

Figure 8: A trained recurrent neural network learns multiple modules of grid cells. (a) The architecture of the recurrent neural network used. Inputs are 2D Cartesian velocities $v_t \in \mathbb{R}^2$ and the non-linearity is Norm-ReLU. No positional readout exists. (b) Input trajectory velocities are drawn i.i.d. from a uniform distribution, then randomly permuted to create a batch; 3 trajectories shown.

417 A Experimental Details

418 Architecture and training data + augmentations

⁴¹⁹ Our code was implemented in PyTorch [39] and PyTorch Lightning [18]. Hyperparameters for our ⁴²⁰ experiments are listed in Table 1. Our code will be made publicly available upon publication.

Hyperparameters	Values					
Batch size	130					
Trajectory length	60					
Velocity sampling distribution	$v_t \in \mathbb{R}^2 \sim_{i.i.d.} \text{Uniform}^2(-0.15, 0.15)$ meters					
RNN nonlinearity	$Norm(ReLU(\cdot))$					
Number of RNN units	128					
Number of MLP layers	3					
Spatial length scale σ_x	0.05 meters					
Neural length scale σ_g	0.4					
Separation loss coefficient λ_{Sep}	1.0					
Invariance loss coefficient λ_{Inv}	0.1					
Capacity loss coefficient λ_{Cap}	0.5					
Optimizer	AdamW [32]					
Optimizer scheduler	Reduce Learning Rate on Plateau					
Learning rate	2e-5					
Gradient clip value	0.1					
Weight decay	None					
Accumulate gradient batches	2					
Number of gradient descent steps	2e6					

Table 1: Hyperparameters used for training the networks.

<u></u>																
a		• • • • • • • •				1999 1999 1999	• • • • • •					· · · · · · · · · · · · · · · · · · ·			, * * * , * * *	
	••••••••••••••••••••••••••••••••••••••		• • • •						•••••				• • • •	•••••		。" 。
	•••••	。。。。 。						· · · · ·	• • • • • • • •	• <u>•</u> •••		•••••		45	45 • • • • •	
			50		52	• • • •	•			°°°°		" • • • •		••••••••••••••••••••••••••••••••••••••		
		• • • • •				· · · ·						•••••	••••		,	· · · · ·
	•••••							**** ***	• • • •		, ", · · · · · · · · · · · · · · · · · ·	。" 。 。		•••••	· · · · · ·	
	••••••	• • • • • • •	`^ [°] °	• • • • • • • • • • •	• • • •	• • •	102	•••••	•••••		· · · ·				****	
	esere resere		a state									· · · · ·		123	•••••	
b	1															
b	, ° ° ° °	, , , ,			ຸ້. ຈິດ	ີ ຈໍ້ຈີ ຈູ້ຈີ		°°°		`` `	en e	ໍ່		، ، ،	, , , , ,	°```
b	` ``			,					, [°] , °,	૾૾૽ૺ	, , , ,		<u> </u>			
b																
b																
b																
b																
b																

Figure 9: All 128 ratemaps evaluated on trajectories inside a 2m box. (a) Ratemaps from the corresponding to Fig. 4 (b) Ratemaps corresponding to the run in Fig.6

B All Ratemaps

Figure 10: (a) 2 Example cells from 2 modules, with preferred phase 0 and π . (b) Visualizing the state space defined by $\{\phi^1, \phi^2\}$ as a torus (left) and on a square with periodic boundary conditions (right), which an equivalent construction of a torus.

422 C Construction of the grid code

- ⁴²³ To explain the structure of the grid code, we consider idealized tuning curves in 1d.
- Each cell *i* is defined by its periodicity $\lambda^{\alpha} \in \mathcal{R}$ and preferred phase $\phi_i \in S^1$. All cells in the same
- module α have the same periodicity and uniformly tile all allowed phases. For position $x \in \mathcal{R}$,

$$r_i^{\alpha}(x) = R_{\max} \text{ReLU}\left[\cos\left(\frac{2\pi}{\lambda_{\alpha}}x + \phi_i\right)\right]$$
(11)

- ⁴²⁶ The tuning curves corresponding to this module can be seen in Fig. 10a.
- For this module, we can define $\phi^{\alpha}(x) = \frac{2\pi}{\lambda_{\alpha}}x \mod 2\pi$. Here $\phi^{\alpha} \in S^1$. So the firing rate can now be written as

$$r_i^{\alpha}(x) = R_{\max} \operatorname{ReLU}\left[\cos\left(\phi^{\alpha}(x) + \phi_i\right)\right]$$
(12)

- All information about the current state of the module is encoded in the single variable ϕ^{α} . Thus the set of phases $\{\phi^{\alpha}\}_{\alpha} \in S^1 \times ... \times S^1$ uniquely define the coding states of the set of grid modules.
- 431 For 2 modules, defined by $\{\phi^1, \phi^2\}$, these states can be visualized as being on a torus $S^1 \times S^1$,
- 432 Fig.10b.