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Abstract

We investigate robust model-free reinforcement learning algorithms designed for
environments that may be dynamic or even adversarial. Traditional state-based
policies often struggle to accommodate the challenges imposed by the presence of
unmodeled disturbances in such settings. Moreover, optimizing linear state-based
policies pose an obstacle for efficient optimization, leading to nonconvex objectives,
even in benign environments like linear dynamical systems.
Drawing inspiration from recent advancements in model-based control, we intro-
duce a novel class of policies centered on disturbance signals. We define several
categories of these signals, which we term pseudo-disturbances, and develop
corresponding policy classes based on them. We provide efficient and practical
algorithms for optimizing these policies.
Next, we examine the task of online adaptation of reinforcement learning agents in
the face of adversarial disturbances. Our methods seamlessly integrate with any
black-box model-free approach, yielding provable regret guarantees when dealing
with linear dynamics. These regret guarantees unconditionally improve the best-
known results for bandit linear control in having no dependence on the state-space
dimension. We evaluate our method over various standard RL benchmarks and
demonstrate improved robustness.

1 Introduction

Model-free reinforcement learning in time-varying responsive dynamical systems is a statistically
and computationally challenging problem. In contrast, model based control of even unknown and
changing linear dynamical systems has enjoyed recent successes. In particular, new techniques from
online learning have been applied to these linear dynamical systems (LDS) within the framework
of online nonstochastic control. A comprehensive survey can be found in Hazan and Singh [2022].
The key innovation in the aforementioned framework is the introduction of a new policy class
called Disturbance-Action Control (DAC), which achieves a high degree of representational capacity
without compromising computational efficiency. Moreover, efficient gradient-based algorithms can
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be employed to obtain provable regret bounds for this approach, even in the presence of adversarial
noise. Crucially, these methods rely on the notion of disturbance, defined to capture unmodeled
deviations between the observed and nominal dynamics, and its availability to the learner.

This paper explores the potential of applying these disturbance-based techniques, which have proven
effective in model-based control, to model-free reinforcement learning. However, it is not immediately
clear how these methods can be adapted to model-free RL, as the disturbances in model-free RL are
unknown to the learner.

We therefore develop the following approach to this challenge: instead of relying on a known
disturbance, we create a new family of signals, which we call “Pseudo-Disturbances”, and define
policies that use “Pseudo-Disturbance” features to produce actions. The advantage of this approach
is that it has the potential to produce more robust policies. Again inspired by model-based methods,
we aim to augment existing reinforcement learning agents with a "robustness module" that serves
two purposes. Firstly, it can filter out adversarial noise from the environment and improve agent
performance in noisy settings. Secondly, in cases where the environment is benign and simple, such
as a linear dynamical system, the augmented module will achieve a provably optimal solution. We
also empirically evaluate the performance of our method on OpenAI Gym environments.

1.1 Our Contributions

In this work, we make the following algorithmic and methodological contributions:

• In contrast to state-based policies commonly used in RL, Section 3 defines the notion of
a disturbance-based policy. These policies augment traditional RL approaches that rely
strictly on state feedback.

• We develop three distinct and novel methods (Sections 3.1, 3.2, 3.3) to estimate the
Pseudo-Disturbance in the model-free RL setting.

• We develop a new algorithm, MF-GPC (Algorithm 1), which adapts existing RL methods
to take advantage of our Pseudo-Disturbance framework.

• We empirically evaluate our method on OpenAI Gym environments in Section 5. We find
that our adaptation applied on top of a DDPG baseline performs better than the baseline,
significantly so in same cases, and has better robustness characteristics.

• We prove that the proposed algorithm achieves sublinear regret for linear dynamics in
Theorem 4. These regret bounds improve upon the best-known for bandit linear control
in terms of their dependence on state space dimension (Appendix E). Notably, our bounds
have no dependence on the state dimension, reducing the state-of-the-art regret bound by
factors of

√
dx for convex losses and d

2/3
x if losses are additionally smooth, signalling that

our methodology is better suited to challenging high-dimensional under-actuated settings.

1.2 Pseudo-Disturbance based RL

A fundamental primitive of the non-stochastic control framework is the disturbance. In our RL
setting, the system evolves according to the following equation

xt+1 = f(xt,ut) +wt ,

where xt is the state, ut is control signal, and wt is a bounded, potentially adversarially chosen,
disturbance. Using knowledge of the dynamics, f , non-stochastic control algorithms first compute
wt, and then compute actions via DAC, as follows

ut = πbase(xt) +

h∑
i=1

M t
iwt−i .

Here πbase is a baseline linear controller, and M t are matrices, learned via gradient descent or similar
algorithms. For linear systems, the DAC law is a convex relaxation of linear policies, which allows us
to prove regret bounds against powerful policy classes using tools from online convex optimization.

To generalize this approach, without a model or knowledge of the dynamics function f , both defining
and obtaining this disturbance in order to implement DAC or similar policies becomes unclear. To
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address this, we introduce the concept of a Pseudo-Disturbance (PD) and provide three distinct
variants, each representing a novel signal in reinforcement learning. These signals have various
advantages and disadvantages depending on the available environment:

1. The first notion is based on the gradient of the temporal-difference error. It assumes the
availability of a value function oracle that can be evaluated or estimated online or offline
using any known methodology.

2. The second notion also assumes the availability of a black-box value function ora-
cle/generator. We assign artificial costs over the states and generate multiple auxiliary
value functions to create a "value vector." The Pseudo-Disturbance is defined as the dif-
ference between the value vector at consecutive states. This signal’s advantage is that it
does not require any zero-order optimization mechanism for estimating the value function’s
gradient.

3. The third notion assumes the availability of an environment simulator. The Pseudo-
Disturbance is defined as the difference between the true state and the simulated state
for a specific action.

For all these Pseudo-Disturbance variants, we demonstrate how to efficiently compute them (under
the appropriate assumption of either a value function oracle or simulator). We provide a reduction
from any RL algorithm to a PD-based robust counterpart that converts an RL algorithm into one that
is also robust to adversarial noise. Specifically, in the special case of linear dynamical systems our
algorithm has provable regret bounds. The formal description of our algorithm, as well as a theorem
statement, are given in Section 4. For more general dynamical systems, the learning problem is
provably intractable. Nonetheless, we demonstrate the efficacy of these methods empirically.

1.3 Related Work

Model-free reinforcement learning. Reinforcement learning [Sutton and Barto, 2018] approaches
are classified as model-free or model-based [Janner et al., 2019, Ha and Schmidhuber, 2018, Osband
and Van Roy, 2014], dependent on if they attempt to explicitly try to learn the underlying transition
dynamics an agent is subject to. While the latter is often more sample efficient [Wang et al., 2019],
model-free approaches scale better in that their performance does not prematurely saturate and keeps
improving with number of episodes [Duan et al., 2016]. In this paper, we focus on adaption to
unknown, arbitrary disturbances for model-free reinforcement learning algorithms, which can be
viewed as a tractable restriction of the challenging adversarial MDP setting [Abbasi Yadkori et al.,
2013]. Model-free approaches may further be divided into policy-based [Schulman et al., 2015,
2017], value-based approaches [Mnih et al., 2013], and actor-critic approaches [Barth-Maron et al.,
2018, Lillicrap et al., 2016]; the latter use a learnt value function to reduce the variance for policy
optimization.

Robust and Adaptive reinforcement learning. Motivated by minimax performance criterion in
robust control [Zhang et al., 2021, Morimoto and Doya, 2005] introduced to a minimax variant of
Q-learning to enhance of he robust of policies learnt from off-policy samples. This was later extended
to more tractable formulations and structured uncertainty sets in Tessler et al. [2019], Mankowitz
et al. [2019], Pinto et al. [2017], Zhang et al. [2021], Tamar et al. [2013], including introductions of
model-based variants [Janner et al., 2019]. Another approach to enhance the robustness is Domain
Randomization [Tobin et al., 2017, Akkaya et al., 2019, Chen et al., 2021a], wherein a model is
trained in a variety of randomized environments in a simulator, and the resulting policy becomes
robust enough to be applied in the real world. Similarly, adversarial training [Mandlekar et al.,
2017, Vinitsky et al., 2020, Agarwal et al., 2021] has been shown to improve performance in out-of-
distribution scenarios. In contrast to the previously mentioned approaches, our proposed approach
only adapts the policy to observed disturbances at test time, and does not require a modification of
the training procedure. This notably means that the computational cost and sample requirement of
the approach matches that of vanilla RL in training, and has the benefit of leveraging recent advances
in mean-reward RL, which is arguably better understood and more studied. Adaption of RL agents to
new and changing environments has been similarly tackled through the lens of Meta Learning and
similar approaches [Wang et al., 2016, Nagabandi et al., 2018, Pritzel et al., 2017, Agarwal et al.,
2021].
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Online nonstochastic control. The presence of arbitrary disturbances during policy execution had
been for long in the fields of robust optimization and control [Zhou and Doyle, 1998]. In contrast to
minimax objectives considered in robust control, online nonstochastic control algorithms (see Hazan
and Singh [2022] for a survey) are designed to minimize regret against a benchmark policy class, and
thus compete with the best policy from the said class determined posthoc. When the benchmark policy
class is sufficiently expressive, this approach has the benefit of robustness against adversarially chosen
disturbances (i.e. non-Gaussian and potentially adaptively chosen [Ghai et al., 2021]), while distinctly
not sacrificing performance in the typical or average case. The first nonstochastic control algorithm
with sublinear regret guarantees was proposed in Agarwal et al. [2019] for linear dynamical systems.
It was subsequently extended to partially observed systems [Simchowitz et al., 2020], unknown
systems [Hazan et al., 2020], multi-agent systems [Ghai et al., 2022] and the time-varying case
[Minasyan et al., 2021]. The regret bound was improved to a logarithmic rate in Simchowitz [2020]
for strongly convex losses. Chen et al. [2021b] extend this approach to non-linearly parameterized
policy classes, like deep neural networks. Bandit versions of the nonstochastic control setting have
also been studied [Gradu et al., 2020, Cassel and Koren, 2020, Sun et al., 2023] and are particularly
relevant to the RL setting, which only has access to scalar rewards.

1.4 Paper Outline

After some basic definitions and preliminaries in Section 2, we describe the new Pseudo-Disturbance
signals and how to create them in a model-free reinforcement learning environment in Section 3.
In Section 4 we give a unified meta-algorithm that exploits these signals and applies them as an
augmentation to any given RL agent. In Section 5 we evaluate our methods empirically.

An overview of notation can be found in Appendix A. Appendix B contains additional experimental
details. Generalization of our algorithm to discrete spaces is provided in Appendix C. Proofs for
Section 3 are provided in Appendix D, while the main theore is proved in Appendix E.

2 Setting and Preliminaries

Consider an agent adaptively choosing actions in a dynamical system with adversarial cost functions.
We use notation from the control literature: xt ∈ Rdx is a vector representation of the state2 at time t,
ut ∈ Rdu is the corresponding action. Formally, the evolution of the state will follow the equations

xt+1 = f(xt,ut) +wt,

where wt is an arbitrary (even adversarial) disturbance the system is subject to at time t. Following
this evolution, the agent suffers a cost of ct(xt,ut).

In this work, we adapt model-free reinforcement learning algorithms to this more challenging case.
The (easier) typical setting for model-free methods assume, in contrast, that the disturbance wt is
sampled iid from a distribution D, and that the cost functions c(x,u) is fixed and known. Central
to the study of model-free methods are the notions of the state and state-action value functions,
defined as the discounted sum of future costs acquired by starting at any state (or state-action pair)
and thereafter following the policy π. For any policy π, we denote the state and state-action value
functions, which are mappings from state or state/action pair to the real numbers, as

Qπ(x,u) = E

[ ∞∑
t=0

γtc(xπ
t ,u

π
t )

∣∣∣∣∣xπ
0 = x,uπ

0 = u

]
, Vπ(x) = E

[ ∞∑
t=0

γtc(xπ
t ,u

π
t )

∣∣∣∣∣xπ
0 = x

]
,

where expectations are taken over random transitions in the environment and in the policy.

A special case we consider is that of linear dynamical systems. In these special instances the state
involves linearly according to a linear transformation parameterized by matrices A,B, i.e.

xt+1 = Axt +But +wt.

2Although we consider continuous state and action spaces in this section and the remainder of the main paper,
we handle discrete spaces in Appendix C.
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3 Pseudo-Disturbance Signals and Policies

In this section we describe the three different Pseudo-Disturbance (PD) signals we can record in a
general reinforcement learning problem. As discussed, the motivation for this signal comes from
the framework of online nonstochastic control. We consider dynamical systems with an additive
misspecification or noise structure,

xt+1 = f(xt,ut) +wt,

where the perturbation wt does not depend on the state. Using perturbations rather than state allows
us to avoid recursive structure that makes the optimization landscape challenging and nonconvex. As
discussed, we introduce Pseudo-Disturbance signals ŵt ∈ Rdw in lieu of the true disturbances. We
note that the PD dimensionality dw need not be the same as that of the true disturbance, dx.

An important class of policies that we consider henceforth is linear in the Pseudo-Disturbance, i.e.

ΠDAC =

{
π(x1:t) = πbase(xt) +

h∑
i=1

Miŵt−i

∣∣∣∣∣Mi ∈ Rdu×dw

}
.

Here ΠDAC denotes the policy class of Disturbance-Action-Control. The fact that wt does not depend
on our actions allows for convex optimization of linear disturbance-action controllers in the setting of
linear dynamical systems, see e.g. Hazan and Singh [2022].

We would like to capture the essence of this favorable phenomenon in the context of model free
RL, but what would replace the perturbations wt without a dynamics model f? That’s the central
question of this section, and we henceforth give three different proposal for this signal.

An important goal in constructing these signals is that in the case of linear dynamical systems, it
recovers the perturbation. This will enable us to prove regret bounds in the case the environment is
an LDS.

3.1 Pseudo-Disturbance Class I: Value-Function Gradients

The first signal we consider is based on the gradient of the value function. The value function maps
the state onto a scalar, and this information is insufficient to recreate the perturbation even if the
underlying environment is a linear dynamical system. To exact a richer signal, we thus consider the
gradient of the value function with respect to the action and state. The basic goal is to implement the
following equation

ŵt = ∇u(γVπ(f(xt,u) +wt)− (Qπ(xt,u)− c(xt,u))|u=ut
,

where f(xt,u) +wt represents the counterfactual next state after playing u at state xt. Note, this
signal is a gradient of the temporal-difference error [Sutton and Barto, 2018], in fact being syntacti-
cally similar to expected SARSA. If wt was in fact (iid) stochastic with Vπ, Qπ as corresponding
value functions, this term on expectation would be zero. Therefore, this signal on average measures
deviation introduced in xt+1 due to arbitrary or adversarial wt. We can also view this expression as

ŵt = ∇u(γVπ(f(xt,u) +wt)− γVπ(f(xt,u)))|u=ut
.

Vπ is quadratic in the linear quadratic regulator setting, so this becomes a linear function of wt.
Computing∇uVπ(f(xt,u) +wt)|u=ut

analytically would require knowledge of the dynamics, but
luckily this can be efficiently estimated online. Using a policy π, with noised actions ut = π(xt)+nt,
for nt ∼ N (0,Σ) we have the following PD estimates:

ŵt = γVπ(xt+1)Σ
−1nt −∇u(Qπ(xt,u)− c(xt,u))|u=ut , (1)

ŵt = (c(xt,ut) + γVπ(xt+1)−Qπ(xt,ut))Σ
−1nt . (2)

These are zeroth-order gradient estimators (see [Liu et al., 2020] for a more detailed exposition).
Intuitively, the second estimator may have lower variance as the expected SARSA error can be much
smaller than the magnitude of the value function. An additional benefit is that this implementation
only requires a scalar cost signal without needing access to a differentiable cost function.
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The most important property of this estimator is that it, in expectation, it produces a signal that is a
linearly transformation of the true disturbance if the underlying setting is a linear dynamical system.
This is formalized in the following lemma.
Lemma 1. Consider a time-invariant linear dynamical systems with system matrices A,B and
quadratic costs, along with a linear baseline policy π defined by control law ut = −Kπxt. In
expectation, the pseudo disturbances (1) and (2) are linear transformations of the actual perturbation

E[ŵt|xt] = Twt,

where T is a fixed linear operator that depends on the system.

3.2 Pseudo-Disturbance Class II: Vector Value Functions

The second approach derives a signal from auxiliary value functions. Concretely, instead of scalar-
valued cost function c : Rdx → R, consider a vector-valued cost function c : Rdx → Rdw . For such
vector-valued cost, we introduce vectorized value and state-action value functions as

V c
π : Rdx → Rdw , Qc

π : Rdx × Rdu → Rdw .

In particular, we have

Qc
π(x,u) = E

[ ∞∑
t=0

γtc(xπ
t )

∣∣∣∣∣xπ
0 = x,uπ

0 = u

]
, V c

π (x) = E

[ ∞∑
t=0

γtc(xπ
t )

∣∣∣∣∣xπ
0 = x

]
.

Our PD signal is then

ŵt = c(xt) + γVc
π(xt+1)−Qc

π(xt,ut) . (3)

In contrast to the first approach, for a fixed set of cost functions, this approach provides a deterministic
PD-signal. This is very beneficial, as at inference time the DAC policy can be run without injecting
additional noise and without requiring a high variance stochastic signal. This does come at a cost,
as this method requires simultaneous off-policy evaluation for many auxiliary value functions (each
corresponding to a different scalar cost) before DAC can be run via Q-function evaluations at
inference, both of which can be significantly more expensive than the first approach.

For the case of linear dynamical systems, if we use linear costs on top of a linear base policy, this
approach can recover the disturbances up to a linear transformation. It can be seen that the values
corresponding to a linear cost function c are linear functions of the state, and hence the vectorized
versions are also linear functions of state. We formalize this as follows:
Lemma 2. Consider a time-invariant linear dynamical systems with system matrices A,B, along
with a linear baseline policy π defined by control law ut = −Kπxt. Let Vc

π and Qc
π be value

functions for π for i.i.d. zero mean noise with linear costs c(x) := Lx, then the PD-signal (3) is a
linear transformation

ŵt = Twt,

where T is a fixed linear operator that depends on the system and baseline policy π. In addition, if L
is full rank and the closed loop dynamics are stable, then T is full rank.

3.3 Pseudo-Disturbance Class III: Simulator Based

The last Pseudo-Disturbance signal we consider requires a potentially inaccurate simulator. It is
intuitive, particularly simple to implement, and yet comes with theoretical guarantees.

The Pseudo-Disturbance is taken to be the difference between the actual state reached in an environ-
ment, and the expected state, over the randomness in the environment. To compute the expected state,
we require the simulator fsim initialized at the current state. Formally,

ŵt = xt+1 − fsim(xt,ut). (4)

The simplicity of this PD is accompanied by a simple lemma on its characterization of the disturbance
in a dynamical system, even if that system is time varying, as follows,
Lemma 3. Suppose we have a simulator fsim such that ∀x,u, ∥fsim(x,u) − f(x,u)∥ ≤ δ, then
Pseudo-Disturbance (4) is approximately equal to the actual perturbation ∥ŵt −wt∥ ≤ δ.
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3.4 Merits of different Pseudo-Disturbance signals

Each of the three PD signals described in this section offers something a bit different. PD3 offers
the most direct disturbance signal, but comes with the requirement of a simulator. If the simulator is
very accurate, this is likely the strongest signal, though this method may not be suitable with a large
sim-to-real gap. PD1 and PD2 on the other hand, do not require a simulator but also have a natural
trade off. PD1 is simpler and easier to add on top of an existing policy. However, it uses zeroth-order
estimation, so the guarantees only hold in expectation and it may have high variance. On the other
hand, PD2 is not a stochastic estimate, but it requires auxiliary value estimation from the base policy.
This may come at the cost of additional space and computational complexity. In many cases, this can
be handled using the same deep Q-network except with a wider head, which may not be so onerous.
We note that PD2 does not require specific domain engineered signals for the auxiliary rewards. For
example, using the coordinates of the state representation was enough to demonstrate improvements
over baselines in our experiments. For richer, higher dimensional (visual) state spaces, this can be
generalized using neural representations of state as the auxiliary reward, achieved by modulating the
PD2 disturbance dimension to account for the fact that the underlying dynamics are simpler.

4 Meta Algorithm and Main Theorem

In this section we define a meta-algorithm for general reinforcement learning. The algorithm takes
as an input an existing RL method, that may or may not have theoretical guarantees. It adds an
additional layer on top, which estimates the Pseudo-Disturbances according to one of the three
methods in the previous section. It then uses an online gradient method to optimize a linear policy
in the past Pseudo-Disturbances. This can be viewed as a zeroth-order model-free version of the
Gradient Perturbation Controller (GPC) [Agarwal et al., 2019].

The algorithm is formally defined in Algorithm 1. A typical choice of the parametrization π(·|M) is
a linear function of a window of past disturbances (ie. Disturbance Action Control [Agarwal et al.,
2019]).

π(wt−1:t−h|M1:h) =

h∑
i=1

Miwt−i. (5)

Algorithm 1 MF-GPC (Model-Free Gradient Perturbation Controller)
1: Input: Memory parameter h, learning rate η, exploration noise covariance Σ, initialization

M1
1:h ∈ Rdu×dw×h, initial value and Q functions, base RL algorithm A.

2: for t = 1 . . . T do
3: Use action ut = πbase(xt) + π(ŵt−1:t−h|M t) + nt, where nt is iid Gaussian, i.e.

nt ∼ N (0,Σ)

4: Observe state xt+1, and cost ct = ct(xt,ut).
5: Compute Pseudo-Disturbance [see (2),(3), (4)]

ŵt = PD-estimate(xt+1,xt,ut, ct,nt).

6: Update policy parameters using the stochastic gradient estimate (see Section 4.1)

M t+1 ←M t − η ct(xt,ut)Σ
−1

h−1∑
j=0

nt−i ⊗ J t
i ,

where ⊗ is an outer product and J t
i = ŵt−i−1:t−h−i for (5), and more generally,

J t
i =

∂π(ŵt−i−1:t−h−i|Mi)

∂M

∣∣∣∣
M=Mt

.

7: end for
8: Optionally, update the policy πbase and its Q,V functions using A so that they are Bellman

consistent, i.e. they satisfy the policy version of Bellman equation.
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We prove the following theorem for the case of linear dynamics:
Theorem 4 (Informal Statement (see Theorem 8)). If the underlying dynamics are linear with the
state evolution specified as

xt+1 = Axt +But +wt,

with dmin = min{dx, du}, then then as long as the Pseudo-Disturbance signal ŵt satisfies ŵt =
Twt, for some (possibly unknown) invertible map T , Algorithm 1 generates controls ut such that for
any sequence of bounded (even adversarial) wt such that the following holds∑

t

ct(xt,ut) ≤ min
π∈ΠDAC

∑
t

ct(x
π
t ,u

π
t ) + Õ(

√
dudminT

3/4),

for any any sequence of convex costs ct, where the policy class DAC refers to all policies π that
produce a control as a linear function of wt. Further, if the costs ct are L-smooth, the regret for
Algorithm 1 admits an improved upper bound of Õ((dudminT )

2/3).

In particular, the above theorem implies the stated regret bounds when the Pseudo-Disturbance is
estimated as described in Equations 3 (Vector Value Function-based) and 4 (Simulator-based).

The regret bounds in Theorem 4 are strict improvements over state-of-the-art bounds in terms of
dimension dependence; the latter operate with explicit descriptions of disturbances. This is achieved
by using a better choice of gradient estimator, using exploration in action-space rather than parameter-
space. As a result, our bounds have no dependence on the state dimension since dmin ≤ du. As
an instructive case, for high-dimensional underactuated systems, where du < dx, our regret bounds
scale as Õ(duT

3/4) in contrast to Õ(dud
1/2
x T 3/4) for convex costs from [Gradu et al., 2020, Cassel

and Koren, 2020], and as Õ(d
4/3
u T 2/3) for smooth costs improving over Õ(d

4/3
u d

2/3
x T 2/3) from

[Cassel and Koren, 2020]. Note that the ratio by which we improve here can be unbounded, with
larger improvements for high-dimensional (dx ≫ 1) systems. See Appendix E.2 for further details,
comparisons and proofs.

4.1 Derivation of update

In the algorithm, the key component is computing an approximate policy gradient of the cost. A
complete theoretical analysis of our algorithm can be found in Appendix E , but we provide a brief
sketch of the gradient calculation. Let Jt(M) denote the expected counterfactual cost ct of following
policy M with the same observed disturbances wt. We first note that if the dynamics are suitably
stabilized (which should be done by πbase), the state and cost can be approximated as a function C of
a small window of previous controls.

Jt(M) = En1:t [ct(x
M
t ,uM

t )] ≈ Ent−h:t
[C(ut(M) + nt, . . . ,ut−h(M) + nt−h)] ,

where we use ut−i(M) as a shorthand for π(ŵt−i−1:t−h−i|M). The expression here is that of a
Gaussian smoothed function, which allows us to get the following unbiased single point gradient
estimate

∇ui
Ent−h:t

[C(ut + nt, . . . ,ut−h + nt−h)] = Ent−h:t
[Σ−1C(ut + nt, . . . ,ut−h + nt−h)ni] .

We use a single sample to get a stochastic gradient. Using the chain rule, which involves an outer
product due to the tensor structure of M , we get stochastic gradients with respect to M as follows

∇̂MJt(M) ≈ C(ut(M) + nt, . . . ,ut−h(M) + nt−h)Σ
−1

h−1∑
i=0

nt−i ⊗
∂π(ŵt−i−1:t−h−i|M)

∂M
.

Finally, we note that M t is slowly moving because of gradient descent, so we can approximate

ct(xt,ut) ≈ C(ut(M
t) + nt, . . . ,ut−h(M

t) + nt−h).

Putting everything together, we have

∇̂MJt(M)
∣∣∣
M=Mt

≈ ct(xt,ut)Σ
−1

h−1∑
i=0

nt−i ⊗
∂π(ŵt−i−1:t−h−i|M)

∂M

∣∣∣∣
M=Mt

. (6)
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Figure 1: Episode return for best performing MF-GPC model versus best performing baseline DDPG
model for various OpenAI Gym environments and pseudo-estimation methods. Environment and
pseudo-estimation method shown in title. Results averaged over 25 seeds. Shaded areas represent
confidence intervals. We find that PD2 and PD3 perform well in these settings.

5 Experiments

We apply the MF-GPC Algorithm 1 to various OpenAI Gym [Brockman et al., 2016] environments.
We conduct our experiments in the research-first modular framework Acme [Hoffman et al., 2020].
We pick h = 5 and use the DDPG algorithm [Lillicrap et al., 2016] as our underlying baseline. We
update the M matrices every 3 episodes instead of continuously to reduce runtime. We also apply
weight decay to line 6 of Algorithm 1. Our implementation of PD1 is based on Equation 2. PD2 can
be implemented with any vector of rewards. We choose linear function L given in Lemma 2 to be the
identity function. Hence c in Equation 3 reduces to the state xt itself. We pick V and Q network
architectures to be the first dx units of the last layer of the critic network architecture. We train for
1e7 steps as a default (this is also the default in the Acme code) and if performance has not converged
we extend to 1.5e7 steps. Because the M matrices impact the exploration of the algorithm, we tune
the exploration parameter σ for both DDPG and MF-GPC. For the baseline DDPG, we typically
explore σ ∈ {0.15, 0.2, 0.25}. More experimental details may be found in Appendix Section B.

Results for Noisy Hopper, Walker 2D, and Ant We create a noisy Hopper, Walker 2D, and Ant
environments by adding a Uniform random variable U [−0.1, 0.1] to the state. The noise is added
at every step for both the DDPG baseline and our MF-GPC. We plot the results for PD2, and PD3
in Figure 1. We find that PD2 and PD3 perform relatively well in these settings. Graphs depicting
all runs for different σ are available in Appendix Section B. MF-GPC is not guaranteed to improve
performance in realistic RL settings. We find that generally PD1 does not perform well e.g. in
Figure 2 a) and some examples where applying it yields performance similar to baseline are given in
Appendix Section B. This is likely due to the high variance of the PD estimate. We find that neither
our method nor the baseline is too sensitive to our hyper-parameter tuning (Figure 2 b) ), possibly
because we start with the default Acme parameters which are already well tuned for the noiseless
environment.

Linear Dynamical Systems We evaluate our methods on both low dimensional (dx = 2, du =
1) and a higher dimensional (dx = 10, du = 5) linear systems with sinusoidal disturbances to
demonstrate the improvements in dimension of our method (labeled RBPC) over BPC [Gradu
et al., 2020]. We use the full information GPC [Agarwal et al., 2019] and LQR as baselines using
implementations from Gradu et al. [2021]. While performance is comparable to BPC on the small
system, on the larger system, BPC could not be tuned to learn while RBPC improves upon the LQR
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Figure 2: Left: Episode return for PD1 for Noisy Hopper. We find that PD1 is not effective for RL
settings. Right: Hyper-parameter search for PD3 on Noisy Walker. We find that neither Meta-GPC
nor the baseline DDPG algorithm is too sensitive to tuning.

Figure 3: Comparison on low dimensional (left) vs high dimensional (rights) LDS.

baseline (see Figure 3). In both experiments, h = 5 and the learning rate and exploration noise is
tuned.

6 Conclusion

We have described a new approach for model-free RL based on recent exciting advancements in model
based online control. Instead of using state-based policies, online nonstochastic control proposes the
use of disturbance-based policies. To create a disturbance signal without a model, we define three
possible signals, called Pseudo-Disturbances, each with its own merits and limitations. We give a
generic (adaptable) REINFORCE-based method using the PD signals with provable guarantees: if
the underlying MDP is a linear dynamical system, we recover and improve the strong guarantees of
online nonstochastic control. Preliminary promising experimental results are discussed. We believe
this is a first step in the exciting direction of applying tried-and-tested model-based control techniques
for general reinforcement learning.
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A Notation

We use the following notation consistently throughout the paper:

Symbol Semantics
⊗ outer product
f dynamics/transition function
fsim simulator dynamics/transition function
dx state dimension
du control dimension
dw pseudo-disturbance
dmin min(dx, du)
xt ∈ Rdx state at time t
ut ∈ Rdu control at time t
wt ∈ Rdw perturbation (disturbance) at time t
ct instantaneous cost at time t
ŵt ∈ Rdw pseudo-disturbance at time t
nt ∈ Rdu Gaussian exploration noise at time t
A,B,C system matrices for linear dynamical system
h history length (i.e., number of parameters) in a policy class
M t

1:h h-length sequence of matrices used by MF-GPC at time t
M policy class of h-length matrices
γ discount factor
Vπ, Qπ state and state-action value functions for π
Vr

π,Q
r
π vectorized value and Q functions for π for reward vectors r(x)

yt idealized state
C̃t stationary idealized cost (function of single M ) at time t
Ct non-stationary idealized cost (function of memory) at time t
Ct,δ Smoothed Ct using noised controls
Ft idealized cost as a function of last controls at time t
Ft,δ smoothed Ft

∥ · ∥ spectral norm
∥ · ∥F Frobenius norm

B Experiments

We test the performance of our method on various OpenAI Gym environments. We conduct our
experiments in the research-first modular framework Acme [Hoffman et al., 2020]. We pick h = 5
and use the DDPG algorithm [Lillicrap et al., 2016] as our underlying baseline. We update the M
matrices every 3 episodes instead of continuously to reduce runtime. We also apply weight decay to
line 6 of Algorithm 1.

Our implementation is based on the Acme implementation of D4PG. The policy and critic networks
both have the default sizes of 256 × 256 × 256. We use the Acme default number of atoms as 51
for the network. We run in the distributed setting with 4 agents. The underlying learning rate of the
D4PG implementation is left at 3e− 04. The exploration parameter, σ is tuned.

Plotting We use a domain invariant exponential smoother with a small smoothing parameter of 0.1 .
The smoothing is applied before the mean is taken over the data. To construct the confidence intervals,
we take the following steps 1) smooth the data 2) linearly interpolate each run of the data to produce
a fine grid of values 3) calculate σ/

√
N on interpolated data.

B.1 Hopper

The OpenAI Gym Hopper environment is a two dimensional one legged figure that consists of four
body parts, namely a torso, thigh, leg and foot.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Raw data for PD Estimate 1 on Hopper. Each plot represents either the baseline or our
method for a different setting of the exploration parameter, σ. We find that there are some outlier
runs (for example the horizontal line in subfig f). We remove the two lowest return runs from each
group before plotting.

B.2 Noisy Hopper

We create a Noisy Hopper environment by adding a Uniform random variable U [−0.1, 0.1] to qpos
during training and evaluation. The noise is added at every step, and both DDPG and MF-GPC are
evaluated on the same noisy environment.

PD1 We implement PD1 for Noisy Hopper according to Equation 2. We see our results in Figure 6
in the first column. We tune σ for the D4PG baseline in the set {0.1, 0.15, 0.2, 0.25, 0.3}. We find
that the σ = 0.1 performs the best. We tune σ for MF-GPC in the set {0.1, 0.15, 0.2}. We find that
the σ = 0.1 setting performs the best. We averaged our results over 25 seeds. Solid line represents
the mean return over all runs and shaded areas represent standard error. We find that MF-GPC run
with PD-1 has a small advantage compared to the DDPG baseline on Noisy Hopper. Removing
outliers for PD1 for this specific experiment, we notice that some runs seem to be outliers. Therefore,
when plotting, we remove the lowest 2 runs across all groups (of both the baseline and our method).
Complete raw data (with outliers included) can be seen in Figure 4.

PD-2 PD2 can be implemented with any vector of rewards. We choose linear function L given in
Lemma 2 to be the identity function. Hence c in Equation 3 reduces to the state xt itself. We pick V
and Q to be the first dx units of the last layer of the critic network. If dx is larger than the number of
atoms of the critic network (51) we take all 51 nodes from the critic network. We find that a default
σ = 0.15 performs well for MF-GPC so we do not tune σ further.

PD-3 In practice the expectation in Equation 4 requires estimation. We use an average over 4 copies
of the environment for this estimation.

B.3 Noisy Walker 2D and Ant

We follow the basic procedure for Hopper but train for 15 million steps instead of 10 million. We
report our results for the hyper-parameter sweeps in columns 2 and 3 of Figure 5. We find that PD2
and PD3 perform relatively well in these settings.

PD-2 PD2 can be implemented with any vector of rewards. We choose linear function L given in
Lemma 2 to be the identity function. Hence c in Equation 3 reduces to the state xt itself. Recall that
dx is the dimension of the state space. We pick V and Q to be the first dx units of the last layer of
the critic network. If dx is larger than the number of atoms of the critic network (51) we take all 51
nodes from the critic network.
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Figure 5: Episode return for best performing MF-GPC model versus best performing baseline DDPG
model for various OpenAI Gym environments and pseudo-estimation methods. Environment and
pseudo-estimation method shown in title. Results averaged over 25 seeds. Shaded areas represent
confidence intervals. We find that PD2 and PD3 perform well in these settings.

Figure 6: Left: Episode return for PD1 for Noisy Hopper. Right: Episode return for PD1 for Noisy
Half Cheetah. We find that PD1 is not effective for RL settings.

PD-3 In practice the expectation in Equation 4 requires estimation. We use an average over 4 copies
of the environment for this estimation. For Noisy Ant, we find that a default σ = 0.15 performs well
for MF-GPC so we do not tune σ further.

B.4 Experiments with adversarial noise

We run MF-GPC on top of a DDPG baseline for the inverted pendulum environment with 1) fast
gradient sign method noise [Goodfellow et al., 2014] and 2) noise from a discretized sinusoid. We
plot our results in Figure 7

Meta-GPC DDPG

Meta-GPC DDPG

Meta-GPC DDPG

Meta-GPC DDPG

Figure 7: Results from our method on the inverted pendulum environment for fast gradient sign
method noise and sinusoid noise.
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C Discrete State and Action Spaces

In this section, we consider differentiable parameterized random policies. For finite action space U ,
let ∆U = {p : U → [0, 1]|

∑
a∈U p(a) = 1} be the probability simplex over U . Our policies, will be

parameterized by M and depend on a window of past Pseudo-disturbances, providing the following
distribution over actions.

u ∼ π(·|ŵt−1:t−h,M) ∈ ∆U (7)

The baseline policy, would be built into π in this setting. For example, we could have a softmax
neural net policy, and our algorithm adds a residual correction to the logits.

Implementation of PD signals in discrete spaces For discrete spaces, PD-2 defined via (3) is
well defined, as we can still create auxiliary Q functions in the discrete space to produce our signal.
Because, we no longer use Gaussian noise, PD-1 (2) can be modified as follows:

ŵt = (c(xt,ut) + γVπ(xt+1)−Qπ(xt,ut))∇M log(π(ut|ŵt−h:t−1,M))|M=Mt
(8)

For our zeroth order gradient, we use the REINFORCE:

Algorithm 2 DMF-GPC (Discrete Model-Free Gradient Perturbation Controller)
1: Input: Memory parameter h, learning rate η, initialization M1

1:h, initial value and Q functions,
base RL algorithm A.

2: for t = 1 . . . T do
3:

Sample action ut ∼ π(·|ŵt−1:t−h,M
t)

4: Observe state xt+1, and cost ct = ct(xt,ut).
5: Compute Pseudo-Disturbance [see (3), (8)]

ŵt = PD-estimate(xt+1,xt,ut, ct).

6: Update policy parameters using the stochastic gradient estimate

M t+1 ←M t − η ct(xt,ut)

h−1∑
j=0

∇M log(π(ut−j |ŵt−j−1:t−j−h,M))|M=Mt
.

7: end for
8: Optionally, update the baseline policy parameters and its Q,V functions using A so that they are

Bellman consistent, i.e. they satisfy the policy version of Bellman equation.

D Pseudo-Disturbance Proofs

In this appendix, we have the deferred proofs from Section 3. For convenience, the lemmas have also
been restated.

D.1 Proof of Lemma 1

Lemma 5. For time-invariant linear dynamical systems with system matrices A,B and quadratic
costs, in expectation, the pseudo disturbances (1) and (2) is a linear transformation of the actual
perturbation

E[ŵt|xt] = Twt,

where T is a fixed linear operator that depends on the system.

Proof. Recall from the theory of the linear quadratic regulator that the value function of an infinite
horizon LDS is quadratic Bertsekas [2012],

V (x) = x⊤Px.
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Thus,

E[∇u(Q(xt,u)− c(xt,u))|u=ut ] = E[γB⊤P (Axt +But)]

= E[γB⊤P (Axt +Bπ(xt) +Bnt)]

= γB⊤P (Axt +Bπ(xt)).

By the definition of the signal, we have that

E[ŵt|xt] = γE[V (xt+1)Σ
−1nt −∇u(Q(xt,u)− c(xt,u))|u=ut

]

= γE[V (xt+1)Σ
−1nt|xt]− γB⊤P (Axt +Bπ(xt)).

Writing the quadratic value function also to the first term, and denoting ∥x∥2P = x⊤Px, we have that

E[V (xt+1)Σ
−1nt|xt] = E[∥Axt +Bπ(xt) +wt +Bnt∥2PΣ−1nt|xt]

= Σ−1E[ntn
⊤
t ]B

⊤P (Axt +Bπ(xt) +wt)

= B⊤P (Axt +Bπ(xt) +wt)

We thus conclude,

E[ŵt|xt] = γE[V (xt+1)Σ
−1nt|xt]− γB⊤P (Axt +Bπ(xt))

= γB⊤P (Axt +Bπ(xt) +wt)− γB⊤P (Axt +Bπ(xt))

= γB⊤Pwt = Twt

as needed.

D.2 Proof of Lemma 2

Lemma 6. Consider a time-invariant linear dynamical systems with system matrices A,B, along
with a linear baseline policy π defined by control law ut = −Kπxt. Let Vc

π and Qc
π be value

functions for π for i.i.d. zero mean noise with linear costs c(x) := Lx, then the PD-signal (3) is a
linear transformation

ŵt = Twt,

where T is a fixed linear operator that depends on the system and baseline policy π. In addition, if L
is full rank and the closed loop dynamics are stable, then T is full rank.

Proof. We first note that for linear rewards, value functions for i.i.d. zero mean noise are equivalent
the value functions without noise. As such, we have the identity

Qc
π(xt,ut) = c(xt) + γVc

π(Axt +But) ,

and so, we can rewrite or PD-signal as

ŵt = Vc
π(xt+1)−Vc

π(Axt +But)

= Vc
π(Axt +But +wt)−Vc

π(Axt +But) .

Now, it remains to show that Vc
π is a fixed linear transformation. Indeed, we have

Vc
π(x) =

∞∑
t=0

γic(At
πx) =

∞∑
t=0

γiLAt
πx = L(I − γAπ)

−1x ,

where Aπ = A−BKπ is the closed loop dynamics matrix. We now have

ŵt = Vc
π(Axt +But +wt)−Vc

π(Axt +But)

= L(I − γAπ)
−1 [(Axt +But +wt)− (Axt +But)]

= L(I − γAπ)
−1wt .

Now, stability of π dictates (I−γAπ) is full rank (even for γ = 1), so if L is full rank, L(I−γAπ)
−1

is full rank.
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D.3 Proof of Lemma 3

Lemma 7. Suppose we have a simulator fsim such that ∀x,u, ∥fsim(x,u) − f(x,u)∥ ≤ δ, then
Pseudo-Disturbance (4) is approximately equal to the actual perturbation ∥ŵt −wt∥ ≤ δ.

Proof. This Lemma is immediate from the definition of the dynamics as xt+1 = f(xt,ut)+wt.

E Main Result and Dimension-efficient Bandit GPC

Below, we formally state and prove the main result. Subsequent sections attest to the fact that this
regret bound is an unconditional improvement over the best known Gradu et al. [2020], Cassel and
Koren [2020] in terms of its dependence on dimension and applicability to high-dimensional systems,
even for the well-studied setting of linear control.

E.1 Main Result

Using Theorem 9 which we state and prove in subsequent sections, we can prove the main result.

Theorem 8. Consider a modification of Algorithm 3 implemented using ŵt in place of wt and choose

the step size as η =
√

dmin

du
T−3/4, and the exploration radius as δ =

√
dudminT

−1/4.

If the underlying dynamics are linear and satisfy the assumptions in Section E.2 then then as long as
the Pseudo-Disturbance signal ŵt satisfies ŵt = T wt, for some (possibly unknown) invertible map
T , with ut such that for any sequence of bounded (even adversarial) wt such that the following holds∑

t

ct(xt,ut)− inf
M∈M

∑
t

ct(x
M
t ,uM

t ) ≤ Õ(
√
dudminpoly(∥T ∥∥T −1∥)T 3/4),

for any any sequence of convex costs ct. Further, if the costs ct are L-smooth, the regret can be
improved upper bound of∑

t

ct(xt,ut)− inf
M∈M

∑
t

ct(x
M
t ,uM

t ) ≤ Õ(poly(∥T ∥∥T −1∥)(dudminT )
2/3) .

Proof. This follows from that fact that an invertible linear transformation T of wt does not change
the expressiveness of a DAC policy classM except through constants related to the norm of T . More
specifically, given a DAC policy M1:h that acts on true disturbances ws, the same exact controls
are produced by a DAC policy M ′ with M ′

i = MiT −1 acting on ŵs = T ws. The disturbances
are also scaled by T . by As such, we can attain equivalent regret bounds with a new policy class
M′ with diameter scaled by ∥T −1∥ and new bound on disturbances W ′ = ∥T ∥W . In Theorem 9,
the hidden dependence on the DAC diameter and disturbance size are polynomial, yielding at most
poly(∥T ∥∥T −1∥) scaling in the regret.

E.2 Dimension-Efficient Bandit GPC

Under bandit feedback, the learner can only observe the cost it incurs, and does not have access to
function value oracles or gradients of the cost functions. This setting has been studied in detail in
linear control subject to adversarial disturbances using both dynamic and static regret settings; we
restrict our attention to the latter.

A key characteristic of our proposed algorithm is that it performs exploration in the action space,
rather than the policy space. This enables us to obtain a favorable trade-off between the quality of
the proxy of the gradient and the amount of modification the objective (via randomized smoothing)
is subject to. Leveraging this property, we show that our approach obtains a better regret bound
than the best known [Cassel and Koren, 2020, Gradu et al., 2020] in the literature. In particular,
the best known regret bounds for this setting scale as O(

√
dxdudminT

3/4). In contrast, we offer a
regret bound of O(

√
dudminT

3/4). This is both a quantitative and a qualitative improvement, and
carries over to the case of smooth costs too. In particular, since our bound has no dependence on
dx whatsoever, it is equally applicable to the high-dimensional setting (dx ≫ 1), which existing
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methodologies fail to scale to in the bandit setting. We stress that this improvement in the upper
bound stems from the right algorithm design, and not just a tighter analysis.

In this section, we analyze Algorithm 3, a minimally modified version of Algorithm 1, which uses
delayed gradient updates. As a convention, we hold wt = 0 for t < 0 when defining DAC policies in
early rounds.

Algorithm 3 Bandit GPC
1: Input: Memory parameter h, learning rate η, exploration size δ, initialization M1

1:h ∈ Rdu×dx×h,
and convex policy setM.

2: for t = 1 . . . T do
3: Use action ut =

∑h
i=1 M

t
iwt−i + δnt, where nt is drawn iid from a sphere uniformly , i.e.

nt ∼ Unif(Sdu).

4: Observe state xt+1, and cost ct = ct(xt,ut).
5: Store the stochastic gradient estimate

∇̂t =
duct(xt,ut)

δ

h−1∑
i=0

nt−i ⊗wt−i−1:t−i−h

6: Update using delayed gradient with euclidean projection ontoM

M t+1 = ΠM
[
M t − η∇̂t−h

]
7: end for

We make the following assumptions pertaining to costs and linear dynamics:

1. The underlying dynamics are assumed to be time-invariant and linear, i.e.
xt+1 = Axt +But +wt,

where xt,wt ∈ Rdx ,ut ∈ Rdu , ∥wt∥ ≤ W and ∥B∥ ≤ κ.
2. The linear system is (κ, α)-strongly stable: ∃Q,L such that

A = QLQ−1,

where ∥Q−1∥, ∥Q∥ ≤ κ, ∥L∥ ≤ 1− α.
3. The time-varying online cost functions ct(xt,ut) are convex and satisfy for all
∥x∥, ∥u∥ ≤ D that

ct(x,u) ≤ Cmax{D2, 1}, and ∥∇uc(x,u)∥, ∥∇xc(x,u)∥ ≤ Gmax{D, 1}.
4. We define our comparator setM =M1 × · · · ×Mh where

Mi = {M ∈ Rdu×dx : ∥M∥ ≤ 2κ4(1− α)i}
as in [Cassel and Koren, 2020]. Let dmin = min{dx, du}.

The second assumption may be relaxed to that of stabilizability, the case when the linear system by
itself might be unstable, however the learner is provided with a suboptimal linear controller K0 such
that A+BK0 is (κ, α)-strongly stable, via a blackbox reduction outlined in Proposition 6 (Appendix
A) in Cassel et al. [2022].

Theorem 9. Choosing the step size as η =
√

dmin

du
T−3/4, and the exploration radius as δ =

√
dudminT

−1/4, the regret of Algorithm 3 is upper bounded as

Regret(A) = E

[
T∑

t=1

ct(xt,ut)

]
− inf

M∈M

T∑
t=1

ct(x
M
t ,uM

t ) ≤ Õ(
√

dudminT
3/4).

Furthermore, if the costs ct is L-smooth, then choosing δ = (dudmin)
1/3T−1/6, η =

d
1/3
min/(d

2/3
u T 2/3), the regret incurred by the algorithm admits an tighter upper bound of

Regret(A) = E

[
T∑

t=1

ct(xt,ut)

]
− inf

M∈M

T∑
t=1

ct(x
M
t ,uM

t ) ≤ Õ((dudminT )
2/3).

21



E.3 Idealized Cost and Proof of Theorem 9

We will prove our result by creating a proxy loss with memory which accurately estimates the cost,
showing that our update provides a low bias gradient estimate with suitably small variance. This will
allow us to prove a regret bound on our proxy-losses, which we then translate to a regret bound on
the policy itself.

Following [Agarwal et al., 2019, Cassel and Koren, 2020], we introduce a transfer matrix that
describes the effect of recent disturbances on the state.
Definition 10. For any i < 2h, define the disturbance-state transfer matrix Let

Ψi(M
1:h) = Ai1i ≤ h +

h∑
j=1

AjBMh−j+1
i−j−1 1i−j−1∈[1,h]

We can also create a transfer matrix for the effect of injected noise in the control on the state:
Definition 11. The noise transfer matrix is defined as Φi = AiB.

We have the following representation of the state

xt+1 = Ah+1xt−h +

2h∑
i=0

Ψi(M
1:h)wt−i + δ

h−1∑
i=0

Φint−i (9)

We are also interested in counterfactual state trajectories using non-stationary DAC policies. In
particular, we have
Definition 12. The idealized state using policies M1:h is defined as

yt+1(M
1:h) =

2h∑
i=0

Ψi(M
1:h)wt−i .

Similarly, the idealized cost is defined as

Ct(M
1:h) = ct

(
yt(M

1:h),

h∑
i=1

Mh
i wt−i

)
.

The univariate generalization of the idealized state and cost are

ỹt(M) = yt(M,M, . . .M︸ ︷︷ ︸
h times

), C̃t(M) = Ct(M,M, . . .M︸ ︷︷ ︸
h times

).

We also define Ft(u1:h) = ct(
∑h−1

i=0 Ai(Bui +wt−1−i),uh) representing the instantaneous cost as
a function of the last h controls.

We note that

C̃t(M) = Ft(

h−1∑
i=0

Miwt−i−h,

h−1∑
i=0

Miwt−i−h+1, · · ·
h−1∑
i=0

Miwt−i−1)

We now define a smoothed version of Ft, Ft,δ and a smoothed version of C̃t, C̃t,δ that uses Ft,δ .

Ft,δ(u1:h) = En1:h∼Sdu [Ft(u1:h + δn1:h)]

C̃t,δ(M) = Ft,δ(

h−1∑
i=0

Miwt−i−h,

h−1∑
i=0

Miwt−i−h+1 · · ·
h−1∑
i=0

Miwt−i−1)

We also use the following notation for idealized costs fixing a realization of the exploration noise:

Ct(M |n1:h) = Ft,δ(

h−1∑
i=0

Miwt−i−h + n1,

h−1∑
i=0

Miwt−i−h+1 + n2, . . . ,

h−1∑
i=0

Miwt−i−1 + nh) .
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Since δ = o(1), the contribution to the state space is negligible, we can use bounds from Definition 5
of [Cassel and Koren, 2020]. In particular, we will use

h = α−1 log(2κ3T ), Dx,u = max(10α−1κ4W (hκ+ 1), 1) (10)

Proof of Theorem 9. First, we state a bound on how large the states can get when modifying a DAC
policy online.

Lemma 13. Suppose controls are played according to ut =
∑h

i=1 M
t
iwt−i + δnt where nt ∼ Sdu

and δ = o(1), then

1. ∥xt∥, ∥ut∥ ≤ Dx,u and |ct(xt,ut)| ≤ CD2
x,u

2. Let xM
t , uM

t correspond to the counterfactual trajectory, playing DAC with parameter M

for all time, then |ct(xM
t ,uM

t )− C̃t(M)| ≤ GD2
x,u

T

3. |ct(xt,ut)− Ct(M
t−h+1:t|nt−h+1:t)| ≤

GD2
x,u

T

The next lemma quantifies both the degree to which an idealized notion of cost tracks the true cost
incurred for a DAC policy, and the resultant quality of gradient estimates thus obtained.

Lemma 14. For all t, Ct,δ is convex and

∥∇C̃t,δ(M
t)− E[∇̂t]∥ ≤

2ηduh
4W 2κ3ĜGDx,u

δ
,

and for all M ∈M,
|C̃t,δ(M)− C̃t(M)| ≤ δhGDx,uκ

3 .

We begin by observing that for any t using Lemma 13.3 and the second part of Lemma 14, we have

|ct(xM
t ,uM

t )− C̃t,δ(M)| ≤
GD2

x,u

T
+ δhGDx,uκ

3.

A analogous result on the difference between true and idealized costs is stated below, but this time for
the online algorithm itself which employs a changing sequence of DAC policies.

Lemma 15.

|ct(xt,ut)− C̃t(M
t|nt−h+1:t)| ≤

GD2
x,u

T
+ ηGDx,uWκ3h2Ĝ

Similarly, we have using Lemma 15 for any t that

|ct(xt,ut)− C̃t,δ(M
t)| ≤

GD2
x,u

T
+ ηGDx,uWκ3h2Ĝ+ δhGDx,uκ

3.

Using this display, we decompose the regret of the algorithm as stated below.

E

[
T∑

t=1

ct(xt,ut)

]
− inf

M∈M

T∑
t=1

ct(x
M
t ,uM

t )

≤
T∑

t=1

C̃t,δ(M
t)− inf

M∈M

T∑
t=1

C̃t,δ(M) + 2GD2
x,u + ηGDx,uWκ3h2ĜT + 2δhGDx,uκ

3T

Next, we use the following regret bound on an abstract implementation of online gradient descent
with delayed updates, which we specialize subsequently to our setting.
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Lemma 16. Consider a delayed gradient update in Online Gradient Descent, executed as

M t+1 = ΠM

[
M t − η∇̂t−h

]
where ∥E∇t − ∇C̃t,δ(M

t)∥ ≤ ε, ∥∇̂t∥ ≤ Ĝ, DM = maxM∈M ∥M∥. Additionally, if
maxM∈M ∥∇C̃t,δ(M)∥ ≤ GM, then we have for any η > 0 that

E

[
T∑

t=1

C̃t,δ(M
t)−

T∑
t=1

C̃t,δ(M
∗)

]
≤ 2εDMT

√
hdmin + 2ηh2dminĜ

2T +
2hdminD

2
M

η

Now, we invoke the regret upper bound from Lemma 16 to arrive at

E

[
T∑

t=1

ct(xt,ut)

]
− inf

M∈M

T∑
t=1

ct(x
M
t ,uM

t )

≤ 2εDMT
√

hdmin + 2ηh2dminĜ
2T +

2hdminD
2
M

η

+ 2GD2
x,u + ηGDx,uWκ3h2ĜT + 2δhGDx,uκ

3T

Finally, we plug the value of Ĝ from Lemma 17, and ε from the first part of Lemma 14.

Lemma 17. The stochastic gradients produced by Algorithm 3 satisfy the following bound

∥∇̂t∥ ≤ Ĝ :=
duh

2WGD2
x,u

δ

As evident from the definition of M, DM = 2
√
hκ4. Setting η =

√
dmin/duT

−3/4, δ =√
dudminT

−1/4 yields the result of O(T 3/4) regret for (possibly) non-smooth costs.

For the second part of the claim, we show an improved analogue of the second part of Lemma 14.

Lemma 18. As long as ct is L-smooth, for all M ∈M, |C̃t,δ(M)− C̃t(M)| ≤ 25Lκ8W 2h2δ2/α.

Using this, in a manner similar to the derivation for non-smooth costs, we arrive at

E

[
T∑

t=1

ct(xt,ut)

]
− inf

M∈M

T∑
t=1

ct(x
M
t ,uM

t )

≤ 2εDMT
√

hdmin + 2ηh2dminĜ
2T +

2hdminD
2
M

η

+ 2GD2
x,u + ηGDx,uWκ3h2ĜT + 50Lκ8W 2h2δ2T/α

In this case, we set δ = (dudmin)
1/3T−1/6, η = d

1/3
min/(d

2/3
u T 2/3) to arrive at the final bound as

stated in the claim.

E.4 Proof of Supporting Claims

Proof of Lemma 13. The properties follow from Lemma 6 in [Cassel and Koren, 2020], while using
the fact that δ = o(1).

Proof of Lemma 14. Using the chain rule, we note that

∇C̃t(M) =

h∑
i=1

(
∇uiFt(u1:h)|uk=

∑h−1
j=0 Mjwt−h+k−j−1∀k

)
⊗wt−h+i−1:t−2h+i

Now, we note that the smoothed function Ft,δ will satisfy

|Ft,δ(u1:h)− Ft(u1:h)| ≤ δhGF , |C̃t,δ(M)− C̃t(M)| ≤ δhGF
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where GF is the Lipschitz constant of Ft with respect to a single u. This follows, by a hybrid-like
argument smoothing one argument at a time using standard smoothing results (see e.g. [Gradu et al.,
2020] Fact 3.2).We note that GF can be bound by GDx,uκ

3. Furthermore, this smoothing preserves
convexity of Ft,δ and composition of a linear and convex function is convex, so C̃t,δ also remains
convex.

The gradients of the smoothed function then has the following form due to Lemma 6.7 from Hazan
et al. [2016].

∇uiFt,δ(u1:h) = En1:h∼Sdu [
du
δ
Ft(u1:h + δn1:h)ni]

∇C̃t,δ(M) = En1:h∼Sdu

duδ
h∑

i=1

Ft(u1:h + δn1:h)|uk=
∑h−1

j=0 Mjwt−h+k−j−1∀k︸ ︷︷ ︸
Ct(M |n1:h)

ni ⊗wt−h+i−1:t−2h+i

 .

Rearranging, we have

∇C̃t,δ(M
t) = Ent−h+1:t∼Sdu

duCt(M
t|nt−h+1:t)

δ

h−1∑
j=0

nt−i ⊗wt−i−1:t−h−i


Now, to relate this to En1:h∼Sdu [∇̂t], we note in expression for ∇C̃t,δ(M

t), we bound
ct(xt,ut|nt−h+1:t) − Ct(M

t|nt−h+1:t) via Lemma 15. Using bounds on w,n along with this
bound, we have

∥∇C̃t,δ(M
t)− E[∇̂t]∥ ≤

duh
2W

δ

(
GD2

x,u

T
+ ηGDx,uWκ3h2Ĝ

)
≤ 2ηduh

4W 2κ3ĜGDx,u

δ

Proof of Lemma 15. We start with triangle inequality

|ct(xt,ut)− C̃t(M
t)| ≤ |ct(xt,ut)− C̃t(M

t−h:t|nt−h+1:t)|+ |C̃t(M
t−h:t|nt−h+1:t)− C̃t(M

t|nt−h+1:t)|

The first term is handled via Lemma 13, so we only need to bound the second term.

|C̃t(M
t−h:t)− C̃t(M

t)| = |ct(yt(M t−h:t),

h∑
i=1

M t
iwt−i)− ct(ỹt(M

t),

h∑
i=1

M t
iwt−i)|

≤ GDx,u∥yt(M t−h:t)− ỹt(M
t)∥

= GDx,u∥
2h∑
i=1

Ψi(M
t−h:t)wt−i −

2h∑
i=1

Ψi(M
t . . .M t)wt−i∥

= GDx,u∥
2h∑
i=1

Ψi(M
t−h:t − (M t . . .M t))wt−i∥

≤ GDx,u∥
2h∑
i=1

Ψi(M
t−h:t − (M t . . .M t))wt−i∥
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Now we note that each matrix Ms
i , only occurs in one term of the form AkBMs

i wl, so we can refine
the bound above to

|C̃t(M
t−h:t)− C̃t(M

t)| ≤ GDx,uWκ3(1− α)

h∑
i=1

∥M t−i −M t∥

≤ GDx,uWκ3(1− α)

h∑
i=1

t∑
s=t−i

∥η∇̂s−h∥

≤ ηGDx,uWκ3h2Ĝ .

Combining, we have

|ct(xt,ut)− C̃t(M
t)| ≤

GD2
x,u

T
+ ηGDx,uWκ3h2Ĝ

Proof of Lemma 16. Since ct is convex, so is C̃t,δ. Using this fact and the observation that M t is
independent of nt:t−h used to construct ∇̂t due to the delayed update of gradients, we have

C̃t,δ(M
t)− C̃t,δ(M

∗)

≤ ⟨∇C̃t,δ(M
t),M t −M∗⟩

≤ E⟨∇̂t,M
t −M∗⟩+ 2εDM

√
hdmin

≤ E⟨∇̂t,M
t+h −M∗⟩+ ∥∇̂t∥F ∥M t+h −M t∥F + 2εDM

√
hdmin

≤ E⟨∇̂t,M
t+h −M∗⟩+ ηh2Ĝ2dmin + 2εDM

√
hdmin

The gradient update can be rewritten as

⟨∇̂t,M
t+h −M∗⟩ ≤ ∥M

t+h −M∗∥2F − ∥M t+h − η∇̂t −M∗∥2F
2η

+
ηĜ2hdmin

2

≤ ∥M
t+h −M∗∥2F − ∥M t+h+1 −M∗∥2F

2η
+

ηĜ2hdmin

2
,

where we use the fact that the projection operator is non-expansive, hence M t+h+1 is closer in
Euclidean distance to M∗ than M t+h − η∇̂t. Telescoping this, we have for any M∗ that

E

[
T∑

t=1

C̃t,δ(M
t)−

T∑
t=1

C̃t,δ(M
∗)

]
≤ 2εDMT

√
hdmin + 2ηh2dminĜ

2T +
2hdminD

2
M

η

Proof of Lemma 17. Plugging in line 6 from Algorithm 3 and using our bounds on the cost, we have

∥∇̂t∥ ≤
duGD2

x,u

δ

h−1∑
j=0

∥nt−i∥∥wt−i−1:t−h−i∥ ≤
duh

2WGD2
x,u

δ
.

Proof of Lemma 18. We first make note of the following characterization of idealized costs under
smoothness due to Cassel and Koren [2020] (Lemma 7.2, therein).

Lemma 19 (Cassel and Koren [2020]). If ct is L-smooth, then the smoothed and non-smoothed
variants of the idealized costs C̃t, Ft, C̃t,δ, Ft,δ are L′-smooth, where L′ = 25Lκ8W 2h/α.
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Note that C̃t, C̃t,δ only differ in that the latter is a noise-smoothed version of the former. Let

u1:h =
[∑h−1

i=0 Miwt−i−h,
∑h−1

i=0 Miwt−i−h+1 · · ·
∑h−1

i=0 Miwt−i−1

]
. Using the fact the noise

n1:h is zero-mean and independent of u1:h, we create a second-order expansion using Taylor’s
theorem to conclude

|C̃t,δ(M)− C̃t(M)|
=|En1:h∼SduFt(u1:h + δn1:h)− Ft(u1:h)|

≤ |En1:h∼Sdu ⟨∇Ft(u1:h), δn1:h⟩︸ ︷︷ ︸
=0

|+ L′

2
∥δn1:h∥2F

≤ L′δ2h.
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