convex models trained with empirical risk minimization. Consequently, the
inversed Hessian matrix describes the sensitivity of the model parameters in each direction.

6 Experiments

In the experiment, we compare different representers within our proposed framework on both vision
and language classification tasks. We use convolutional neural networks (CNN) since they are widely
recognized deep neural network architectur. We compare perforamnce of different choices of kernels
and different ways to compute global importance. Existing generalized representers, such as influence
functions [5], representer point selections [53], and TracIn [6], are included in our experiment.

6.1 Experimental Setups

Evaluation metrics: We use case deletion diagnostics [53, 57, 58], DEL�(x, k,�), as our primary
evaluation metric. The metric measures the difference between models’ prediction score on x when
we remove top-k negative impact samples given by method � and the prediction scores of the original
models. We expect DEL� to be positive since models’ prediction scores should increase when
we remove negative impact samples. To evaluate deletion metric at different k, we follow Yeh
et al. [53] and report area under the curve (AUC): AUC-DEL� =

P
m

i=1 DEL�(x, ki,�)/m, where
k1 < k2 < · · · < km is a predefined sequence of k.

We choose ki = 0.02in for i = 0, 1, · · · , 5 with n as the size of the training set. The average of each
metric is calculated across 50/200 randomly initialized neural networks for vision/language data. For
every neural network, sample-based explanation methods are computed for 10 randomly selected
testing samples.

3We replace the loss function on the test point L(f(x), y) with the target function prediction f(x) to measure
training point influence on the predictions.
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Datasets and models being explained: For image classification, we follow Pruthi et al. [6] and use
MNIST [59] and CIFAR-10 [60] datasets. For text classification, we follow Yeh et al. [53] and use
Toxicity4 and AGnews 5 datasets, which contain toxicity comments and news of different categories
respectively. Due to computational challenges in computing deletion diagnostics, we subsample the
datasets by transforming them into binary classification problems with each class containing around
6, 000 training samples. The CNNs we use for the four datasets comprise 3 layers. For vision datasets,
the models contain around 95, 000 parameters. For text datasets, the total number of parameters in
the model is 1, 602, 257 with over 90% of the parameters residing in the word embedding layer that
contains 30, 522 trainable word embeddings of dimensions 48. Please refer to the Appendix C for
more details on the implementation of generalized representers and dataset constructions.

Datasets Methods

Experiment I - Comparison of different global importance for generalized representers

Kernels NTK-final Random

Global importance surrogate derivative target derivative tracking Selection

MNIST 1.88 ± 0.25 2.41 ± 0.30 3.52 ± 0.48 �0.50 ± 0.16
CIFAR-10 2.27 ± 0.18 2.81 ± 0.20 3.26 ± 0.19 0.136 ± 0.10

Toxicity � 1.10 ± 0.21 2.08 ± 0.23 0.15 ± 0.19
AGnews � 1.88 ± 0.27 2.56 ± 0.27 0.19 ± 0.26

Experiment II - Comparison of different kernels for generalized representers

Global importance tracking

Kernels last layer-final NTK-init NTK-middle NTK-final Inf-final

MNIST 3.44 ± 0.46 3.18 ± 0.46 3.63 ± 0.49 3.52 ± 0.48 3.66 ± 0.49
CIFAR-10 2.26 ± 0.13 1.35 ± 0.20 2.67 ± 0.19 3.26 ± 0.19 3.46 ± 0.19

Toxicity 1.34 ± 0.22 0.63 ± 0.22 1.90 ± 0.23 2.08 ± 0.23 0.42 ± 0.20†

AGnews 2.14 ± 0.27 1.81 ± 0.27 2.54 ± 0.28 2.56 ± 0.27 0.92 ± 0.26†

Experiment III - Comparison of different generalized representers

Methods
Existing generalized representers Novel generalized representers

TracInCP [6] Influence Representer NTK-final Inf-final
function [5] Point [7] (tracking) (tracking)

MNIST 4.20 ± 0.52 2.56 ± 0.32 2.51 ± 0.30 3.52 ± 0.48 3.66 ± 0.49
CIFAR-10 2.84 ± 0.20 3.02 ± 0.21 1.65 ± 0.19 3.26 ± 0.19 3.46 ± 0.19

Toxicity 1.59 ± 0.23 0.26 ± 0.20 0.37 ± 0.19 2.08 ± 0.23 0.42 ± 0.20†

AGnews 2.18 ± 0.27 0.75 ± 0.26 0.86 ± 0.25 2.56 ± 0.27 0.92 ± 0.26†

Table 1: Case deletion diagnostics, AUC-DEL�, for removing negative impact training samples
on four different datasets. 95% confidence interval of averaged deletion diagnostics on 50⇥ 10 =
500( or 200⇥ 10 = 2000) samples is reported for vision (or language) data. Larger AUC-DEL� is
better. Init, middle, and final denote initial parameters ✓(0), parameters of a middle checkpoint ✓(T/2),
and final parameters ✓(T ) for neural networks trained with T epochs. †We only use the last-layer
parameters to compute influence functions as in [5, 53] since the total number of parameters are too
large for text models.

6.2 Experimental Results

The results are shown in Table 1. We also provide deletion curves we compute AUC-DEL� for in the
Appendix.

I. Comparison of different global importance: In the first experiment, we fix the kernel to be the
NTK computed on final model parameters, and we compare different methods for computing global
importance in Section 4. We do not compute the surrogate derivative on the text datasets since the
total numbers of parameters are too large, making the computation infeasible.

4https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
5http://groups.di.unipi.it/gulli/AG_corpus_of_news_articles.html
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We observe that tracking has the best performance, followed by target derivative and then surrogate
derivative. This could be due to the loss flattening when converged and the loss gradients becoming
less informative. Consequently, accumulating loss gradients during training is the most effective
approach. Moreover, if tracking is not feasible when training trajectories are not accessible, we may
use target derivative instead of surrogate derivative as an alternative to explain neural networks since
they have similar performance.

II. Comparison of different kernels: Next, we fix the global importance to tracking and compare
different kernels in Section 5. We employ the tracking representers to compute global importance
since it showed the best performance in the previous experiment. We can see that the influence
function kernel performs the best in the vision data sets, and the NTK-final kernel has the best
performance in language data sets. Note that influence functions exhibit distinctly contrasting
performances on image and text data, which could be attributed to our reliance solely on last-layer
parameters for influence function computation on language datasets. This finding aligns with the
conclusions of Yeh et al. [53], who suggest that the last layer gradients provide less informative
insights for text classifiers.

In summary, these findings indicate that NTK-final is a dependable kernel selection due to its
consistent high performance across all four datasets, while also offering a computational efficiency
advantage over the influence function kernel. These results also demonstrate that accessing target
model checkpoints for computing kernels is unnecessary since NTK and influence function on the
final model already provide informative feature maps.

III. Comparison of different generalized representers: Finally, we compare the new generalized
representer with other existing generalized representers. We categorize TracInCP, the influence
function, and the representer point as existing generalized representers: TracInCP can be viewed as
an ensemble of generalized representers with target derivatives using the Neural Tangent Kernel. The
influence function can be expressed as the influence function kernel with the target derivative. Lastly,
the representer point can be seen as a form of generalized representer that utilizes the last-layer kernel
and the surrogate derivative.

We find that the Inf-final has comparable performance to TracInCP and they outperform other
approaches. Although TracInCP has the best performance on MNIST, it requires accessing different
checkpoints, which requires a significant amount of memory and time complexity. In contrast, the
NTK and Inf tracking representers are more efficient since they only require tracking gradient descent
trajectories during training without the need for storing checkpoints.

7 Conclusion and Future work

In this work, we present generalized representers that are the only class of sample based explanations
that satisfy a set of desirable axiomatic properties. We explore various techniques for computing
generalized representers in the context of modern non-linear machine learning models and show that
many popular existing methods fall into this category. Additionally, we propose tracking representers
that track sample importance along the gradient descent trajectory. In future work, it would be
of interest to derive different generalized representers by altering different global importance and
choices of kernels, as well as investigating their applicability to diverse machine learning models and
modalities.
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