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Abstract

With a rapid growth in the deployment of AI tools for making critical decisions
(or aiding humans in doing so), there is a growing demand to be able to explain
to the stakeholders how these tools arrive at a decision. Consequently, voting is
frequently used to make such decisions due to its inherent explainability. Recent
work suggests that using randomized (as opposed to deterministic) voting rules
can lead to significant efficiency gains measured via the distortion framework.
However, rules that use intricate randomization can often become too complex to
explain to the stakeholders; losing explainability can eliminate the key advantage
of voting over black-box AI tools, which may outweigh the efficiency gains.
We study the efficiency gains which can be unlocked by using voting rules that add
a simple randomization step to a deterministic rule, thereby retaining explainability.
We focus on two such families of rules, randomized positional scoring rules and
random committee member rules, and show, theoretically and empirically, that they
indeed achieve explainability and efficiency simultaneously to some extent.

1 Introduction

In the past decade, AI and machine learning solutions have been deployed ubiquitously to make
increasingly critical decisions that affect human lives. Consequently, there is a growing demand
for these models and their decisions to be explainable [1, 2]. The literature makes a distinction
between two types of explanations: outcome explanations, which explain to the stakeholders why the
chosen outcome was selected in a given instance, and procedural explanations, which explain to the
stakeholders the procedure of choosing outcomes across all possible instances.Much of the explainable
AI (XAI) literature focuses on outcome explanations because many black-box AI solutions used in
practice are too complex to admit simple procedural explanations [3].

However, there are several drawbacks of outcome explanations. First, it opens up the possibility
of post-hoc explanations for why an outcome was selected. These are susceptible to adversarial
reasoning that hides biases [4]. Also, psychological research suggests that people’s perception of
fairness of an outcome depends not only on the outcome itself, but also on the process by which the
outcome is selected [5, 6], and the same outcome may be perceived as fair or unfair depending on
the process used [6]. This motivates the need for procedural explanations. Note that an intuitive
explanation of the procedure to select outcomes already serves as a rudimentary justification for why
a given outcome was selected.

To that end, we turn our attention to voting. While explainability is a nascent demand in the AI
ecosystem, voting rules, historically deployed for political decision-making, have always battled
with the need to be able to explain to the voters how the winner of an election is chosen. Thus,
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most prominent voting rules admit intuitive procedural explanations. Due to this key advantage over
black-box AI solutions, they have been used to automate decision-making in a variety of applications
such as designing recommender systems [7, 8], information extraction [9], collaborative filtering [10],
ensemble learning [11], and game-playing by AI agents [12]. The advantage is more apparent when
the decisions at hand are more significant. For example, Noothigattu et al. [13] and Kahng et al. [14]
propose the design of a voting-based virtual democracy system that can automate ethical decision-
making in AI systems. When Lee et al. [15] applied this framework to automate the distribution of
food donations, they found that their stakeholders appreciated the fact that voting-based decision-
making “embodied democratic values” and being able to provide easy explanations “allowed them
to understand how algorithmic recommendations were made”.

However, most prominent voting rules are deterministic because their primary use case is making
infrequent, high-stakes democratic decisions, for which randomization is generally unpalatable [16].
Aside from selected applications such as forming citizens’ assemblies, juries, and independent
redistricting commissions, lottery is seldom used to select representatives [17]. But in AI applications,
it is common to make frequent, low-stakes decisions, for which randomization is well-suited.

Research on voting theory suggests that allowing the voting rule to randomize has numerous benefits.
It can be essential for avoiding the tyranny of the majority and guarantee minority representation [18,
19]. Randomization also acts as a barrier to manipulations by strategic agents by circumventing the
Gibbard-Satterthwaite impossibility [20, 21]. Most importantly, it can unlock significant efficiency
gains over using deterministic voting rules [22, 23, 19]. Unfortunately, randomized voting rules
designed to optimize for efficiency can be highly complex and rely on intricate mathematical results
such as the minimax theorem [19], making them difficult to explain to the end users.

In view of this, we explore the use of explainable randomized voting rules for improving the efficiency
of automated decision-making. To ensure explainability, one possibility is to use only extremely
simple randomized rules such as random dictatorship, where the most preferred option of a randomly
chosen agent is selected. But this may leave significant possible efficiency gains on the table. Instead,
we propose a hybrid approach that adds a simple (and thus, explainable) randomization step to
well-understood deterministic decision-making processes. This drives our main research question:

What efficiency gains can be unlocked by explainable randomized voting rules
which add a simple randomization step to deterministic voting rules?

As a yardstick for efficiency, we turn to the distortion framework [24]. Proposed by Procaccia and
Rosenschein [25], this framework posits that votes submitted by agents, typically rankings over a
set of alternatives, are induced by more expressive preferences underneath, typically cardinal utility
functions over the alternatives. In this framework, the goal of a randomized voting rule is to choose a
lottery over the alternatives that minimizes distortion, the worst-case ratio between maximum social
welfare (total utility to the agents) and that of the chosen lottery.

We study the distortion of two families of randomized voting rules, which we refer to as randomized
positional scoring rules and random committee member rules. The former builds on the widely-
popular family of (deterministic) positional scoring rules, under which each agent assigns a score
to each alternative based on its position in her ranking. But instead of deterministically selecting
an alternative with the highest total score, each alternative is selected with probability proportional
to its score. In contrast to picking alternatives with varying probabilities, the latter family utilizes
the simplicity of uniform randomization by picking, uniformly at random, a member of a subset of
alternatives chosen deterministically. Our inspiration for these two families stems from the use of
such rules by Boutilier et al. [22] and Ebadian et al. [19].

Let us illustrate an example rule from each family based on the popular Borda count method, in
which scores of m� 1, . . . , 0 are assigned to ranks 1, . . . , m respectively. A rule from the first family
would pick each alternative with probability proportional to its total Borda score, while a rule from
the second family may select uniformly at random among the k alternatives with the highest Borda
scores, for some fixed k. We select these two families of randomized voting rules because they admit
straightforward procedural explanations. For instance, the aforementioned rules based on Borda
count can be explained as follows (using version (a) for the former and (b) for the latter using k = 3).

“Each user gives zero points to their least preferred option, one point to the next
best option, two points to the next best option, and so on. Points are tallied and...
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Table 1: Distortion and minimum welfare of common randomized positional scoring rules.
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(a) the chances of each option being selected are proportional to its total points.
(b) the three options with the highest total points are selected with an equal chance.”

Unlike prior work on distortion, which is often focused on identifying the most efficient rule, we
provide a refined analysis that characterizes the distortion of many interesting rules in these families,
allowing the system designer to pick the one most suited to the application at hand.

1.1 Our Results

Randomized positional scoring rules. We develop a whole swathe of novel techniques for analyzing
distortion, and use them to obtain tight distortion (dist) bounds for randomized versions of well-
known positional scoring rules such as plurality, Borda count, harmonic, veto, and k-approval,
presented in Table 1. For comparison, we remark that the distortion of the best possible deterministic
voting rule is ⇥(m2) [26, 23] and the best possible randomized voting rule is ⇥(

p
m) [19, 22]. For

randomized positional scoring rules, the best bound is ⇥(
p

m logm) due to [22]. En route to the
distortion bounds shown in Table 1, we also obtain tight bounds for another useful efficiency metric,
minimum welfare (min-sw), defined in Section 3.1. In the supplementary material, we apply our novel
techniques to analyze the distortion of randomized multi-level approval rules, which are uniform
mixtures of different randomized k-approval rules. We demonstrate the strength of this result by
using it to derive tight distortion bounds for a recently studied randomized positional scoring rule due
to Gkatzelis et al. [27].

Our distortion bound for the randomized plurality rule (better known as random dictatorship) may be
of independent interest because it is a widely studied voting rule [28–30]. It is also fascinating that
the distortion of randomized k-approval is highly non-monotone: first decreasing from ⇥(m

p
m)

to ⇥(m) when k grows from 1 to m1/3, then staying ⇥(m) when k grows further to
p

m, then
increasing again to ⇥(m

p
m) by k = m�⇥(m), and finally decreasing again to ⇥(m) by k = m.

Random committee member rules. For the family of random committee member rules, we
design a novel voting rule, which selects a random member of a top-biased stable k-committee,
and achieves a distortion of O(max{k, m2/(k

p
k)}). We complement this with a lower bound of

⌦(max{k, m2/k2}) on the distortion of any rule in this class.

Experiments. Our experiments with synthetic data indicate that while the (worst-case) distortion of
various rules in both families is not significantly better than the optimal deterministic distortion of
⇥(m2) and often even worse than the ⇥(m) distortion of the trivial rule selecting a uniformly random
alternative, rules from both families (almost always) significantly outperform deterministic voting
rules and randomized positional scoring rules (almost always) outperform the uniform-random rule as
well. This suggests that one should strongly consider replacing deterministic rules with explainable
randomized rules from these two families in order to achieve significantly improved efficiency.

1.2 Additional Related Work

Outcome explanations in voting. We focus on (randomized) voting rules with procedural ex-
planations because that is, in our view, the key advantage of voting over black-box AI solutions.
Nonetheless, there is also compelling literature on producing outcome explanations for voting rules.
Classical work that seeks voting rules satisfying qualitative axioms such as Condorcet consistency can
be viewed in this light. However, these axioms often provide a justification only in limited instances
with a special structure. Cailloux and Endriss [31] propose a method for producing a justification on
any given instance by starting from an axiomatic justification on a nearby special instance and using
a chain of explanations relating adjacent pairs of instances to arrive at the given instance. Peters et al.
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[32] bound the length of such chains, focusing especially on positional scoring rules, while Boixel
and Endriss [33] and Boixel et al. [34] study computational aspects of finding them.

On randomized positional scoring rules. The family of randomized positional scoring rules was
first proposed by Barbera [35], under the name of point-voting schemes. He establishes several
appealing properties of these rules, including strategyproofness (i.e., no agent can ever strictly benefit
from misreporting her preferences). Note that the outcome of a randomized positional scoring rule
can be computed by first selecting an agent uniformly at random, and then, for each k, selecting her
k-th most preferred alternative with probability proportional to score assigned to position k. In this
sense, implementing a randomized positional scoring rule requires little elicitation.

On distortion. We use the utilitarian distortion framework proposed by Procaccia and Rosenschein
[25] and developed by Boutilier et al. [22], where agents have unit-sum utilities over alternatives.
This framework has been applied to a broad range of settings such as committee selection [36],
participatory budgeting [37], distributed elections [38], elicitation-efficiency tradeoff [39–43], and
matching [44, 40]. Our methodological novelty is that we are the first to provide non-trivial absolute
guarantees on the minimum welfare achieved across all instances, which is a reasonable efficiency
measure in itself, and in turn use them to achieve tight distortion bounds (which compare the welfare
achieved on each instance to the optimal welfare in that instance). We also note that there is a
related framework of metric distortion [45], which assumes that agents have costs for the alternatives
induced by an underlying metric space in which they are both embedded. This framework utilizes
the restriction imposed by the triangle inequality instead of a unit-sum normalization. We refer the
reader to the survey of Anshelevich et al. [24] for a detailed overview.

2 The Setting

Let us formally introduce our setting and define the notion of distortion. We will define each class of
explainable voting rules in the section in which we will study it. We use the terminology of elections
for consistency with the literature, but our setting captures a general decision-making scenario in
which one of several alternatives must be chosen by aggregating conflicting preferences or opinions.

Basic notation. Let [t] = {1, 2, . . . , t} for t 2 N, and define �(S) to be the probability simplex over
the finite set S. For a vector ~s = (s1, . . . , st), denote its `1-norm by k~sk1 =

P
i2[t] si.

Utilitarian voting. A (single-winner) election consists of sets N = [n] of n agents and A = [m]
of m alternatives. Each agent i 2 N has a personal cardinal utility function ui : A 7! R>0, where
ui(a) is the value associated by agent i to alternative a. Following the convention in the literature
(e.g., see [22, 19]), we adopt the unit-sum normalization of utility functions: for every i 2 N , letP

a2A
ui(a) = 1. Aziz [46] provides several compelling justifications for using unit-sum utility

functions. For a utility profile ~u = (u1, . . . , un) and a subset of agents T ✓ N , define the social
welfare of an alternative a 2 A with respect to T as swT (a, ~u) =

P
i2T

ui(a). We write swN simply
as sw, and drop ~u when it is clear from the context. As an extension, for a distribution p 2 �(A) over
the alternatives, define ui(p) = Ea⇠p[ui(a)] and its social welfare as sw(p, ~u) =

P
i2N

ui(p). Our
goal is to find a distribution over alternatives with high social welfare. We will sometimes construct
and analyze a partial utility profile, where the utilities of each agent sum to at most 1.

Ordinal preferences and voting rules. We consider voting rules that have access only to the ordinal
preferences induced by the utilities. This is because a ranking of alternatives can often be elicited with
less cognitive burden or estimated more accurately than exact numerical utilities for each alternative.

Each agent i 2 N submits a preference ranking �i : [m] 7! A of the alternatives. We use ranki(a) =
��1
i

(a) to denote the rank of alternative a in agent i’s preference ranking (the most preferred
alternative has rank 1), and a �i a0 to denote that agent i prefers a to a0 (i.e., ranki(a) < ranki(a0)).
We assume that �i is consistent with agent i’s utility function ui, i.e., a �i a0 implies ui(a) > ui(a0)
for all a, a0 2 A; ties can be broken arbitrarily without affecting our distortion upper bounds.

Let ~� = (�i)i2N be a preference profile and C(~�) denote the set of utility profiles ~u such that �i is
consistent with ui for each agent i 2 N . A voting rule f takes a preference profile ~� as input and
returns a distribution p over alternatives.
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Distortion. The distortion of a distribution p 2 �(A) over alternatives with respect to a utility profile
~u is defined as

dist(p, ~u) =
maxa2A sw(a, ~u)

sw(p, ~u)
.

The distortion of a voting rule f is defined as its worst-case distortion over all instances: distm(f) =
sup

~�,~u2C(~�) dist(f(~�), ~u), where the supremum is taken over all instances with m alternatives and
any number of agents. For simplicity, we drop m and write dist(f).

3 Distortion of Randomized Positional Scoring Rules

The first class of explainable randomized voting rules we study is randomized positional scoring rules,
or point-voting schemes [35]. This builds on the popular class of (deterministic) positional scoring
rules, which assign scores to alternatives based on their positions in agents’ preference rankings,
and adds an easy-to-explain randomization step where each alternative is chosen with probability
proportional to its score instead of deterministically choosing the one with the highest score.

Positional scoring rules. A scoring vector ~s = (s1, . . . , sm) assigns a score sr to each position
r 2 [m] and satisfies s1 > s2 > . . . > sm > 0. For an alternative a 2 A, let scorei(a,~s) = sranki(a)
be the score a obtains from agent i, and for N 0 ✓ N , scoreN 0(a,~s) =

P
i2N 0 scorei(a,~s). Note thatP

a2A
scoreN (a,~s) = n · k~sk1. We drop ~s when it is clear from the context. For a scoring vector ~s,

we can define the following rules.

- The deterministic positional scoring rule fdet
~s

selects the top scored alternative (breaking
ties arbitrarily), i.e., fdet

~s
(~�) = argmax

a2A
scoreN (a,~s).

- The randomized positional scoring rule f rand
~s

selects every alternative a 2 A with probability
proportional to its score, i.e., Pr[f rand

~s
(~�) = a] = scoreN (a,~s) / (n · k~sk1).

The deterministic rules introduced above include several well-known voting rules such as plurality,
Borda, k-approval, veto, and harmonic defined, by the following scoring vectors, respectively:

~splu = (1, 0, . . . , 0), ~sBorda = (m� 1, m� 2, . . . , 0), ~sk-approval = (1, . . . , 1| {z }
k ones

, 0, . . . , 0),

~sveto = (1, 1, . . . , 1, 0), ~sharmonic = (1, 1/2, 1/3, . . . , 1/m).

We refer to the randomized versions of these rules as “randomized f”, where f 2
{plurality, Borda, harmonic, veto}, and extend this terminology to any positional scoring rule f~s.
Note that “randomized plurality” is more widely known as random dictatorship (see, e.g., [28, 29]).

3.1 High-Level Distortion Analysis and Novel Insights

Logarithmic rounding of the scores. Our first useful insight is that we can reduce the number of
distinct scores by rounding any score down to the nearest power of 1 + ↵,for a constant ↵ > 0, and
this only changes the distortion of the rule by a factor of at most 1 + ↵.

Lemma 1 (Rounding Down Scores). Let ↵ > 0, and ~s, ~s0 be scoring vectors such that s0
j
6 sj 6

(1 + ↵)s0
j

for all j 2 [m]. Then, for every preference profile ~� and consistent utility profile ~u 2 C(~�),

1

1 + ↵
· sw(f rand

~s 0 (~�), ~u) 6 sw(f rand
~s

(~�), ~u) 6 (1 + ↵) · sw(f rand
~s 0 (~�), ~u),

and consequently, 1
1+↵

· dist(f rand
~s0

) 6 dist(f rand
~s

) 6 (1 + ↵) · dist(f rand
~s0

).

By applying this transformation, scores in the range [k~sk1/(4m2), k~sk1] can be reduced to O(logm)
distinct values, which we will find helpful in the subsequent sections. In the supplementary material,
we show that by ignoring the remaining scores by reducing any sj 6 k~sk1/(4m2) to 0 changes the
distortion further by another factor of at most two. Hence, we can limit our focus to scoring vectors
that contain O(logm) distinct scores, resulting in only a constant factor loss in the distortion analysis.

High-level distortion analysis. After reducing the scoring vector to O(logm) distinct scores, we
partition the agents into O(logm) groups based on where they rank the optimal alternative a⇤. This
is only for the analysis; the voting rule does not know the optimal alternative. More formally, let
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0 = `0 < `1 < . . . < `q = m be the indices where the score changes in the reduced scoring vector,
where, for each r 2 [q], we have si = s`r for all i 2 [`r�1+1, `r], and s`1 > . . . > s`q . Furthermore,
let Nr be the set of agents who rank a⇤ among positions [`r�1 + 1, `r].

Next, borrowing an insight from the prior distortion literature [37, 42, 43], we round the agent utilities
to the nearest power of two and ignore utilities below 1/m2, reducing the number of distinct utility
values to O(logm) while losing at most a constant factor in the analysis. This allows us to subdivide
voters in each group Nr into O(logm) subgroups such that every agent in a subgroup with the same
utility, say ⌧ , for a⇤. We then employ three strategies to bound the distortion within each subgroup.
Finally, we show that the overall distortion can be upper bounded, up to logarithmic factors, by the
worst of these O(log2 m) distortion bounds across all subgroups of all the Nr groups.

Strategy 1 (Welfare above a⇤). Voters in a subgroup of Nr who have utility ⌧ for a⇤ also have
utility at least ⌧ for their top `r�1 alternatives. This helps us derive social welfare guarantees for the
randomized positional scoring rule.

Strategy 2 (Probability of a⇤). We use the well-known observation (see, e.g., [22]) that the distortion
is always upper bounded by the inverse of the probability of selecting a⇤.

Strategy 3 (Absolute Welfare Lower Bounds). Another novel insight from our work is that proving
an absolute lower bound on the welfare achieved by a rule across all instances can be useful in
bounding the distortion, even though the latter needs to compare the welfare achieved in each instance
to the optimum welfare in that instance. We carefully analyze and approximate, up to logarithmic
factors, the minimum welfare achieved by the randomized positional scoring rules we study, and use
it to bound its distortion. A similar idea has been used in other domains (see, e.g. [47]), but to the
best of our knowledge, we are the first to successfully apply it to distortion analysis.
Definition 1 (Minimum Welfare). Define the minimum welfare of a distribution over alternatives
p 2 �(A) on a preference profile ~� as min-sw(p,~�) = inf~u2C(~�) sw(p, ~u), which is the minimum
social welfare of p across all consistent utility profiles. The minimum welfare of a voting rule
f is the minimum welfare of its output, minimized over all preference profiles: min-swn,m(f) =
min~� min-sw(f(~�),~�), where the minimum is taken over all preference profiles with n agents and m
alternatives. We drop n and m when clear from the context.

Due to C(~�) being compact, the infimum in the min-sw(p,~�) definition is indeed attained. In
the supplementary material, we make an structural observation that for any preference profile and
distribution p 2 �(A), the minimum welfare is at most n/m, attained at a dichotomous utility profile.
Furthermore, every randomized positional scoring rule f rand

~s
satisfies min-sw(f rand

~s
) 2 [n/(4m2), n/m].

We also show how to approximate minimum welfare better (up to constants or logarithmic terms);
see Table 1 for tight bounds for the rules induced by common scoring vectors.

To this end, we present our most intricate technical lemma to derive a generic welfare lower bound,
which we use to apply Strategies 1 and 3. Instead of focusing only on Pr[f rand

~s
(~�) = a⇤], it bounds the

overall welfare expression
P

a2A
Pr[f rand

~s
(~�) = a] · swT (a); the product of probability of selection

and welfare of an alternative leads to a quadratic program, where the variables encode the worst case,
and this is analytically solved using the Karush-Kuhn-Tucker (KKT) conditions.
Lemma 2. Fix any scoring vector ~s, preference profile ~�, subset of agents T ✓ N , threshold ⌧ > 0,
and rank ` 2 [m]. For a partial utility profile ~u in which every agent in T has utility at least ⌧ for
each of her top ` alternatives and all other utilities are 0, we have:

swT (f
rand
~s

(~�), ~u) > ⌧ · |T |`
2nk~sk1

min
h2[m]

1

h

⇣
2s` · |T |` + (n� |T |) ·

hX

j=1

sm�j+1

⌘
.

Instead of tediously explaining the lemma, we will later show how its straightforward application
wondrously gives us the desired welfare lower bound for the example of randomized Borda rule.

3.2 Analyzing Common Rules

We are ready to present our main result, which uses the aforementioned insights to pinpoint the
asymptotic distortion of common randomized positional scoring rules.
Theorem 2. For f 2 {plurality, Borda, harmonic, veto, k-approvals}, the minimum welfare
(min-sw) and the distortion (dist) of the ‘randomized f ’ rule are as shown in Table 1.
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Due to space limitations, we only provide a proof for the distortion upper bound of the randomized
Borda rule, and defer the rest to the supplementary material. For conciseness, we use the notation
Borda(a) , score(a,~sBorda). First, we need the following lower bound on its minimum welfare.
Lemma 3. The minimum welfare of the randomized Borda rule is min-sw(f rand

~sBorda
) = ⌦( n

m
p
m
).

Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). Our goal is to show
that sw(f rand

~sBorda
(~�), ~u) = ⌦( n

m
p
m
). First, we make a few modifications to the scoring vector and the

preference profile that are guaranteed to not increase the welfare, and then invoke Lemma 2.

Simplify the scores. Let us consider the scoring vector ~s 0 which is equal to ~sBorda except the top
m/2 scores are all equal to m/2. Note that s0

j
6 (sBorda)j 6 2s0

j
for all j 2 [m]. Hence, invoking

Lemma 1 with ↵ = 1 yields sw(f rand
~sBorda

(~�), ~u) > 1/2 · sw(f rand
~s 0 (~�), ~u).

Simplify the preference and utility profiles. Next, let us lower bound sw(f rand
~s 0 (~�), ~u). For each agent

i, let Ai be the set of top m/2 alternatives in �i and ai 2 argmin
a2Ai

score(a,~s 0) be the alternative
in Ai with the lowest score (equivalently, probability of selection under f rand

~s 0 (~�)). Now,

ui(f
rand
~s 0 (~�)) >

X

a2Ai

score(a,~s 0)

nk~s 0k1
· ui(a)

(1)
> score(ai,~s 0)

nk~s 0k1
·
 
X

a2Ai

ui(a)

!
(2)
> score(ai,~s 0)

nk~s 0k1
· 1
2
,

where (1) follows from the definition of ai and (2) uses the fact that each agent has a total utility of at
least 1/2 for her top m/2 alternatives (due to the pigeonhole principle).

Invoking Lemma 2. The final expression above can be written as u0
i
(f rand

~s 0 (~�0)), where ~�0 is a
preference profile in which each agent i ranks ai first, and ~u0 is a partial utility profile in which
each agent i has utility 1/2 for her top alternative and 0 for the rest. Summing the above for all
agents, we have sw(f rand

~s 0 (~�), ~u) > sw(f rand
~s 0 (~�0, ~u0)). Thus, to lower bound it, we invoke Lemma 2

with ~s  ~s 0, ~�  ~�0, T being an arbitrary subset of n/2 agents, ⌧  1/2, and `  1. Using
k~s 0k1 = m

2 · m

2 +
�
m/2
2

�
= m(3m�2)

8 , this gives us

sw(f rand
~s 0 (~�0), ~u0)

(1)
> 1

2
·

n

2 · 1
2n · m(3m�2)

8

· min
h2[m/2]

1

h

✓
2 · m

2
· n

2
+

n

2
· h(h� 1)

2

◆

=
n

4m(3m� 2)
· min
h2[m/2]

✓
2m

h
+ h� 1

◆
(2)
> n · (2

p
2m� 1)

4m(3m� 2)

(3)
> n

6m
p

m
,

where the restriction to h 2 [m/2] in (1) is based on the fact that the bound would be ⌦(n/m) when
h > m/2, (2) is due to the AM-GM inequality, and (3) uses m > 2. Connecting the dots, we have

sw(f rand
~sBorda

(~�), ~u) > 1

2
· sw(f rand

~s 0 (~�), ~u) > 1

2
· sw(f rand

~s 0 (~�0), ~u0) > n

12m
p

m
.

To translate the welfare lower bound from Lemma 3 into a distortion upper bound, we need the
following relation between the Borda score of an alternative and its social welfare.
Lemma 4. For any preference profile ~�, consistent utility profile ~u 2 C(~�), and alternative a 2 A,
we have sw(a) 6 (Borda(a) + n)/m.

The desired distortion upper bound can now be derived using a standard analysis. The crux of
our proof for the randomized Borda rule lies in our intricate derivation of its minimum welfare in
Lemma 3, for which Lemma 2 does the heavy lifting.

Lemma 5. The distortion of the randomized Borda rule is O(m5/4).

Proof. Fix any preference profile ~� and consistent utility profile ~u 2 C(~�). Let
a⇤ 2 argmax

a2A
sw(a, ~u) be an optimal alternative. By Strategy 2 from Section 3.1, we know

that the distortion is at most nk~sBordak1

Borda(a⇤) . Following Strategy 3 from Section 3.1 and the minimum wel-

fare analysis in Lemma 3, we have that distortion is at most sw(a⇤)
n/(12m

p
m) , which, using Lemma 4, is at
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most 12
p

m ·
�
Borda(a⇤)/n+1

�
. Putting everything together, and using the fact that min{a, b} 6

p
ab

for all a, b 2 R>0, the distortion is upper bounded by

min

⇢
nk~sBordak1
Borda(a⇤)

,
Borda(a⇤) · 12

p
m

n
+ 12

p
m

�

6 12
p

m +

s
n · m(m� 1)/2

Borda(a⇤)
· Borda(a

⇤) · 12
p

m

n
6 8
p

m +
p
6m5/4 = O(m5/4).

4 Random Committee Member Rules

Next, we focus on our second class of explainable randomized voting rules that select an alternative
uniformly at random from a shortlisted committee of size k 2 [m]. We call them random k-committee
member rules. For k = 1, we are left with deterministic rules, among which plurality achieves the
optimal distortion of ⇥(m2). For k = m, we are left with uniform selection among all alternatives,
which has distortion ⇥(m). Is it possible that, for some intermediate value of k, we in fact achieve
sublinear distortion? Could we achieve distortion at most logarithmic factors worse than the optimal
⇥(
p

m), like with randomized positional scoring rules? We answer the former positively but the
latter negatively. First, we present a lower bound proving that any random k-committee member rule,
for any value of k, incurs a distortion of at least ⌦(m2/3).
Theorem 3. For k 2 [m], any random k-committee member rule incurs ⌦(max(k, m2/k2)) distor-
tion. This lower bound is at least ⌦(m2/3) for all k.

As a result, this class of rules is less powerful than the class of randomized positional scoring rules,
and thus, the class of all randomized rules. However, especially for small values of k, we gain the
benefit of randomizing over a small support, which could translate to greater explainability.

To derive upper bounds, one might be tempted to turn again to positional scoring rules, and consider
selecting uniformly at random from the k alternatives with the highest score according to some
scoring vector. In the supplementary material, we show that using plurality scoring vector yields
⇥(m(m� k + 1)) distortion. While it nicely interpolates between the extremes of ⇥(m2) at k = 1
and ⇥(m) at k = m, it fails to achieve sublinear distortion, which we prove to be achievable. What
about other scoring vectors? Unfortunately, it is relatively easy to see that using scoring vectors such
as Borda, harmonic, or veto results in unbounded distortion. Despite the disappointing worst-case
performance, we show in Section 5 that these rules perform relatively well empirically.

Next, we design a novel random k-committee member rule, which, with the right value of k, allows
us to achieve sublinear distortion.
Theorem 4. There is a polynomial-time computable random k-committee member rule with distortion
O(max{k, m2/(k

p
k)}). This is minimized at k = m4/5, where the bound becomes O(m4/5).

To achieve the above, we concoct a three-way mixture of an approximately stable committee [48],
a powerful notion which has been used to derive optimal randomized rules [19], alternatives with
high plurality scores, and alternatives picked carefully to guarantee high minimum welfare from
sufficiently many agents. We refer to the committee thus formed as a top-biased stable k-committee.
The rule that returns this committee is presented as Algorithm 1 in the supplementary material.

Theorems 3 and 4 leave open the question of the optimal distortion that can be achieved by a random
committee member rule, sandwiching this value between O(m4/5) and ⌦(m2/3). It is also interesting
to wonder which value of k is optimal. Our upper bound is optimized at k = m4/5, and our lower
bound implies that the optimal k must be in [m3/5, m4/5] as the distortion outside of that range is
⌦(m4/5). See Section 5 for an empirical evaluation of the optimal k.

5 Experiments

Next, we empirically evaluate the efficiency of explainable rules studied in the previous sections.

Rules. We consider three classes of rules: deterministic positional scoring rules, randomized
positional scoring rules from Section 3, and, from Section 4, rules that select uniformly at random from
the k alternatives with the highest scores (henceforth, uniform random k-positional scoring rules).
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Figure 1: All figures show results averaged over 150 runs along with the standard
error. Figures 1a to 1c share the legend on the left.

We consider four representative scoring vectors f 2 {Plurality, Borda, Harmonic, 3-Approval}, and
denote the corresponding rules in the three classes by ‘D f ’, ‘R f ’, and ‘URkf ’, respectively. Thus,
overall, we test 12 voting rules. As benchmarks, we also add the Uniform rule, which selects an
alternative uniformly at random from the set of all alternatives, and the Instance Optimal rule, which
selects the lottery over alternatives minimizing distortion on the preference profile. Boutilier et al.
[22] show how to use linear programming to compute the latter in polynomial time.

Data Generation. We generate preference profiles by sampling n rankings over m alternatives iid
from the Mallows model [49], which is widely used in machine learning and statistics. The model
takes as input an underlying reference ranking �⇤ (which can be set arbitrarily) and a dispersion
parameter � 2 [0, 1]. When � = 1, the model converges to a uniform distribution over all m!
rankings (also known as impartial culture), whereas �! 0 converges to the point distribution where
�⇤ is sampled with probability 1, so all the agents have the same preference ranking in the sampled
profile. For a precise definition of the model and an efficient algorithm to sample from it (which we
use in our experiments), see the work of Lu and Boutilier [50]. For each combination of n = 100
agents, m 2 {5, 10, . . . , 50} alternatives, and dispersion parameter � 2 {0, 0.1, . . . , 1}, we sample
150 instances, and report averages along with the standard error. In the supplementary material, we
report the results for two other statistical models namely the Polya-Eggenberger urn model [51] and
the Plackett-Luce model [52, 53].

Evaluation. For each rule f under consideration and each instance ~�, we evaluate the efficiency of
the output f(~�) by measuring its instance-specific distortion dist(f(~�),~�). Note that this still takes a
worst case over the utility profiles consistent with ~�, but unlike in Sections 3 and 4 where we also
take a worst case over ~�, here we compute the expected distortion over ~� drawn from the Mallows
model. Again, we compute dist(f(~�),~�) using the LP-based approach of Boutilier et al. [22].

Results. Figures 1a to 1c show the average distortion of different rules for � 2 {0.1, 0.5, 1},
respectively, fixing m = 25. For large � (impartial culture), the alternatives are spread out in agents’
preference rankings. Thus, it becomes likely that some alternative is ranked slightly lower than
another alternative by many agents, but has much higher social welfare in total. We see that in this
case, randomized positional scoring rules outperform deterministic and random committee member
rules as well as the uniform benchmark since it is more efficient to give a chance of winning to
each alternative. As � decreases to 0.5 and agent rankings become somewhat correlated, random
committee member rules start to outperform some of the randomized positional scoring rules (though
randomized plurality and randomized 3-approval still perform quite well). But crucially, both families
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of rules still outperform deterministic rules and the improved performance of random committee
member rules now allows them to outperform the uniform benchmark as well. At � = 0.1, when
agent preferences are highly correlated, deterministic rules gain some traction. Nonetheless, at least
one rule from one of the two randomized classes still outperforms all deterministic rules (randomized
plurality for low m and any random committee member rule for high m). Overall, randomized
plurality and randomized 3-approval perform reasonably well, and randomized plurality outperforms
all four deterministic rules across almost all values of m and �. The evidence suggests that one can
almost always choose an explainable randomized rule that achieves better efficiency than deterministic
rules, though the choice of the rule may have to depend on the setting at hand. A detailed comparison
of rules in each class can be found in the supplementary material.

In the above experiments, for random committee member rules (specifically, the uniform random
k-positional scoring rules), we use a committee size of k = 3. Figure 1d shows the best value of k
(one that yields the minimum distortion) for different scoring vectors as a function of �. It turns out
that the best k is indeed very small (6 5) unless � is really close to 1. Thus, k = 3 is a reasonable
choice that helps our random committee member rules achieve high efficiency. Still, it is possible to
further optimize the efficiency of these rules by pairing them with their corresponding optimal value
of k; the resulting average distortion is presented in the supplementary material.

6 Limitations and Future Work

Explainability. We focus on the families of randomized positional scoring rules and random
committee member rules as two examples of explainable randomized voting rules. While we argue
in the introduction that these families admit intuitive procedural explanations and provide example
explanations, checking whether stakeholders find these explanations reasonable and satisfactory in
the context of a real-life application requires an in-depth investigation, possibly via user studies.
Our work also treats explainability as a qualitative attribute, but different rules — even within the
same family — may differ in the degree to which they are explainable. Quantifying the degree of
explainability, both theoretically and empirically, remains to be tackled.

Efficiency. Our work uses distortion as a yardstick for efficiency, leaving open exciting technical
questions. While our analysis of randomized multi-level approval rules in the supplementary material
takes a step towards characterizing the distortion of all randomized positional scoring rules, it still
remains an unresolved challenge. For random committee member rules, even the more basic question
of identifying the optimal distortion they can achieve remains open, though we are able to pinpoint it
to be between ⌦(m2/3) and O(m4/5). Taking a step back, while distortion is a reasonable theoretical
measure for efficiency, it remains to be seen whether it is also correlated for other measures of
efficiency one may care about in practice. For example, in the context of food donations, Lee et al.
[15], who use the deterministic Borda rule to make decisions, suggest a number of important decision
factors other than the social welfare of the stakeholders, such as whether the donations are distributed
equitably, how long the drivers have to travel to deliver donations, and whether organizations with
higher poverty rates, lower median incomes, and worse food access are receiving sufficient donations.
An important next step would be to measure the efficiency of explainable randomized voting rules in
real-life applications such as food donation.
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