
A Appendix of Proofs1

A.1 Proof of Thm.3.22

Theorem 3.2. By choosing KL divergence DKL(Q||Q0) =
∫
Q log Q

Q0
dx, optimizing CL-DRO (cf.3

Eqn. 3) is equivalent to optimizing CL (InfoNCE,cf. Eqn. 1):4

LKL
CL-DRO = −EP0 [fθ] + min

α≥0,η1
max
Q∈Q

{EQ[fθ]− α[DKL(Q||Q0)− η] + η1(EQ0 [
Q

Q0
]− 1)}

= −EP0

[
α∗ log

efθ/α
∗

EQ0 [e
fθ/α

∗ ]

]
+ Constant = α∗LInfoNCE + Constant

(4)

where α, η1 represent the Lagrange multipliers, and the optimal α∗ finally serves as the temperature5

τ in CL.6

Proof. To complete the proof, we start with giving some important notations and theorem.7

Definition A.1 (ϕ-divergence [13]). For any convex funtion ϕ with ϕ(1) = 0, the ϕ-divergence8

between Q and Q0 is:9

Dϕ(Q||Q0) := EQ0 [ϕ(dQ/dQ0)] (13)

where Dϕ(Q||Q0) = ∞ if P is not absolutely continuous with respect to Q0. Specially, when10

ϕ(x) = x log x− x+ 1, ϕ-divergence degenerates to the well-known KL divergence.11

Definition A.2 (Convex conjugate [9]). We consider a pair (A,B) of topological vector spaces and a12

bilinear form ⟨·, ·⟩ → R such that (A,B, ⟨·, ·⟩) form a dual pair. For a convex function f : R → R,13

domf := {x ∈ R : f(x) < ∞} is the effective domain of f . The convex conjugate, also known as14

the Legendre-Fenchel transform, of f : A → R is the function f∗ : B → R defined as15

f∗(b) = sup
a
{ab− f(a)}, b ∈ B (14)

Theorem A.3 (Interchange of minimization and integration [2]). Let (Ω,F) be a measurable space16

equipped with σ-algebra F , Lp(Ω,F , P ) be the linear space of measurable real valued functions17

f : Ω → R with ||f ||p < ∞, and let X := Lp(Ω,F , P ), p ∈ [1,+∞]. Let g : R × Ω → R be a18

normal integrand, and define on X . Then,19

min
x∈X

∫
Ω

g(x(ω), ω) dP (ω) =

∫
Ω

min
s∈R

g(s, ω) dP (ω) (15)

To ease the derivation, we denote the likelihood raito L(x, y) = Q(x, y)/Q0(x, y). Note that the20

ϕ-divergence between Q and Q0 is constrained, and thus L(.) is fine definition. For brevity, we21

usually short L(x, y) as L. And in terms of definition A.1 of ϕ-divergence, the expression of CL-DRO22

becomes:23

Lϕ
CL-DRO = −EP0 [fθ] + max

L
EQ0 [fθL] s.t. EQ0 [ϕ(L)] ≤ η (16)

Note that EQ0
[fθL] and EQ0

[ϕ(L)] are both convex in L. We use the Lagrangian function solver:24

Lϕ
CL-DRO = −EP0

[fθ] + min
α≥0,η1

max
L

{EQ0
[fθL]− α[EQ0

[ϕ(L)]− η] + η1(EQ0
[L]− 1)}

= −EP0
[fθ] + min

α≥0,η1

{
αη − η1 + αmax

L
{EQ0

[
fθ + η1

α
L− ϕ(L)]}

}
= −EP0

[fθ] + min
α≥0,η1

{
αη − η1 + αEQ0

[max
L

{fθ + η1
α

L− ϕ(L)}]
}

= −EP0 [fθ] + min
α≥0,η1

{
αη − η1 + αEQ0 [ϕ

∗(
fθ + η1

α
)]
}

(17)

The first equality holds due to the strong duality [3]. The second equality is a re-arrangement for25

optmizing L. The third equation follows by the Thm. A.3. The last equality is established based26
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on the definition of convex conjugate A.2. When we choose KL-divergence, we have ϕKL(x) =27

x log x− x+ 1. It can be deduced that ϕ∗
KL(x) = ex − 1. Then, we have:28

LKL
CL-DRO = −EP0

[fθ] + min
α≥0,η1

{
αη − η1 + αEQ0

[ϕ∗(
fθ + η1

α
)]
}

= −EP0 [fθ] + min
α≥0,η1

{
αη − η1 + αEQ0 [e

fθ+η1
α − 1]

}
= −EP0 [fθ] + min

α≥0

{
αη + α logEQ0 [e

fθ
α ]

}
= −EP0

[fθ] + min
α≥0

{
αη + α logEQ0

[e
fθ
α ]

}
= −EP0

[
α∗ log

efθ/α
∗

EQ0
[efθ/α∗ ]

]
+ αη

= α∗LInfoNCE + Constant

(18)

Here the α∗ represents the optimal value of minα≥0

{
αη + α logEQ0

[e
fθ
α ]

}
.29

A.2 Proof of Thm.3.330

Theorem 3.3. [Generalization Bound] Let L̂InfoNCE be an estimation of InfoNCE with N negative31

samples. Then if Qideal satisfied DKL(Q
ideal||Q0) ≤ η, we have that with probability at least 1− ρ:32

Lunbiased ≤ τ L̂InfoNCE + B(ρ,N, τ) (5)

where B(ρ,N, τ) = 1
N−1+exp ( 1

τ )

√
N exp ( 2

τ ) log ( 1
ρ )

2 .33

Here we simply disregard the constant term present in Eqn. 4 as it does not impact optimization, and34

omit the error from the positive instances.35

Proof. Before detailing the proof process, we first introduce a pertinent theorem:36

Theorem A.4 (McDiarmid’s inequality [10]). Let X1, · · · , Xn be independent random variables,37

where Xi has range X . Let f : X1 × · · · × Xn → R be any function with the (c1, . . . , cn)-38

bounded difference property: for every i = 1, . . . , n and every (x1, . . . , xn) , (x
′
1, . . . , x

′
n) ∈39

X1 × · · · × Xn that differ only in the i-th coordinate (xj = x′
j for all j ̸= i), we have40

|f (x1, . . . , xn)− f (x′
1, . . . , x

′
n)| ≤ ci. For any ϵ > 0,41

P(f(X1, · · · , Xn)− E[f(X1, · · · , Xn)] ≥ ϵ) ≤ exp(
−2ϵ2∑N
i=1 c

2
i

) (19)

Now we delve into the proof. As Qideal satisfies DKL(Q||Q0) ≤ η, we can bound Lunbiased with:42

Lunbiased = −EP0
[fθ] + EQideal [fθ]

≤ −EP0 [fθ] + max
DKL(Q|Q0)≤η

EQ [fθ]

= LKL
CL-DRO

(20)

where Qideal, Q∗ denotes the ideal negative distribution and the worst-case distribution in CL-DRO.43

From the Thm.3.2, we have the equivalence between InfoNCE and CL-DRO. Thus here we choose CL-44

DRO for analyses. Suppose we have N negative samples, and for any pair of samples (xi, yi), (xj , yj),45

we have the following bound:46

|Q∗(xi, yi)fθ(xi, yi)−Q∗(xj , yj)fθ(xj , yj)| ≤ sup
(x,y)∼Q0

|Q∗(x, y)fθ(x, y)| ≤
exp

(
1
τ

)
N − 1 + exp

(
1
τ

)
(21)

where the first inequality holds as Q∗(x, y)fθ(x, y) > 0. The second inequality holds based on47

the expression of Q∗ = Q0
exp[fθ/τ ]

EQ0
exp[fθ/τ ]

(refer to Appendix A.6). Suppose fθ ∈ [M1,M2], the48
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upper bound of sup(x,y)∼Q0
|Q∗(x, y)fθ(x, y)| arrives if fθ(x, y) = M2 for the sample (x, y) and49

fθ(x, y) = M1 for others. We have sup(x,y)∼Q0
|Q∗(x, y)fθ(x, y)| ≤ M2 exp((M2−M1)/τ)

N−1+exp((M2−M1)/τ)
. In50

this work, for brevity, here we simply consider M1 = 0,M2 = 1 for analyses. It shares the common51

properties with the general interval [M1,M2].52

By using McDiarmid’s inequality in Thm A.4,for any ϵ, we have:53

P[(LKL
CL-DRO − τ L̂InfoNCE) ≥ ϵ]

≤ exp
(−2ϵ2(N − 1 + exp( 1τ ))

2

N exp( 2τ )

) (22)

Let54

ρ = exp(
−2ϵ2(N − 1 + exp( 1τ ))

2

N exp( 2τ )
) (23)

we get:55

ϵ =
1

N − 1 + exp ( 1τ )

√
N exp ( 2τ ) log (

1
ρ )

2
(24)

Thus, for ∀ρ ∈ (0, 1), we conclude that with probability at least 1− ρ.56

Lunbiased ≤ L̂InfoNCE +
1

N − 1 + exp ( 1τ )

√
N exp ( 2τ ) log (

1
ρ )

2
(25)

57

A.3 Proof of Coro.3.458

Corollary 3.4. [The optimal α - Lemma 5 of [6]] The value of the optimal α (i.e., τ ) can be59

approximated as follow:60

τ ≈
√
VQ0 [fθ]/2η. (6)

where VQ0
[fθ] denotes the variance of fθ under the distribution Q0.61

Proof. While Corollary 3.4 has already been proven in [6], we present a brief outline of the proof here62

for the sake of completeness and to ensure that our article is self-contained. To verify the relationship63

between τ and η, we could utilize the approximate expression of InfoNCE (cf. Eqn. 29) and focus on64

the first order conditions for τ . In detail, we have:65

−EP0
[fθ] + inf

α≥0
{EQ0

[fθ]−
1

2α

1

ϕ(2)(1)
VQ0

[fθ]− αη}

To find the optimal value of α (or equivalently, τ ), we differentiate the above equation and set it to 0.66

This yields a fixed-point equation67

τ =

√
VQ0

[fθ]

2η

The corollary gets proved.68

A.4 Proof of Thm.3.569

Theorem 3.5. Given any ϕ-divergence, the corresponding CL-DRO objective could be approximated70

as a mean-variance objective:71

Lϕ
CL-DRO(fθ) ≈ −EP0 [fθ] + (EQ0 [fθ] +

1

2τ

1

ϕ(2)(1)
· VQ0 [fθ]) (7)

where ϕ(2)(1) denotes the the second derivative value of ϕ(·) at point 1, and VQ0
[fθ] denotes the72

variance of f under the distribution Q0.73

Specially, if we consider KL divergence, the approximation transforms:74

LKL
CL-DRO(fθ) ≈ −EP0

[fθ] + (EQ0
[fθ] +

1

2τ
VQ0

[fθ]) (8)
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Proof. We start with introducing a useful lemma.75

Lemma A.5 (Lemma A.2 of [8]). Suppose that ϕ : R → R
⋃
{+∞} is a closed, convex function76

such that ϕ(z) ≥ ϕ(1) = 0 for all z, is two times continuously differentiable around z = 1, and77

ϕ(1) > 0, Then78

ϕ∗(ζ) = max
z

{zζ − ϕ(z)}

= ζ +
1

2!
[

1

ϕ′′(1)
]ζ2 + o(ζ2)

(26)

Note that most of the ϕ-divergences [13] (e.g., KL divergence, Cressie-Read divergence, Burg entropy,79

J-divergence, χ2-distance, modified χ2-distance, and Hellinger distance) satisfy the smoothness80

conditions. When n = 2, ϕ∗[ζ] ≈ ζ + 1
2 [

1
ϕ(2)(1)

]ζ2. Substituting this back to Eqn.17 we have:81

Lϕ
CL-DRO =− EP0 [fθ] + min

α≥0,η1

{
αη − η1 + αEQ0 [ϕ

∗(
fθ + η1

α
)]
}

=− EP0
[fθ] + min

α≥0,η1

{
αη − η1 + αEQ0

[
fθ + η1

α
+

1

2

1

ϕ(2)(1)
(
fθ + η1

α
)2]

}
=− EP0

[fθ] + min
α≥0,η1

{
αη − η1 + EQ0

[fθ + η1 +
1

2

1

ϕ(2)(1)α
(fθ + η1)

2]
}

=− EP0 [fθ] + min
α≥0,η1

{
αη + EQ0 [fθ +

1

2

1

ϕ(2)(1)α
(fθ + η1)

2]
}

(27)

If we differentiate it w.r.t. η1:82

∂
{
αη + EQ0

[fθ +
1
2

1
ϕ(2)(1)α

(fθ + η1)
2]
}

∂η1
= 0 (28)

we have η∗1 = −EQ0
[fθ], and the objective transforms into:83

− EP0
[fθ] + inf

α≥0,η1

{
αη + EQ0

[fθ +
1

2

1

ϕ(2)(1)α
(fθ + η1)

2]
}

=− EP0 [fθ] + inf
α≥0

{EQ0 [fθ +
1

2α

1

ϕ(2)(1)
(fθ − EQ0 [fθ])

2]− αη}

=− EP0
[fθ] + inf

α≥0
{EQ0

[fθ] +
1

2α

1

ϕ(2)(1)
VQ0

[fθ]− αη}

(29)

Choosing KL-divergence, we have ϕ(2)(1) = 1. Substituting α∗(τ ) into Eqn. 29 and ignoring the84

constant αη:85

−EP0
[fθ] + EQ0

[fθ] +
1

2τ
VQ0

[fθ]

Then Theorem gets proved.86

A.5 Proof of Thm.4.287

Theorem 4.2. For distributions P , Q such that P ≪ Q, let F be a set of bounded measurable88

functions. Let CL-DRO draw positive and negative instances from P and Q, marked as Lϕ
CL-DRO(P,Q).89

Then the CL-DRO objective is the tight variational estimation of ϕ-divergence. In fact, we have:90

Dϕ(P ||Q) = sup
f∈F

−Lϕ
CL-DRO(P,Q) = sup

f∈F
EP [f ]−min

λ∈R
{λ+ EQ[ϕ

∗(f − λ)]} (10)

Here, the choice of ϕ in CL-DRO corresponds to the probability measures in Dϕ(P ||Q).91

Proof. Regarding this theorem, our proof primarily relies on the variational representation of ϕ-92

divergence and optimized certainty equivalent (OCE) risk. Towards this end, we start to introduce the93

basic concepts:94
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Definition A.6 (OCE [2]). Let X be a random variable and let u be a convex, lower-semicontinuous95

function satisfies u(0) = 0, u∗(1) = 0, then optimized certainty equivalent (OCE) risk ρ(X) is96

defines as:97

ρ(X) = inf
λ∈R

{λ+ E[u(f − λ)]} (30)

OCE is a type of risk measure that is widely used by both practitioners and academics [1, 2]. With98

duality theory, its various properties have been inspiring in our study of DRO.99

Definition A.7 (Variational formulation).

Dϕ(P ||Q) := sup
f∈F

{EP [f ]− EQ[ϕ
∗(f)]} (31)

where the supremum is taken over all bounded real-valued measurable functions F defined on X .100

Note that in order to keep consistent with the definition of CL-DRO, we transform Eqn.10 to :101

Dϕ(P ||Q) = sup
f∈F

−Lϕ
CL-DRO(P,Q) = sup

f∈F
EP [f ]− inf

η1∈R
{−η1 + EQ[ϕ

∗(f + η1)]} (32)

Our proof for this theorem primarily relies on utilizing OCE risk as a bridge and can be divided into102

two distinct steps:103

Step 1: supf∈F −Lϕ
CL-DRO(P,Q) = supf∈F EP [f ]− infη1∈R{−η1 + EQ[ϕ

∗(f + η1)]}.104

Step 2: Dϕ(P ||Q) = supf∈F EP [f ]− infη1∈R{−η1 + EQ[ϕ
∗(f + η1)]}105

1. We show that supf∈F −Lϕ
CL-DRO(P,Q) = supf∈F EP [f ]− infη1∈R{−η1 + EQ[ϕ

∗(f + η1)]}.106

−Lϕ
CL-DRO = EP [f ]− inf

α≥0,η1

sup
L

{EQ[fL]− α[EQ[ϕ(L)]− η] + η1(EQ[L]− 1)}

= EP [f ]− inf
α≥0,η1

{
αη − η1 + αEQ[ϕ

∗(
f + η1

α
)]
}

= EP [f ]− inf
η1

{
α∗η − η1 + α∗EQ[ϕ

∗(
f + η1
α∗ )]

}
= EP [f ]− inf

η1

{
− η1 + α∗EQ[ϕ

∗(
f + η1
α∗ )] + Constant

}
(33)

When α∗ = 1, step 1 gets proved.107

2. We show that Dϕ(P ||Q) = supf∈F EP [f ]− infη1∈R{−η1 + EQ[ϕ
∗(f + η1)]}.108

Firstly, we transform EP [f ] to EQ[f
dP
dQ ] as:109

sup
f∈F

EP [f ]− inf
η1

{
− η1 + EQ[ϕ

∗(f + η1)]
}

= sup
f∈F

EQ[f
dP

dQ
]− inf

η1

{
− η1 + EQ[ϕ

∗(f + η1)]
} (34)

Let f + η1 = Y , we have:110

sup
f∈F

EQ[f
dP

dQ
]− inf

η1

{
− η1 + EQ[ϕ

∗(f + η1)]
}

= sup
Y ∈F

inf
η1

EQ[(Y − η1)
dP

dQ
]−

{
− η1 + EQ[ϕ

∗(Y )]
}

= sup
Y ∈F

EQ[Y
dP

dQ
− ϕ∗(Y )] + inf

η1

η1EQ[1−
dP

dQ
]

= sup
Y ∈F

EQ[Y
dP

dQ
− ϕ∗(Y )] + 0

(35)
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The first equality follows from replacing f + θ1 with Y . The second equality is a re-arrangement111

for optmizing η1. The third equation holds as EQ[1− dP
dQ ] = 0.112

Applying Thm. A.3, the last supremum reduces to:113

sup
Y ∈F

EQ[Y
dP

dQ
− ϕ∗(Y )]

=EQ[ sup
Y ∈F

{Y dP

dQ
− ϕ∗(Y )}]

=EQ[ϕ
∗∗(

dP

dQ
)]

=EQ[ϕ(
dP

dQ
)]

=Dϕ(P ||Q)

(36)

where the last equality follows from the fact that ϕ∗∗ = ϕ. This concludes the proof.114

115

A.6 Proof of Q∗116

Proof. From theorm3.2, CL-DRO can be rewrriten as:117

Lϕ
CL-DRO = −EP0

[fθ] + min
η1

{
α∗η − η1 + α∗EQ0

[max
L

{fθ + η1
α∗ L− ϕ(L)}]

}
= −EP0 [fθ] + min

η1

{
α∗η − η1 + α∗EQ0 [ϕ

∗(
fθ + η1

α∗ )]
} (37)

For the inner optimzation, we can draw the optimal L for maxL{ fθ+η1

α∗ L− ϕ(L)} as:118

L = e
fθ+η1

α∗ (38)

For the outer optimization, we can draw the optimal η1 for minη1

{
α∗η− η1 + α∗EQ0 [e

fθ+η1
α∗ − 1]

}
119

as120

η1 = −α∗ logEQ0e
fθ
α∗ (39)

Then we plug Eqn. 39 into Eqn. 38.121

L =
e

fθ
α∗

EQ0
[e

fθ
α∗ ]

(40)

Based on the definition of L, we can derive the expression for Q∗:122

Q∗ =
e

fθ
α∗

EQ0
[e

fθ
α∗ ]

Q0 (41)

123

B Experiments124

Figure 5 shows PyTorch-style pseudocode for the standard objective, the adjusted InfoNCE objective.125

The proposed adjusted reweighting loss is very simple to implement, requiring only two extra lines of126

code compared to the standard objective.127
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1 # pos : exp of inner products for positive examples
2 # neg : exp of inner products for negative examples
3 # N : number of negative examples
4 # t : temperature scaling
5 # mu : center position
6 # sigma : height scale
7
8 #InfoNCE
9 standard_loss = -log(pos.sum() / (pos.sum() + neg.sum()))

10
11 #ADNCE
12 weight =1/( sigma * sqrt (2*pi)) * exp( -0.5 * ((neg -mu)/sigma)**2 )
13 weight=weight/weight.mean()
14 Adjusted_loss = -log(pos.sum() / (pos.sum() + (neg * weight.detach () ).sum())

)

Figure 5: Pseudocode for our proposed adjusted InfoNCE objective, as well as the original NCE
contrastive objective. The implementation of our adjusted reweighting method only requires two
additional lines of code compared to the standard objective.

Table 6: hyperparameters setting on each datasets.

DATASETS CIFAR10 STL10 CIFAR100

BEST τ { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 } { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 } { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 }
µ { 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 0.6, 0.7, 0.8, 0.9 } 0.5, 0.6, 0.7, 0.8, 0.9 }
σ {0.5, 1.0 } {0.5, 1.0 } {0.5, 1.0}

B.1 Visual Representation128

Model. For contrastive learning on images, we adopt SimCLR [4] as our baseline and follow the same129

experimental setup as [5]. Specifically, we use the ResNet-50 network as the backbone. To ensure a130

fair comparison, we set the embedded dimension to 2048 (the representation used in linear readout)131

and project it into a 128-dimensional space (the actual embedding used for contrastive learning).132

Regarding the temperature parameter τ , we use the default value τ0 of 0.5 in most researches, and we133

also perform grid search on τ varying from 0.1 to 1.0 at an interval of 0.1, denoted by τ∗. The best134

parameters for each dataset is reported in Table 6. Note that {·} indicates the range of hyperparameters135

that we tune and the numbers in bold are the final settings. For α-CL, we follow the setting of [14],136

where p = 4 and τ = 0.5. We use the Adam optimizer with a learning rate of 0.001 and weight decay137

of 1e− 6. All models are trained for 400 epochs.138

Noisy experiments in Sec.3.4. To investigate the relationship between the temperature parameter τ139

(or η) and the noise ratio, we follow the approach outlined in [5] and utilize the class information140

of each image to select negative samples as a combination of true negative samples and false141

negative samples. Specifically, rratio = 0 indicates all negative samples are true negative samples,142

rratio = 0.5 suggests 50% of true positive samples existing in negative samples, rratio = 1 means143

uniform sampling.144

Variance analysis in Sec.3.4. To verify the mean-variance objective of InfoNCE, we adopt the145

approach outlined in [16] and record the negative prediction scores for 256 samples (assuming a batch146

size of 256) in each minibatch. Specifically, we randomly select samples from a batch to calculate147

the statistics and visualize them. (1) For positive samples, we calculate cosine similarity by taking148

the inner product after normalization, and retain the mean value of the 256 positive scores as ‘pos149

mean’. (2) For negative samples, we average the means and variances of 256 negative samples to150

show the statistical characteristics of these N negative samples ‘(mean neg; var neg)’. We record this151

data at each training step to track score distribution throughout the training process.152

B.2 Sentence Representation153

For the sentence contrastive learning, we adopt the approach outlined in [7] and evaluate our154

method on 7 popular STS datasets: STS tasks from 2012-2016, STS-B and SICK-R. We utilize155

the SentEval toolkit to obtain all 7 datasets. Each dataset includes sentence pairs which are rated156
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Table 7: hyperparameters setting on sentence CL. Note that {·} indicates the range of hyperparameters
that we tune and the numbers in bold are the final settings.

DATASETS SIMCSE-BERTbase SIMCSE-ROBERTAbase

BEST τ { 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20} { 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.15, 0.20}
µ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0}
σ {0.5, 1.0 } {0.5, 1.0 }

on a scale of 0 to 5, indicating the degree of semantic similarity. To validate the effective of our157

proposed method, we utilize several methods as baselines: average GloVe embeddings, BERT-158

flow, BERT-whitening, CT-BERT and SimCSE. The best parameters for each dataset is reported159

in Table 7. To ensure fairness, we employed the official code, which can be accessed at https:160

//github.com/princeton-nlp/SimCSE.161

B.3 Graph Representation162

For the graph contrastive learning experiments on TU-Dataset [12], we adopted the same experimental163

setup as outlined in [15]. The dataset statistics can be found in Tab.8. To ensure fairness, we164

employed the official code, which can be accessed at https://github.com/Shen-Lab/GraphCL/165

tree/master/unsupervised_TU. We made only modifications to the script by incorporating our166

ADNCE method and conducting experiments on the hyper-parameter µ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}167

and σ = 1 on most datasets. Each parameter was repeated from scratch five times, and the best168

parameter was selected by evaluating on the validation dataset. The best parameters for each dataset169

is reported in Table 9.170

We summarize the statistics of TU-datasets [12] for unsupervised learning in Table 8. Tab. 10171

demonstrates the consistent superiority of our proposed ADNCE approach.

Table 8: Statistics for unsupervised learning TU-datasets.

DATASETS CATEGORY GRAPHS# AVG. N# AVG. DEGREE

NCI1 BIOCHEMICAL MOLECULES 4,110 29.87 1.08
PROTEINS BIOCHEMICAL MOLECULES 1,113 39.06 1.86

DD BIOCHEMICAL MOLECULES 1,178 284.32 715.66
MUTAG BIOCHEMICAL MOLECULES 188 17.93 19.79

COLLAB SOCIAL NETWORKS 5,000 74.49 32.99
RDT-B SOCIAL NETWORKS 2,000 429.63 1.15
RDT-M SOCIAL NETWORKS 2,000 429.63 497.75

IMDB-B SOCIAL NETWORKS 1,000 19.77 96.53

172

Table 9: hyperparameters setting on graph CL. Note that {·} indicates the range of hyperparameters
that we tune and the numbers in bold are the final settings.

DATASETS BEST τ µ σ

NCI1 { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }
PROTEINS { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.5, 1.0, 1.5, 2.0 } { 0.5, 1.0 }

DD { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }
MUTAG { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }

COLLAB { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }
RDT-B { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }
RDT-M { 0.05, 0.10, 0.15, 0.20, 0.25} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }

IMDB-B { 0.10, 0.20, 0.30, 0.40, 0.50} { 0.2, 0.3 ,0.4, 0.5, 0.6, 0.7, 0.8, 0.9 } { 0.5, 1.0 }

8

https://github.com/princeton-nlp/SimCSE
https://github.com/princeton-nlp/SimCSE
https://github.com/princeton-nlp/SimCSE
https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU
https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU
https://github.com/Shen-Lab/GraphCL/tree/master/unsupervised_TU


Table 10: Unsupervised representation learning classification accuracy (%) on TU datasets. The
compared numbers are from except AD-GCL, whose statistics are reproduced on our platform. Bold
indicates the best performance while underline indicates the second best on each dataset.

DATASET NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B AVG.

NO PRE-TRAIN 65.40±0.17 72.73±0.51 75.67±0.29 87.39±1.09 65.29±0.16 76.86 ±0.25 48.48±0.28 69.37±0.37 70.15
INFOGRAPH 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01±1.13 70.05±1.13 82.50±1.42 53.46±1.03 73.03±0.87 74.02
GRAPHCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44 75.71
AD-GCL 73.91±0.77 73.28±0.46 75.79±0.87 88.74±1.85 72.02±0.56 90.07±0.85 54.33±0.32 70.21±0.68 74.79
RGCL 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 70.92±0.65 90.34±0.58 56.38±0.40 71.85±0.84 76.15
ADNCE 79.30±0.67 75.10±0.25 79.23±0.59 89.04±1.30 72.26±1.10 91.39±0.31 56.01±0.35 71.58±0.72 76.74
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