
Dynamic Tensor Decomposition via Neural
Diffusion-Reaction Processes

Zheng Wang∗
Kahlert School of Computing

University of Utah
Salt Lake City, UT 84112
u1208847@utah.edu

Shikai Fang∗
Kahlert School of Computing

University of Utah
Salt Lake City, UT 84112

shikai.fang@utah.edu

Shibo Li
Kahlert School of Computing

University of Utah
Salt Lake City, UT 84112
shibo@cs.utah.edu

Shandian Zhe†
Kahlert School of Computing

University of Utah
Salt Lake City, UT 84112
zhe@cs.utah.edu

Abstract

Tensor decomposition is an important tool for multiway data analysis. In practice,
the data is often sparse yet associated with rich temporal information. Existing
methods, however, often under-use the time information and ignore the struc-
tural knowledge within the sparsely observed tensor entries. To overcome these
limitations and to better capture the underlying temporal structure, we propose
Dynamic EMbedIngs fOr dynamic Tensor dEcomposition (DEMOTE). We de-
velop a neural diffusion-reaction process to estimate dynamic embeddings for the
entities in each tensor mode. Specifically, based on the observed tensor entries,
we build a multi-partite graph to encode the correlation between the entities. We
construct a graph diffusion process to co-evolve the embedding trajectories of
the correlated entities and use a neural network to construct a reaction process
for each individual entity. In this way, our model can capture both the com-
monalities and personalities during the evolution of the embeddings for different
entities. We then use a neural network to model the entry value as a nonlin-
ear function of the embedding trajectories. For model estimation, we combine
ODE solvers to develop a stochastic mini-batch learning algorithm. We propose
a stratified sampling method to balance the cost of processing each mini-batch
so as to improve the overall efficiency. We show the advantage of our approach
in both simulation study and real-world applications. The code is available at
https://github.com/wzhut/Dynamic-Tensor-Decomposition-
via-Neural-Diffusion-Reaction-Processes.

1 Introduction

Multiway data is common in real-world applications and naturally represented by tensors. For
example, online shopping and promotion activities can be expressed as a three-mode tensor (customer,
commodity, online merchant). Tensor decomposition is an important tool for multiway data analysis.
It estimates embeddings for the entities in each tensor mode, with which to recover the observed

∗Equal contribution
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/wzhut/Dynamic-Tensor-Decomposition-via-Neural-Diffusion-Reaction-Processes
https://github.com/wzhut/Dynamic-Tensor-Decomposition-via-Neural-Diffusion-Reaction-Processes

entry values. The embeddings can reflect the underlying structures within the entities and can be used
as predictive features, such as for recommendation and ads auction.

In practice, tensor data is often very sparse. That is, the observed entries only take a tiny portion
of all possible entries, say, 0.01%. In addition, the data often includes timestamps for the observed
entry values, which imply rich, complex temporal variation patterns. Current tensor decomposition
approaches often ignore the structure knowledge within the sparsely observed entries and under-use
the temporal information, e.g., simply binning the timestamps into crude time steps (Xiong et al.,
2010; Rogers et al., 2013; Zhe et al., 2016a, 2015; Du et al., 2018). More important, standard tensor
decomposition estimates a static embedding for each entity. However, as the representation of entities,
these embeddings summarize the underlying properties of the entities, which can naturally evolve
with time, such as customer interests, user income, product popularity, and fashion. Learning static
embeddings can miss capturing these interesting, important temporal knowledge. While the most
recent work (Wang et al., 2022) has proposed the first decomposition method to estimate embedding
trajectories, it never considers the structural knowledge within the data.

To overcome these limitations, we propose DEMOTE, a dynamic embedding approach for dynamic
tensor decomposition. We construct a nonlinear diffusion-reaction process in an Ordinary Differ-
ential Equation (ODE) framework to estimate embedding trajectories for tensor entities. The ODE
framework is known to be flexible and convenient to handle irregularly sampled timestamps and
sparsely observed data (Rubanova et al., 2019). In addition, since ODE models focus on learning the
dynamics (i.e., time derivatives) of the target function, they have promising potential for providing
robust, accurate long-term predictions (via integration with the dynamics). Specifically, to leverage
the structural knowledge within the data, we first build a multi-partite graph based on the observed
entries. The graph encodes the correlations between entities at different modes in terms of their
interactions. We then construct a graph diffusion process in the ODE to co-evolve the embedding
trajectories of correlated entities. Next, we use a neural network to construct a reaction process to
model the individual-specific evolution for each entity. In this way, our neural diffusion-reaction
process captures both the commonalities and personalities of the entities in learning their dynamic
embeddings. Given the embedding trajectories, we model the entry value as a latent function of the
associated entities’ trajectories. We use another neural network to flexibly estimate the function and
to capture the complex relationships of the entities. For efficient training, we base on ODE solvers to
develop a stochastic mini-batch learning algorithm. We develop a stratified sampling scheme, which
can balance the cost of executing the ODE solvers in each mini-batch so as to improve the efficiency.

We evaluated our method in both simulation and real-world applications. The simulation experiments
show that DEMOTE can successfully capture the underlying dynamics of the entities from their
temporal interactions and recover the hidden clustering structures within the trajectories. Then in
three real-world applications, we tested the accuracy in predicting the tensor entry values at different
time points. DEMOTE consistently outperforms the state-of-the-art decomposition methods that
incorporate temporal information, often by a large margin. We also demonstrated that both the
diffusion and reaction processes contribute to the learning performance. Finally, we investigated the
learned embedding trajectories and found interesting evolution paths and hidden structures.

2 Notations and Background

Suppose we have collected data for a K-mode tensor. Each mode k includes dk entities, which we
index by 1, . . . , dk. We then index each tensor entry by a tuple ` = (l1, . . . , lK) where for each k,
we have 1 ≤ lk ≤ dk. Suppose we observed N tensor entry values and timestamps. The dataset
is denoted by D = {(`1, t1, y1), . . . , (`N , tN , yN)} where {tn} and {yn} are the timestamps and
entry values, respectively. Our goal is for each entity j of mode k, to estimate a dynamic embedding
ukj (t) : R+ → RR. That is, the embedding is a time function (trajectory) with an R-dimensional
output. Standard tensor decomposition introduces a static embedding representation for each entity,
namely, ukj is considered as time invariant. Tensor decomposition aims to estimate the embeddings
(or factors) to reconstruct the tensor. For example, the classical Tucker decomposition (Tucker, 1966)
employs a multilinear factorization model,M =W ×1 U

1 ×2 . . .×K UK , whereM∈ Rd1×...×dk
is the entire tensor,W ∈ RR1×···×RK is the tensor-core parameter, Uk comprises all the embeddings
of the entities in mode k, and ×k is the tensor-matrix product at mode k (Kolda, 2006). The popular
CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970) can be viewed as a simplified
version of Tucker decomposition, where we set R1 = . . . = RK = R and the tensor-coreW to be

2

…

… …

…

… …

𝒖𝒊
𝟏(t)𝒖𝟏

𝟏 (t) 𝒖𝒅𝟏
𝟏 (t)

𝒖𝒋
𝟐(t)𝒖𝟏

𝟐(t) 𝒖𝒅𝟐
𝟐 (t) 𝒖𝒌

𝟑(t)𝒖𝟏
𝟑(t) 𝒖𝒅𝟑

𝟑 (t)

: Embeddings of entities of each mode
: Edges defined by observed entries (𝒊, 𝒋, 𝒌)

: Diffusion process along edges

: Reaction process on individual entities Time trajectory

Mode 1 Mode 2 Mode 3 Time-
stamp

Value

𝒊 𝒋 𝒌 𝒕 𝒚𝒊𝒋𝒌(𝒕)

… … … … …

Table of observed data

Mode 1

Mode 2 Mode 3

Figure 1: The illustration of the embedding model in DEMOTE.

diagonal. Hence, each entry value is factorized asm` = (u1
l1
◦. . .◦uKlK)>λ, where ◦ is the Hadamard

(element-wise) product, and λ corresponds to diag(W). While CP and Tucker decomposition are
popular, their multilinear modeling can be oversimplistic for complex applications. To estimate
nonlinear relationships of the entities, Xu et al. (2012); Zhe et al. (2015, 2016a) used a Gaussian
process (GP) (Rasmussen and Williams, 2006) to model the entry value as a random function of
the embeddings, m` = g(u1

l1
, . . . ,uKlK), where g ∼ GP (0, κ(x`,x`′)), x` = [u1

l1
; . . . ;uKlK] and

x`′ = [u1
l′1

; . . . ;uKl′K
] are the embeddings of the entities in entry ` and `′, respectively, and κ(·, ·)

is the covariance (kernel) function. Given the GP prior, any finite set of N entry values follow a
multi-variate Gaussian distribution, m ∼ N (0,K), where m = [m`1 , . . . ,m`N], K is the N ×N
kernel matrix, and each [K]i,j = κ(x`,x`′). Suppose we have collected continuous observations
for the N entries y = [y1, . . . , yN]. We can use a Gaussian noise model: yn = m`n + εn where
εn ∼ N (0, σ2). The marginal likelihood is p(y) = N (y|0,K + σ2I), which we can maximize to
estimate the embeddings and the model parameters.

Practical data often includes temporal information, i.e., the timestamp when each observed entry
value is generated. To leverage this information, existing methods often bin the timestamps into a
series of steps, say, by weeks or months (Xiong et al., 2010; Rogers et al., 2013; Zhe et al., 2016a;
Song et al., 2017). The tensor is then expanded with an additional time-step mode, and one can
apply any decomposition algorithm to estimate embeddings for both the entities and time steps.
To capture the temporal dependency, a conditional model is often used (Xiong et al., 2010), say,
p(tj+1|tj) = N (tj+1|tj , τI) where tj is the embedding of j-th step. To leverage the continuous
time information, Zhang et al. (2021) recently developed continuous CP decomposition, where the
coefficients λ are modeled as a time function with polynomial splines.

3 Model

Standard tensor decomposition assumes the embeddings are static and time-invariant. However, the
embeddings summarize and extract the properties of entities, which can evolve with time, such as
customer interests, health status, and product popularity. Therefore, only estimating static embeddings
can miss important temporal variations of the entities’ properties, resulting in poor representations
and predictive performance. In addition, practical tensor data are typical sparse, and only a small
portion of entries actually have data. Within these entries can be valuable structural knowledge.
Current methods, however, are rarely aware of such knowledge. To overcome these limitations, we
propose DEMOTE, a novel dynamic embedding approach.

Specifically, we propose an ODE model to learn the embedding trajectories {ukj (t)|1 ≤ k ≤
K, 1 ≤ j ≤ dk}. The ODE framework is known to be amenable for irregularly sampled, sparsely
observed data. More important, ODE models concentrate on learning the time derivative dukj /dt
(i.e., dynamics), rather than the trajectory function itself. Therefore, they have a promising potential
to give reliable, long-term trajectory prediction (via numerical integration) even at time points far
away from the training timestamps, provided the time derivative is well captured. We construct a
joint ODE model for all the embedding trajectories. The ODE consists of a diffusion process and a

3

reaction process. The diffusion process leverages the structural knowledge in data to co-evolve the
embeddings of correlated entities, so as to better overcome the data sparsity. The reaction process
models the entity-specific evolution so that it can capture the individual differences in the embedding
evolution. The ODE model synergizes the two processes to capture both the commonalities and
personalities of these embedding trajectories.

Diffusion Process on Multi-Partite Graphs. First, we construct a graph-based diffusion process
to exploit the entity correlations reflected in data. Intuitively, if an observed entry involves entity
A (e.g., customer A) and B (e.g., commodity B), the two entities are likely correlated. Thus, we
can draw an edge between A and B to express the correlation. We then generalize this intuition to
create a K-partite undirected graph G(E, V), to encode such correlations across all the entities in the
K tensor modes. Each vertex represents a particular entity, and the entire collection of the entities
is partitioned into K groups, V = V 1 ∪ . . . ∪ V K , where group V k = {vk1 , . . . , vkdk} represents
the entities of mode k. Two entities (at different modes) are connected if they were observed to
interact, namely, (vkj , v

k′

j′) ∈ E if ∃`n ∈ D such that `n = (. . . , j, . . . , j′, . . .) where j and j′ are
indices at mode k and k′, respectively. See Fig. 1 for an illustration. This graph naturally implies
underlying information diffusion across the entities within their interactions. For example, if customer
A connects to products B and C, it might mean that A distributes their interests/willingness/budgets
to purchase B and C. The edges between one merchant A and a list of products {B, C, . . . } might
indicate the diffusion of willingness to increase the inventory of these products.

To flexibly estimate the diffusion rate, we introduce a weight wk,k
′

j,j′ for each edge (vkj , v
k′

j′) ∈ E. We
then arrange these weights into K(K − 1) adjacent matrices,W = {Wk,k′ |1 ≤ k, k′ ≤ K, k 6= k′}

where Wk,k′ =
(
Wk′,k

)>
. Each Wk,k′ is a sparse dk × dk′ matrix that represents the edges and

edge weights between V k and V k
′
, i.e., [Wk,k′]j,j′ = wk,k

′

j,j′ if (vkj , v
k′

j′) ∈ E and 0 otherwise. We
now construct a diffusion process based on the K-partite graph. We view the embedding trajectory as
a kind of concentration. For each entity j at mode k, the change rate of its concentration (embedding)
ukj (t) is determined by the difference from the concentrations of its neighbors. Since the neighbors
come from entities of all the other K − 1 modes, we have

dukj
dt

=
∑

s∈{1,...,K}\k

ds∑
j′=1

[Wk,s]j,j′
(
usj′(t)− ukj (t)

)
=

∑
s∈{1,...,K}\k

(
wk,s
j Us(t)

)>
− ak,sj ukj ,

where wk,s
j is the j-th row of Wk,s, Us(t) = [us1(t), . . . ,usds(t)]> is the embeddings of all the

entities at mode s, of size ds×R, and ak,sj =
∑ds
j′=1[Wk,s]j,j′ is the degree of vertex j in Wk,s. We

can see that the evolution of the embeddings for different modes are coupled. Hence, it is natural to
formulate the diffusion process jointly for all the embeddings, dU(t)

∂t = d
(
U1(t), . . . ,UK(t)

)
/dt =

WU(t)−AU(t) = (W −A)U(t) where

W =

0 W1,2 . . . W1,K

W2,1 0 . . .
...

...
. . . WK−1,K

WK,1 · · · WK,K−1 0

 ,

A = diag
(∑

s∈{1...K}\1 A
1,s, . . . ,

∑
s∈{1...K}\K AK,s

)
, and each Ak,s = diag(ak,s1 , . . . , ak,sdk) is

the degree matrix of Wk,s.

Reaction Process of Individual Entities. Next, to capture the individual difference of each entity in
evolving their embeddings, we model a local reaction process for each entity, fθk(ukj (t), t), where f(·)
is a neural network (NN), and θk are the NN (reaction) parameters for mode-k entities. The metaphor
from the chemical physics is as follows. While substances are being diffused across different sites, at
each site a chemical reaction process happens concurrently, which varies the concentration locally.
We extend the model as a joint diffusion-reaction process,

∂U(t)

∂t
= (W −A)U(t) + F(U , t), U(0) = U0, (1)

4

where F(U , t) = [fθ1(u1
1, t), . . . , fθ1(u1

d1
, t), . . . , fθK (uK1 , t), . . . , fθK (uKdK , t)]

>.

Entry Value Generation. Given the embedding trajectories, to obtain the tensor entry value m` at
arbitrary time t, we model m`(t) as a function of the relevant embeddings at time t,

m`(t) = g
(
u1
l1(t), . . . ,uKlK (t)

)
. (2)

While one can follow (Xu et al., 2012; Zhe et al., 2016b) to assign a GP prior over g(·), the GP
model needs to compute a giant kernel matrix over all the observed entry values (see Sec. 2). It
is computationally too expensive or infeasible when the number of observations is large. Hence
one has to seek for complex low-rank approximations. To avoid this problem, we model g with
another neural network, which is not only as flexible as GP, but is more scalable and convenient for
computation. Since now, the input to g(·) consists of the trajectory values, which vary with time,
our NN model for g can flexibly capture the complex temporal relationship between the entities.
We finally sample the observed entry values with a Gaussian noise model, p(y|m) = N (y|m, σ2I)
where y = [y1, . . . , yN]> and m = [m`1(t1), . . . ,m`N (tN)]>. We focus on real-valued data in this
paper. However, it is straightforward to extend our approach to other types of data.

4 Model Estimation

Given data D = {(`1, t1, y1), . . . , (`N , tN , yN)}, the joint probability of our model is

p(β, {θk},y) = p(β) ·
∏K

k=1
p(θk) ·

∏N

n=1
N
(
yn|g

(
u1
ln1

(tn), . . . ,uKlnK
(tn)

)
, σ2I

)
, (3)

where β is the NN parameters for g, each θk is the NN reaction parameters for mode-k entities, p(β)
and p(θk) are element-wise standard Gaussian, and y = (y1, . . . , yN)>. To obtain the trajectory
values in the Gaussian likelihood of each yn, we need to solve the ODE in (1) to time tn,

U(tn) = ODESolve(U0, 0, tn,Θ) (4)

where Θ = {W,θ1, . . . ,θK} consists of the ODE parameters. Our goal is to estimate Θ, the initial
state U0, the NN parameters β, and the noise variance σ2.

Stratified Mini-Batch Sampling. We use stochastic mini-batch optimization to maximize the log
joint probability so as to estimate all the required parameters,

L = log p(β, {θk},y) = log(Prior)−
∑N

n=1
logN

(
yn|g (xn) , σ2I

)
where log(Prior) = log p(β) +

∑K
k=1 log p(θk), and xn =

(
u1
ln1

(tn), . . . ,uKlnK
(tn)

)
. Each time,

we sample a mini-batch of observations B, and obtain an unbiased stochastic estimate of the log
probability, L̂ = log(Prior)− N

B

∑
n∈B

[
logN (yn|g(xn), σ2)

]
. We compute ∇L̂ as the stochastic

gradient to update all the parameters.

For each data point n in the mini-batch, we need to run ODE solving (4) to obtain xn =(
u1
ln1

(tn), . . . ,uKlnK
(tn)

)
. To back-propagate the gradient so as to compute the gradient w.r.t

the ODE parameters Θ and initial state U0, we can either construct a computational graph during the
running of the solver (e.g., the Runge-Kutta method (Dormand and Prince, 1980)), or use the adjoint
state method (Pontryagin, 1987; Chen et al., 2018) that solves an adjoint backward ODE to compute
the gradient. In whichever case, we need to sort the time points in the mini-batch and solve the ODE
sequentially for these time points. As a result, the number of unique time points in the mini-batch
greatly influences the speed of processing the mini-batch. The standard mini-batch sampling (based
on the training example indices) can result in an uneven allocation of the computational cost across
the mini-batches — some mini-batch is fast and some including more unique time points is much
slower. To address this issue, we use a simple stratified sampling approach.

• We collect the unique time points in the whole dataset, T = {τ1, τ2, . . .} at the beginning.
• To conduct each stochastic update, we first sample B unique time points C from T , then

for each time point τj ∈ C, we look at all the observed entry values produced at τj , namely
Dτj = {(`n, tn, yn) ∈ D|tn = τj}.

• We randomly sample one example from each Dτj to collect the mini-batch B.

5

In this way, we ensure the cost of running ODE solvers and related gradient computation in each
mini-batch is identical. There are no fluctuations in cost/running time when processing different
min-batches. Empirically, we found that the overall speed of our method is much faster than vanilla
stochastic mini-batch optimization (see Table 2 in Appendix).

5 Related Work
There have been many works on tensor decomposition, such as (Yang and Dunson, 2013; Rai
et al., 2014; Zhe et al., 2015, 2016b,a; Tillinghast et al., 2020; Pan et al., 2020b; Fang et al.,
2021a,b; Tillinghast and Zhe, 2021; Tillinghast et al., 2022; Fang et al., 2022). To integrate temporal
information, most approaches augment the tensor with a time mode (Xiong et al., 2010; Rogers et al.,
2013; Zhe et al., 2016b; Ahn et al., 2021; Zhe et al., 2015; Du et al., 2018), which includes a list
of time steps. To estimate the temporal dependencies, existing methods often employ a dynamic
model over the time steps, such as a conditional Gaussian prior (Xiong et al., 2010), recurrent neural
networks(Wu et al., 2019), and kernel smoothing/regularization (Ahn et al., 2021). To leverage
continuous timestamps, Zhang et al. (2021) modeled the CP coefficients as a time function, and Fang
et al. (2022) modeled the tensor-core as a time function in the Tucker decomposition. The most recent
work (Wang et al., 2022) places a GP prior in the frequency domain, and construct a bi-level GP
model to learn factor or embedding trajectories as a combination of Fourier bases.

Another set of works factorize the interaction events (Schein et al., 2015, 2016; Zhe and Du, 2018;
Pan et al., 2020a; Wang et al., 2020; Pan et al., 2021; Wang et al., 2022), and they cannot predict the
interaction results (e.g., tensor entry values like purchase amount and product ratings). These works
mainly leverage Poisson processes, Hawkes processes, or more general point processes to estimate
the event rate. Like the standard tensor factorization, these methods also estimate static embeddings
for the event participants.

Our model can be viewed as an extension of the neural ODE model (Chen et al., 2018). If we
only employ the reaction process for each entity, our model is a latent neural ODE (we have an
additional NN that combines the latent trajectories to predict the tensor entry values). However, we
further leverage the structural knowledge in data to construct a multi-partite graph so as to encode
the correlations of the entities. Based on the multi-partite graph, we construct a diffusion process
to co-evolve the embeddings of the entities. In doing so, we can better overcome the data sparsity
issue. The most recent work (Li et al., 2022) uses a neural ODE to model the tensor entry value
as a function of the involved embeddings and time. It differs from our method in that (1) it still
learns a static (time-invariant) embedding for each entity, and (2) its modeling does not use the
structure knowledge within the tensor data like our method. Many other works have developed graph
diffusion processes based on graph data. For example, Chamberlain et al. (2021) proposed a graph
neural network (GNN) by using multi-head attention to construct the adjacent matrix for a graph
diffusion equation over the graph nodes. Atwood and Towsley (2016) introduced a diffusion operator
to develop diffusion-convolutional neural networks. Huang et al. (2021) developed a GNN-based
ODE to model both the nodes and edges in dynamic graphs.

6 Experiment

6.1 Simulation Study

We first examined DEMOTE on a synthetic task. Specifically, we considered a two-mode tensor,
where each mode includes 20 entities. Each entity has one underlying embedding trajectory. In
the first mode, the trajectory of each entity is an exponential function, u1j (t) = c1j exp(0.5c1j t)

(1 ≤ j ≤ 20), while in the second mode is a linear function, u2j (t) = c2j + 2πc2j t. We generated two
clusters of trajectories for each mode, where those of the first ten entities form the first cluster and
the remaining the second cluster. To this end, for mode 1, we sampled the coefficients of the first
ten entities’ trajectories, namely, [c11, . . . , c

1
10]>, from N

(
[−5, . . . ,−5]>, 0.1I

)
, and the remaining

ten coefficients [c111, . . . , c
1
20]> from N

(
[0.5, . . . , 0.5]>, 0.1I

)
. Then for mode 2, we sampled each

coefficient c2j conditioned on its counter-part for mode 1, c2j |c1j ∼ N (c2j |c1j , 0.1). That means, the
coefficients of cluster-1 trajectories across the two modes are close, and so are those of cluster-2
trajectories. The value for a particular entry ` = (l1, l2) is generated by

m`(t) =
(
u1l1(t)

)1(l1+l2 mod 2=0) ·
(
u2l2(t)

)1(l1+l2 mod 2=1)
(5)

6

(a) Ground-truth: Mode 1 (b) NONFAT: Mode 1 (c) DEMOTE: Mode 1

(d) Ground-truth: Mode 2 (e) NONFAT: Mode 2 (f) DEMOTE: Mode 2

Figure 2: The estimated embedding trajectories for each mode. The color indicates the ground-truth cluster
membership.

where 1(·) is the indicator function. When l1 + l2 is even, the entry value is the trajectory value of
the first entity; otherwise, it is the trajectory value of the second entity. To generate the training data,
we randomly sampled entries from {(l1, l2)|1 ≤ l1, l2 ≤ 10} ∪ {(l1, l2)|11 ≤ l1, l2 ≤ 20} (namely,
interactions between cluster-1 entities of the two modes, and between cluster-2 entities). We then
sampled t ∼ Unifrom[0, 5], to obtain the corresponding entry values. We randomly generated 6,400
entry values and the timestamps for training, and another 1,600 data points for testing.

We implemented our method with Pytorch (Paszke et al., 2019). We used torchdiffeq library
(https://github.com/rtqichen/torchdiffeq) to solve ODEs and to compute the
gradient w.r.t ODE parameters and initial states via automatic differentiation. For the NN of the
reaction process, we used one hidden layer, with 10 neurons and tanh activation, and for the NN to
predict the interaction result, we used two hidden layers, 50 neurons per layer and tanh activation.

We compared with NONFAT (NONparametric Factor Trajectory learning) (Wang et al., 2022), a
bi-level latent GP model that uses Fourier bases to estimate factor trajectories for dynamic tensor
decomposition. To our knowledge, this work is the only method (and also the most recent) that
estimates trajectories. We used the original implementation (https://github.com/wzhut
/NONFAT) and the default settings. We set the mini-batch size to 50, and used ADAM (Kingma
and Ba, 2014) algorithm for stochastic optimization. The learning rate was automatically adjusted
in [10−4, 10−1] by the ReduceLROnPlateau scheduler (Al-Kababji et al., 2022). The maximum
number of epochs is 2K, which is enough for convergence. The estimated trajectories are shown in
Fig. 2a-f. As we can see, our estimation (Fig. 2c and 2f) well matches the ground-truth and accurately
recovers the cluster structure of the trajectories. The root-mean-square error (RMSE) on the test set
is 0.032. By contrast, although the test error of NONFAT is close to DEMOTE (0.034), its learned
trajectories (Fig. 2b and 2e) are far from the ground-truth, and fail to reflect the cluster structure.
These have shown the advantage of DEMOTE in capturing complex relationships within data to
recover the underlying trajectories and their structure.

6.2 Prediction Accuracy

Datasets. We next evaluated the predictive performance of DEMOTE in three real-world applications.
(1) CA Weather (Moosavi et al., 2019) (https://smoosavi.org/datasets/lstw), weather
conditions in California from August 2016 to December 2020. We extracted a four-mode tensor for 7
different weather types, 6 severity levels, 30 latitudes and 30 longitudes in GPS coordinates. The entry
value is the count of the particular weather condition. We collected 15K observed tensor entry values
and the timestamps. (2) CA Traffic (Moosavi et al., 2019) (https://smoosavi.org/dataset
s/lstw), traffic accidents in California from January 2018 to December 2020. We extracted a four

7

https://github.com/rtqichen/torchdiffeq
https://github.com/wzhut/NONFAT
https://github.com/wzhut/NONFAT
https://smoosavi.org/datasets/lstw
https://smoosavi.org/datasets/lstw
https://smoosavi.org/datasets/lstw

2 3 5 7
R

0.6

0.65

0.7
nR

M
SE

Reaction Diffusion DEMOTE

(a) CA Weather

2 3 5 7
R

0.3

0.4

0.5

nR
M
SE

(b) CA Traffic

2 3 5 7
R

0.04

0.06

0.08

nR
M
SE

(c) Server Room

Figure 3: Predictive performance of the diffusion and reaction processes.

mode tensor (traffic type, severity level, latitudes, longitude). There are 7 traffic types, 6 severity levels,
20 latitudes and 20 longitudes. We collected 30K entry values (accident counts) at different time
points. (3) Server Room (https://zenodo.org/record/3610078#.XlNpAigzaM8),
temporal temperature records of Poznan Supercomputing and Networking Center. The temperatures
were measured at 34 locations, under different air-condition modes (24◦, 27◦, and 30◦) and power
usage settings (50%, 75% and 100%). Hence, we extracted a three-mode tensor (location, air-
condition mode, power level). In total, 10K observed entry values and their timestamps were
collected.

Competing Methods. The following popular and/or state-of-the-art temporal decomposition ap-
proaches were compared. (1) CP-DTLD, discrete-time CP decomposition with linear dynamics,
where a conditional prior is placed over successive time steps, p(tj+1|tj) = N (tj+1|Atj + b, vI);
A, b and v were jointly estimated during the CP decomposition. Note that (Xiong et al., 2010) is
an instance of this model where A = I and b = 0. (2) GP-DTLD and (3) NN-DTLD, similar to
CP-DTLD, except using GP (Zhe et al., 2016b) and NN decomposition models (similar to (Liu et al.,
2019)), respectively. (4) CP-DTND, (5) GP-DTND and (6) NN-DTND — CP, GP and NN decompo-
sition with nonlinear dynamics, where the conditional prior is p(tj+1|tj) = N (tj+1|σ(Atj)+b, vI)
where σ(·) is a nonlinear activation. The dynamics can therefore be viewed as an RNN transition. (7)
CP-CT (Zhang et al., 2021), continuous-time CP factorization, which models the CP coefficients as a
time-varying function, with polynomial splines. (8) GP-CT, continuous-time GP decomposition that
extends (Xu et al., 2012; Zhe et al., 2016b) by plugging the time in the GP kernel so as to estimate
the entry value as a function of the embeddings and time, m` = g(u1

`1
, . . . ,uK`K , t). (9) NN-CT,

continuous-time NN decomposition, where the input consists of both the embeddings and time t.
(10) THIS-ODE (Li et al., 2022), a continuous-time decomposition, where a neural ODE is used to
estimate the tensor entry values given the static embeddings and time. (11) NONFAT (Wang et al.,
2022), a bi-level latent GP model that uses Fourier bases to estimate factor trajectories for dynamic
tensor decomposition.

Settings and Results. All the approaches were implemented with PyTorch. The Square Exponential
kernel was used for all the GP-related methods, including GP-{DTLD, DTND, CT}. We used the
same variational sparse approximation (Hensman et al., 2013) to fulfill scalable posterior inference.
Following (Zhe et al., 2016b), the number of inducing point was set to 100. For the NN decomposition
methods, we employed a three-layer network with tanh activation, and for THIS-ODE, we used
a one-layer network. The layer width was chosen from {10, 25, 50, 75, 100}. We used tanh as
the activation function in the nonlinear dynamic baselines, including {CP, GP, NN}-DTND. For our
method, we used the same NN architecture for both the reaction process and entry value prediction,
which includes two hidden layers with 50 neurons per layer. For CP-CT, we employed 100 knots to
fulfill the polynomial splines. For each discrete-time method, the number of time steps was chosen
from {25, 50, 75, 100} via the cross-validation on the training set. We trained all the models with
stochastic mini-batch optimization. We used the ADAM algorithm, and the mini-batch size was
set to 100. We ran every method with 10K epochs to ensure convergence. The learning rate was
automatically adjusted in [10−4, 10−1] by the ReduceLROnPlateau scheduler. We varied the
dimension of the embeddings R from {2, 3, 5, 7}. For DEMOTE, R is the number of embedding
trajectories; we used computational graphs to obtain the gradient. We followed (Kang et al., 2012;
Zhe et al., 2016b) to randomly draw 80% observed entries and their time stamps for training, with
the remaining for test. We computed the normalized root-mean-square error (nRMSE). We repeated
the evaluation five times and computed the average nRMSE and standard deviation.

8

https://zenodo.org/record/3610078#.XlNpAigzaM8

CA Weather R = 2 R = 3 R = 5 R = 7
CP-DTLD 0.7440± 0.0035 0.7372± 0.0040 0.7290± 0.0042 0.7270± 0.0044
GP-DTLD 0.7417± 0.0031 0.7414± 0.0036 0.7444± 0.0036 0.7449± 0.0039
NN-DTLD 0.7228± 0.0054 0.7116± 0.0033 0.7070± 0.0041 0.7065± 0.0038
CP-DTND 0.7448± 0.0031 0.7360± 0.0035 0.7273± 0.0037 0.7280± 0.0044
GP-DTND 0.7399± 0.0034 0.7346± 0.0032 0.7448± 0.0037 0.7467± 0.0031
NN-DTND 0.7113± 0.0045 0.6979± 0.0126 0.6659± 0.0122 0.6543± 0.0155

CP-CT 1.0000± 0.0096 0.9959± 0.0067 1.0010± 0.0017 1.0060± 0.0034
GP-CT 0.7433± 0.0038 0.7354± 0.0027 0.7359± 0.0034 0.7377± 0.0033
NN-CT 0.8697± 0.0014 0.8679± 0.0022 0.8676± 0.0018 0.8695± 0.0016

NONFAT 0.7444± 0.0042 0.7460± 0.0032 0.7645± 0.0061 0.7553± 0.0029
THIS-ODE 0.7511± 0.0052 0.7539± 0.0041 0.7614± 0.0024 0.7620± 0.0032
DEMOTE 0.6327± 0.0119 0.6109± 0.0056 0.6172± 0.0075 0.6354± 0.0085

CA Traffic
CP-DTLD 0.6498± 0.0257 0.6424± 0.0266 0.6436± 0.0268 0.6405± 0.0262
GP-DTLD 0.6309± 0.0167 0.6290± 0.0185 0.6383± 0.0204 0.6496± 0.0193
NN-DTLD 0.6528± 0.0230 0.6545± 0.0244 0.6401± 0.0282 0.6136± 0.0338
CP-DTND 0.6497± 0.0245 0.6456± 0.0265 0.6431± 0.0263 0.6419± 0.0259
GP-DTND 0.6544± 0.0213 0.6559± 0.0224 0.6604± 0.0243 0.6674± 0.0214
NN-DTND 0.6578± 0.0248 0.6528± 0.0256 0.6519± 0.0249 0.6482± 0.0261

CP-CT 0.9858± 0.0120 0.9972± 0.0056 0.9816± 0.0136 0.9991± 0.0120
GP-CT 0.6610± 0.0207 0.6668± 0.0191 0.6756± 0.0190 0.6768± 0.0196
NN-CT 0.9804± 0.0017 0.9815± 0.0015 0.9791± 0.0012 0.9802± 0.0017

NONFAT 0.4461± 0.0247 0.4610± 0.0231 0.5031± 0.0155 0.6307± 0.0847
THIS-ODE 0.6603± 0.0230 0.6536± 0.0212 0.6838± 0.0193 0.6378± 0.0142
DEMOTE 0.3601± 0.0334 0.2972± 0.0099 0.3174± 0.0118 0.3269± 0.0162

Server Room
CP-DTLD 0.4211± 0.0029 0.4209± 0.0031 0.4208± 0.0028 0.4208± 0.0028
GP-DTLD 0.0914± 0.0020 0.0791± 0.0010 0.0739± 0.0014 0.0753± 0.0013
NN-DTLD 0.4213± 0.0032 0.4213± 0.0032 0.4212± 0.0034 0.4205± 0.0030
CP-DTND 0.2835± 0.0160 0.1751± 0.0020 0.1174± 0.0011 0.0829± 0.0044
GP-DTND 0.0925± 0.0013 0.0784± 0.0011 0.0739± 0.0009 0.0774± 0.0009
NN-DTND 0.4213± 0.0032 0.4212± 0.0030 0.4211± 0.0032 0.4205± 0.0030

CP-CT 0.9919± 0.0096 0.9951± 0.0050 0.9862± 0.0109 1.0121± 0.0070
GP-CT 0.1385± 0.0020 0.1223± 0.0016 0.1275± 0.0014 0.1365± 0.0014
NN-CT 0.1193± 0.0030 0.1140± 0.0015 0.1113± 0.0027 0.1149± 0.0028

NONFAT 0.1468± 0.0026 0.1407± 0.0023 0.1396± 0.0022 0.1409± 0.0030
THIS-ODE 0.1412± 0.0024 0.1312± 0.0013 0.1304± 0.0016 0.1350± 0.0019
DEMOTE 0.0536± 0.0031 0.0403± 0.0014 0.0393± 0.0018 0.0403± 0.0027

Table 1: Normalized Root Mean-Square Error (nRMSE). The results were averaged from five runs.

As shown in Table 1, DEMOTE consistently achieves the best prediction accuracy and in many cases
outperforms the competing methods by a large margin. Although learning an embedding trajectory
is much more challenging than learning a fixed-value embedding, the experimental results have
demonstrated the advantage of our method in predictive performance. To investigate the effect of
the two processes in our model, we also examined our method with the diffusion process only and
with the reaction process only on all the datasets. Their performance, as compared with DEMOTE, is
shown in Fig. 3. We can see that each individual component can lead to good prediction accuracy.
However, each component is worse than DEMOTE that synergizes the two components together.
Therefore, the results show that each process is effective, and more important, the two processes can
bolster each other to further improve the performance when they are combined.

6.3 Learning Result Investigation

Next, we looked into the learned embedding trajectories and checked if they exhibit patterns. To do so,
we set R = 3 and ran DEMOTE on Server Room dataset. In Fig. 4, we show the learned embedding
trajectories for the first location (a-c), the first air condition mode (d-f) and the first power usage level
(g-i). As we can see, even for the same object, e.g., a particular location, the corresponding embedding
trajectories vary quite differently, implying the evolution of different underlying properties, such as
the workload, memory usage, and network latency. We further found there are underlying structures
within the embeddings during their evolution. We listed the results in Appendix (Sec. A).

9

Time
-2

-1

0

1

2

3

(a) u1
1,1(t)

Time
-2

-1.5

-1

-0.5

0

0.5

(b) u1
1,2(t)

Time

-6

-4

-2

0

2

(c) u1
1,3(t)

Time
-4

-2

0

2

4

6

(d) u2
1,1(t)

Time
1

2

3

4

5

6

(e) u2
1,2(t)

Time
-10

-8

-6

-4

-2

0

(f) u2
1,3(t)

Time
0

0.5

1

1.5

2

2.5

(g) u3
1,1(t)

Time
-10

-8

-6

-4

-2

0

(h) u3
1,2(t)

Time
1

1.2

1.4

1.6

1.8

(i) u3
1,3(t)

Figure 4: The learned embedding trajectories for location 1 (a-c), air conditional mode 1 (d-f), and power usage
level 1 (g-i) in Server Room dataset.

We showcase the temporal predictions for two tensor entries. As we can see from Fig. 5, given
only a few training points (blue), our method can predict the test points (green) much more ac-
curately, as compared with GPCT, and the predictive uncertainty (reflected by the noise variance
σ2) is much smaller. This might be due to that via the diffusion-reaction process, and our method
can more effectively extract the temporal knowledge from sparse data. For example, DEMOTE
successfully captured the periodic nature in the first entry (Fig. 5b) while GPCT treated the fluc-
tuation as noises and ended up with much inaccurate predictions and larger predictive variances.

Time
-4

-3

-2

-1

0 DEMOTE
GP-CT
Training Data
Testing Data

(a) (2, 1, 1)
Time

-2

-1

0

1

(b) (3, 1, 1)

Figure 5: Entry value prediction on Server Room.

Computational Efficiency. We compared the per-
epoch/iteration running time DEMOTE with the
other methods. We tested all the methods in a
workstation with one NVIDIA GeForce RTX 3090
Graphics Card, 10th Generation Intel Core i9-
10850K Processor, 32 GB RAM, and 1 TB SSD.
The results are shown in Table 2 in Appendix. We
can see that the running speed of DEMOTE is com-
parable to NONFAT and other NN decomposition
methods. We also compared with running DE-
MOTE with naive sampling (DEMOTE-NS). The
stratified sampling led to 4x to 22x speed-up.

7 Conclusion

We have presented DEMOTE, a neural diffusion-reaction process model to learn dynamic embeddings
for dynamic tensor decomposition. The predictive performance is encouraging, and the learned
embedding trajectories exhibit interesting patterns. Currently, our method is limited to a small
number of entities since it has to integrate the entire multi-partite graph to construct the diffusion
process. In the future work, we plan to develop graph cut algorithms to partition the graph into a set
of small sub-graphs so that we can construct multiple diffusion processes in parallel so as to scale up
our model to big graphs and to large tensors.

Acknowledgments

This work has been supported by NSF CAREER Award IIS-2046295.

10

References

Ahn, D., Jang, J.-G., and Kang, U. (2021). Time-aware tensor decomposition for sparse tensors.
Machine Learning, pages 1–22.

Al-Kababji, A., Bensaali, F., and Dakua, S. P. (2022). Scheduling techniques for liver segmentation:
Reducelronplateau vs onecyclelr. arXiv preprint arXiv:2202.06373.

Atwood, J. and Towsley, D. (2016). Diffusion-convolutional neural networks. Advances in neural
information processing systems, 29.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein, M., Webb, S., and Rossi, E. (2021).
Grand: Graph neural diffusion. In International Conference on Machine Learning, pages 1407–
1418. PMLR.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential
equations. Advances in neural information processing systems, 31.

Dormand, J. R. and Prince, P. J. (1980). A family of embedded runge-kutta formulae. Journal of
computational and applied mathematics, 6(1):19–26.

Du, Y., Zheng, Y., Lee, K.-c., and Zhe, S. (2018). Probabilistic streaming tensor decomposition. In
2018 IEEE International Conference on Data Mining (ICDM), pages 99–108. IEEE.

Fang, S., Kirby, R. M., and Zhe, S. (2021a). Bayesian streaming sparse Tucker decomposition. In
Uncertainty in Artificial Intelligence, pages 558–567. PMLR.

Fang, S., Narayan, A., Kirby, R., and Zhe, S. (2022). Bayesian continuous-time Tucker decomposition.
In International Conference on Machine Learning, pages 6235–6245. PMLR.

Fang, S., Wang, Z., Pan, Z., Liu, J., and Zhe, S. (2021b). Streaming Bayesian deep tensor factorization.
In International Conference on Machine Learning, pages 3133–3142. PMLR.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Model and conditions for
an”explanatory”multi-mode factor analysis. UCLA Working Papers in Phonetics, 16:1–84.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Proceedings
of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pages 282–290. AUAI
Press.

Huang, Z., Sun, Y., and Wang, W. (2021). Coupled graph ode for learning interacting system
dynamics. In 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
2021, pages 705–715.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C. (2012). Gigatensor: scaling tensor
analysis up by 100 times-algorithms and discoveries. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 316–324. ACM.

Ketchen, D. J. and Shook, C. L. (1996). The application of cluster analysis in strategic management
research: an analysis and critique. Strategic management journal, 17(6):441–458.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions, volume 2. United States.
Department of Energy.

Li, S., Kirby, R., and Zhe, S. (2022). Decomposing temporal high-order interactions via latent odes.
In International Conference on Machine Learning, pages 12797–12812. PMLR.

Liu, H., Li, Y., Tsang, M., and Liu, Y. (2019). CoSTCo: A Neural Tensor Completion Model for
Sparse Tensors, page 324–334. Association for Computing Machinery, New York, NY, USA.

11

Moosavi, S., Samavatian, M. H., Nandi, A., Parthasarathy, S., and Ramnath, R. (2019). Short
and long-term pattern discovery over large-scale geo-spatiotemporal data. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages
2905–2913.

Pan, Z., Wang, Z., Phillips, J. M., and Zhe, S. (2021). Self-adaptable point processes with nonpara-
metric time decays. Advances in Neural Information Processing Systems, 34:4594–4606.

Pan, Z., Wang, Z., and Zhe, S. (2020a). Scalable nonparametric factorization for high-order interaction
events. In International Conference on Artificial Intelligence and Statistics, pages 4325–4335.
PMLR.

Pan, Z., Wang, Z., and Zhe, S. (2020b). Streaming nonlinear Bayesian tensor decomposition. In
Conference on Uncertainty in Artificial Intelligence, pages 490–499. PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32:8026–8037.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and Carin, L. (2014). Scalable Bayesian low-
rank decomposition of incomplete multiway tensors. In Proceedings of the 31th International
Conference on Machine Learning (ICML).

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT
Press.

Rogers, M., Li, L., and Russell, S. J. (2013). Multilinear dynamical systems for tensor time series.
Advances in Neural Information Processing Systems, 26:2634–2642.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. (2019). Latent ordinary differential equations for
irregularly-sampled time series. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,
Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Schein, A., Paisley, J., Blei, D. M., and Wallach, H. (2015). Bayesian poisson tensor factorization for
inferring multilateral relations from sparse dyadic event counts. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1045–1054.
ACM.

Schein, A., Zhou, M., Blei, D. M., and Wallach, H. (2016). Bayesian poisson tucker decomposition
for learning the structure of international relations. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML’16, pages
2810–2819. JMLR.org.

Song, Q., Huang, X., Ge, H., Caverlee, J., and Hu, X. (2017). Multi-aspect streaming tensor
completion. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 435–443.

Tillinghast, C., Fang, S., Zhang, K., and Zhe, S. (2020). Probabilistic neural-kernel tensor de-
composition. In 2020 IEEE International Conference on Data Mining (ICDM), pages 531–540.
IEEE.

Tillinghast, C., Wang, Z., and Zhe, S. (2022). Nonparametric sparse tensor factorization with
hierarchical Gamma processes. In International Conference on Machine Learning, pages 21432–
21448. PMLR.

Tillinghast, C. and Zhe, S. (2021). Nonparametric decomposition of sparse tensors. In International
Conference on Machine Learning, pages 10301–10311. PMLR.

Tucker, L. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–
311.

12

Wang, Z., Chu, X., and Zhe, S. (2020). Self-modulating nonparametric event-tensor factorization. In
International Conference on Machine Learning, pages 9857–9867. PMLR.

Wang, Z., Xu, Y., Tillinghast, C., Li, S., Narayan, A., and Zhe, S. (2022). Nonparametric embeddings
of sparse high-order interaction events. In International Conference on Machine Learning, pages
23237–23253. PMLR.

Wu, X., Shi, B., Dong, Y., Huang, C., and Chawla, N. V. (2019). Neural tensor factorization for
temporal interaction learning. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining, pages 537–545.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G. (2010). Temporal collabora-
tive filtering with bayesian probabilistic tensor factorization. In Proceedings of the 2010 SIAM
International Conference on Data Mining, pages 211–222. SIAM.

Xu, Z., Yan, F., and Qi, Y. A. (2012). Infinite tucker decomposition: Nonparametric bayesian models
for multiway data analysis. In ICML.

Yang, Y. and Dunson, D. (2013). Bayesian conditional tensor factorizations for high-dimensional
classification. Journal of the Royal Statistical Society B, revision submitted.

Zhang, Y., Bi, X., Tang, N., and Qu, A. (2021). Dynamic tensor recommender systems. Journal of
Machine Learning Research, 22(65):1–35.

Zhe, S. and Du, Y. (2018). Stochastic nonparametric event-tensor decomposition. In Advances in
Neural Information Processing Systems, pages 6856–6866.

Zhe, S., Qi, Y., Park, Y., Xu, Z., Molloy, I., and Chari, S. (2016a). Dintucker: Scaling up Gaussian
process models on large multidimensional arrays. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015). Scalable nonparametric multiway data analysis.
In Artificial Intelligence and Statistics, pages 1125–1134. PMLR.

Zhe, S., Zhang, K., Wang, P., Lee, K.-c., Xu, Z., Qi, Y., and Ghahramani, Z. (2016b). Distributed
flexible nonlinear tensor factorization. Advances in neural information processing systems, 29.

13

Appendix

A Investigation of Embedding Dynamics

We investigated if there are underlying structures within the embeddings during their evolution. To
this end, we looked into the embeddings of the 34 locations on Server Room dataset at five time
points (t = 1, 20, 50, 80, 100). At each time point, we ran the k-means algorithm over the embeddings
to extract the clustering structures. We used the elbow method (Ketchen and Shook, 1996) to select
the number of clusters. We can see that at earlier time (t ≤ 50), the clusters are more compact,
while at the later stages, the clusters become more scattered. This reflects how the structure of those
entities (i.e., locations) evolves along with time. It is interesting to see that some locations are in the
same cluster all the time, like location {5,7} and location {16, 32}. It implies that their underlying
properties might have quite similar (or correlated) evolution patterns. Some locations are grouped in
the cluster at the beginning, e.g., location {32, 34} (at t = 1), but later moves to different clusters
(t > 1). It implies their evolution patterns can vary significantly, leading to the change of the cluster
memberships.

CA Weather CA Traffic Server Room
CP-DTLD 0.037 0.086 0.023
GP-DTLD 0.246 0.247 0.248
NN-DTLD 2.400 4.730 1.080
CP-DTND 0.038 0.087 0.025
GP-DTND 0.119 0.242 0.080
NN-DTND 2.360 4.701 1.060

CP-CT 0.025 0.052 0.018
GP-CT 0.068 0.216 0.105
NN-CT 2.310 3.885 1.030

NONFAT 0.952 1.925 0.571
THIS-ODE 58.710 136.100 7.190
DEMOTE 1.390 1.895 0.309

DEMOTE-NS 6.12 10.42 7.06

Table 2: Per-epoch/iteration running time (in seconds). DEMOTE-NS means running DEMOTE with naive
sampling of min-batches rather than the stratified sampling.

14

1

2

3 4

5
67

8

9

10

11 12
13

14

15 16

17

18

19

20

21

22

23 24

25

26

27

2829 3031

32

33

34
Cluster 1
Cluster 2
Cluster 3

(a) t = 1

1

2

3
4

5
67

8

9

10

11

12
13 14

15

1617

18

19

20

21

22
23

2425

26
27

28

29

30

31
32

33

34

(b) t = 20

12

3

4

5

67

8

9

10

11

12 1314

15
16

17

18

19

20

21

22 23

24

25
26 27

28

29
30

31

32
33

34

(c) t = 50

12

3

4

5

6
7

8

9
10 11

12

13

14

15

16

17

18

19

20

21

22
23
24

25

26

27

28

29

30

31

32

33
34

(d) t = 80

12

3

4

5

6

7
89

10

11

12

13

14

15

16

17

18

19

20

21

22
23

2425

26

27

28

29

30

31

32

33

34

(e) t = 100

Figure 6: Evolution of the clustering structure within the 34 locations on Server Room dataset.

15

	Introduction
	Notations and Background
	Model
	Model Estimation
	Related Work
	Experiment
	Simulation Study
	Prediction Accuracy
	Learning Result Investigation

	Conclusion
	Investigation of Embedding Dynamics

