
Appendix

A Related work

Differentially private optimization. There is a long line of work at the intersection of differentially
privacy and optimization [17, 53, 13, 71, 12, 86, 7, 37, 72, 9, 58, 50, 87, 40, 39, 88]. As one of the
most well-studied problem in differentially privacy, DP Empirical Risk Minimization (DP-ERM)
aims to minimize the empirical risk (1/n)

∑
i∈S ℓ(xi;w) privately. The optimal excess empirical

risk for approximate DP (i.e., δ > 0) is known to be GD ·
√
d/(εn), where the loss ℓ is convex and

G-Lipschitz with respect to the data, and D is the diameter of the convex parameter space [13]. This
bound can be achieved by several DP-SGD methods, e.g., [71, 13], with different computational
complexities. Differentially private stochastic convex optimization considers minimizing the popula-
tion risk Ex∼D[ℓ(x,w)], where data is drawn i.i.d. from some unknown distribution D. Using some
variations of DP-SGD, [12] and [37] achieves a population risk of GD(1/

√
n+
√
d/(εn)).

DP linear regression. Applying above results for the linear model, by observing that G = O(d) if
D = O(1), the sample complexity required for achieving generalization error is n = d2. Existing
works for DP linear regression, for example [82, 53, 65, 30, 85, 38, 64, 83, 70, 3] typically consider
deterministic data. Under the i.i.d. Gaussian data setting, this translates into a sample complexity of
n = d3/2/(εα), where the extra d1/2 due to the fact that no statistical assumptions are made. For i.i.d.
sub-Weibull data, recent work [81] achieved nearly optimal excess population risk d/n+ d2/(ε2n2)
using DP-SGD with adaptive clipping, up to extra factors on the condition number. This is closest to
our work and we provide detailed comparisons in Sections 2.1 and 3.2. Under Gaussian assumptions,
[63] analyze linear regression algorithm with sub-optimal guarantees. [32, 6, 5, 61] also consider
using robust statistics like Tukey median [79] or Theil–Sen estimator [77] for differentially private
regression. However, [32] and [6] lack utility guarantees and [5] is restricted to one-dimensional data.
[61] achieves optimal sample complexity but takes exponential time. More recently, [20] uses private
linear regression scenario to show that correlated noise provably improves upon vanilla DP-SGD.

Recent work [16] considers DP generalized linear model and provides a DP-SGD type algorithm that
achieves nearly optimal error d/n+ d2/(ε2n2). Their result is not comparable to ours because they
assume the norm of the gradient is bounded by a constant, while for linear regression, the norm of the
gradient is O(

√
d).

Robust linear regression. Robust mean estimation and linear regression have been studied for a long
time in the statistics community [80, 46, 79]. However, for high dimensional data, these estimators
generalizing the notion of median to higher dimensions are typically computationally intractable.
Recent advances in the filter-based algorithms, e.g., [26, 23, 24, 28, 18, 31], achieve nearly optimal
guarantees for mean estimation in time linear in the dimension of the dataset. Motivated by the
filter algorithms, [29, 25, 68, 67, 19, 47] achieved nearly optimal rate with d samples for robust
linear regression, where both data xi and label yi are corrupted. Another type of efficient methods
that achieve similar rates and sample complexity in polynomial time is based on sum-of-square
proofs [54, 11], which can be computationally expensive in practice. [89] and [61] achieves nearly
optimal rates using d samples but require exponential time complexities. An important special case
of adversarial corruption is when the adversary only corrupts the response variable in supervised
learning [52] and also in unsupervised learning [78]. For linear regression, when there is only label
corruptions, [15, 21, 55] achieve nearly optimal rates with O(d) samples. Under the oblivious label
corruption model, i.e., the adversary only corrupts a fraction of labels in complete ignorance of
the data, [14, 75] provide consistent estimator ŵn such that limn→∞ E [ŵn − w∗]2 = 0 with O(d)
samples.

Of these, [15, 21] are relevant to our work as they consider the same adversary model as Asmp. 3.7.
When xi’s and zi’s are sampled from N (0,Σ) and N (0, σ2), [21] proposed a Huber loss based
estimator that achieves error rate of σ2α2 log2(n/δ) when n = Õ

(
κ2d/α2

)
. Under the same setting,

[15] propoased a hard thresholding based estimator that achieves σ2α2 error rate with Õ
(
d/α2

)
sample complexity. Our results in Thm. 3.1 match these rates, except for the sub-optimal dependence
on log2(1/α). Another line of work considered both label and covariate corruptions and developed
optimal algorithms for parameter recovery [29, 25, 68, 67, 19, 47, 54, 11, 89, 22]. The best existing
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efficient algorithm , e.g. [67], achieves error rate of σ2α2 log(1/α) when n = Õ
(
d/α2

)
, and the xi

and zi are sampled from N (0, I) and N (0, σ2).

Robust and private linear regression. Under the settings of both DP and data corruptions, the only
algorithm by [61] achieves nearly optimal rates α log(1/α)σ with optimal sample complexities of
d/α2 + d/(εα). However, their algorithm requires exponential time complexities.

Robust and private mean estimation Based on sum-of-square proofs, recent works [45, 4] are able
to achieve nearly optimal rates α log(1/α) with Õ(d) samples for sub-Gaussian data with known
covariance.

B Preliminary on differential privacy

Our algorithm builds upon two DP primitive: Gaussian mechanism and private histogram. The
Gaussian mechanism is one examples of a larger family of mechanisms known as output perturbation
mechanisms. In practice, it is possible to get better utility trade-off for a output perturbation
mechanism by carefully designing the noise, such as the stair-case mechanism which are shown to
achieve optimal utility in the variance [41] and also in hypothesis testing [48]. However, the gain is
only by constant factors, which we do not try to optimize in this paper. We provide a reference for
the Gaussian mechanism and private histogram below.
Lemma B.1 (Gaussian mechanism [34]). For a query q with sensitivity ∆q , the Gaussian mechanism
outputs q(S) +N (0, (∆q

√
2 log(1.25/δ)/ε)2Id) and achieves (ε, δ)-DP.

Lemma B.2 (Stability-based histogram [51, Lemma 2.3]). For every K ∈ N ∪ {∞}, domain Ω, for
every collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N, ε ≥ 0, δ ∈ (0, 1/n), β > 0 and
α ∈ (0, 1) there exists an (ε, δ)-differentially private algorithm M : Ωn → RK such that for any set
of data X1, . . . , Xn ∈ Ωn

1. p̂k = 1
n

∑
Xi∈Bk

1

2. (p̃1, . . . , p̃K)←M(X1, . . . , Xn), and

3.

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/αδ)

}
then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

When the databse is accessed multiple times, we use the following composition theorems to account
for the end-to-end privacy leakage.
Lemma B.3 (Parallel composition [62]). Consider a sequence of interactive queries {qk}Kk=1 each
operating on a subset Sk of the database and each satisfying (ε, δ)-DP. If Sk’s are disjoint then the
composition (q1(S1), q2(S2), . . . , qK(SK)) is (ε, δ)-DP.
Lemma B.4 (Serial composition [34]). If a database is accessed with an (ε1, δ1)-DP mechanism and
then with an (ε2, δ2)-DP mechanism, then the end-to-end privacy guarantee is (ε1 + ε2, δ1 + δ2)-DP.

In most modern privacy analysis of iterative processes, advanced composition theorem from [49]
gives tight accountant for the end-to-end privacy budget. It can be improved for specific mechanisms
using tighter accountants, e.g., in [66, 42, 84, 90, 43].
Lemma B.5 (Advanced composition [49]). For ε ≤ 0.9, an end-to-end guarantee of (ε, δ)-differential
privacy is satisfied if a database is accessed k times, each with a (ε/(2

√
2k log(2/δ)), δ/(2k))-

differential private mechanism.

C Adaptive clipping for the gradient norm

In the ideal clipping thresholds for the norm and the residual, there are unknown terms which we
need to estimate adaptively, (∥wt − w∗∥2Σ + σ2) and Tr(Σ), up to constant multiplicative errors. We
privately estimate the (squared and shifted) distance to optimum, (∥wt − w∗∥2Σ + σ2), with Alg. 2
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and privately estimate the average input norm, E[∥xi∥2] = Tr(Σ), with Alg. 3 in App. F. These
are used to get the clipping thresholds in Alg. 1. We propose a trimmed mean approach below for
distance estimation. The norm estimator is similar and is provided in App. F.

Private distance estimation using private trimmed mean. The goal is to estimate the (shifted)
distance to optimum, ∥wt − w∗∥2Σ + σ2, up to some constant multiplicative error. Note that this
is precisely the task of estimating the variance of the residual bi = yi − w⊤

t xi. When there is no
adversarial corruption and no privacy constraint, we can simply use the empirical variance estimator
(1/n)

∑
i∈[n](yi − w⊤

t xi)
2 to obtain a good estimate. However, the empirical variance estimator is

not robust against adversarial corruptions since one outlier can make the estimate arbitrarily large.
A classical idea is using the trimmed estimator from [80], which throws away the 2α fraction of
residuals bi with the largest magnitude. For datasets with resilience property as assumed in this paper,
this will guarantee an accurate estimate of the distance to optimum in the presence of α fraction of
corruptions.

To make the estimator private, it is tempting to simply add a Laplacian noise to the estimate. However,
the sensitivity of the trimmed estimator is unknown and depends on the distance to the optimum
that we aim to estimate; this makes it challenging to determine the variance of the Laplacian noise
we add. Instead, we propose to partition the dataset into k batches, compute an estimate for each
batch, and form a histogram with over those k estimates. Using a private histogram mechanism with
geometrically increasing bin sizes, we propose using the bin with the most estimates to guarantee a
constant factor approximation of the distance to the optimum. We describe the algorithm as follows.

Algorithm 2: Robust and Private Distance Estimator
Input: S2 = {(xi, yi)}ni=1, current wt, (ε0, δ0), failure probability ζ,

1 Let bi ← (yi − w⊤
t xi)

2, ∀i ∈ [n] and S̃ ← {bi}ni=1.
2 Partition S̃ into k = ⌈C1 log(1/(δ0ζ))/ε0⌉ subsets of equal size and let Gj be the j-th partition.
3 For j ∈ [k], denote ψj as the 0.9-quantile of Gj and ϕj ← 1

|Gj |
∑

i∈Gj
bi1{bi ≤ ψj}.

4 Partition [0,∞) into geometrically increasing intervals
Ω :=

{
. . . ,

[
2−1, 1

)
, [1, 2) ,

[
2, 22

)
, . . .

}
∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram of Lemma B.2 on {ϕj}kj=1 over Ω
6 if all the bins are empty then Return ⊥
7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP histogram
8 return ℓ

This algorithm gives an estimate of the distance up to a constant multiplicative error as we show in
the following theorem. We provide a proof in App. D.
Theorem C.1. Alg. 2 is (ε0, δ0)-DP. For an αcorrupt-corrupted dataset S2 that satisfy Asmp. 2.1 and
Asmp. 3.7 and any ζ ∈ (0, 1), if

n = O

(
(d+ log((log(1/(δ0ζ)))/ε0ζ))(log(1/(δ0ζ)))

ε0

)
, (9)

with a large enough constant, then with probability 1− ζ , Alg. 2 returns ℓ such that 1
4 (∥wt−w∗∥2Σ +

σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

Note that in Thm. C.1, we only need to estimate distance up to a constant multiplicative error, as
opposed to an error that depends on our final end-to-end desired level α. Consequently, we require
smaller sample complexity (that doesn’t depend on α) than other parts of our approach.
Remark C.2. While DP-STAT (Algorithm 3 in [81]) can also be used to estimate ∥wt − w∗∥Σ + σ
(and it would not change the ultimate sample complexity in its dependence on κ, d, ε, and n), there
are three important improvements we make: (i) DP-STAT requires the knowledge of ∥w∗∥Σ +σ; (ii)
our utility guarantee has improved dependence in K and log(n); and (iii) Alg. 2 is robust against
label corruption.

Upper bound on clipped good data points. Using the above estimated distance to the optimum in
selecting a threshold θt, we also need to ensure that we do not clip too many clean data points. The
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tolerance in our algorithm to reach the desired level of accuracy is clipping O(α) fraction of clean
data points. This is ensured by the following lemma, and we provide a proof in App. E.

Lemma C.3. Under Asmp. 2.1 and for all t ∈ [T ], if θt ≥
√

9C2K2 log(1/(2α))·(∥w∗ − wt∥Σ + σ)

then
∣∣{i ∈ S3 ∩ Sgood :

∣∣w⊤
t xi − yi

∣∣ ≥ θt}∣∣ ≤ αn.

D Proof of Thm. C.1 on the private distance estimation

We present our formal theorem for the general sub-Weibull distribution as follows.

Theorem D.1. Alg. 2 is (ε0, δ0)-DP. For an αcorrupt-corrupted dataset S2 satisfying Asmp. H.1 and
Asmp. 3.7 and an upper bound ᾱ on αcorrupt that satisfy 37C2K

2 · ᾱ log2a(1/(6ᾱ)) ≤ 1/4 and any
ζ ∈ (0, 1), if

n = O

(
(d+ log((log(1/(δ0ζ)))/ε0ζ))(log(1/(δ0ζ)))

ᾱ2ε0

)
, (10)

with a large enough constant then, with probability 1− ζ , Alg. 2 returns ℓ such that 1
4 (∥wt−w∗∥2Σ +

σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

We first analyze the privacy. Changing a data point (xi, yi) can affect at most one partition in
{Gj}kj=1. This would affect at most two histogram bins, increasing the count of one bin by one
and decreasing the count in another bin by one. Under such a bounded ℓ1 sensitivity, the privacy
guarantees follows from Lemma B.2.

Next, we analyze the utility. In the (private) histogram step, we claim that at most only two
consecutive bins can be occupied by any ϕj’s. This is also true for the private histogram, because
the private histogram of Lemma B.2 adds noise to non-empty bins only. By Lemma B.2, if k ≥
c log(1/(δ0ζ0))/ε0, one of these two intervals (the union of which contains the true distance ∥wt −
w∗∥2Σ +σ2) is released. This results in a multiplicative error bound of four, as the bin size increments
by a factor of two.

To show that only two bins are occupied, we show that all ϕj’s are close to the true distance. We
first show that each partition contains at most 2αcorrupt fraction of corrupted samples and thus all
partitions are (2ᾱ, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good, where ρ̂(C2,K, a, ᾱ) = C2K

2ᾱ log2a(1/6ᾱ)
and ρ̂′(C2,K, a, ᾱ) = C2Kᾱ loga(1/6ᾱ), as defined in Definition J.6.

Let B = ⌊n/k⌋ be the sample size in each partition. Let ζ0 = ζ/2. Since the partition is drawn
uniformly at random, for each partition Gj , the number of corrupted samples α′n satisfies α′n ∼
Hypergeometric(n, αcorruptn, n/k). The tail bound gives that with probability 1− ζ0,

α′ ≤ αcorrupt + (k/n) log(2/ζ0) ≤ 2ᾱ ,

where the last inequality follows from the fact that the corruption level is bounded by αcorruption ≤ ᾱ
and the assumption on the sample size in Eq. (10) which implies n ≳ log(1/(δ0ζ0)) log(1/ζ0)/(ᾱε0).

For a particular subset Gj , Lemma J.7 implies that if B = O((d + log(1/ζ0))/ᾱ
2), then Gj is

(α′, 6ᾱ, 6ρ̂, 6ρ̂, 6ρ̂, 6ρ̂′)-corrupt good set with respect to (w∗,Σ, σ) from Asmp. H.1. This means that
there exists a constant C2 > 0 such that for any T1 ⊂ Sgood with |T1| ≥ (1− 6ᾱ)B, we have∣∣∣∣∣ 1

|T1|
∑
i∈T1

⟨xi, w∗ − wt⟩2 − ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥2Σ ,

∣∣∣∣∣ 1

|T1|
∑
i∈T1

z2i − σ2

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))σ2 ,

and ∣∣∣∣∣ 1

|T1|
∑
i∈T1

zi ⟨xi, w∗ − wt⟩

∣∣∣∣∣ ≤ 6C2K
2ᾱ log2a(1/(6ᾱ))∥w∗ − wt∥Σσ .
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Note that for i ∈ Sgood, bi = z2i +2zi(w
∗−wt)

⊤xi+(w∗−wt)
⊤xix

⊤
i (w

∗−wt). By the triangular
inequality, we know, under above conditions,∣∣∣∣∣ 1

|T1|
∑
i∈T1

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (11)

Which also implies that any subset T2 ⊂ Sgood and |T2| ≤ 6ᾱ|Sgood|, we have∣∣∣∣∣ 1

|T2|
∑
i∈T2

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣ ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (12)

Recall that ψj is the (1 − 3ᾱ)-quantile of the dataset Gj . Let T := {i ∈ Sgood : bi ≤ ψj}, where
with a slight abuse of notations, we use Sgood to denote the set of uncorrupted samples corresponding
to Gj and Sbad to denote the set of corrupted samples corresponding to Gj . Since the corruption is
less than α′, we know (1− 3ᾱ− α′)B ≤ |T | ≤ (1− 3ᾱ+ α′)B. By our assumption that α′ ≤ 2ᾱ,
we have |Ē| ≥ (3ᾱ− α′)B ≥ ᾱB where Ē := Sgood \ E. Using Eq. (12) with a choice of T2 = Ē,
we get that

min
i∈Ē

bi − ∥w∗ − wt∥2Σ − σ2 ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2) . (13)

This implies that

ψj ≤ 12C2K
2 log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2). (14)

Hence

∣∣ϕj − ∥w∗ − wt∥2Σ − σ2
∣∣ =

∣∣∣∣∣∣ 1B
∑
i∈Gj

bi · 1{bi ≤ ψj} − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣∣
=

∣∣∣∣∣ 1B∑
i∈T

bi − ∥w∗ − wt∥2Σ − σ2

∣∣∣∣∣+
∣∣∣∣∣ 1B ∑

i∈Sbad

bi · 1{bi ≤ ψj}

∣∣∣∣∣
≤ 37C2K

2 · ᾱ log2a(1/(6ᾱ))(∥w∗ − wt∥2Σ + σ2), (15)

where we applied Eq. (14) and Eq. (11) in the last inequality.

On a fixed partition Gj , we showed that if B = O((d + log(1/ζ0))/ᾱ
2) then, with probability

1 − ζ0, |ϕj − ∥w∗ − wt∥2Σ − σ2| ≤ 1
4 (∥w

∗ − wt∥2Σ + σ2), which follows from our assumption
that 37C2K

2 · ᾱ log2a(1/(6ᾱ)) ≤ 1/4. Using an union bound for all subsets, we know if B =
O((d+ log(k/ζ0))/ᾱ

2), then 1− ζ0, |ϕj − ∥w∗ − wt∥2Σ − σ2| ≤ 1
4 (∥w

∗ − wt∥2Σ + σ2) holds for
all j ∈ [k]. Since the upper bound lower bound ratio is 5/3 which is less than 2. All the ϕj must lie
in two bins, which will result in a factor of 4 multiplicative error.

E Proof of Lemma C.3 on the upper bound on clipped good points

Let ρ̂(C2,K, a, α) = 2C2K
2α log2a(1/(2α)) and ρ̂′(C2,K, a, α) = 2C2Kα loga(1/(2α)).

Lemma J.7 implies that if n = O((d + log(1/ζ))/(α2)) with a large enough constant, then there
exists a universal constant C2 such that S3 is, with respect to (w∗,Σ, σ), (αcorrupt, 2α, ρ̂, ρ̂, ρ̂, ρ̂

′)-
corrupt good. The rest of the proof is under this (deterministic) resilience condition. By the resilience
property in Eq. (6), we know for any T ⊂ Sgood with |T | ≥ (1− 2α)n,∣∣∣∣∣ 1

|T |
∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)− ∥w∗ − wt∥2Σ

∣∣∣∣∣ ≤ 2C2K
2α log2a(1/(2α))∥w∗ − wt∥2Σ .

(16)

Let E :=
{
i ∈ Sgood : (w∗ − wt)

⊤xix
⊤
i (w

∗ − wt) > ∥w∗ − wt∥2Σ(8C2K
2 log2a(1/(2α)) + 1)

}
.

Denote α̃ := |E|/n. We want to show that α̃ ≤ α/2. Let T be the set of points that contain the
smallest 1− α/2 fraction in {(w∗ − wt)

⊤xix
⊤
i (w

∗ − wt)}i∈Sgood
. We know |T | = (1− α/2)n ≥
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(1− 2α)n. To prove by contradiction, suppose α̃ > α/2, which means all data points in Sgood \ T
are larger than ∥w∗ − wt∥2Σ(8C2K

2 log2a(1/(2α)) + 1). From resilience property in Eq. (16), we
know

1

n

∑
i∈Sgood

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

=
1

n

∑
i∈T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt) +
1

n

∑
i∈Sgood\T

(w∗ − wt)
⊤xix

⊤
i (w

∗ − wt)

≥
(
1− α

2

)(
1− 2C2K

2α log2a(
1

2α
)

)
∥w∗ − wt∥2Σ +

α

2
(8C2K

2 log2a(
1

2α
) + 1)∥w∗ − wt∥2Σ

> (1 + 2C2K
2α log2a(1/2α))∥w∗ − wt∥2Σ ,

which contradicts Eq. (16) for Sgood. This shows α̃ ≤ α/2.

Similarly, we can show that
∣∣{i ∈ Sgood : z2i > σ2(8C2K

2 log2a(1/(2α)) + 1)
}∣∣ ≤ α/2. This

means the rest (1 − α)n points in Sgood satisfies
√

(w∗ − wt)⊤xix⊤i (w
∗ − wt) + |zi| ≤ (∥wt −

w∗∥+ σ)
√

(8C2K2 log2a(1/(2α)) + 1). Note that for all i ∈ Sgood, we have

|x⊤i wt − yi| =
∣∣x⊤i (wt − w∗)− zi

∣∣
≤ |x⊤i (wt − w∗)|+ |zi|

≤
(√

(w∗ − wt)⊤xix⊤i (w
∗ − wt) + |zi|

)
.

By our assumption that C2K
2 log2a(1/(2ᾱ)) ≥ 1 which follows from Asmp. 3.7, we have∣∣∣∣{i ∈ Sgood : |x⊤i wt − yi| ≤ (∥wt − w∗∥Σ + σ)

√
9C2K2 log2a(1/(2α))

}∣∣∣∣ ≥ (1− α)n . (17)

F Private norm estimation: algorithm and analysis

Algorithm 3: Private Norm Estimator
Input: S1 = {(xi, yi)}ni=1, target privacy (ε0, δ0), failure probability ζ.

1 Let ai ← ∥xi∥2. Let S̃ = {ai}ni=1.
2 Partition S̃ into k = ⌊C1 log(1/(δ0ζ))/ε⌋ subsets of equal size and let Gj be the j-th partition.
3 For each j ∈ [k], denote ψj = (1/|Gj |)

∑
i∈Gj

ai.
4 Partition [0,∞) into bins of geometrically increasing intervals

Ω :=
{
. . . ,

[
2−2/4, 2−1/4

)
,
[
2−1/4, 1

)
,
[
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

5 Run (ε0, δ0)-DP histogram learner of Lemma B.2 on {ψj}kj=1 over Ω
6 if all the bins are empty then Return ⊥
7 Let [ℓ, r] be a non-empty bin that contains the maximum number of points in the DP histogram
8 Return ℓ

Lemma F.1. Alg. 3 is (ε0, δ0)-DP. If {xi}ni=1 are i.i.d. samples from (K, a)-sub-Weibull distributions
with zero mean and covariance Σ and

n = Õ

(
log2a(1/(δ0ζ))

ε0

)
,

with a large enough constant then Alg. 3 returns Γ such that, with probability 1− ζ,

1√
2
Tr(Σ) ≤ Γ ≤

√
2Tr(Σ) .

We provide a proof in App. F.1.
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F.1 Proof of Lemma F.1 on the private norm estimation

By Hanson-Wright inequality in Lemma J.1 and union bound, there exists constant c > 0 such that
with probability 1− ζ,

|1
b

b∑
i=1

∥xi∥2 − Tr(Σ)| ≤ cK2 Tr(Σ)

(√
log(1/ζ)

b
+

log2a(1/ζ)

b

)
, (18)

This means there exists a constant c′ > 0 such that if b ≥ c′K2 log2a(k/ζ), then for all j ∈ [k].

|ψj − Tr(Σ)| ≤ 21/8 Tr(Σ) (19)

With probability 1− ζ , {ψj}kj=1 lie in interval of size 21/4 Tr(Σ). Thus, at most two consecutive bins
are filled with {ψj}kj=1. Denote them as I = I1 ∪ I2. Our analysis indicates that P(ψi ∈ I) ≥ 0.99.
By private histogram in Lemma B.2, if k ≥ log(1/(δζ))/ε, |p̂I − p̃I | ≤ 0.01 where p̂I is the
empirical count on I and p̃I is the noisy count on I . Under this condition, one of these two intervals
are released. This results in multiplicative error of

√
2.

G Proof of the resilience in Lemma J.7

We apply following resilience property for general distribution characterized by Orlicz function from
[89].

Lemma G.1 ([89, Theorem 3.4]). Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples from a

distribution D. Suppose D is zero mean and satisfies Ex∼D

[
ψ
(

(v⊤x)2

κ2Ex∼D[(v⊤x)2]

)]
≤ 1 for all

v ∈ Rd, where ψ(·) is Orlicz function. Let Σ = Ex∼D[xx
⊤]. Suppose α ≤ ᾱ, where ᾱ satisfies

(1 + ᾱ/2) · 2κ2ᾱψ−1(2/ᾱ) < 1/3, ᾱ ≤ 1/4. Then there exists constant c1, C2 such that if
n ≥ c1((d + log(1/ζ))/(α2)), with probability 1 − ζ, for any T ⊂ S of size |T | ≥ (1 − α)n, the
following holds: ∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2κα
√
ψ−1(1/α) (20)

and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2κ
2αψ−1(1/α) . (21)

Let ψ(t) = et
1/(2a)

. It is easy to see that ψ(t) is a valid Orlicz function. Then if xi is (K, a)-sub-
Weibull, then we know ∥∥∥∥∥Σ−1/2

(
1

|T |
∑
i∈T

xi

)∥∥∥∥∥ ≤ C2Kα

√
log2a(1/α) , (22)

and ∥∥∥∥∥Id − Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2

∥∥∥∥∥
2

≤ C2K
2α log2a(1/α) . (23)

This implies

(1− C2K
2α log2a(1/α))Id ⪯ Σ−1/2

(
1

|T |
∑
i∈T

xix
⊤
i

)
Σ−1/2 ⪯ (1 + C2K

2α log2a(1/α))Id .

(24)
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Using the fact that C⊤AC ⪯ C⊤BC if A ⪯ B, we know

(1− C2K
2α log2a(1/α))Σ ⪯ 1

|T |
∑
i∈T

xix
⊤
i ⪯ (1 + C2K

2α log2a(1/α))Σ . (25)

This implies resilience properties of xi and zi in Eq. (6) and Eq. (7) in Definition 5.1 respectively.
Next, we show the resilience property of xizi.

By ab ≤ a2

2 + b2

2 , for any fixed v ∈ Rd,

E[exp

((
| ⟨xizi, v⟩ |2

K4σ2v⊤Σv

)1/(4a)
)
] ≤ E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)

/2

)
exp

((
z2i

K2σ2

)1/(2a)

/2

)]
(26)

≤ 1

2

(
E

[
exp

((
| ⟨xi, v⟩ |2

K2v⊤Σv

)1/(2a)
)]

+ E

[
exp

((
z2i

K2σ2

)1/(2a)
)])

(27)
≤ 2 . (28)

Since E[xizi] = 0, [89, Lemma E.3] implies that there exists constant c1, C2 > 0 such that if
n ≥ c1(d+ log(1/ζ))/(α2), with probability 1− ζ, for any T ⊂ Sgood of size |T | ≥ (1− α)n,∥∥∥∥∥Σ−1

(
1

|T |
∑
i∈T

xizi

)∥∥∥∥∥ ≤ C2K
2σα log2a(1/α) . (29)

H Proof of Thm. H.3 on the analysis of Alg. 1

We provide our main theorem under the following sub-Weibull assumptions.
Assumption H.1 ((Σ, σ2, w∗,K, a)-model). A multiset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 of n
i.i.d. samples is from a linear model yi = ⟨xi, w∗⟩ + zi, where the input vector xi is zero mean,
E[xi] = 0, with a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the (input dependent) label
noise zi is zero mean, E[zi] = 0, with variance σ2 := E[z2i ]. We further assume E[xizi] = 0, which
is equivalent to assuming that the true parameter w∗ = Σ−1E[yixi]. We assume that the marginal
distribution of xi is (K, a)-sub-Weibull and that of zi is also (K, a)-sub-Weibull, as defined below.

Sub-Weibull distributions provide Gaussian-like tail bounds determining the resilience of the dataset
in Lemma J.7, which our analysis critically relies on and whose necessity is justified in Sec. 3.4.
Definition H.2 (sub-Weibull distribution [57] ). For some K, a > 0, we say a random vector x ∈ Rd

is from a (K, a)-sub-Weibull distribution if for all v ∈ Rd, E
[
exp

((
⟨v,x⟩2

K2E[⟨v,x⟩2]

)1/(2a))]
≤ 2.

Theorem H.3. Alg. 1 is (ε, δ)-DP. Under (Σ, σ2, w∗,K, a)-model of Asmp. H.1 and αcorrupt-
corruption of Assumption 3.7 and for any failure probability ζ ∈ (0, 1) and target error rate
α ≥ αcorrupt. We further assume that the corruption level is bounded by αcorrupt ≤ ᾱ, where ᾱ
is a known positive constant satisfying ᾱ ≤ 1/10, 72C2K

2 ᾱ log2a(1/(6ᾱ)) log(κ) ≤ 1/2, and
2C2K

2 log2a(1/(2ᾱ)) ≥ 1 for the (K, a)-sub-Weibull distribution of interest and a positive constant
C2 defined in Lemma J.7 that only depends on (K, a). If the sample size is large enough such that

n = Õ

(
K2d log2a+1

(1
ζ

)
+
d+ log(1/ζ)

α2
+
K2dT 1/2 log( 1δ ) log

a( 1ζ )

εα

)
, (30)

with a large enough constant where Õ hides poly-logarithmic terms in d, n, and κ, then the choices of
a step size η = 1/(Cλmax(Σ)) for any C ≥ 1.1 and the number of iterations, T = Θ̃ (κ log (∥w∗∥))
for a condition number of the covariance κ := λmax(Σ)/λmin(Σ), ensures that, with probability
1− ζ, Alg. 1 achieves

Eν1,··· ,νt∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
K4σ2α2 log4a

( 1
α

))
, (31)

23



where the expectation is taken over the noise added for DP, and Θ̃(·) hides logarithmic terms in
K,σ, d, n, 1/ε, log(1/δ), 1/α, and κ.

The main theorem builds upon the following lemma that analyzes a (stochastic) gradient descent
method, where the randomness is from the DP noise we add and the analysis only relies on certain
deterministic conditions on the dataset including resilienece and concentration. Thm. H.3 follows in
a straightforward manner by collecting Thm. C.1, Lemma F.1, Lemma C.3, and Lemma H.4.
Lemma H.4. Alg. 1 is (ε, δ)-DP. Under Assumptions H.1 and 3.7 for any ζ ∈ (0, 1) and α ≥ αcorrupt

satisfying K2α log2a(1/α) log(κ) ≤ c for some universal constant c > 0, if distance threshold is
small enough such that

θt ≤ 3C
1/2
2 K loga(1/(2α)) · (∥w∗ − wt∥Σ + σ) , (32)

and large enough such that the number of clipped clean data points is no larger than αn, at every
round, the norm threshold is large enough such that

Θ ≥ K
√

Tr(Σ) loga(n/ζ) , (33)

and sample size is large enough such that

n = O

(
K2d log(d/ζ) log2a(n/ζ) +

d+ log(1/ζ)

α2
+
K2T 1/2d log(T/δ) loga(n/(αζ))

εα

)
,

(34)

with a large enough constant, then the choices of a step size, η = 1/(Cλmax(Σ)) for some C ≥ 1.1,
and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) , ensures that Alg. 1 outputs wT satisfying the
following with probability 1− ζ:

Eν1,··· ,νt∼N (0,Id)[∥wT − w∗∥2Σ] ≲ K4σ2 log2(κ)α2 log4a(1/α) , (35)

where the expectation is taken over the noise added for DP and Θ̃(·) hides logarithmic terms in
K,σ, d, n, 1/ε, log(1/δ), 1/α.

Proof of Lemma H.4. We first prove a set of deterministic conditions on the clean dataset, which is
sufficient for the analysis of the gradient descent.

Step 1: Sufficient deterministic conditions on the clean dataset. Let Sgood be the uncorrupted
dataset for S3 and Sbad be the corrupted datapoints in S3. Let G := Sgood ∩ S3 = S3 \ Sbad denote
the clean data that remains in the input dataset. Let λmax = ∥Σ∥2. Define Σ̂ := (1/n)

∑
i∈G xix

⊤
i ,

B̂ := Id − ηΣ̂. Lemma J.4 implies that if n = O(K2d log(d/ζ) log2a(n/ζ)), then

0.9Σ ⪯ Σ̂ ⪯ 1.1Σ . (36)

We pick step size η such that η ≤ 1/(1.1λmax) to ensure that η ≤ 1/∥Σ̂∥2. Since the covariates
{xi}i∈S are not corrupted, from Lemma J.3, we know with probability 1− ζ, for all i ∈ S3,

∥xi∥2 ≤ K2 Tr(Σ) log2a(n/ζ) . (37)

Lemma J.7 implies that if n = O((d + log(1/ζ))/(α2)), then there exists a universal constant C2

such that S3 is, following Definition J.6, with respect to (w∗,Σ, σ),
(αcorrupt, α, C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2Kα loga(1/α))-
corrupt good. Such corrupt good sets have a sufficiently large, 1− αcorrupt, fraction of points that
satisfy a good property that we need: resilience. The rest of the proof is under Eq. (36), Eq. (37), and
that Sgood is resilient.

Step 2: Upper bounding the deterministic noise in the gradient. In this step, we bound the
deviation of the gradient from its mean. There are several sources of deviation: (i) clipping, (ii)
adversarial corruptions, and (iii) randomness of the data noise and privacy noise. We will show that
deviations from all these sources can be controlled deterministically under the corrupt-goodness (i.e.,
resilience).

Let ϕt = (
√
2 log(1.25/δ0)Θθt)/(ε0n), which ensures that we add enough noise to guarantee

(ε0, δ0)-DP for each step of gradient descent. This follows from the standard Gaussian mechanism in
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Lemma B.1 and the fact that each gradient is clipped to the norm of Θθt, resulting in a DP sensitivity
of Θθt/n. The fact that this sensitivity scales as 1/n is one of the main reasons for the performance
gain we get over [81] that uses a minimatch of size n/κwith sensitivity scaling as κ/n. Define g(t)i :=

xi(x
⊤
i wt − yi). For i ∈ Sgood, we know yi = x⊤i w

∗ + zi. Let g̃(t)i = clipΘ(xi)clipθt(x
⊤
i wt − yi).

Note that under Eq. (37), clipΘ(xi) = xi for all i ∈ S3.

From Alg. 1, we can write one-step update rule as follows:

wt+1 − w∗

=wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t)
i − g̃

(t)
i )− ηϕtνt −

η

n

∑
i∈Sbad

g̃
(t)
i

(38)

Let Et := {i ∈ G : θt ≤ |x⊤i wt − yi|} be the set of clipped clean data points such that
∑

i∈G(g
(t)
i −

g̃
(t)
i ) =

∑
i∈Et

(g
(t)
i −g̃

(t)
i ). We define v̂ := (1/n)

∑
i∈G xizi, u

(1)
t := (1/n)

∑
i∈Et

xix
⊤
i (wt−w∗),

u
(2)
t := (1/n)

∑
i∈Et
−xizi, and u(3)t := (1/n)

∑
i∈Sbad∪Et

g̃
(t)
i .

We can further write the update rule as:

wt+1 − w∗ =B̂(wt − w∗) + ηv̂ + ηu
(1)
t−1 + ηu

(2)
t−1 − ηϕtνt − ηu

(3)
t−1 . (39)

We bound each term one-by-one. Since G ⊂ Sgood and |G| = (1− αcorrupt)n, using the resilience
property in Eq. (5), we know

∥Σ−1/2v̂∥ = (1− αcorrupt) max
∥v∥=1

Σ−1/2

〈
v,

1

(1− αcorrupt)n

∑
i∈G

xizi

〉
≤ (1− αcorrupt)C2K

2α log2a(1/α)σ (40)

≤ C2K
2α log2a(1/α)σ . (41)

Let α̃ = |Et|/n. By assumption, we know α̃ ≤ α (which holds for the given dataset due to
Lemma C.3), and

∥Σ−1/2u
(1)
t ∥ = ∥Σ−1/2 1

n

∑
i∈Et

xix
⊤
i (wt − w∗)∥ .
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From Corollary J.8, we know∣∣∣∣∣∥Σ−1/2 1

|Et|
∑
i∈Et

xix
⊤
i (wt − w∗)∥ − ∥wt − w∗∥Σ

∣∣∣∣∣
=

∣∣∣∣∣ max
u:∥u∥=1

1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i (wt − w∗)∥ − max

v:∥v∥=1
v⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i Σ

−1/2Σ1/2(wt − w∗)∥ − u⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤
(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)∥

∣∣∣∣∣
=

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)∥∥∥∥∥ · ∥∥∥Σ1/2(wt − w∗)
∥∥∥

≤2− α̃
α̃

C2K
2α log2a(1/α) ∥wt − w∗∥Σ .

This implies that

∥Σ−1/2u
(1)
t ∥ ≤ ∥Σ−1/2 1

n

∑
i∈E

xix
⊤
i (wt − w∗)∥

≤
(
α̃+ 2C2K

2α log2a(1/α)
)
∥wt − w∗∥Σ

≤ 3C2K
2α log2a(1/α) ∥wt − w∗∥Σ , (42)

where the last inequality follows from the fact that α̃ ≤ α and our assumption that
C2K

2 log2a(1/ᾱ) ≥ 1 from Asmp. 3.7. Similarly, we use resilience property in Eq. (5) instead of
Eq. (6), we can show that

∥Σ−1/2u
(2)
t ∥ ≤ 3C2K

2α log2a(1/α)σ . (43)

Next, we consider u(3)t . Since |Sbad| ≤ αcorruptn and |Et| ≤ αn, using Eq. (8) and Corollary J.8,
we have

∥Σ−1/2u
(3)
t ∥ = max

v:∥v∥=1

1

n

∑
i∈Sbad∪Et

v⊤Σ−1/2xiclipθt(x
⊤
i wt − yi)

≤ 2C2Kα loga(1/α)θt

≤ 6C1.5
2 K2α log2a(1/α)(∥wt − w∗∥Σ + σ) . (44)

Now we use Eq. (41), Eq. (42), Eq. (43) and Eq. (44) to bound the final error from update rule in
Eq. (39).

Step 3: Analysis of the t-steps recurrence relation. We have controlled the deterministic noise in
the last step. In this step, we will upper bound the noise introduced by the Gaussian noise for the
purpose of privacy, and show the expected distance to optimum decrease every step.

We want to emphasize that most of our technical contribution is in the convergence analysis (Step
3 and Step 4). More precisely, naive linear regression analysis can only show a suboptimal error
rate of ∥ŵ − w⋆∥Σ = Õ(κασ) with sample size n = Õ(d/α2 + κ1/2d/(εα)). Define ut =

(v̂ + u
(1)
t + u

(2)
t − u

(3)
t ). This follows from Eq. (39):

wt+1 − w∗ =B̂(wt − w∗) + ηut − ηϕtνt (45)

=(Id − ηΣ̂)(wt − w∗) + ηut − ηϕtνt . (46)
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From Eq. (42), Eq. (43) and Eq. (44), it follows that

∥wt+1 − w∗∥Σ ≤ (1− 1

κ
)∥wt − w∗∥Σ + α(σ + ∥wt − w∗∥Σ)

where we omitted constants for simplicity, which after T = Õ(κ) iterations achieves a sub-optimal
error rate ∥wT − w∗∥Σ = Õ(κασ).

One attempt to get around it is to take the Euclidean norm instead, which gives, after some calcula-
tions,

E[∥wt+1 − w∗∥2] ≤ E[∥wt − w∗∥2]− η
(
∥wt − w∗∥2Σ − α2σ2

)
.

This implies that E[∥wt+1 − w∗∥2] strictly decreases as long as ∥wt − w∗∥2Σ > Cα2σ2, which is
the desired statistical error level we are targeting. With this analysis, we can show that in T = Õ(κ)

iterations, there exists at least one model wt that achieves E[∥wt −w∗∥2Σ] = Õ(α2σ2) among all the
intermediate models we have seen.

However, the problem is that under differential privacy, there is no way we could select this good
model wt among T models that we have, as privacy-preserving techniques for model selection are
not accurate enough to achieve the desired level of accuracy. Hence, we came up with the following
novel analysis that does not suffer from such issues.

We can rewrite Eq. (39) or Eq. (45) as

wt+1 − w∗ =B̂(wt − w∗) + ηut − ηϕtνt (47)

=B̂t+1(w0 − w∗) + η

t∑
i=0

B̂iut−i − η
t∑

i=0

ϕt−iB̂
iνt−i . (48)

Taking expectations of Σ̂-norm square with respect to ν1, · · · , νt, we have

Eν1,...,νt∼N (0,Id)∥wt+1 − w∗∥2
Σ̂

(49)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2E[∥η

t∑
i=0

B̂iut−i∥2Σ̂] + η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] (50)

≤ 2∥B̂t+1(w0 − w∗)∥2
Σ̂
+ 2η2E[

t∑
i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (51)

+ η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] , (52)

where at the second step we used the fact that ν1, ν2, · · · , νt are independent isotropic Gaussian.

Note that

η∥B̂iut−i∥Σ̂ = η∥Σ̂1/2B̂iΣ̂1/2Σ̂−1/2ut−i∥
≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 · ∥Σ̂−1/2ut−i∥
≤ η∥Σ̂1/2B̂iΣ̂1/2∥2 ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ)

≤ 1

i+ 1
ρ̂(α) (∥wt−i − w∗∥Σ̂ + σ) ,

where ρ̂(α) = 1.1(6C2 + 6C1.5
2 )K2α log2a(1/α), and the second inequality follows from Eq. (42),

Eq. (43), Eq. (44) and the deterministic condition in Eq. (36). Note that the last inequality is true
because η ≤ 1/(1.1λmax) and ∥Σ̂1/2B̂iΣ̂1/2∥2 ≤ ∥Id − ηΣ̂∥i2∥Σ̂∥2 ≤ λmax/(i+ 1) .
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This implies

E[η2
t∑

i=0

t∑
j=0

∥B̂iut−i∥Σ̂∥B̂
jut−j∥Σ̂] (53)

≤ 4E[
t∑

i=0

t∑
j=0

ρ̂(α)2

(i+ 1)(j + 1)
(E[∥wt−i − w∗∥2

Σ̂
] + E[∥wt−j − w∗∥2

Σ̂
] + σ2) (54)

≤ 8(

t∑
i=0

1

i+ 1
)2ρ̂(α)2(max

i
E[∥wt−i − w∗∥2

Σ̂
] + σ2) (55)

≤ 8(log t)2ρ̂(α)2(max
i

E[∥wt−i − w∗∥2
Σ̂
] + σ2) , (56)

Then,

∥B̂t+1(w0 − w∗)∥2
Σ̂
= ∥Σ̂1/2B̂t+1Σ̂−1/2Σ̂1/2(w0 − w∗)∥2

≤ (1− 1

κ
)2(t+1)∥w0 − w∗∥2

Σ̂
≤ e−2(t+1)/κ∥w0 − w∗∥2

Σ̂
,

and for n ≳ (1/ε)
√
κd log(1/δ)/α,

η2
t∑

i=0

Tr(B̂2iΣ̂)E[ϕ2t−i] (57)

≤η2
t∑

i=0

∥Id − ηΣ̂∥2i2 ∥Σ̂∥2 ·
2 log(1.25/δ0)K

2 Tr(Σ) log2a(n/ζ0)C2K
2 log2a(1/(2α))(E[∥wt−i − w∗∥2Σ] + σ2)

ε20n
2

(58)

≤4
t∑

i=0

(
1

i+ 1
)2ρ̂(α)2(E[∥wt−i − w∗∥2

Σ̂
] + σ2) . (59)

We have

Eν1,...,νt∼N (0,Id)[∥wt+1−w∗∥2
Σ̂
] ≤ 2e−2(t+1)/κ∥w0−w∗∥2

Σ̂
+20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt−i−w∗∥2

Σ̂
]+σ2) .

Note that this also implies that

E[∥(wt′+t − w∗)∥2
Σ̂
|wt′ ] ≤ 2e−2t/κ∥wt′ − w∗∥2

Σ̂
+ 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
|wt′ ] + σ2) ,

(60)

which implies

E[∥(wt′+t − w∗)∥2
Σ̂
] ≤ 2e−2t/κE[∥wt′ − w∗∥2

Σ̂
] + 20ρ̂(α)2

t−1∑
i=0

(
1

i+ 1
)2(E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(61)

≤ 2e−2t/κE[∥wt′ − w∗∥2
Σ̂
] + 20(log t)2ρ̂(α)2(max

i∈[t]
E[∥wt′+t−i − w∗∥2

Σ̂
] + σ2)

(62)

Step 4: End-to-end analysis of the convergence. In the last step, we shown that the amount of
estimation error decrease depends on the estimation error of the previous t steps. In order for the
estimation error to decrease by a constant factor, we will take t = κ. Roughly speaking, we will
prove that for every κ steps, the estimation error will decrease by a constant factor, if it is much larger
than O((log κ)2ρ̂(α)2σ2). This implies we will reach O((log κ)2ρ̂(α)2σ2) error with in Õ(κ) steps.

For any integer s ≥ 0, as long as maxi∈[(s−1)κ+1,sκ] E[∥wi − w∗∥2
Σ̂
] ≥ 2(log κ)2ρ̂(α)2σ2,

max
i∈[sκ+1,(s+1)κ]

E[∥wi − w∗∥2
Σ̂
] ≤ (

1

e2
+ (log κ)2ρ̂(α)2) max

i∈[(s−1)κ+1,sκ]
E[∥wi − w∗∥2

Σ̂
] + (log 2κ)2ρ̂(α)2σ2 . (63)
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Assuming ρ̂(α)2(log κ)2 ≤ 1/2−1/e2, the maximum expected error in a length κ sequence decrease
by a factor of 1/2 every time.

Now we bound the maximum expected error in the first length κ sequence: maxi∈[0,κ−1] E[∥wi −
w∗∥2

Σ̂
]. Since

E[∥wi−w∗∥2
Σ̂
] ≤ e−2i/κ∥w0−w∗∥2

Σ̂
+(log i)2ρ̂(α)2 max

j∈[0,i−1]
E[∥wj −w∗∥2

Σ̂
]+ (log i)2ρ̂(α)2σ2 .

As a function of i, maxj∈[0,i−1] E[∥wj − w∗∥2
Σ̂
] only increase when it is smaller than

1

1− (log i)2ρ̂(α)2
(∥w0 − w∗∥2

Σ̂
+ (log i)2ρ̂(α)2σ2) .

Thus we conclude

max
i∈[0,κ−1]

E[∥wi − w∗∥2
Σ̂
] ≤ 1

1− (log κ)2ρ̂(α2)
(∥w0 − w∗∥2

Σ̂
+ (log κ)2ρ̂(α2)σ2)

s = log(∥w∗∥/(ρ̂(α)σ)) will give us

E[∥wsκ+1 − w∗∥2
Σ̂
] ≤ (log κ)2ρ̂(α)2σ2 .

I Lower bounds

I.1 Proof of Proposition 3.9 for label corruption lower bounds

We first prove the following lemma.
Lemma I.1. Consider an α label-corrupted dataset S = {(xi, yi)}ni=1 with α < 1/2, that is
generated from either xi ∼ N (0, 1), yi ∼ N (0, 1) or xi ∼ N (0, 1), zi ∼ N (0, 1 − α2), yi =
αxi + zi. It is impossible to distinguish the two hypotheses with probability larger than 1/2.

In the first case,

(xi, yi) ∼ P1 = N (0,

[
1 0
0 1

]
).

In the second case,

(xi, yi) ∼ P2 = N (0,

[
1 α
α 1

]
).

By simple calculation, it holds that DKL(P1||P2) = − 1
2 log(1−α

2) ≤ α2/2 for all α < 1/2. Then,
Pinsker’s inequality implies that DTV (P1||P2) ≤ α/2. Since the covariate xi follows from the same
distribution in the two cases, and the total variation distance between the two cases is less than α/2.
This means there is an label corruption adversary that change α/2 fraction of yi’s in P1 to make it
identical to P2. Therefore, no algorithm can distinguish the two cases with probability better than
1/2 under α fraction of label corruption.

Since Σ = 1, σ2 ∈ [3/4, 1], the first case above has w∗ = 0, and the second case has w∗ = α, this
implies that no algorithm is able to achieve E[∥ŵ − w∗∥Σ] < σα for all instances with ∥w∗∥ ≤ 1
under α fraction of label corruption.

J Technical Lemmas

Lemma J.1 (Hanson-Wright inequality for subWeibull distributions [69]). Let S = {xi ∈ Rd}ni=1
be a dataset consist of i.i.d. samples from (K, a)-subWeibull distributions, then

P

(∣∣∣∣∣ 1n
n∑

i=1

∥xi∥2 − Tr(Σ)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
nt2

K4(Tr(Σ))2
,

(
nt

K2 Tr(Σ)

) 1
2a

})
. (64)

Lemma J.2. Let Y ∼ Lap(b). Then for all h > 0, we have P(|Y | ≥ hb) = e−h.
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Lemma J.3. If x ∈ Rd is (K, a)-subWeibull for some a ∈ [1/2,∞). Then

• for any fixed v ∈ Rd, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤Σv log2a(1/ζ) . (65)

• with probability 1− ζ,

∥x∥2 ≤ K2 Tr(Σ) log2a(1/ζ) . (66)

We provide a proof in App. J.1.1.
Lemma J.4. Dataset S = {xi ∈ Rd}ni=1 consists i.i.d. samples from a zero mean distribution D.
Suppose D is (K, a)-subWeibull. Define Σ = Ex∼D[xx

⊤]. Then there exists a constant c1 > 0 such
that with probability 1− ζ,∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Σ

∥∥∥∥∥ ≤ c1
K2d log(d/ζ) log2a(n/ζ)

n
+

√
K2d log(d/δ) log2a(n/ζ)

n

 ∥Σ∥2 .
(67)

Lemma J.5 (Lemma F.1 from [59]). Let x ∈ Rd ∼ N (0,Σ). Then there exists universal constant
C6 such that with probability 1− ζ,

∥x∥2 ≤ C Tr(Σ) log(1/ζ) . (68)

Definition J.6 (Corrupt good set). We say a dataset S is (αcorrupt, α, ρ1, ρ2, ρ3, ρ4)-corrupt good
with respect to (w∗,Σ, σ) if it is αcorrupt-corruption of an (α, ρ1, ρ2, ρ3, ρ4)-resilient dataset Sgood.
Lemma J.7. Under Assumptions H.1 and 3.7, there exists positive constants c1 and C2 such that
if n ≥ c1((d + log(1/ζ))/α2, then with probability 1 − ζ, Sgood is, with respect to (w∗,Σ, σ),
(α,C2K

2α log2a(1/α), C2K
2α log2a(1/α), C2K

2α log2a(1/α), C2Kα loga(1/α))-resilient.

We provide a proof in App. G.
Corollary J.8 (Lemma 10 from [73] and Lemma 25 from [61]). For a (α, ρ1, ρ2, ρ3, ρ4)-resilient
set S with respect to (w∗,Σ, γ) and any 0 ≤ α̃ ≤ α, the following holds for any subset T ⊂ S of
size at least α̃n and for any unit vector v ∈ Rd:∣∣∣ 1

|T |
∑

(xi,yi)∈T

⟨v, xi⟩(yi − x⊤i w∗)
∣∣∣ ≤ 2− α̃

α̃
ρ1
√
v⊤Σv σ , (69)

∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩2 − v⊤Σv

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ2v
⊤Σv , (70)

∣∣∣ 1

|T |
∑

(xi,yi)∈T

(yi − x⊤i w∗)2 − σ2
∣∣∣ ≤ 2− α̃

α̃
ρ3 σ

2 , and (71)

∣∣∣∣∣ 1

|T |
∑
xi∈T

⟨v, xi⟩

∣∣∣∣∣ ≤ 2− α̃
α̃

ρ4
√
v⊤Σv . (72)

J.1 Proof of technical lemmas

J.1.1 Proof of Lemma J.3

Using Markov inequality,

P
(
⟨v, x⟩2 ≥ t2

)
= P

(
e⟨v,x⟩

1/a

≥ et
1/a
)

(73)

≤ e−t1/aE[e⟨v,x⟩
1/a

] (74)

≤ e−t1/aeK(E[⟨v,x⟩2])1/(2a)

(75)

= 2 exp
(
−
( t2

K2E[⟨v, x⟩2]

)1/(2a))
. (76)
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This implies for any fixed v, with probability 1− ζ,

⟨x, v⟩2 ≤ K2v⊤E[xx⊤]v log2a(1/ζ) . (77)

For j-th coordinate, let v = ej where j ∈ [d]. Definition H.2 implies

E

exp
( x2j

K2 Tr(Σ)

)1/(2a)
 ≤ E

exp
( x2j

K2Σjj

)1/(2a)
 ≤ 2 . (78)

Note that f(x) = xα is concave function for α ≤ 1 and x > 0. Then (a1 + · · · ak)α ≤ aα1 + · · · aαk
holds for any positive numbers a1, · · · , ak > 0. By our assumption that 1/(2a) ≤ 1. , we have

E[exp

((
∥x∥2

K2 Tr(Σ)

)1/(2a)
)
] = E[exp

((
x21 + x22 + · · ·+ x2d

K2 Tr(Σ)

)1/(2a)
)
] (79)

≤ E[
d∏

j=1

exp

( x2j
K2 Tr(Σ)

)1/(2a)
] (80)

≤


∑d

j=1 E[exp
((

x2
j

K2 Tr(Σ)

)1/(2a))
]

d


d

(81)

≤ 2 . (82)

By Markov inequality,

P (∥x∥ ≥ t) = P
(
e∥x∥

1/a

≥ et
1/a
)

(83)

≤ e−t1/aE[e∥x∥
1/a

] (84)

≤ exp

(
−
(

t2

K2 Tr(Σ)

)1/(2a)
)
. (85)

This implies with probability 1− ζ,

∥x∥2 ≤ K2 Tr(Σ) log2a(1/ζ) . (86)

K Experiments

K.1 DP Linear Regression

Experimental results for ϵ = 0.1 can be found in Figure 2. The observations are similar to the ϵ = 1
case. In particular, DP-SSP has poor performance when σ is small. In other settings, DP-SSP has
better performance than DP-ROBGD.

K.2 DP Robust Linear Regression

We now illustrate the robustness of our algorithm. We consider the same experimental setup as in
Sec. 4 and randomly corrupt α fraction of the response variables by setting them to 1000. Figure 3
presents the results from this experiment. It can be seen that none of the baselines are robust to
adversarial corruptions. They can be made arbitrarily bad by increasing the magnitude of corruptions.
In contrast, DP-ROBGD is able to handle the corruptions well.

K.3 Stronger adversary for DP Robust Linear Regression

In this section, we consider a stronger adversary for DP-ROBGD than the one considered in Sec. 4.
Recall, for the adversary model considered in Sec. 4, DP-ROBGD was able to consistently estimate
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Figure 2: Performance of various techniques on DP linear regression. d = 10 in all the experiments.
n = 107, κ = 1 in the 2nd experiment. n = 107, σ = 1 in the 3rd experiment.

Figure 3: Non-robustness of existing techniques to adversarial corruptions. n = 107, σ = 1 in both
experiments.

the parameter w∗ (i.e., the parameter recovery error goes down to 0 as n → ∞). This is because
the algorithm was able to easily identify the corruptions and ignore the corresponding points while
performing gradient descent. We now construct a different instance where the corruptions are hard to
identify. Consequently, DP-ROBGD can no longer be consistent against the adversary. This hard
instance is inspired by the lower bound in [11] (see Theorem 6.1 of [11]). This is a 2 dimensional
problem where the first covariate is sampled uniformly from [−1, 1]. The second covariate, which is
uncorrelated from the first, is sampled from a distribution with the following pdf

p(x(2)) =


α
2 if x(2) ∈ {−1, 1}
1−α
2ασ if x(2) ∈ [−σ, σ]
0 otherwise

.

We set σ = 0.1 in our experiments. The noise zi is sampled uniformly from [−σ, σ]. We consider two
possible parameter vectors w∗ = (1, 1) and w∗ = (1,−1). It can be shown that the total variation
(TV) distance between these problem instances (each parameter vector corresponds to one problem
instance) is Θ(α) [11]. What this implies is that, one can corrupt at most α fraction of the response
variables and convert one problem instance into another. Since the distance (in Σ norm) between the
two parameter vectors is Ω(ασ), any algorithm will suffer an error of Ω(ασ).

We generate 107 samples from this problem instance and add corruptions that convert one problem
instance to the other. Figure 4 presents the results from this experiment. It can be seen that our
algorithm works as expected. In particular, it is not consistent in this setting. Moreover, the parameter
recovery error increases with the fraction of corruptions.

L Heavy-tailed noise

We study the heavy-tailed regression settings where the label noise zi is hypercontractive, which
is common in robust linear regression literature [54, 61]. We define (κ2, k)-hypercontractivity as
follows. This is a heavy-tailed distribution we have bound only up to the k-th moment.
Definition L.1. For integer k ≥ 4, a distribution Pµ,Σ is (κ2, k)-hypercontractive if for all v ∈ Rd,
Ex∼PX

[|⟨v, (x− µ)⟩|k] ≤ κk2(v⊤Σv)k/2, where Σ is the covariance.
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Figure 4: Performance against the stronger adversary

We give a formal description of our setting in Asmp. L.2. Note that we consider the input vector xi to
be sub-Weibull and label noise zi to be hypercontractive. If both xi and zi are hypercontractive, the
uncorrupted set Sgood is known to be not resilient [89, 61]. However, by [89, Lemma G.10], we can
clip xi by O(

√
d∥Σ∥2), and obtain a (α,O(κα1−1/k), O(κα1−2/k), O(κα1−2/k), O(κα1−1/k))-

resilient set [61, Lemma 4.19]. This would result in sub-optimal error rate Õ(κα1−2/k), which
depends on condition number κ. For convenience, in this section, we further assume that xi and zi
are independent. In the dependent case, the only thing we need to change is the ρ1 resilience from
O(α1−1/k) to O(α1−2/k) in Lemma L.4. This would result in O(α1−3/k) error rate if we plug this
new resilience in Thm. L.5.

Assumption L.2 ((Σ, σ2, w∗,K, a, κ2, k)-model). A multiset Sgood = {(xi ∈ Rd, yi ∈ R)}ni=1 of
n i.i.d. samples is from a linear model yi = ⟨xi, w∗⟩+ zi, where the input vector xi is zero mean,
E[xi] = 0, with a positive definite covariance Σ := E[xix⊤i ] ≻ 0, and the independent label noise zi
is zero mean, E[zi] = 0, with variance σ2 := E[z2i ]. We assume that the marginal distribution of xi
is (K, a)-sub-Weibull and that of zi is (κ2, k)-hypercontractive, as defined above.

This is similar to the light-tailed case in Asmp. H.2. The main difference is that the noise zi is
heavy-tailed and independent of the input xi.

Assumption L.3 (αcorrupt-corruption). Given a dataset Sgood = {(xi, yi)}ni=1, an adversary inspects
all the data points, selects αcorruptn data points denoted as Sr, and replaces the labels with arbitrary
labels while keeping the covariates unchanged. We let Sbad denote this set of αcorruptn newly
labelled examples by the adversary. Let the resulting set be S := Sgood ∪ Sbad \ Sr. We further
assume that the corruption rate is bounded by αcorrupt ≤ ᾱ, where ᾱ is a positive constant that
depends on κ2, k, K, log(κ), a and ζ.

Compared to Asmp. 3.7, this only difference is in the conditions on ᾱ. Similar as Lemma J.7, we
have the following lemma showing that under Asmp. L.2, the uncorrupted dataset can Sgood is
corrupt-good, which means that it can be seen as being corrupted from a resilient set. We provide the
proof in App. L.2.

Lemma L.4. A multiset of i.i.d. labeled samples Sgood = {(xi, yi)}ni=1 is generated from a linear
model: yi = ⟨xi, w∗⟩+ zi, where feature vector xi has zero mean and covariance E[xix⊤i ] = Σ ≻ 0,
independent label noise zi has zero mean and covariance E[z2i ] = σ2 > 0. Suppose xi is (K, a)-
sub-Weibull, zi is (κ2, k)-hypercontractive, then there exist constants c1, C2 > 0 such that, for any
0 < α ≤ α̃ ≤ c where c ∈ (0, 1/2) is some absolute constant if

n ≥ c1
(

d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ22
+
κ22d log d

α2/k
+
d+ log(1/ζ)

α̃2

)
, (87)

then with probability 1− ζ, Sgood is
(0.2α, α,C2k(ka)

aKκ2α
1−1/kζ−1/k, C2K

2α̃ log2a(1/α̃), C2k
2κ22α

1−2/kζ−2/k, C2Kα̃ loga(1/α̃))-
corrupt good with respect to (w∗,Σ, σ).

In the rest of this section, we assume we have a (O(α), α, ρ1, ρ2, ρ3, ρ4)-corrupt good set under
Asmp. L.2 and present following algorithm and our main theorem under this setting in Thm. L.5. We
also provide the proof in App. L.1.
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Algorithm 4: Robust and Private Linear Regression for heavy-tailed noise

Input: dataset S = {(xi, yi)}3ni=1, (ε, δ), T , learning rate η, failure probability ζ , target error rate
α, distribution parameter (K, a)

1 Partition dataset S into three equal sized disjoint subsets S = S1 ∪ S2 ∪ S3.
2 δ0 ← δ/(2T ), ε0 ← ε/(4

√
T log(1/δ0)), ζ0 ← ζ/3, w0 ← 0

3 Γ← PrivateNormEstimator(S1, ε0, δ0, ζ0), Θ← K
√
2Γ loga(n/ζ0)

4 for t = 1, 2, . . . , T − 1 do
5 γt ← RobustPrivateDistanceEstimator(S2, wt, ε0, δ0, α, ζ0)

6 θt ← 2
√
2γt ·

√
max{8ρ2/α, 8ρ3/α}+ 1.

7 Sample νt ∼ N (0, Id)

8 wt+1 ← wt − η
(

1
n

∑
i∈S3

(
clipΘ(xi)clipθt

(
w⊤

t xi − yi
))

+

√
2 log(1.25/δ0)Θθt

ε0n
· νt
)

9 Return wT

Theorem L.5. Alg. 4 is (ε, δ)-DP. Under (Σ, σ2, w∗,K, a, κ2, k)-model of Asmp. L.2 and αcorrupt-
corruption of Assumption L.3 and for any failure probability ζ ∈ (0, 1) and target error rate
α ≥ 1.2αcorrupt, if the dataset S is (0.2α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to
(w∗,Σ, σ) and sample size is large enough such that

n =O

(
K2d log(d/ζ) log2a(n/ζ) +

K2dT 1/2 log(T/δ) loga(n/(αζ))
√
8max{ρ2/α, ρ3/α}+ 1

ερ̂(α)

)
,

(88)

where ρ̂(α) = max{ρ1, 3ρ2, 2ρ4
√
8max{ρ2/α, ρ3/α}+ 1}, then the choices of a small enough

step size, η ≤ 1/(1.1λmax(Σ)), and the number of iterations, T = Θ̃ (κ log (∥w∗∥)) for a condition
number of the covariance κ := λmax(Σ)/λmin(Σ), ensures that, with probability 1 − ζ, Alg. 1
achieves

Eν1,··· ,νt∼N (0,Id)

[
∥wT − w∗∥2Σ

]
= Õ

(
ρ̂2(α)σ2

)
, (89)

where the expectation is taken over the noise added for DP, and Θ̃(·) hides logarithmic terms in
K,κ2, σ, d, n, 1/ε, log(1/δ), 1/α, and κ.

By Lemma L.4, if we set α̃ = α1−1/k, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k,
ρ2 = C2K

2α1−1/k log2a(1/α1−1/k),ρ3 = C2k
2κ22α

1−2/kζ−2/k, and ρ4 =
C2Kα

1−1/k loga(1/α1−1/k), we have following corollary.

Corollary L.6. Under the same hypotheses of Thm. L.5 and under αcorrupt-corruption model
of Asmp. L.3, if 1.2αcorrupt ≤ α and K, a, κ2, k = O(1), then n = Õ(d/(ζ2−2/kα2−2/k) +

κ1/2d log(1/δ)/(εα1−1/k)) samples are sufficient for Alg. 4 to achieve an error rate of (1/σ2)∥ŵ −
w∗∥2Σ = Õ(ζ−2/kα2−4/k) with probability 1 − ζ, where κ := λmax(Σ)/λmin(Σ), Õ(·) hides
logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.

Simiarly, if we set α̃ = α, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k, ρ2 = C2K
2α log2a(1/α),ρ3 =

C2k
2κ22α

1−2/kζ−2/k, and ρ4 = C2Kα loga(1/α), we have following corollary.

Corollary L.7. Under the same hypotheses of Thm. L.5 and under αcorrupt-corruption model
of Asmp. L.3, if 1.2αcorrupt ≤ α and K, a, κ2, k = O(1), then n = Õ(d/(ζ2−2/kα2−2/k) +

κ1/2d log(1/δ)/(εα) + (d+ log(1/ζ)/α2)) samples are sufficient for Alg. 4 to achieve an error rate
of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2−2/k) with probability 1 − ζ, where κ := λmax(Σ)/λmin(Σ),
Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.

As a comparison, we also apply the exponential-time robust linear regression algorithm HPTR by
[61] under our setting.

Theorem L.8 ([61, Theorem 12]). There exist positive constants c and C such that for any
((2/11)α, α, ρ1, ρ2, ρ3, ρ4)-corrupt good set S with respect to (w∗,Σ ≻ 0, σ > 0) satisfying α < c,
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ρ1 < c, ρ2 < c, ρ3 < c,and ρ24 ≤ cα, HPTR achieves (1/σ)∥(β̂ − β)∥Σ ≤ 32ρ1 with probability
1− ζ, if

n ≥ C
d+ log(1/(δζ))

εα
. (90)

We set α̃ = α1−1/k, ρ1 = C2k(ka)
aKκ2α

1−1/kζ−1/k, ρ2 = C2K
2α1−1/k log2a(1/α1−1/k),ρ3 =

C2k
2κ22α

1−2/kζ−2/k, and ρ4 = C2Kα
1−1/k loga(1/α1−1/k), we have the following utility gau-

rentees.
Corollary L.9. Under the hypothesis of Asmp. L.2, there exists a constant c > 0 such that for any
α ≤ c, (ka)aKκ2α1−1/kζ−1/k ≤ c, k2κ22α

1−2/kζ−2/k ≤ c and K2α1−2/k log2a(1/α1−1/k) ≤ c,
it is sufficient to have a dataset of size

n = O
( d

ζ2(1−1/k)α2(1−1/k)
+
k2α2−2/kd log d

ζ2−4/kκ22
+
κ22d log d

α2/k

)
, (91)

such that HPTR achieves (1/σ)∥ŵ−w∗∥Σ = O(k(ka)aKκ2α
1−1/kζ−1/k) with probability 1− ζ .

Note that both of our result in Corollary L.6 and Corollary L.7 are suboptimal compared to the
exponential time algorithm HPTR from Corollary L.9. Suppose K, a, κ2, k, ζ = Θ(1), HPTR

achieves (1/σ)∥w∗ − ŵ∥ = Õ(α1−1/k) with sample complexities n = d/(α2(1−1/k)) + (d +
log(1/δ))/(εn). However, in the analysis in Corollary L.6, Alg. 4 achieves (1/σ)∥w∗ − ŵ∥ =

Õ(α1−2/k) with the same sample complexities. In the analysis in Corollary L.7, Alg. 4 achieves
the same error rate as HPTR but requires extra Õ(d/α2) sample complexities. The suboptimality
is caused by the gradient truncation step in our algorithm. From Thm. L.8, the final error rate of
HPTR only depends on the first resilience ρ1. However in Thm. L.5, the final error rate of Alg. 4
depends on ρ̂(α) = max{ρ1, ρ2, ρ4

√
ρ2/α}. When the noise is heavy-tailed, the bottleneck is the

last term ρ4
√
ρ2/α ≈ α1−2/k, which is due to the truncation threshold from Eq. (101). This cannot

be tightened by using a smaller truncation threshold. Because we can construct yi, such that there
are α-fraction of points that are at the threshold level θt ≈ α−1/k(line 6 of Alg. 4). If exponential
time complexity is allowed, we could robustly and privately estimate the average of the gradients
by directly estimating the xiyi. However, the current best efficient algorithm [60] for estimating the
mean of Gaussian with unknown covariance robustly and privately would require O(d1.5) samples.

For a fair comparison, we also rewrite the error rates of Corollary L.6, Corollary L.7, Corollary L.9
as the same accuracy level α and different corruption level αcorrupt respectively.
Corollary L.10. Under the same hypotheses of Thm. L.5 and under αcorrupt-corruption model of
Asmp. L.3, if 1.2αcorrupt ≤ αk/(k−2) and K, a, κ2, k = O(1), then

n = Õ(d/(ζ2−2/kα2(k−1)/(k−2)) + κ1/2d log(1/δ)/(εα(k−1)/(k−2)))

samples are sufficient for Alg. 4 to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2)

with probability 1 − ζ, where κ := λmax(Σ)/λmin(Σ), Õ(·) hides logarithmic terms in
σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.
Corollary L.11. Under the same hypotheses of Thm. L.5 and under αcorrupt-corruption model of
Asmp. L.3, if 1.2αcorrupt ≤ αk/(k−1) and K, a, κ2, k = O(1), then

n = Õ(d/(ζ2−2/kα2) + κ1/2d log(1/δ)/(εαk/(k−1)) + (d+ log(1/ζ)/α2k/(k−1)))

samples are sufficient for Alg. 4 to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2)

with probability 1 − ζ, where κ := λmax(Σ)/λmin(Σ), Õ(·) hides logarithmic terms in
σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.
Corollary L.12 (HPTR). Under the same hypotheses of Thm. L.5 and under αcorrupt-corruption
model of Asmp. L.3, if αcorrupt ≤ αk/(k−1) and α(k−2)/(k−1) ≤ c and K, a, κ2, k = O(1), then

n = Õ(
d

ζ2−2/kα2
+
d+ log(1/(δζ))

εαk/k−1
)

samples are sufficient for HPTR to achieve an error rate of (1/σ2)∥ŵ − w∗∥2Σ = Õ(ζ−2/kα2) with
probability 1− ζ, Õ(·) hides logarithmic terms in σ, d, n, 1/ε, log(1/δ), log(1/ζ) and κ.
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L.1 Proof of Thm. L.5

Proof. The proof follows similarly as the proof of Thm. H.3. We only highlight the difference in the
proof.

Let Sgood be the uncorrupted dataset for S3 and Sbad be the corrupted data points in S3. LetG denote
the clean data that satisfies resilience conditions. We know |G| ≥ (1− 1.2αcorrupt)n ≥ (1− α)n.

Let λmax = ∥Σ∥2. Define Σ̂ := (1/n)
∑

i∈G xix
⊤
i , B̂ := Id − ηΣ̂. Lemma J.4 implies that if

n = O(K2d log(d/ζ) log2a(n/ζ)), then

0.9Σ ⪯ Σ̂ ⪯ 1.1Σ . (92)

We pick step size η such that η ≤ 1/(1.1λmax) to ensure that η ≤ 1/∥Σ̂∥2. Since the covariates
{xi}i∈S are not corrupted, from Lemma J.3, we know with probability 1− ζ, for all i ∈ S3,

∥xi∥2 ≤ K2 Tr(Σ) log2a(n/ζ) . (93)

The rest of the proof is under Eq. (92), Eq. (93) and the resilience conditions.

Let ϕt = (
√
2 log(1.25/δ0)Θθt)/(ε0n). Define g(t)i := xi(x

⊤
i wt − yi). For i ∈ Sgood, we know

yi = x⊤i w
∗ + zi. Let g̃(t)i = clipΘ(xi)clipθt(x

⊤
i wt − yi). Note that under Eq. (93), clipΘ(xi) = xi

for all i ∈ S3.

From Alg. 4, we can write one-step update rule as follows:

wt+1 − w∗

=wt − η

(
1

n

∑
i∈S

g̃
(t)
i + ϕtνt

)
− w∗

=

(
I− η

n

∑
i∈G

xix
⊤
i

)
(wt − w∗) +

η

n

∑
i∈G

xizi +
η

n

∑
i∈G

(g
(t)
i − g̃

(t)
i )− ηϕtνt −

η

n

∑
i∈S3\G∪Et

g̃
(t)
i

(94)

Let Et := {i ∈ G : θt ≤ |x⊤i wt − yi|} be the set of clipped clean data points such that
∑

i∈G(g
(t)
i −

g̃
(t)
i ) =

∑
i∈Et

(g
(t)
i −g̃

(t)
i ). We define v̂ := (1/n)

∑
i∈G xizi, u

(1)
t := (1/n)

∑
i∈Et

xix
⊤
i (wt−w∗),

u
(2)
t := (1/n)

∑
i∈Et
−xizi, and u(3)t := (1/n)

∑
i∈S3\G∪Et

g̃
(t)
i .

We can further write the update rule as:

wt+1 − w∗ =B̂(wt − w∗) + ηv̂ + ηu
(1)
t−1 + ηu

(2)
t−1 − ηϕtνt − ηu

(3)
t−1 . (95)

Since G ⊂ Sgood and |G| ≥ (1− α)n, using the resilience property in Eq. (5), we know

∥Σ−1/2v̂∥ = |G| max
∥v∥=1

Σ−1/2

〈
v,

1

|G|
∑
i∈G

xizi

〉
≤ (1− α)ρ1σ (96)
≤ ρ1σ . (97)

Let α2 = |Et|/n. Following the proof of Lemma C.3, we can show following lemma.

Lemma L.13. Under Assumptions L.2, if θt ≥
√

max{8ρ2/α, 8ρ3/α}+ 1 · (∥w∗ − wt∥Σ + σ),
then ∣∣{i ∈ G :

∣∣w⊤
t xi − yi

∣∣ ≥ θt}∣∣ ≤ αn
, for all t ∈ [T ].

Similar as Thm. C.1, we have following theorem.
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Theorem L.14. Alg. 2 is (ε0, δ0)-DP. For an (αcorrupt, ᾱ, ρ1, ρ2, ρ3, ρ4)-corrupted good dataset S2

and an upper bound ᾱ on αcorrupt that satisfy Asmp. L.2 and ρ1 + ρ2 + ρ3 ≤ 1/4, for any ζ ∈ (0, 1),
if

n = O

(
log(1/ζ) log(1/(δ0ζ))

ᾱε0

)
, (98)

with a large enough constant then, with probability 1− ζ , Alg. 2 returns ℓ such that 1
4 (∥wt−w∗∥2Σ +

σ2) ≤ ℓ ≤ 4(∥wt − w∗∥2Σ + σ2).

This means α2 ≤ α, and we have

∥Σ−1/2u
(1)
t ∥ = ∥Σ−1/2 1

n

∑
i∈Et

xix
⊤
i (wt − w∗)∥ .

From Corollary J.8, we know∣∣∣∣∣∥Σ−1/2 1

|Et|
∑
i∈Et

xix
⊤
i (wt − w∗)∥ − ∥wt − w∗∥Σ

∣∣∣∣∣
=

∣∣∣∣∣ max
u:∥u∥=1

1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i (wt − w∗)∥ − max

v:∥v∥=1
v⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤Σ−1/2xix
⊤
i Σ

−1/2Σ1/2(wt − w∗)∥ − u⊤Σ1/2(wt − w∗)

∣∣∣∣∣
≤ max

u:∥u∥=1

∣∣∣∣∣ 1

|Et|
∑
i∈Et

u⊤
(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)∥

∣∣∣∣∣
=

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)
Σ1/2(wt − w∗)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

|Et|
∑
i∈Et

(
Σ−1/2xix

⊤
i Σ

−1/2 − Id

)∥∥∥∥∥ · ∥∥∥Σ1/2(wt − w∗)
∥∥∥

≤2− α2

α2
ρ2 ∥wt − w∗∥Σ .

This implies that

∥Σ−1/2u
(1)
t ∥ ≤ ∥Σ−1/2 1

n

∑
i∈E

xix
⊤
i (wt − w∗)∥

≤ (α2 + 2ρ2) ∥wt − w∗∥Σ
≤ 3ρ2 ∥wt − w∗∥Σ , (99)

where the last inequality follows from the fact that α2 ≤ α and our assumption that α ≤ ρ2 from
Asmp. L.3. Similarly, we use resilience property in Eq. (5) instead of Eq. (6), we can show that

∥Σ−1/2u
(2)
t ∥ ≤ 3ρ3σ . (100)

Next, we consider u(3)t . Since |S3\G| ≤ 1.2αcorruptn and |Et| ≤ αn, using Eq. (8) and Corollary J.8,
we have

∥Σ−1/2u
(3)
t ∥ = max

v:∥v∥=1

1

n

∑
i∈Sbad∪Et

v⊤Σ−1/2xiclipθt(x
⊤
i wt − yi)

≤ 2ρ4θt

≤ 2ρ4
√
8max{ρ2/α, ρ3/α}+ 1 · (∥wt − w∗∥Σ + σ) . (101)

37



The analysis of convergence follows similarly as in Step 3 and Step 4 of the proof of Thm. H.3 except
we set ρ̂(α) = max{ρ1, 3ρ2, 2ρ4

√
8max{ρ2/α, ρ3/α}+ 1}.

The second term in Eq. (88) ensures the added Gaussian noise is small enough such that ϕ2t∥vt∥2 ≤
ρ̂(α)2(E[∥wt − w∗∥2Σ] + σ2), which is similar as in Eq. (59)

L.2 Proof of Lemma L.4

Proof. For any x that is (K, a)-sub-Weibull from Definition H.2, Eq. (76) implies that for any k ≥ 1,

E[| ⟨v, x⟩ |k] =
∫ ∞

0

P(| ⟨v, x⟩ | ≥ t1/k)dt (102)

≤
∫ ∞

0

2 exp

(
− t

1
ka

(K2E[⟨v, x⟩2]) 1
2a

)
dt (103)

= 2Kk(E[⟨v, x⟩2])k/2ka
∫ ∞

0

e−uuka−1du (104)

= 2Kk(E[⟨v, x⟩2])k/2Γ(ka+ 1) (105)

≤ 2Kk(E[⟨v, x⟩2])k/2(ka)ka (106)

This implies that xi is also ((ka)aK, k)-hypercontractive. Since xi and zi are independent, we have

E
[∣∣∣〈v, σ−1Σ−1/2xizi

〉∣∣∣k] = E
[∣∣∣〈v,Σ−1/2xi

〉∣∣∣k]E [∣∣σ−1zi
∣∣k] ≤ 2(ka)kaKkκk2 . (107)

This means xizi is also ((ka)aKκ2, k)-hypercontractive. From [89, Lemma G.10], we know with
probability 1− ζ, there exists S1 ⊂ Sgood with |S1| ≥ (1− 0.1α)|Sgood|, such that for any T ⊂ S1

with |T | ≥ (1− α)|S1|, we have∣∣∣ 1

|T |
∑

(xi,yi)∈S

〈
v, σ−1Σ−1/2xi(yi − x⊤i w∗)

〉 ∣∣∣ ≤ C2k(ka)
aKκ2α

1−1/kζ−1/k . (108)

Similarly, there exists S2 ⊂ Sgood with |S2| ≥ (1 − 0.1α)|Sgood|, such that for any T ⊂ S2 with
|T | ≥ (1− α)|S2|, we have∣∣∣ 1

|T |
∑

(xi,yi)∈T

(σ−1(yi − x⊤i w∗))2 − 1
∣∣∣ ≤ C2k

2κ22α
1−2/kζ−2/k . (109)

From Lemma J.7, for any T ⊂ Sgood with |T | ≥ (1− α̃)|Sgood|, we have∣∣∣ 1

|T |
∑

(xi,yi)∈T

〈
v,Σ−1/2xi

〉2
− 1
∣∣∣ ≤ C2Kα̃ log2a(1/α̃) . (110)

and ∣∣∣ 1

|T |
∑

(xi,yi)∈T

〈
v,Σ−1/2xi

〉 ∣∣∣ ≤ C2Kα̃ loga(1/α̃) . (111)

Set S = S1 ∩ S2, we know |S| ≥ (1− 0.2α)|Sgood| and S is
(0.2α, α,C2k(ka)

aKκ2α
1−1/kζ−1/k, C2K

2α̃ log2a(1/α̃), C2k
2κ22α

1−2/kζ−2/k, C2Kα̃ loga(1/α̃))-
corrupt good with respect to (w∗,Σ, σ). This completes the proof.
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