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Abstract

Conditional independence (CI) testing is a fundamental task in statistics and
machine learning, but its effectiveness is hindered by the challenges posed by
high-dimensional conditioning variables and limited data samples. This article
introduces a novel testing approach to address these challenges and enhance con-
trol of the type I error while achieving high power under alternative hypotheses.
The proposed approach incorporates a computationally efficient classifier-based
conditional mutual information (CMI) estimator, capable of capturing intricate
dependence structures among variables. To approximate a distribution encoding
the null hypothesis, a k-nearest-neighbor local sampling strategy is employed. An
important advantage of this approach is its ability to operate without assumptions
about distribution forms or feature dependencies. Furthermore, it eliminates the
need to derive asymptotic null distributions for the estimated CMI and avoids
dataset splitting, making it particularly suitable for small datasets. The method
presented in this article demonstrates asymptotic control of the type I error and
consistency against all alternative hypotheses. Extensive analyses using both syn-
thetic and real data highlight the computational efficiency of the proposed test.
Moreover, it outperforms existing state-of-the-art methods in terms of type I and
II errors, even in scenarios with high-dimensional conditioning sets. Additionally,
the proposed approach exhibits robustness in the presence of heavy-tailed data.

1 Introduction

Testing for conditional independence (CI) is a crucial and challenging task in statistics and machine
learning, with wide-ranging applications in graphical models [26, 17], causal inference [44, 37, 22],
and variable selection [11, 24]. The objective is to determine whether two random variables, X
and Y , are independent given a set of conditioning variables Z, based on observations of the joint
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distribution pX,Y,Z(x, y, z). Specifically, the hypothesis to be tested is:

H0 : X ⊥⊥ Y |Z versus H1 : X ⊥̸⊥ Y |Z. (1)

However, CI testing becomes challenging due to the high-dimensionality of the conditioning variables
Z, and the limited availability of data samples [5, 35, 40, 1]. Existing tests may struggle to control
the type I error, particularly when handling high-dimensional conditioning variable sets with complex
dependency structures [6, 40]. Moreover, even when a test is valid, the limited data availability can
make it exceedingly challenging to distinguish between null and alternative hypotheses, resulting in
low testing power [40].

In this article, we present a novel conditional independence (CI) testing method based on a k-nearest-
neighbor local sampling scheme. Our approach incorporates two essential components: a conditional
mutual information (CMI) estimator utilizing classification techniques, and a k-nearest-neighbor
local sampling strategy to approximate the conditional distribution pX|Z(x|z). This approximation
enables us to simulate data sets from a distribution that represents the null hypothesis, allowing us to
estimate the CMI using these simulated data sets. By comparing the CMI estimator based on real
data with those computed from the simulated data sets, we make informed decisions regarding the
hypothesis testing. Theoretical analysis demonstrates that our proposed test achieves a valid control
of the type I error asymptotically and exhibits consistency against all alternatives in H1. Synthetic
and real data analyses showcase that our test outperforms previous methods in terms of both the
type I error and power under H1, even when dealing with high-dimensional conditioning sets and/or
small datasets. Furthermore, our approach remains computationally efficient as the dimension of the
conditioning set and/or sample size increase. Additionally, our method is robust even in the presence
of heavy-tailed data.

2 Related Work

2.1 CMI estimation

In our work, we utilize CMI as a measure of conditional dependence. CMI offers a strong theoretical
guarantee for CI testing, where I(X;Y |Z) = 0 ⇐⇒ X ⊥⊥ Y |Z [14]. It has the ability to
capture complex dependence structures among variables, even in non-linear scenarios. Estimators
based on k-nearest neighbors and kernel methods have been widely employed for CMI estimation
[27, 38, 23, 19]. However, these methods may encounter efficiency issues when dealing with high-
dimensional conditioning variables, known as the curse of dimensionality [34, 32]. [32] approached
the CMI estimation problem by formulating it as a minimax optimization problem and proposed the
use of generative adversarial networks (GANs) to optimize and obtain the CMI estimator, which can
handle high-dimensional scenarios. However, the training of GANs is often challenging, with the
risk of collapse if hyperparameters and regularizers are not carefully chosen [15]. Recently, [34, 30]
proposed a classifier-based CMI estimator capable of handling high dimensions. They initially
developed an estimator for the Kullback-Leibler (KL) divergence using a classifier and then derived
mutual information (MI) estimators based on it. CMI is defined as the difference between two MI
values, and the CMI estimator is obtained by computing the difference between two MI estimators.
In contrast, our method directly utilizes the classifier-based KL-divergence estimator to obtain the
CMI estimator. This approach also handles high dimensions effectively and is computationally more
efficient compared to the method employed by [34, 30].

2.2 CI Testing

In recent years, a considerable body of literature on CI testing has emerged. Here, we provide a brief
overview of some existing methods, and for a more comprehensive review, we refer readers to [28].

One important category of CI testing methods involves using different measures for CI [3, 46, 2].
For example, [18] proposed a CI testing method based on the empirical Hilbert-Schmidt norm
of the conditional cross-covariance operator. Another approach, KCIT, was introduced by [47],
which utilizes the partial association of reproducing kernel Hilbert spaces to measure conditional
independence. [40] proposed a novel kernel-based CI testing method using the lp distance between
two well-chosen analytic kernel mean embeddings evaluated at a finite set of locations. [42] proposed
the generalized covariance measure for CI testing based on a regression method. However, obtaining
the exact distribution of the test statistic derived from the conditional independence measure under
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H0 can be challenging. Instead, researchers have employed alternative methods to derive asymptotic
distributions of the test statistics under the null hypothesis [47, 46, 45, 40]. Nevertheless, the
effectiveness of asymptotic distributions can be compromised when the sample size is small or the
dimension of Z is high [16, 38]. As a result, tests based on asymptotic distributions may exhibit
inflated type-I errors or inadequate power when dealing with small sample sizes or high-dimensional
Z [47, 40]. In our work, we choose to utilize CMI as a metric for conditional dependence.

To overcome the reliance on asymptotic null distributions, [11] proposed the model-X framework,
assuming knowledge of the conditional distribution pX|Z(x|z). Under this assumption, a set of
test statistics can be computed that are exchangeable under the null hypothesis, either through
direct resampling [11] or permutation methods [8]. However, in practice, the distribution of X|Z
is rarely available. Therefore, accurately approximating the distribution of X|Z becomes crucial
for maintaining the type I error control of these tests. To address this challenge, [5] developed
the generative conditional independence test (GCIT) using Wasserstein GANs to approximate the
distribution of X|Z, while [43] proposed using Sinkhorn GANs for the same purpose. However,
as highlighted in [5, 30], limited data and noise may lead to inaccurate learning of conditional
distributions using neural networks, resulting in inflated type I errors for GCIT and the double GANs-
based CI test (DGCIT). To mitigate this issue, [30] proposed using the 1-nearest neighbor method
to generate samples from the approximated conditional distribution of X given Z. However, their
method requires splitting the dataset into two parts, with the testing dataset used for calculating the test
statistics comprising only one-third of the total samples. This will reduce the statistical power of the
test, particularly when working with small datasets. [38] utilized a Kozachenko-Leonenko estimator
for CMI as the test statistic and proposed a permutation scheme based on k-nearest neighbors to
generate samples under the null distribution. However, the curse of dimensionality adversely affects
the performance of the Kozachenko-Leonenko CMI estimator, leading to poor performance when the
conditioning variable set Z has high dimensions. Additionally, no theoretical guarantee is provided.
[31] and [25] employed a binning strategy, discretizing Z into a finite number of bins based on the
proximity of conditioning variables Z, followed by the "permute-within-groups" strategy. However,
selecting bins in high-dimensional settings presents a significant challenge [8], and their methods are
limited to handling conditioning variables Z with very few dimensions.

In our work, we propose the utilization of a k-nearest-neighbor local sampling strategy as an appealing
alternative to the binning strategy. Specifically, our strategy generates samples locally based on
the k-nearest neighbors of the conditioning variables Z. We demonstrate that the distribution of
samples generated from this k-nearest-neighbor local sampling scheme closely approximates the true
conditional distribution pX|Z(x|z) in terms of total variation distance. One significant advantage of
our proposed method is that it allows the entire dataset to be used for computing the testing statistics,
eliminating the need for dataset splitting. This feature makes our method more effective compared to
[30], which requires dataset splitting, particularly when dealing with small datasets. Moreover, our
method does not require the derivation of asymptotic null distributions for the estimated CMI, and it
can easily handle high-dimensional conditioning variables Z. We provide theoretical and empirical
evidence that our test achieves a valid control of the type I error and attains high power under the
alternative hypothesis H1.

3 K-Nearest-Neighbor Local Sampling Based CI Testing

3.1 Classifier-based CMI estimator

The CMI for a triplet of random variables/vectors (X,Y, Z) is defined as:

I(X;Y |Z) =

∫∫∫
pX,Y,Z(x, y, z) log

pX,Y,Z(x, y, z)

pX,Z(x, z)pY |Z(y|z)
dxdydz, (2)

where pX,Y,Z(x, y, z) is the joint density of (X,Y, Z), pX,Z(x, z) is the joint density of (X,Z),
and pY |Z(y|z) is the conditional density of Y given Z = z. One approach to estimate CMI is by
directly estimating the joint and conditional densities from the available data and plugging them
into (2). However, accurately estimating the density functions can be challenging, especially in
high-dimensional settings where it is more difficult than directly estimating CMI (2) [34]. CMI is a
special case of the Kullback-Leibler (KL) divergence, and thus we have:

I(X;Y |Z) = DKL(pX,Y,Z(x, y, z)||pX,Z(x, z)pY |Z(y|z)), (3)
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Algorithm 1 1-Nearest-Neighbor sampling (1-NN(V1, V2, n))
Input: Datasets V1 and V2, both with sample size n and V = V1 ∪ V2 consisting of 2n independently
and identically distributed (i.i.d.) samples from pX,Y,Z(x, y, z).
Output: A new data set V ′ consists of n samples.

1: Let V ′ = ∅.
2: for (X,Y, Z) in V2 do
3: Go to V1 to find the sample (X ′, Y ′, Z ′) such that Z ′ is the 1-nearest neighbor of Z in terms

of the l2 norm
4: V ′ = V ′ ∪ {(X,Y ′, Z)}.
5: end for
6: return V ′

where DKL(f ||g) denotes the KL divergence between two distribution functions F and G, with den-
sity functions f(x) and g(x), respectively. The Donsker-Varadhan (DV) representation of DKL(f ||g)
is given by:

sup
s∈S

[Ew∼fs(w)− logEw∼g exp{s(w)}] , (4)

where the function class S includes all functions with finite expectations. The optimal function in (4)
is given by s∗(x) = log{f(x)/g(x)} [4], which leads to:

DKL(f ||g) = Ew∼f log {f(w)/g(w)} − log[Ew∼g {f(w)/g(w)}]. (5)

Building upon the classifier-based CMI estimation method proposed by [34], we propose a CMI
estimation method using the 1-nearest-neighbor (1-NN) sampling algorithm [41, 30]. The pseu-
docode for estimating CMI is outlined in Algorithm 2. The main objective is to empirically es-
timate (5) with f = pX,Y,Z(x, y, z) and g = pX,Z(x, z)pY |Z(y|z), which requires samples from
both pX,Y,Z(x, y, z) and pX,Z(x, z)pY |Z(y|z). The available data only consists of samples from
pX,Y,Z(x, y, z). However, generating samples from pX,Z(x, z)pY |Z(y|z) requires knowledge of the
unknown conditional distribution pY |Z(y|z). To address this challenge, we propose utilizing the
1-NN sampling algorithm [41, 30], which is outlined in Algorithm 1. Empirical and theoretical
results presented in [30] indicate that the 1-NN sampling algorithm can accurately approximate the
conditional distribution.

Next, we formalize the classifier-based CMI estimator. We consider a data set V consisting of 2n i.i.d.
samples {Wi := (Xi, Yi, Zi)}2ni=1 with (Xi, Yi, Zi) ∼ pX,Y,Z(x, y, z). The data set V is divided into
two equally sized parts V1 and V2, where |V1| = |V2| = n. For data sets V1 and V2, we use the 1-NN
sampling algorithm 1 to generate a new data set V ′ with n samples. We assign labels l = 1 for all
samples in V2 and l = 0 for all samples in V ′. In this supervised classification task, a binary classifier
can be trained using an advanced binary classification model, such as XGBoost [41, 12] or deep
neural networks [21]. The classifier produces predicted probability αm = P (l = 1|Wm) for a given
sample Wm, leading to an estimator of the likelihood ratio on Wm given by L̂(Wm) = αm/(1−αm).
It follows from (3) and (5) that an estimator of I(X;Y |Z) is given by

Î(X;Y |Z) := D̂KL(pX,Y,Z(x, y, z)||pX,Z(x, z)pY |Z(y|z))

= d−1
d∑

i=1

log L̂(W f
i )− log{d−1

d∑
j=1

L̂(W g
j )}, (6)

where d = ⌊n/3⌋ with ⌊t⌋ being the largest integer not greater than t, W f
i is a sample in V test

f and
W g

j is a sample in V test
g , where V test

f and V test
g are defined in Algorithm 2. According to Theorem

1 in [34], Î(X;Y |Z) is a consistent estimator of I(X;Y |Z).

In contrast to the approach taken by [34, 30], which estimate CMI by using the difference between
two mutual informations (i.e., I(X;Y |Z) = I(X;Y,Z)− I(X;Z)) and therefore require training
two binary classifiers, our method achieves CMI estimation with just a single binary classifier. This
leads to significantly improved computational efficiency. As depicted in Algorithm 3, calculating a
single p-value requires the computation of (B + 1) CMIs. Hence, in practical applications involving
real data analysis, especially when dealing with large sample sizes or high-dimensional conditional
variables, efficient computation of the CMI becomes crucial.
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Algorithm 2 Classifier-based CMI Estimator
Input: Dataset V containing 2n i.i.d. samples drawn from pX,Y,Z(x, y, z).
Output: An estimator of CMI.

1: Equally split V into two parts V1 and V2, each containing n samples.
2: Apply Algorithm 1 to generate a new dataset V ′ with |V ′| = n.
3: Form the labeled datasets Vf = {(W f

i , l = 1) : W f
i ∈ V2} and Vg = {(W g

j , l = 0) : W g
j ∈ V ′}.

4: Divide Vf into training and testing subsets V train
f and V test

f , at a ratio of 2:1.

5: Similarly, split Vg into training and testing subsets V train
g and V test

g , at a ratio of 2:1.

6: Merge the datasets to form V train = V train
f ∪ V train

g and V test = V test
f ∪ V test

g .

7: Train the classifier C using V train.
8: For each w ∈ V test

0 , where V test
0 includes all features in V test, compute the classifier-based

predicted probability P (l = 1|w).
9: Calculate Î(X;Y |Z) as per formula (6).

10: return Î(X;Y |Z).

3.2 The Proposed CI Testing Procedure

While we have proposed a consistent estimator for CMI, accurately estimating it as zero under the
null hypothesis, H0, is practically unattainable due to random errors in the sample data. These errors
lead to deviations of the estimator from the actual value. To enhance the effectiveness of CI testing
based on the CMI estimator, we propose a test that takes into account the statistical variation inherent
in the CMI estimator.

Under H0, we can express the following representation:

pX|Y,Z(x|y, z) = pX|Z(x|z). (7)

The null model in (7) preserves the dependence between X and Z, while breaking any dependence
between X and Y . Therefore, if a direct causal link exists between X and Y , replacing X with a null
sample X∗ ∼ pX|Z(x|z) would disrupt this relationship. Thus, we can conclude that X∗ and Y are
conditionally independent given Z, i.e., I(X∗;Y |Z) = 0.

Consider n i.i.d. copies A = {(xi, yi, zi) : i = 1, . . . , n} of (X,Y, Z). When the distribution of
X|Z is known, conditional on Z = (z1, . . . , zn)

T , we can independently draw a pseudo sample
x
(b)
i ∼ pX|Z(x|zi) for each i across b = 1, . . . , B such that all X(b) := (x

(b)
1 , . . . , x

(b)
n )T are

independent of Y := (y1, . . . , yn)
T and also X := (x1, . . . , xn)

T , where B is the number of
repetitions. Under H0, (X(b),Y ,Z)

d
= (X,Y ,Z) for all b, where d

= denotes equality in distribution.
We denote the CMI estimator of I(X;Y |Z) based on (X(b),Y ,Z) as C̃MI(b) and denote the
estimator based on (X,Y ,Z) as ĈMI. We can approximate the p-value by

p :=
1 +

∑B
b=1 1(C̃MI(b) ≥ ĈMI)

1 +B
, (8)

where 1(·) is the indicator function. To begin with, we demonstrate that the test based on (8) can
effectively control the type I error. Specifically, under the null hypothesis H0, the (B + 1) triples
(X,Y ,Z), (X(1),Y ,Z), . . . , (X(B),Y ,Z) are exchangeable, and thus the p-value is valid and
satisfies P (p ≤ α|H0) ≤ α for any given α ∈ (0, 1) [11, 8, 43]. Furthermore, it intuitively suggests
that our test can achieve high power under the alternative hypothesis H1. As n approaches infinity,
C̃MI(b) converges to zero in probability. But under H1, we know that I(X;Y |Z) > 0. As a result,
ĈMI should be positive with high probability. Consequently, the p-value calculated using (8) is very
small with high probability, indicating the consistency of our test against all alternatives stated in H1.

However, pX|Z(x|z) is rarely known in practice [5, 43]. We propose using the k-nearest-neighbor
local sampling strategy to approximate pX|Z(x|z). The approximated distribution is denoted as
p̂X|Z(x|z). To generate pseudo samples from p̂X|Z(x|z), we follow the steps below:

5



Algorithm 3 K-Nearest-neighbor local sampling based CI testing
Input: Dataset (X,Y ,Z) consisting of n i.i.d. samples from pX,Y,Z(x, y, z).
Parameter: The number of repetitions B; the neighbor order k; the significance level α.
Output: Accept H0 : X ⊥⊥ Y |Z or H1 : X ⊥̸⊥ Y |Z.

1: Use Algorithm 2 to obtain ĈMI based on (X,Y ,Z).
2: for i ∈ {1, 2, ..., n} do
3: Obtain the set of indices of the k-nearest neighbor of zi: Mi = {j ∈ {1, 2, ..., n} :

∥zj − zi∥2 ≤ dki }, where dki denotes the distance of zi to its k-nearest neighbor.
4: end for
5: b = 1.
6: while b ≤ B do
7: Initialize empty array X̃ of length n.
8: for i ∈ {1, 2, ..., n} do
9: Shuffle Mi

10: j = Mi[1]

11: X̃[i] = X[j].
12: end for
13: Use Algorithm 2 to obtain ĈMI(b) based on (X̃,Y ,Z).
14: b = b+ 1.
15: end while
16: Compute p-value: p :=

[
1 +

∑B
b=1 1

{
ĈMI(b) ≥ ĈMI

}]
/(1 +B).

17: if p ≥ α then
18: Accept H0 : X ⊥⊥ Y |Z.
19: else
20: Accept H1 : X ⊥̸⊥ Y |Z.
21: end if

1. Obtain the set of indices of the k-nearest neighbors of zi based on the l2 norm. Denote this set
as Mi = {j ∈ {1, ..., n} : ∥zj − zi∥2 ≤ dki }, where dki is the distance of zi to its k-nearest
neighbor;

2. Shuffle Mi and let j be the first element of Mi. Then, define the pseudo sample x̃i as xj ;

3. Repeat the above two steps for all i ∈ {1, 2, . . . , n} to obtain the resultant pseudo sample vector
X̃ = (x̃1, . . . , x̃n)

T .

We establish in Section 4 that the total variation distance between the true distribution of X|Z and
the distribution of samples generated by the k-nearest-neighbor local sampling strategy tends to zero
in probability as n goes to infinity. This evidence suggests that the latter is a close approximation of
the former. Thus, (X̃,Y ,Z) approximates directly a distribution that encodes the null hypothesis.
We then compute the CMI estimator based on it. This process is repeated B times, resulting in B

realizations of the CMI estimator under the null hypothesis denoted by (ĈMI(1), . . . , ĈMI(B)). We
can determine whether to reject the null hypothesis by comparing these estimators to the one of the
original sample set A. Specifically, we calculate the p-value using (8), but with C̃MI(b) replaced
by ĈMI(b). If the resulting p-value is smaller than the prespecified significance level, we reject the
null hypothesis. The pseudo code is presented in Algorithm 3. In Section 4, we will demonstrate
through theoretical analysis that our test asymptotically achieves a valid control of type I error and is
consistent against all the alternatives in H1.

[30] employed the 1-NN sampling strategy to approximate the distribution of X|Z. To ensure
substantial dissimilarity between the pseudo-sample datasets generated across repetitions, their
method requires dividing the dataset into two parts. As a consequence, the dataset used for calculating
the test statistics consists of only one-third of the total samples. This limitation can result in reduced
statistical power of the test, especially when working with small datasets. In contrast, our proposed
procedure eliminates the need for dataset splitting and allows the entire dataset to be used in computing
ĈMI, thereby avoiding the loss of testing power.
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4 Theoretical Results

In this section, we present our main theoretical results. All the detailed proofs for these results
can be found in the Supplementary Materials. Let P1 and P2 be two probability distributions
defined on the same probability space. The total variation distance between P1 and P2 is defined as
dTV (P1, P2) = supA⊂Ω |P1(A)−P2(A)|, where the supremum is taken over all measurable subsets
A of the sample space Ω. We will show in Theorem 2 that the distribution of X̃ generated by the
k-nearest-neighbor local sampling strategy is very close to the true conditional distribution in terms
of the total variation distance.

Lemma 1 plays a crucial role in proving Theorem 2. It demonstrates that the k-nearest neighbor of Z
has a similar property to the work of [13], where it has been shown that the nearest neighbor of Z
converges almost surely (a.s.) to Z as the sample size n approaches infinity.
Lemma 1. Let Z and Z1, . . . , Zn be i.i.d. random vectors from p(z). For a given positive integer k,
let Z(k)

n be the k-nearest neighbor of Z from the set {Z1, . . . , Zn}. Then, Z(k)
n

a.s.−→ Z as n → ∞.

We make the following regularity conditions, which have been introduced in [19], [20] and [41]. To
simplify the notation, we may drop the subscripts when referring to probability density functions.

Assumption 1 (Smoothness on p(x|z)). For any z ∈ Rdz and any a such that ∥a− z∥2 ≤ ϵ, we
assume 0 ≤ λmax(Ia(z)) ≤ β, where dz is the dimension of the random vector Z, ∥·∥2 denotes the
l2 norm, 0 < β < ∞, and Ia(z), called the generalized curvature matrix, is defined with entries

Ia(z)ij = E

(
−∂2 log p(X|Z = z̃)

∂z̃i∂z̃j

∣∣∣
z̃=a

∣∣∣∣Z = z

)
=

(
∂2

∂z̃i∂z̃j

∫
log

p(x|z)
p(x|z̃)

p(x|z)dx
) ∣∣∣∣

z̃=a

.

Assumption 2 (Smoothness on p(z)). Assume that the probability density function p(z) is twice
continuously differentiable. Let Hp(z) denote the Hessian matrix of p(z) with respect to z. We
assume that ∥Hp(z)∥2 ≤ cdz

holds almost everywhere, where cdz
depends only on the dimension dz

of the random vector Z.

Note that Assumption 1 can be viewed as an extension of the requirement that the maximum
eigenvalue of the Fisher information matrix for x with respect to z is bounded. Assumptions 1 and
2 can be validated when (X,Z) follows a multivariate Gaussian distribution (MVD) and when Z
follows a MVD, respectively.

For Z, we define Z
(l)
n as its l-nearest neighbor for l = 1, ..., k. According to Algorithm 3, each

Z
(l)
n is selected with probability 1/k. Let ξ be a random variable with a probability mass function

P (ξ = l) = 1/k for l = 1, ..., k, and ξ is independent of both Y and Z. Given Z, we denote by
X̃ the sample generated by the k-nearest-neighbor local sampling mechanism, which follows the
distribution p̂(x|Z) = p(x|Z(1)

n )1{ξ=1} × . . . × p(x|Z(k)
n )1{ξ=k}. The sketch proof of Theorem 2

proceeds as follows. We first apply Pinsker’s inequality, which relates the total variation distance
between p(x|Z) and p̂(x|Z) to their KL divergence. We then establish a connection between the KL
divergence and the discrepancy between Z and Z

(l)
n . Finally, by Lemma 1, we derive Theorem 2.

Theorem 2. Under Assumptions 1 and 2, we have dTV {p(x|Z), p̂(x|Z)} = op(1) as n → ∞.
Remark 1. The constant β in Assumption 1 is used to establish an upper bound on the KL divergence
between p(x|Z) and p(x|Z(l)

n ), which can be used to bound dTV {p(x|Z), p̂(x|Z)} through Pinsker’s
inequality.

In Theorem 3, we bound the excess type I error conditionally on Y and Z by the total variation
distance between p̂(·|Z) and p(·|Z).
Theorem 3. Assume H0 : X ⊥⊥ Y |Z is true. Under Assumptions 1 and 2, for any signif-
icance level α ∈ (0, 1), the p-value obtained from Algorithm 3 satisfies P (p ≤ α|Y ,Z) ≤
α+ dTV {p(·|Z), p̂(·|Z)}.

The type I error rate can be unconditionally controlled based on Theorems 2 and 3, which implies
that P (p ≤ α|H0) ≤ α + o(1) as n approaches infinity. Now we turn to analyze the power of our
test in asymptotic scenarios in Theorem 4. Some intuitive explanations on both type I error rate and
power can be found in the third paragraph of Section 3.2.
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Theorem 4. For any α ∈ (0, 1) and the number of repetitions Bn satisfying Bn → ∞, let p be the
p-value calculated in Algorithm 3. Under Assumptions 1 and 2 and the Assumptions stated in the
Supplementary Materials, P (p ≤ α|H1) → 1 as n → ∞.

Remark 2. The condition Bn → ∞ is mild and has been made in [7, 43]. The consistency of our test
heavily relies on the consistency of the CMI estimator, which hinges on whether the joint density of
(X,Y ′, Z) generated by the 1-NN sampling (Algorithm 1), denoted as ϕ, approximates p(x, z)p(y|z)
(denoted as g) well, in terms of TV distance. β and cdz

in Assumptions 1 and 2 are used to bound
dTV (ϕ, g).

Remark 3. According to Theorem 4, our test can achieve consistency against all the alternatives
stated in H1. In contrast, the method proposed by [43] only achieves consistency against a subset of
the alternatives in H1, and [30] does not provide any theoretical results on the testing power.

5 Empirical Results

In this section, we present a comparative evaluation of our proposed method against the state-of-the-art
(SOTA) methods on synthetic datasets. Our code is publicly available at: https://github.com/LeeShuai-
kenwitch/NNLSCIT. We specifically compare our method with six commonly used competitive CI
testing methods: KCIT [47], LPCIT[40], CCIT [41], CMIknn [38], GCIT [5], and NNSCIT [30]. We
set the number of repetitions B = 200 and the neighbor order k = 7 for our tests. The XGBoost
classifier was used in all of our experiments. Further elaboration on the choice of k is given in Figure
3 in the Supplementary Materials. We set the significance level to α = 0.05 and report the type I
error rate and the testing power under H1 for all methods evaluated in our experiments. All the results
are presented as an average over 200 independent trials. We provide additional simulation studies
and real data analysis in the Supplementary Materials.

Scenario I: the post-nonlinear model. The datasets used in our experiments are generated using the
post-nonlinear model similar to those in [47, 16, 5, 40]. Specifically, we define (X,Y, Z) under H0

and H1 as follows:

H0 : X = f1(Z + 0.5ϵx), Y = f2(Z + 0.5ϵy),

H1 : X = f1(Z + 0.5ϵx) + 0.5ϵb, Y = f2(Z + 0.5ϵy) + 0.5ϵb, (9)

where Z represents the sample mean of Z = (z1, . . . , zdz ), all zl in Z, ϵx, ϵy and ϵb are i.i.d. samples
generated from the standard Gaussian or the standard Laplace distribution, and f1 and f2 are randomly
sampled from the set {x, x2, x3, tanh(x), cos(x)}.

We conduct a comparative analysis of various tests from two perspectives. The results are shown in
Figure 1. First, we fix the sample size at n = 500 and vary the dimension of Z from 30 to 100. In
both the Gaussian and Laplace cases, our test shows good and stable performance in controlling type
I error and achieving high power under H1 as the dimension of Z increases. LPCIT and NNSCIT
have satisfactory performance in controlling type I error, but LPCIT loses power under H1 when the
dimension exceeds 70, and NNSCIT has inadequate power for all dimensions. Although GCIT, CCIT,
and KCIT have adequate power under H1, they inflate the type I error in almost all scenarios. CMIknn
shows weak performance on both type I error and testing power. Figure 6 in the Supplementary
Materials contains additional results on the performance of various tests in low dimensions of Z
ranging from 5 to 30, further demonstrating the superiority of our test. Second, we vary the sample
size from 300 to 2000 while fixing the dimension of Z at 80. Our test maintains good control of the
type I error and achieves high power, with the power approaching 1 when the sample size exceeds
500. However, LPCIT, NNSCIT, and CMIknn lose power under H1, while GCIT, CCIT, and KCIT
either always or sometimes fail to control the type I error well.

In the Supplementary Materials, Figure 7 shows the timing performance of all methods for a single
test. Our test is found to be highly computationally efficient even when dealing with large sample sizes
and high-dimensional conditioning sets. In contrast, CMIknn and CCIT for sample sizes exceeding
1000, and LPCIT for dimension of Z higher than 50 are impractical due to their prohibitively long
running time.

Scenario II: the heavy tailed model. We compare the performance of our test with the SOTA
tests under the heavy tailed error distributions, as described in [10]. The data (X,Y, Z) is generated
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Figure 1: Comparison of the type I error (lower is better) and power (higher is better) of our method
with six SOTA methods on the post-nonlinear model under Gaussian or Laplace distributions in
Scenario I. Left: The results when varying the dimension of Z. Right: The results when varying the
sample size.

according to the following model:

H0 : X = Z + ϵ1, Y = Z + ϵ2,

H1 : X = Z + ϵ1, Y = Z + ϵ1 + ϵ2, (10)

where Z is the sample mean of Z = (z1, . . . , zdz ), zl’s are i.i.d. samples generated from the
standard Gaussian distribution, and ϵ1 and ϵ2 are independently generated from the standard Cauchy
distribution. We keep the sample size fixed at n = 500.

9



5 10 15 20 25 30 40 50
Dimension of Z

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Ty
pe

 I 
er

ro
r

Cauchy, samples=500
GCIT
CCIT
KCIT
CMIknn
LPCIT
NNSCIT
Ours

5 10 15 20 25 30 40 50
Dimension of Z

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ty
pe

 I 
er

ro
r

Gauss, samples=500

5 10 15 20 25 30 40 50
Dimension of Z

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Po
we

r

Cauchy, samples=500

5 10 15 20 25 30 40 50
Dimension of Z

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Po
we

r

Gauss, samples=500

Figure 2: Comparison of the type I error (lower is better) and power (higher is better) of our method
with six SOTA methods in Scenarios II and III. Left: The results in Scenario II. Right: The results in
Scenario III.

Scenario III: the chain structure. We further use the chain structure Y → Z → X in [30] to
validate the proposed test. The detailed procedure for generating the simulated data can be found in
the Supplementary Materials. The sample size is fixed at n = 500.

Figure 2 demonstrates that our test effectively controls the type I error and obtains adequate power in
both Scenarios II and III under various dimensions of Z.

6 Conclusion

In this paper, we introduce a novel method for conducting the conditional independence testing.
Theoretical analysis shows that our test is asymptotically valid and consistent against all alternatives
in H1. Extensive experiments on both synthetic and real datasets demonstrate that our method consis-
tently outperforms commonly used SOTA methods. Moreover, our approach maintains computational
efficiency even when the sample size and/or dimension of the conditioning set increase. Our method
has the potential to enhance the applicability of causal discovery to real-world problems, such as
gene regulatory networks or complex social networks, and to facilitate the discovery of relationships
and patterns in complex systems. Ethically, we believe that our rather fundamental work has minimal
potential for misuse.

Acknowledgments

Dr. Ziqi Chen’s work was partially supported by the National Key R&D Program of China
(2021YFA1000100 and 2021YFA1000101), National Natural Science Foundation of China (NSFC)
(12271167, 72331005 and 11871477), Natural Science Foundation of Shanghai (21ZR1418800)
and Basic Research Project of Shanghai Science and Technology Commission (22JC1400800). Dr.
Christina Dan Wang’s work was partially supported by the National Natural Science Foundation
of China (NSFC) (12271363 and 11901395). We thank the anonymous reviewers for their helpful
comments.

10



References
[1] Chunrong Ai, Li-Hsien Sun, Zheng Zhang, and Liping Zhu. Testing unconditional and condi-

tional independence via mutual information. Journal of Econometrics, 2022.

[2] Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. The
Annals of Statistics, 49(6):3070–3102, 2021.

[3] Kunihiro Baba, Ritei Shibata, and Masaaki Sibuya. Partial correlation and conditional correlation
as measures of conditional independence. Australian & New Zealand Journal of Statistics,
46(4):657–664, 2004.

[4] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In International
Conference on Machine Learning, pages 531–540. PMLR, 2018.

[5] Alexis Bellot and Mihaela van der Schaar. Conditional independence testing using generative
adversarial networks. In Advances in Neural Information Processing Systems, 32, 2019.

[6] Wicher Pieter Bergsma. Testing conditional independence for continuous random variables.
Eurandom, 2004.

[7] Thomas B Berrett and Richard J Samworth. Nonparametric independence testing via mutual
information. Biometrika, 106(3):547–566, 2019.

[8] Thomas B Berrett, Yi Wang, Rina Foygel Barber, and Richard J Samworth. The conditional
permutation test for independence while controlling for confounders. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 82(1):175–197, 2020.

[9] Catherine L Blake and Christopher J Merz. Uci repository of machine learning databases, 1998.

[10] Zhanrui Cai, Runze Li, and Yaowu Zhang. A distribution free conditional independence test
with applications to causal discovery. Journal of Machine Learning Research, 23(85):1–41,
2022.

[11] Emmanuel Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:‘model-x’
knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 80(3):551–577, 2018.

[12] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794. ACM, 2016.

[13] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[14] Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons,
2012.

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In
Advances in Neural Information Processing Systems, 34, 2021.

[16] Gary Doran, Krikamol Muandet, Kun Zhang, and Bernhard Schölkopf. A permutation-based
kernel conditional independence test. In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence, pages 132–141, 2014.

[17] Sebastian Engelke and Adrien S Hitz. Graphical models for extremes. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 82(4):871–932, 2020.

[18] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of
conditional dependence. In Advances in Neural Information Processing Systems, 20, 2007.

[19] Weihao Gao, Sewoong Oh, and Pramod Viswanath. Breaking the bandwidth barrier: Geometri-
cal adaptive entropy estimation. In Advances in Neural Information Processing Systems, 29,
2016.

11



[20] Weihao Gao, Sewoong Oh, and Pramod Viswanath. Demystifying fixed k-nearest neighbor
information estimators. In Information Theory (ISIT), 2017 IEEE International Symposium on,
pages 1267–1271, 2017.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016.

[22] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

[23] Kirthevasan Kandasamy, Akshay Krishnamurthy, Barnabas Poczos, Larry Wasserman, and
James m Robins. Nonparametric von mises estimators for entropies, divergences and mutual
informations. In Advances in Neural Information Processing Systems, 28, 2015.

[24] Eugene Katsevich and Chiara Sabatti. Multilayer knockoff filter: Controlled variable selection
at multiple resolutions. The Annals of Applied Statistics, 13(1):1–33, 2019.

[25] Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. Local permutation
tests for conditional independence. The Annals of Statistics, 50(6):3388–3414, 2022.

[26] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
MIT Press, 2009.

[27] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical Review E, 69(6):066138, 2004.

[28] Chun Li and Xiaodan Fan. On nonparametric conditional independence tests for continuous
variables. Wiley Interdisciplinary Reviews: Computational Statistics, 12(3):e1489, 2020.

[29] Honghao Li, Vincent Cabeli, Nadir Sella, and Hervé Isambert. Constraint-based causal structure
learning with consistent separating sets. In Advances in Neural Information Processing Systems,
32, 2019.

[30] Shuai Li, Ziqi Chen, Hongtu Zhu, Christina Dan Wang, and Wang Wen. Nearest-neighbor
sampling based conditional independence testing. arXiv preprint arXiv:2304.04183, 2023.

[31] Dimitris Margaritis. Distribution-free learning of bayesian network structure in continuous
domains. In Proceedings of the 20th National Conference on Artificial Intelligence, volume 5,
pages 825–830, 2005.

[32] Arnab Mondal, Arnab Bhattacharjee, Sudipto Mukherjee, Himanshu Asnani, Sreeram Kannan,
and AP Prathosh. C-mi-gan: Estimation of conditional mutual information using minmax
formulation. In Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence,
pages 849–858, 2020.

[33] Joris M Mooij and Tom Heskes. Cyclic causal discovery from continuous equilibrium data. In
Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, pages 431–439,
2013.

[34] Sudipto Mukherjee, Himanshu Asnani, and Sreeram Kannan. Ccmi: Classifier based conditional
mutual information estimation. In Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence, pages 1083–1093, 2020.

[35] Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimal conditional
independence testing. The Annals of Statistics, 49(4):2151–2177, 2021.

[36] Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and dag constraints
for learning linear dags. In Advances in Neural Information Processing Systems, 33, 2020.

[37] Judea Pearl. Causality. Cambridge University Press, 2009.

[38] Jakob Runge. Conditional independence testing based on a nearest-neighbor estimator of
conditional mutual information. In Proceedings of the 21th International Conference on
Artificial Intelligence and Statistics, pages 938–947, 2018.

12



[39] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005.

[40] Meyer Scetbon, Laurent Meunier, and Yaniv Romano. An asymptotic test for conditional
independence using analytic kernel embeddings. In International Conference on Machine
Learning, pages 19328–19346. PMLR, 2022.

[41] Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G Dimakis, and
Sanjay Shakkottai. Model-powered conditional independence test. In Advances in Neural
Information Processing Systems, 30, 2017.

[42] Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the
generalised covariance measure. The Annals of Statistics, 48(3):1514–1538, 2020.

[43] Chengchun Shi, Tianlin Xu, Wicher Bergsma, and Lexin Li. Double generative adversar-
ial networks for conditional independence testing. Journal of Machine Learning Research,
22(285):1–32, 2021.

[44] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
Press, 2000.

[45] Eric V Strobl, Kun Zhang, and Shyam Visweswaran. Approximate kernel-based conditional
independence tests for fast non-parametric causal discovery. Journal of Causal Inference, 7(1),
2019.

[46] Xueqin Wang, Wenliang Pan, Wenhao Hu, Yuan Tian, and Heping Zhang. Conditional distance
correlation. Journal of the American Statistical Association, 110(512):1726–1734, 2015.

[47] Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based conditional
independence test and application in causal discovery. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence, pages 804–813, 2011.

[48] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning.
In International Conference on Learning Representations, 2020.

13



Supplementary Materials for "K-Nearest-Neighbor Local Sampling Based
Conditional Independence Testing"

A Theoretical results

A.1 Proof of Lemma 1

Proof. Recall that Z is a random vector taking values in Euclidean space (Rdz , ∥·∥2), where dz is the
dimension of Z and ∥ · ∥2 is Euclidean distance. Z1, Z2, . . . , Zn are i.i.d. random vectors according
to p(z). For a fixed z ∈ Rdz , we denote by Z

(1)
n (z), . . . , Z

(n)
n (z) a reordering of Z1, Z2, . . . , Zn

according to the increasing values of ∥Zi − z∥2, that is,

∥Z(1)
n (z)− z∥2 ≤ . . . ≤ ∥Z(n)

n (z)− z∥2.

Define the set G = {z ∈ Rdz | ∀δ > 0, P ({ω : Z(ω) ∈ Sz(δ)}) > 0}, where Sz(δ) = {x ∈
Rdz | ∥x− z∥2 ≤ δ}. For convenience, we omit ω in probability in the following paper. For example,
write P (Z ∈ Sz(δ)) instead of P ({ω : Z(ω) ∈ Sz(δ)}). By definition, for z ∈ G, ∀δ > 0,
P (Z ∈ Sz(δ)) > 0. Let Gc be the complement of G. Then, for z ∈ Gc, ∃rz > 0, s.t. ∀r < rz ,
P (Z ∈ Sz(r)) = 0. Note that P (∥Z(k)

n (z)− z∥2 > δ) = P (Z
(k)
n (z) /∈ Sz(δ)).

In order to prove ∥Z(k)
n (Z) − Z∥2 → 0 a.s., it is sufficient to prove ∀δ > 0,

limn→∞ P (supm≥n∥Z
(k)
m (Z)− Z∥2 > δ) = 0. We can obtain

P (supm≥n∥Z(k)
m (Z)− Z∥2 > δ) ≤ P ({supm≥n∥Z(k)

m (Z)− Z∥2 > δ} ∩ {Z ∈ G}) + P (Z ∈ Gc)

=

∫
G

P (supm≥n∥Z(k)
m (z)− z∥2 > δ)p(z)dz + P (Z ∈ Gc)

≤
∫
G

∑
m≥n

P (Z(k)
m (z) /∈ Sz(δ))p(z)dz + P (Z ∈ Gc). (11)

First, consider the first term of (11). We have

P (Z(k)
m (z) /∈ Sz(δ)) = P (Z(1)

m (z), Z(2)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ P (Z(1)
m (z) ∈ Sz(δ), Z

(2)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ P (Z(1)
m (z), Z(2)

m (z) ∈ Sz(δ), Z
(3)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ))

+ . . .+ P (Z(1)
m (z), . . . , Z(k−1)

m (z) ∈ Sz(δ), Z
(k)
m (z), . . . , Z(m)

m (z) /∈ Sz(δ)).

By setting P (Z ∈ Sz(δ)) = γ, we have

P (Z(k)
m (z) /∈ Sz(δ)) = (1− γ)m + C1

mγ(1− γ)m−1 + C2
mγ2(1− γ)m−2 + . . .

+ Ck−1
m γk−1(1− γ)m−k+1. (12)

Consider the j-th term of (12). Let C1 := γj/j!, C2 := C1e
j and C3 := C2e

j(1− γ)−j . By using
Stirling’s approximation, we have

lim
m→∞

Cj
mγj(1− γ)m−j = lim

m→∞

m!

(m− j)!j!
γj(1− γ)m−j

= lim
m→∞

C1

√
2πm(me )

m√
2π(m− j)(m−j

e )m−j
(1− γ)m−j

= lim
m→∞

C2

√
m

(m− j)

mm

(m− j)
m−j

(1− γ)m−j

= lim
m→∞

C2e
j(m+ j)j(1− γ)m

= lim
m→∞

C2e
jmj(1− γ)m−j

= lim
m→∞

C3m
j(1− γ)m.
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Thus, there exists C4 > 0 such that P (Z
(k)
m (z) /∈ Sz(δ)) ≤ C4m

k−1(1− γ)m when m is large
enough. It holds that

C4m
k−1(1− γ)m

m−2
= C4m

k+1(1− γ)m → 0, as m → +∞.

Thus, for z ∈ G and n large enough, ∀δ > 0, we have P (Z
(k)
m (z) /∈ Sz(δ)) = o(m−2) and∑

m≥n
P (Z(k)

m (z) /∈ Sz(δ)) ≤
∑

m≥n

1

m2
,

which shows limn→∞
∑

m≥nP (Z
(k)
m (z) /∈ Sz(δ)) = 0 for z ∈ G. So by Lebesgue dominated

convergence theorem, we obtain limn→∞
∫
G

∑
m≥nP (Z

(k)
m (z) /∈ Sz(δ))p(z)dz = 0.

Second, we consider the second term of (11). To prove that P (Z ∈ Gc) = 0, we aim to construct a
countable open cover of Gc and show that the probability of the random vector Z falling into each of
these open balls is zero. By the property of Gc, for every z ∈ Gc, there exists rz > 0 such that for all
r < rz , P (Z ∈ Sz(r)) = 0. Furthermore, using the separability of Euclidean space and the density
of the rational number set, we can approximate z using points from Qdz with Q being the rational
number set. Therefore, for every z ∈ Gc, there exist x ∈ Qdz ∩ Sz(

rz
3 ) and r ∈ Q ∩ ( rz3 ,

2rz
3 ),

such that z ∈ Sx(r) ⊆ Sz(rz). Because P (Z ∈ Sz(rz)) = 0, we conclude that P (Z ∈ Sx(r)) = 0.
Define

F := {Sx(r)| ∃z ∈ Gc, such that z ∈ Sx(r) ⊆ Sz(rz) with x ∈ Qdz and r ∈ Q}.
Note that the elements in set F are mutually distinct. By the construction of Sx(r), F forms a
countable open cover of Gc, and the probability of Z falling into each open ball in F is zero. Using
the monotonicity and countable additivity properties of probability, we have P (Z ∈ Gc) ≤ P (Z ∈
∪Sx(r)∈FSx(r)) ≤

∑
Sx(r)∈FP (Z ∈ Sx(r)) = 0. Thus, we conclude that P (Z ∈ Gc) = 0.

We therefore conclude that, ∀δ > 0, limn→∞ P (supm≥n∥Z
(k)
m (Z)− Z∥2 > δ) = 0. This finish the

proof.

A.2 Proof of Theorem 2

Proof. By Pinsker’s inequality, we have

dTV {p(x|Z), p̂(x|Z)} ≤
√

DKL{p(x|Z), p̂(x|Z)}/2.

Note that I{ξ = 1}+ . . .+ I{ξ = k} = 1. By the definition of p̂(x|Z), we obtain

DKL{p(x|Z), p̂(x|Z)} =

∫
p(x|Z) log

{
p(x|Z)

p(x|Z(1)
n )I{ξ=1} × . . .× p(x|Z(k)

n )I{ξ=k}

}
dx

=

∫
p(x|Z) log

k∏
l=1

p(x|Z)I{ξ=l}

p(x|Z(l)
n )I{ξ=l}

dx

=

k∑
l=1

I{ξ = l}
∫

p(x|Z) log
p(x|Z)

p(x|Z(l)
n )

dx

=

k∑
l=1

I{ξ = l}DKL{p(x|Z)||p(x|Z(l)
n )}.

Then, by Taylor’s expansion, we have

DKL{p(x|Z)||p(x|Z(l)
n )}

= DKL{p(x|Z)||p(x|Z)}+ ∂

∂z′
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=Z

(Z(l)
n − Z)

+
1

2
(Z(l)

n − Z)T
∂2

∂z′∂z′T
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=a

(Z(l)
n − Z),
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where a = λZ + (1− λ)Z
(l)
n with 0 ≤ λ ≤ 1.

Note that DKL{p(x|Z)||p(x|Z)} =
∫
p(x|Z) log p(x|Z)

p(x|Z)dx = 0. By Lemma 1 and Assumptions 1
and 2, we have

∂

∂z′
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=Z

= −
∫

p(x|Z) · ∂

∂z′
log p(x|z′)

∣∣∣∣
z′=Z

dx

= − ∂

∂z′

∫
p(x|z′)dx

∣∣∣∣
z′=Z

= 0

and

∂2

∂z′∂z′T
DKL{p(x|Z)||p(x|z′)}

∣∣∣∣
z′=a

= −
∫

p(x|Z) · ∂2

∂z′∂z′T
log p(x|z′)

∣∣∣∣
z′=a

dx = Ia(Z).

This means

DKL{p(x|Z)||p(x|Z(l)
n )} =

1

2
(Z(l)

n − Z)T Ia(Z)(Z(l)
n − Z).

Note that Z(l)
n → Z a.s. implies that Z(l)

n converges to Z in probability. Then ∀δ > 0, for ϵ defined
in Assumption 1, we have

P (DKL{p(x|Z)||p(x|Z(l)
n )} > δ) ≤ P ({DKL{p(x|Z)||p(x|Z(l)

n )} > δ} ∩ {∥Z(l)
n − Z∥2 ≤ ϵ})

+ P (∥Z(l)
n − Z∥2 > ϵ)

≤ P

(
1

2
β∥Z(l)

n − Z∥22 > δ

)
+ P (∥Z(l)

n − Z∥2 > ϵ)

= o(1).

Thus, DKL{p(x|Z)||p(x|Z(l)
n )} = op(1).

Because I{ξ = l} ≤ 1 for l = 1, 2, ..., k, and k is finite, we obtain

DKL{p(x|Z), p̂(x|Z)} =

k∑
l=1

I{ξ = l}DKL{p(x|Z)||p(x|Z(l)
n )} = op(1).

Finally, we conclude that dTV {p(x|Z), p̂(x|Z)} ≤
√

DKL{p(x|Z), p̂(x|Z)}/2 = op(1).

A.3 Proof of Theorem 3

To prove Theorem 3, the following two lemmas are needed.

Lemma 5. Let X́ be drawn from p̂(·|Z), independently of Y . X́(1), . . . , X́(B) are i.i.d. samples
drawn from the k-nearest-neighbor local sampling mechanism based on (X́,Y ,Z). For any statistic
T , the B + 1 statistics

T (X́,Y ,Z), T (X́(1),Y ,Z), . . . , T (X́(B),Y ,Z)

are exchangeable conditionally on Y and Z.

Proof. We have that the B+1 triples (X́,Y ,Z), (X́(1),Y ,Z), . . . , (X́(B),Y ,Z) are i.i.d. samples
drawn from the same mechanism after conditionally on X́(),Y and Z, where X́() is the order statistic
of X́ . Note that, T is measurable. Thus, T (X́,Y ,Z), T (X́(1),Y ,Z), . . . , T (X́(B),Y ,Z) are
i.i.d. after conditionally on X́(),Y and Z. Conditionally on X́(),Y and Z, denote their cumulative
conditional distribution as F (·|X́(),Y ,Z). Denote X́ as X́(0). Then, for any t0, . . . , tB ∈ R and
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any permutation π = (π(0), . . . , π(B)) of the indices {0, 1, . . . , B}, we have

P (T (X́(0),Y ,Z) ≤ t0, T (X́
(1),Y ,Z) ≤ t1, . . . , T (X́

(B),Y ,Z) ≤ tB |Y ,Z)

= EX́()|Y ,Z{P (T (X́(0),Y ,Z) ≤ t0, T (X́
(1),Y ,Z) ≤ t1, . . . , T (X́

(B),Y ,Z) ≤ tB |X́(),Y ,Z)}

= EX́()|Y ,Z{P (T (X́(0),Y ,Z) ≤ t0|X́(),Y ,Z), . . . , P (T (X́(B),Y ,Z) ≤ tB |X́(),Y ,Z)}

= EX́()|Y ,Z

{
B∏
i=0

F (ti|X́(),Y ,Z)

}
= EX́()|Y ,Z{P (T (X́(π(0)),Y ,Z) ≤ t0, . . . , T (X́

(π(B)),Y ,Z) ≤ tB |X́(),Y ,Z)}

= P (T (X́(π(0)),Y ,Z) ≤ t0, . . . , T (X́
(π(B)),Y ,Z) ≤ tB |Y ,Z).

Thus, the desired result follows.

Let d
= denotes equality in distribution. We present the following Lemma:

Lemma 6. For any two bi-tuples (U ,V ) and (U ′,V ′), if ∀u, (V |U = u)
d
= (V ′|U ′ = u), we

have dTV {(U ,V ), (U ′,V ′)} = dTV (U ,U ′).

Proof. Denote the joint density functions of (U ,V ) and (U ′,V ′) by pU ,V (u,v) and pU ′,V ′(u′,v′),
respectively. According to the equivalent definition of the TV distance, we obtain

dTV {(U ,V ), (U ′,V ′)} =
1

2

∫∫ ∣∣pU ,V (u,v)− pU ′,V ′(u,v)
∣∣dudv

=
1

2

∫∫ ∣∣pV |U (v|u)pU (u)− pV ′|U ′(v|u)pU ′(u)
∣∣dudv

=
1

2

∫∫
pV |U (v|u)

∣∣pU (u)− pU ′(u)
∣∣dudv

=
1

2

∫ [ ∫
pV |U (v|u)dv

]∣∣pU (u)− pU ′(u)
∣∣du

=
1

2

∫ ∣∣pU (u)− pU ′(u)
∣∣du

= dTV (U ,U ′).

Now we present the proof of Theorem 3:

Proof. Let X̃(1), . . . , X̃(B) be i.i.d. drawn from the k-nearest-neighbor local sampling mechanism,
see Algorithm 3. Now let X́ be an additional sample drawn from p̂(·|Z) independently of Y . Let
X́(1), . . . , X́(B) be i.i.d. drawn from the k-nearest-neighbor local sampling mechanism after we
observe X́ instead of X . Because (X́(1), . . . , X́(B)), conditionally on X́,Y and Z, is generated
from the same mechanism as (X̃(1), . . . , X̃(B)), conditionally on X,Y and Z, for all x ∈ Rn, we
have

((X̃(1), . . . , X̃(B))|X = x,Y ,Z)
d
= ((X́(1), . . . , X́(B))|X́ = x,Y ,Z).

Then, by applying Lemma 6, we obtain

dTV {(X, X̃(1), . . . , X̃(B)|Y ,Z), (X́, X́(1), . . . , X́(B)|Y ,Z)}
= dTV {(X|Y ,Z), (X́|Y ,Z)} = dTV {p(·|Z), p̂(·|Z)}.

Define χB
α :=

{
(x,x(1), . . . ,x(B))

∣∣∣ [
1 +

∑B
b=1 1{T (x(b),Y ,Z) ≥ T (x,Y ,Z)}

] /
(1 +B) ≤ α

}
,

where 1(·) is the indicator function. Note that in our case, the statistic T is selected to be ĈMI. Then,
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it follows that

P (p ≤ α|Y ,Z) = P ((X, X̃(1), . . . , X̃(B)) ∈ χB
α |Y ,Z)

= P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z) + P ((X, X̃(1), . . . , X̃(B)) ∈ χB

α |Y ,Z)

− P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z)

≤ P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z)

+ dTV {(X, X̃(1), . . . , X̃(B)|Y ,Z), (X́, X́(1), . . . , X́(B)|Y ,Z)}
= P ((X́, X́(1), . . . , X́(B)) ∈ χB

α |Y ,Z) + dTV {p(·|Z), p̂(·|Z)}.

Applying Lemma 5 and the property of rank test, we obtain P ((X́, X́(1), . . . , X́(B)) ∈ χB
α |Y ,Z) ≤

α. Finally, we have P (p ≤ α|Y ,Z) ≤ α+ dTV {p(·|Z), p̂(·|Z)}.

Because the TV distance is bounded by 1, marginalizing the above inequality over Y and Z and
applying Theorem 2 and Lebesgue dominated convergence theorem lead to

P (p ≤ α|H0) ≤ α+ E(dTV {p(·|Z), p̂(·|Z)}) = α+ o(1).

A.4 Proof of Theorem 4

Here we present the assumptions given in [34] that ensure the consistency of CMI estimator. We
denote the point (x, y, z) as ω ∈ Rdx × Rdy × Rdz . Let f(ω) = p(x, y, z) be the joint density
function of (X,Y, Z), g(ω) = p(x, z)p(y|z) be the joint density function of (X,Y, Z) under H0,
and ϕ(ω) = ϕ(x, y, z) be the joint density of (X,Y ′, Z) produced by Algorithm 1. For a given point
ω, γ(ω) = P (l = 1|ω) represents the predicted positive label probability generated by a classifier.
When the prediction is from a classifier with parameter θ, it is denoted as γθ(ω). For convenience,
the parameter θ in γ is dropped when it is understood from the context. According to Algorithm
2, P (l = 1) = P (l = 0) = 1/2. Define the population binary-cross entropy loss over the joint
distribution of data and label as BCE(γ) = −(EWl(l log γ(W ) + (1− l) log(1− γ(W ))).

Assumption (A1): f(·) and ϕ(·) admit densities in a compact subset W ⊂ Rdx × Rdy × Rdz .

Assumption (A2): For some constant α, β > 0, α ≤ f(ω), ϕ(ω) ≤ β, ∀ω.

Assumption (A3): Clip predictions such that γ(ω) ∈ [τ, 1− τ ], ∀ω, with 0 < τ ≤ α/(α+ β).

Assumption (A4): The classifier class Cθ is parametrized by θ within a compact domain Θ ⊂ Rh.
There exists a constant K such that ||θ||2 ≤ K, and the classifier’s output is L-Lipschitz with respect
to θ.

Assumption (A5):
∫
p(z)1−1/ddz ≤ C5, ∀d ≥ 2, where C5 is a constant.

We denote the CMI estimator ĈMI based on Algorithm 2 by D̂
(n)
KL(f ||ϕ). The true CMI of (X,Y, Z)

is CMI = I(X;Y |Z) = DKL(f ||g). Then we have the following Lemma:

Lemma 7. Under Assumptions 1 and 2 and (A1)-(A5), we have D̂
(n)
KL(f ||ϕ)

P→ DKL(f ||g).

Proof. By the definition of convergence in probability, it is sufficient to prove ∀δ > 0, ∀η > 0, ∃N ,
when n > N , P (|D̂(n)

KL(f ||ϕ)−DKL(f ||g)| > δ) < η.

Note that

P (|D̂(n)
KL(f ||ϕ)−DKL(f ||g)| > δ)

= P (|D̂(n)
KL(f ||ϕ)−DKL(f ||ϕ) +DKL(f ||ϕ)−DKL(f ||g)| > δ).

Applying Theorem 1 in [34], we have D̂(n)
KL(f ||ϕ)−DKL(f ||ϕ)

P→ 0, which means for δ/2 > 0 and
η > 0, ∃N1, when n > N1, P (|D̂(n)

KL(f ||ϕ)−DKL(f ||ϕ)| > δ/2) < η.

Now consider the term DKL(f ||ϕ)−DKL(f ||g). Let γ′ be the point-wise minimizer of binary-cross
entropy loss based on f(ω) and ϕ(ω), and γ′′ be the point-wise minimizer of binary-cross entropy
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loss based on f(ω) and g(ω). Applying Lemma 3 in [34], we have γ′(ω)/{1− γ′(ω)} = f(ω)/ϕ(ω)
and γ′′(ω)/{1− γ′′(ω)} = f(ω)/g(ω). Then, by the definition of KL divergence, it follows that

|DKL(f ||ϕ)−DKL(f ||g)| =
∣∣∣∣Ef(ω) log

f(ω)

ϕ(ω)
− Ef(ω) log

f(ω)

g(ω)

∣∣∣∣
=

∣∣∣∣Ef(ω)

(
log

γ′(ω)

1− γ′(ω)
− log

γ′′(ω)

1− γ′′(ω)

)∣∣∣∣
≤ Ef(ω)

∣∣∣∣ log 1− γ′(ω)

γ′(ω)
− log

1− γ′′(ω)

γ′′(ω)

∣∣∣∣
≤ 1− τ

τ
Ef(ω)

∣∣∣∣1− γ′(ω)

γ′(ω)
− 1− γ′′(ω)

γ′′(ω)

∣∣∣∣
=

1− τ

τ
Ef(ω)

∣∣∣∣ϕ(ω)− g(ω)

f(ω)

∣∣∣∣
=

1− τ

τ

∫∫∫
|ϕ(x, y, z)− g(x, y, z)|dxdydz

=
2(1− τ)

τ
dTV (ϕ, g).

The second inequality follows from Lagrange’s mean value theorem and Assumption (A3).

Applying Theorem 1 in [41], ∀ϵ1 ≤ ϵ with ϵ being defined in Assumption 1, we have dTV (ϕ, g) ≤
b(n), where

b(n) =
1

2

√
β

4

C521/dzΓ(1/dz)

(nγdz
)1/dzdz

+
βϵ1G(2cdzϵ

2
1)

4
+ exp

(
− 1

2
nγdzcdzϵ

dz+2
1

)
+G(2cdzϵ

2
1).

Here, β is defined in Assumption 1, C5 is defined in Assumption (A5), dz is the dimension of Z,
Γ(·) is the gamma function, γdz

is the volume of the unit radius l2 ball in Rdz , cdz
is defined in

Assumption 2, and ∀δ > 0, G(δ) = P (p(Z) ≤ δ).

Because ϵ1 can be arbitrary small, we conclude that limn→∞ b(n) = 0. So we arrive at
limn→∞ |DKL(f ||ϕ) − DKL(f ||g)| = 0, which means for δ/2 > 0, ∃N2, when n > N2,
|DKL(f ||ϕ)−DKL(f ||g)| < δ/2.

Then for δ > 0 and η > 0, take N = max(N1, N2), when n > N ,

P (|D̂(n)
KL(f ||ϕ)−DKL(f ||ϕ) +DKL(f ||ϕ)−DKL(f ||g)| > δ)

≤ P (|D̂(n)
KL(f ||ϕ)−DKL(f ||ϕ)|+ |DKL(f ||ϕ)−DKL(f ||g)| > δ)

≤ P (|D̂(n)
KL(f ||ϕ)−DKL(f ||ϕ)| > δ/2) < η

holds. This finish the proof.

We therefore conclude that ĈMI is a consistent estimator of CMI. When considering ĈMI
(b)

based
on the sample (X̃(b),Y ,Z) (b = 1, . . . , B) drawn from the k-nearest-neighbor local sampling
mechanism as depicted in Algorithm 3, we can state: Under Assumptions 1, 2, (A1)-(A2) with
f(ω) and ϕ(ω) replaced by densities of the distribution of (X̃, Y, Z) and the corresponding 1-NN

distribution, respectively, and Assumptions (A3)-(A5), ∀b = 1, . . . , B, ĈMI
(b)

is a consistent
estimator of CMI(b), where CMI(b) = I(X̃(b);Y |Z). Now let’s present the proof of Theorem 4.
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Proof. Write P (·|H1) as PH1(·). By Markov inequality, it follows that

PH1
(p > α) = PH1

(
1 + ΣBn

b=11(ĈMI
(b)

≥ ĈMI)
1 +Bn

> α

)
≤ 1

α(1 +Bn)
EH1

(
1 +

Bn∑
b=1

1(ĈMI
(b)

≥ ĈMI)
)

=
1

α(1 +Bn)
+

Bn

α(1 +Bn)
PH1

(
ĈMI

(1)
≥ ĈMI

)
≤ 1

α(1 +Bn)
+

1

α
PH1

(
ĈMI

(1)
≥ ĈMI

)
.

Because X̃(1) ⊥⊥ Y |Z, CMI(1) = I(X̃(1);Y |Z) = 0. Then, ∀δ > 0,

PH1

(
ĈMI

(1)
≥ ĈMI

)
≤ PH1

(
{ĈMI ≤ ĈMI

(1)
} ∩ {|ĈMI

(1)
− CMI(1)| ≤ δ}

)
+ PH1

(
|ĈMI

(1)
− CMI(1)| > δ

)
≤ PH1

(ĈMI ≤ δ) + PH1

(
|ĈMI

(1)
− CMI(1)| > δ

)
.

Next, we have

PH1
(ĈMI ≤ δ) ≤ PH1

({ĈMI ≤ δ} ∩ {|ĈMI − CMI| ≤ δ}) + PH1
(|ĈMI − CMI| > δ)

≤ PH1
(CMI − δ ≤ ĈMI ≤ δ) + PH1

(|ĈMI − CMI| > δ).

Thus, we conclude that

PH1
(p ≤ α) ≥1− 1

α(1 +Bn)
− 1

α

[
PH1

(CMI − δ ≤ ĈMI ≤ δ)

+ PH1
(|ĈMI − CMI| > δ) + PH1

(
|ĈMI

(1)
− CMI(1)| > δ

)]
.

Under H1, CMI > 0. Take δ = CMI/4 > 0, we obtain

lim
n→∞

PH1
(p ≤ α) → 1.

B Additional Empirical Results

B.1 The choice of the neighbor order k

To investigate the impact of the parameter k on our proposed approach, we employ a linear uniform
model. To accomplish this, we generate synthetic data in the following manner:

H0 : X = ϵx, Y = ϵy, and Z ∼ Uniform(−1, 1),

H1 : X = ϵx, Y = αX + 0.5ϵy, and Z ∼ Uniform(−1, 1), (13)

where ϵx and ϵy are generated independently from the uniform distribution over the interval [−1, 1].
The parameter α is randomly generated within the range of [0, 2]. As is shown in Figure 3, our
method achieves effective control of type I error and exhibits the highest power under H1 across all
dimensions when k = 7. Therefore, we consistently set k = 7 in all experiments.

B.2 Empirical results for Scenario (13)

We demonstrate the effectiveness of our approach and compare it with alternative methods in Scenario
(13). The results are shown in Figure 4, which pertains to high-dimensional Z, and Figure 5, which
focuses on low-dimensional Z. The results consistently demonstrate that our test achieves favorable
performance in terms of the type I error and power under H1. Although LPCIT, CMIknn, and
NNSCIT effectively control the type I error, they exhibit noticeably lower power compared to our
method, when the dimension exceeds 60, often by a substantial margin. Furthermore, KCIT, GCIT,
and CCIT all yield high power under H1, but they either always or sometimes suffer from inflated
type I errors.
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Figure 3: Comparison of the type I error (lower is better) and power under H1 (higher is better) for
our test in Scenario (13) across different values of k.
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Figure 4: Comparison of the type I error (lower is better) and power under H1 (higher is better) of
our test with six SOTA tests in Scenario (13). Left: The results when varying the dimension of Z.
Right: The results when varying the sample size.

B.3 Additional empirical results for Scenario I

In Figure 6, we present the type I error and power under H1 in low dimensions of Z ranging from
5 to 30 for Scenario I (Eq. (9)) with Gaussian or Laplace noises. It can be observed that our test
and LPCIT consistently achieve good and stable performance in terms of type I error and power
under H1, when the dimensionality of Z is lower than 30. On the other hand, GCIT, CCIT, and KCIT
exhibit high power under H1 but fail to control the type I error. NNSCIT and CMIknn demonstrate
relatively good control of type I errors but lack sufficient power under H1.

B.4 Computational efficiency analysis

Figure 7 shows the timing performance of all methods for a single test under Scenario I with Laplace
noises. Our test is found to be highly computationally efficient even when dealing with large
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Figure 5: Comparison of the type I error (lower is better) and power under H1 (higher is better) of
our test with six SOTA tests in Scenario (13).
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Figure 6: Comparison of the type I error (lower is better) and power under H1 (higher is better) of our
method with six SOTA methods on the post-nonlinear model under Gaussian or Laplace distributions
in Scenario I. Left: The results under Gaussian distribution. Right: The results under Laplace
distribution.

sample sizes and high-dimensional conditioning sets. In contrast, CMIknn and CCIT for sample
sizes exceeding 1000, and LPCIT for dimension of Z higher than 50 are impractical due to their
prohibitively long running time.

B.5 The detailed experimental setup for Scenario III

For the chain structure Y → Z → X , we generate synthetic data as follows:

H0 : Y ∼ N(1, 1), Z = Y a+ ϵ1, X = ZT b+ ϵ2,

H1 : Y ∼ N(1, 1), Z = Y a+ ϵ1, X = ZT b+ Y + ϵ2,
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Figure 7: Running times in seconds as a function of sample size or dimension of Z on the post-
nonlinear model under Laplace distribution in Scenario I. Left: The results when varying the
dimension of Z. Right: The results when varying the sample size.

where a and b are both dz-dimensional, the entries of a and b are both randomly and uniformly sampled
from [0, 0.3], ϵ1 is generated from a dz-dimensional standard multivariate Gaussian distribution, and
ϵ2 is sampled from a standard Gaussian distribution.

C Real Data Analysis

In order to showcase the superior performance of our test, we conduct a comparative evaluation
against other state-of-the-art (SOTA) CI tests using real datasets. We assess the effectiveness of our
method along with six SOTA approaches on two specific datasets: the ABALONE dataset [9] and the
Flow-Cytometry dataset [39].

C.1 Real ABALONE dataset

The ABALONE dataset [9] comprises measurements obtained from a study conducted to
predict the age of abalones based on their physical characteristics. The dataset is pub-
licly available at the UCI Machine Learning Repository and can be downloaded from
https://archive.ics.uci.edu/ml/datasets/abalone. In our evaluation, we consider the graph structure
recovered by [31] as the ground truth, as depicted in Figure 4 of their paper. This graph represents
the causal relationships among the 8 variables in the dataset. We specifically select 35 CI relations
and 35 non-CI relations from this graph. The philosophy used is that a node X is independent of all
other nodes Y in the graph when conditioned on its parents, children, and parents of children [26, 41].
Additionally, if there exists a direct edge between node X and node Y in the graph, they are never
conditionally independent given any other set of variables. As a result, the conditioning set Z can be
arbitrarily selected from the remaining nodes. The dataset consists of 4177 samples, and dz varies
from 1 to 6.

In order to evaluate the performance of various tests, we utilize precision, recall, and F-score as
evaluation metrics. Precision is calculated as TP/(TP+FP), where TP represents the number of true CI
instances correctly identified, and FP represents the number of non-CI instances incorrectly identified
as CI. Recall is calculated as TP/(TP+FN), where FN represents the number of CI instances not
identified. The F-score is then computed as the harmonic mean of precision and recall, given by 2 ×
precision × recall / (precision + recall) [29]. TN represents the number of correctly identified true
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non-CI instances. Table 1 presents the results for all methods. It should be noted that we do not record
the results for GCIT as it does not correctly identify any CI relations. Our approach successfully
identifies 31 CI relations and 32 non-CI relations, achieving the highest F-score among the testing
methods, while maintaining high precision and recall.

Table 1: The TP, TN, precision (pre), recall (rec) and F-score of our test and six SOTA methods for
the real ABALONE dataset.

Method TP TN Pre Rec F-score
KCIT 5 35 1 0.1429 0.2501
CCIT 12 34 0.9231 0.3429 0.5

CMIknn 22 35 1 0.6286 0.7720
LPCIT 5 35 1 0.1429 0.2501

NNSCIT 33 6 0.5323 0.9429 0.6805
Ours 31 32 0.9118 0.8857 0.8986

C.2 Real Flow-Cytometry dataset

The Flow-Cytometry dataset is a widely used benchmark in the field of causal structure learning
[36, 48]. This dataset captures the expression levels of proteins and phospholipids in human cells [39].
The data can be obtained from the website https://www.science.org/doi/10.1126/science.1105809. In
our evaluation, we consider the consensus graph proposed in [33] as the ground truth, which has also
been adopted by [41] for verifying CI relations. Figure 5(a) in [33] illustrates the causal relationships
among the 11 proteins in the dataset. Following the philosophy outlined in Section C.1, we select 50
CI relations and 40 non-CI relations from this graph. The number of samples is 1755 and dz varies
from 1 to 9.

Table 2 presents the results for all tests. Our method outperforms other approaches by correctly
identifying 47 CI relations and achieving the highest recall and F-score.

Table 2: The TP, TN, precision (pre), recall (rec) and F-score of our test and six SOTA methods for
the real Flow-Cytometry dataset.

Method TP TN Pre Rec F-score
KCIT 32 30 0.7619 0.64 0.6957
CCIT 33 29 0.75 0.66 0.7021

CMIknn 41 26 0.7455 0.82 0.7810
GCIT 40 24 0.7143 0.8 0.7547
LPCIT 38 25 0.7170 0.76 0.7379

NNSCIT 33 26 0.7021 0.66 0.6804
Ours 47 23 0.7344 0.94 0.8246
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