
v
v

velocity inputs

self-supervised
 SIC loss

Norm-ReLU

x

y

start
end

v1 v2 v3 v4 v5 v6 v7 v8 v9

a bArchitecture Data and Augmentations

v
v

velocity inputs

self-supervised
 SIC loss

Norm-ReLU

x

y

start
end

v1 v2 v3 v4 v5 v6 v7 v8 v9

a bArchitecture Data and Augmentations

Figure 8: A trained recurrent neural network learns multiple modules of grid cells. (a) The
architecture of the recurrent neural network used. Inputs are 2D Cartesian velocities vt ∈ R2 and the
non-linearity is Norm-ReLU. No positional readout exists. (b) Input trajectory velocities are drawn
i.i.d. from a uniform distribution, then randomly permuted to create a batch; 3 trajectories shown.

A Experimental Details417

Architecture and training data + augmentations418

Our code was implemented in PyTorch [39] and PyTorch Lightning [18]. Hyperparameters for our419

experiments are listed in Table 1. Our code will be made publicly available upon publication.420

Hyperparameters Values
Batch size 130
Trajectory length 60
Velocity sampling distribution vt ∈ R2 ∼i.i.d. Uniform2(−0.15, 0.15) meters
RNN nonlinearity Norm(ReLU(·))
Number of RNN units 128
Number of MLP layers 3
Spatial length scale σx 0.05 meters
Neural length scale σg 0.4
Separation loss coefficient λSep 1.0
Invariance loss coefficient λInv 0.1
Capacity loss coefficient λCap 0.5
Optimizer AdamW [32]
Optimizer scheduler Reduce Learning Rate on Plateau
Learning rate 2e-5
Gradient clip value 0.1
Weight decay None
Accumulate gradient batches 2
Number of gradient descent steps 2e6

Table 1: Hyperparameters used for training the networks.

14

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

a

b

Figure 9: All 128 ratemaps evaluated on trajectories inside a 2m box. (a) Ratemaps from the
corresponding to Fig. 4 (b) Ratemaps corresponding to the run in Fig.6

B All Ratemaps421

15

Φ2

Φ1

R0 RI

a

λ

λ1

2

x

Φ = 0

Φ = π

Φ = 0

Φ = π

b

Figure 10: (a) 2 Example cells from 2 modules, with preferred phase 0 and π. (b) Visualizing the
state space defined by {ϕ1, ϕ2} as a torus (left) and on a square with periodic boundary conditions
(right), which an equivalent construction of a torus.

C Construction of the grid code422

To explain the structure of the grid code, we consider idealized tuning curves in 1d.423

Each cell i is defined by its periodicity λα ∈ R and preferred phase ϕi ∈ S1. All cells in the same424

module α have the same periodicity and uniformly tile all allowed phases. For position x ∈ R,425

rαi (x) = RmaxReLU
[
cos

(
2π

λα
x+ ϕi

)]
(11)

The tuning curves corresponding to this module can be seen in Fig. 10a.426

For this module, we can define ϕα(x) =
2π

λα
x modulo 2π. Here ϕα ∈ S1.427

So the firing rate can now be written as428

rαi (x) = RmaxReLU [cos (ϕα(x) + ϕi)] (12)

All information about the current state of the module is encoded in the single variable ϕα. Thus the429

set of phases {ϕα}α ∈ S1 × ...× S1 uniquely define the coding states of the set of grid modules.430

For 2 modules, defined by {ϕ1, ϕ2}, these states can be visualized as being on a torus S1 × S1,431

Fig.10b.432

16

