
Delayed Algorithms for Distributed Stochastic
Weakly Convex Optimization

Wenzhi Gao∗
Stanford University
gwz@stanford.edu

Qi Deng†
Shanghai University of Finance and Economics

qideng@sufe.edu.cn

Abstract

This paper studies delayed stochastic algorithms for weakly convex optimization
in a distributed network with workers connected to a master node. Recently,
Xu et al. 2022 showed that an inertial stochastic subgradient method converges
at a rate of O(τmax/

√
K) which depends on the maximum information delay τmax.

In this work, we show that the delayed stochastic subgradient method (DSGD) ob-
tains a tighter convergence rate which depends on the expected delay τ̄ . Further-
more, for an important class of composition weakly convex problems, we develop
a new delayed stochastic prox-linear (DSPL) method in which the delays only af-
fect the high-order term in the complexity rate and hence, are negligible after a
certain number of DSPL iterations. In addition, we demonstrate the robustness of
our proposed algorithms against arbitrary delays. By incorporating a simple safe-
guarding step in both methods, we achieve convergence rates that depend solely
on the number of workers, eliminating the effect of the delay. Our numerical
experiments further confirm the empirical superiority of our proposed methods.

1 Introduction

In this paper, we consider the following stochastic optimization problem

min
x∈Rn

ψ(x) := Eξ∼Ξ[f(x, ξ)] + ω(x), (1)

where f(x, ξ) is a nonconvex continuous function over x and ξ is a random variable sampled from
some distribution Ξ; ω(x) is lower-semicontinuous and proximal-friendly. We assume that both
f(x, ξ) and ω(x) belong to a general class of nonsmooth nonconvex functions that exhibit weak
convexity. Here, we say that a function g(x) is κ-weakly convex if g(x) + κ

2 ∥x∥
2 is convex for

some κ ≥ 0. Weakly convex optimization has attracted growing interest in machine learning in
recent years, and we are particularly interested in a general type of weakly convex problems with
the following composition structure [12]

f(x, ξ) = h(c(x, ξ)), (2)

where h is a convex Lipschitz function and c(x, ξ) is smooth. Optimization in the above composition
form is pervasive in applications arising from machine learning and data science, including robust
phase retrieval [14], blind deconvolution [8], robust PCA and matrix completion [5], among others.

Stochastic (sub)gradient method and its proximal variants [39, 10, 30, 28, 31] (all referred as SGD
in our paper) are arguably the most popular approaches for solving problem (1). Typically, SGD
iteratively solves xk+1 = argminx {⟨f ′(xk, ξk), x − xk⟩ + ω(x) + γk

2 ∥x − xk∥2}, where ξk is

∗Work done while at SHUFE.
†The corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

a random sample and f ′(xk, ξk) denotes a subgradient of f(xk, ξk). However, despite its wide
popularity in machine learning, the sequential and synchronous nature of SGD is not suitable for
modern applications that require parallel processing in multi-cores or over multiple machines.

To further improve SGD in parallel and distributed environments, recent work considers a more prac-
tical asynchronous setting where the parameter updates allow outdated gradient information. See
[1, 32, 38, 29, 21]. In the asynchronous setting, it is crucial to know how the stale updates based on
delayed information affects convergence. For smooth convex optimization, Agarwal and Duchi [1]
show that delayed stochastic gradient method (DSGD) obtains a rate of O(σ/

√
K + τσ2/(σ2K)),

where τσ2 bounds of the second moment of random delays. DSGD with adaptive stepsize has also
been studied by [25, 32, 38] to achieve better empirical performance and the latest work [2, 33]
further improves the rate to O(σ/

√
K + τmax/K). For general smooth (nonconvex) problems, the

work [33] shows that DSGD converges to stationarity at a rate of O(σ/
√
K + τmax/K). In a follow-

up study [7], the authors propose a more robust DSGD whose rate depends on the average delay τavg,
rather than the maximum delay. Recently, Koloskova et al. [18] develop a sharp analysis for asyn-
chronous SGD and then a simple delay-adaptive stepsize to achieve the best rate O(σ/

√
K+τavg/K).

Based on novel delay-adaptive stepsizes and virtual iterate-based analysis, a concurrent work [26]
has established new convergence rates that depend on the number of workers rather than the delay
of the gradient.

Despite much progress in distributed smooth optimization, it remains unclear how to develop ef-
ficient asynchronous algorithms for nonsmooth and even nonconvex problems. For general non-
smooth convex problems, the pioneering work [27] has shown that the asynchronous incremental
subgradient method obtains an O(

√
τmax/K) convergence rate. The aforementioned work [26]

shows that DSGD achieves a delay-independent rate of O(
√
m/K), where m is the number of work-

ers. However, it is still unknown whether their key technique by telescoping the virtual iterates can
be extended to composite nonconvex optimization.

For distributed weakly convex optimization, Xu et al. [34] shows that Delayed Stochastic Extrap-
olated Subgradient (DSEGD), an inertial version of DSGD, exhibits a convergence rate of O((1 +

τmax)/
√
K + τ2max/K), which has an undesired dependence on the maximum delay τmax. This issue

is further exacerbated in real heterogeneous environments where the maximum delay is dictated by
the slowest, or the “straggler” nodes. It remains unclear

1) whether such delay dependence in DSGD is still improvable or not for weakly convex problems?

Nevertheless, even if the rate is improvable in terms of τ , there yet remains a fundamental chal-
lenge, as the delay significantly influences the leading term O(1/

√
K) of the convergence rate. This

contrasts with smooth distributed optimization, where the delay only affects a higher order term
O(1/K) and hence is negligible in the long run. Such a performance gap highlights a substan-
tial limitation of the prior study when nonsmoothness is present. Hence, it is natural to ask: For
distributed weakly convex optimization,

2) can we design algorithms with a negligible penalty caused by delays?
3) Moreover, can we make convergence rates delay independent?

The goal of this paper is to address the above three questions.

Contributions In this paper, we answer the above questions positively (Table 1). Our contribu-
tions are as follows.

1) For distributed weakly convex optimization, we provide a sharp convergence analysis of DSGD
under statistical assumptions on the delays and obtain a rate of O(τ̄ /

√
K+τσ2/K), where τ̄ , τσ2

are respectively first and second moments of stochastic delays. Our result significantly improves
upon the previous O(τmax/

√
K + τ2max/K) rate for DSGD [34].

2) For weakly convex problems with composition structure (2), we propose a new delayed stochastic
prox-linear method (DSPL) which can exploit the structure (2) more effectively. Unlike SGD,
the stochastic prox-linear algorithm ([9, 11]) partially linearizes the inner function c(·, ξ) while
retaining the outer function h(·). Then it iteratively solves: xk+1 = argminx

{
h
(
c(xk, ξ) +

2

⟨∇c(xk, ξ), x−xk⟩
)
+ω(x)+ γk

2 ∥x−xk∥2
}
. To the best of our knowledge, this is the first study of

SPL in the asynchronous distributed setting. We show that the new DSPL method achieves a rate
of O(1/

√
K+τσ2/K), which is consistently better than that of DSGD in terms of the dependence

on delay. Interestingly, our result implies that the delay is negligible whenK is sufficiently large.
3) We propose a simple yet effective safeguarding step that skips the iteration when the delay is sig-

nificantly large. This enhancement ensures that the rate depends only on the number of workers
rather than on the delay explicitly. Specifically, in an environment of m workers, we obtain an
O(

√
m/

√
K +m/K) rate for DSGD and O(1/

√
K +m2/K) for DSPL, making both methods

robust to arbitrary delays. As per our knowledge, these are the first delay-independent rates for
distributed nonsmooth nonconvex optimization. Prior to our work, delay-independent rates were
only known for smooth or convex optimization [26], which were derived through a distinctly
different delay-adaptive stepsize strategy.

Table 1: Rates of delayed algorithms for nonconvex optimization. m: the agent number; τmax: the
maximum delay; τ̄ = E[τk]; τσ2 = E[τ2k]; τavg average over arbitrary delays.

Delay Work Setting Problems / algorithms Convergence rate

[34] f + ω / DSGD O(τmax√
K

+
τ2

max
K

)

Non-robust Ours weakly convex f + ω / DSGD O(τ̄√
K

+
τ
σ2

K
)

h ◦ c+ ω / DSPL O(1√
K

+
τ
σ2

K
)

[26, 18, 7] smooth nonconvex f / DSGD O(1√
K

+ m
K
) or O(1√

K
+

τavg
K

)

Robust Ours weakly convex f + ω / DSGD O(
√
m√
K

+ m
K
)

h ◦ c+ ω / DSPL O(1√
K

+ m2

K
)

Structure of the paper Section 2 introduces the notations and problem setup. Section 3 an-
alyzes the delayed stochastic (proximal) subgradient method (DSGD). Section 4 develops the de-
layed stochastic prox-linear method (DSPL). Section 5 proposes a simple strategy to make the asyn-
chronous algorithms robust to arbitrary delays. Section 6 conducts experiments to verify our theo-
retical results. We draw conclusions in Section 7 and leave all the proofs and further discussions in
the appendix.

2 Preliminaries

Notations We use ∥ · ∥ and ⟨·, ·⟩ to denote the Euclidean norm and inner product. The sub-
differential of a function f is defined by ∂f(x) := {v : f(y) ≥ f(x)+ ⟨v, y−x⟩+o(∥x−y∥), y →
x} and f ′(x) ∈ ∂f(x) denotes a subgradient. If 0 ∈ ∂f(x), then x is called a stationary point of f .
The domain of f is defined by dom f := {x : f(x) <∞}. At iteration k, we use Ek[·] to denote the
expectation conditioned on past iterations {x1, . . . , xk−1}. I{·} denotes the 0-1 indicator function
of an event. Given a delay sequence {τk}, we write ∆1 := 1

K

∑K
k=1 τk and ∆2 := 1

K

∑K
k=1 τ

2
k .

Our analysis will adopt the Moreau envelope as the potential function, a technique initially identified
in the work [8]. Let f be a κ-weakly convex function. Given ρ > κ, the Moreau envelope and the
associated proximal mapping of f are respectively defined by

f1/ρ(x) := min
y

{
f(y) + ρ

2∥x− y∥2
}

and proxf/ρ(x) := argmin
y

{
f(y) + ρ

2∥x− y∥2
}
.

By the optimality condition and convexity of f(y) + ρ
2∥x − y∥2, 0 ∈ ∂f(proxf/ρ(x)) +

ρ(proxf/ρ(x) − x). The Moreau envelope can be nicely interpreted as a smooth approximation
of the original function. Specifically, it can be shown that f1/ρ(x) is differentiable and its gradi-
ent is ∇f1/ρ(x) = ρ(x − proxf/ρ(x)) (See [8]). Combining the above two relations, we obtain
∇f1/ρ(x) ∈ ∂f(proxf/ρ(x)). Therefore, the Moreau envelope can be used as a measure of approx-
imate stationarity: if ∥∇f1/ρ(x)∥ ≤ ε, then x is in the proximity (i.e. ∥x − proxf/ρ(x)∥ ≤ ρ−1ε)
of a near stationary point proxf/ρ(x) (i.e. dist(∂f(proxf/ρ(x)), 0) ≤ ε).

3

2.1 Assumptions

Throughout the paper, we make the following assumptions.

A1: (i.i.d. sample) We draw i.i.d. samples {ξk} from Ξ.
A2: (Lipschitz continuity) ω(x) is Lω-Lipschitz continuous over its domain.
A3: (Weak convexity) ω is κ-weakly convex.
A4: (Bounded moments) The distribution of the independent stochastic delays {τk} has bounded

first and second moments. i.e., E[τk] ≤ τ̄ <∞,E[τ2k] ≤ τσ2 <∞,∀k.
Remark 1. Assumptions A1 to A3 are typical in stochastic weakly convex optimization [8], while
A4 is common in distributed optimization [3, 32]. Moreover, throughout our analysis, we regard
{τk} as a pre-defined random sequence independent of data sampling and the algorithm [32, 34].

3 Delayed proximal subgradient method

In this section, we analyze the convergence rate of the delayed stochastic proximal subgradient
method (DSGD) for weakly convex optimization. DSGD is the workhorse of most applications and is
frequently analyzed in the literature on centralized distributed optimization.

Algorithm 1: Delayed stochastic proximal subgradient method

Input: x1;
for k = 1, 2,... do

Let gk−τk ∈ ∂f(xk−τk , ξk−τk) be computed by a worker with delay τk;
In the master node update

xk+1 = argmin
x∈Rn

{⟨gk−τk , x− xk⟩+ ω(x) + γk
2 ∥x− xk∥2}. (3)

end

We restrict f to have a bounded subgradient and make the following extra assumption.

B1: f(x, ξ) is λ-weakly convex, Eξ[∥g∥2] ≤ L2
f , g ∈ ∂f(x, ξ) for all x ∈ domω ⊆ int(dom f)

and all ξ ∼ Ξ.

Now we are ready to present the convergence analysis of DSGD. Our analysis relies on Moreau
envelope, denoted as ψ1/ρ(x

k), which serves as the potential function. After assessing the descent
of the potential function with delays separated as an error term, we derive the convergence result by
bounding the stochastic delays. The following lemma provides the descent property.
Lemma 1. Let x̂k := proxψ/ρ(x

k). Suppose A1, A2, A3 and B1 hold. If ρ > 2λ+ κ, γk ≥ ρ, then

ρ(ρ−2λ−κ)
2(γk−2λ−κ)∥x̂

k − xk∥2 ≤ ψ1/ρ(x
k)− Ek[ψ1/ρ(x

k+1)]− ρ(γk−ρ)
2(γk−2λ−κ)Ek[∥x

k+1 − xk∥2]

+ ρλ
γk−2λ−κEk[∥x

k+1 − xk−τk∥2] + 2ρLf

γk−2λ−κEk[∥x
k+1 − xk−τk∥]

Remark 2. Lemma 1 shows that aside from the noise and delay-related terms, unless we are close
to approximate stationarity characterized by ∥x̂k − xk∥2, there is always sufficient decrease in the
potential function. Intuitively, if we take sufficiently large regularization γ and bound the delays
using A4, convergence is almost immediate. Now we show convergence of DSGD in Theorem 1.
Theorem 1. Under the same conditions as Lemma 1 as well as A4, taking γk ≡ γ = ρ+4λ+κ+√
K/α for some α > 0, letting k∗ be chosen between 1 and K uniformly at random, then

E
[
∥∇ψ1/ρ(x

k∗)∥2
]
≤ 2ρ

ρ−2λ−κ

[
(ρ+2λ)D

K + D√
Kα

+
4ρLf (Lf+Lω)α√

K
(∆1 + 1) +

8ρλ(Lf+Lω)2α2

K ∆2

]
,

where D = ψ1/ρ(x
1)− infx ψ(x) and recall our notation ∆1 = 1

K

∑K
k=1τk,∆2 = 1

K

∑K
k=1τ

2
k .

Remark 3. Note that α controls the trade-off between noise, delay and optimization. In practice we
can set α as a hyper-parameter and tune it to improve performance.

4

The bound for DSGD states that

E[∥∇ψ1/ρ(x
k∗)∥2] = O(1√

K
+ ∆1√

K
+ λ∆2

K) or E[∥∇ψ1/ρ(x
k∗)∥2] = O(1√

K
+ τ̄√

K
+

λτσ2

K),

if we take E[∆1] = τ̄ and E[∆2] = τσ2 . Here ∆1 is the average delay and is considered “robust”
in the distributed setting. However, there exists a second term λ∆2 arising from λ-weak convexity.
As we will show later, this term, in the worst case, can not be trivially bounded. Therefore, we now
resort to our statistical assumption A4 and use the first and second moments to give a bound.

4 Delayed stochastic prox-linear method

In this section, we present a delayed stochastic prox-linear method (DSPL) for the composition op-
timization problem with f(x, ξ) = h(c(x, ξ)), where h(·) : R → R is a convex nonsmooth func-
tion and c(·, ξ) : Rn → R is a smooth, potentially nonconvex function. For brevity, we denote
fz(x, ξ) = h(c(z, ξ) + ⟨∇c(z, ξ), x − z⟩), a partial linearization of the objective, and we use these
two notations interchangeably to describe DSPL. We will show that this linearization scheme im-
proves the accuracy of approximating the objective, thus giving improved convergence rates in the
presence of delay. It should be noted that while we assume c(·) to be a smooth function, our analysis
can seamlessly extend to the case where c is a smooth mapping with a bounded Jacobi matrix.

Algorithm 2: Delayed stochastic prox-linear method

Input: x1;
for k = 1, 2,... do

Let c(xk−τk , ξk−τk) and ∇c(xk−τk , ξk−τk) be computed by a worker with delay τk;
In the master node update

xk+1 = argmin
x∈Rn

{
fxk−τk (x, ξ

k−τk) + ω(x) + γk
2 ∥x− xk∥2

}
(4)

end

We describe DSPL in Algorithm 2. DSPL can be deployed in a multi-agent network where all the
workers are connected to a master server. We assume the workers access random samples ξ and
compute the function value c(x, ξ) and gradient ∇c(x, ξ). At the k-th iteration, the master node
receives a delayed value c(xk−τk , ξk−τk) and gradient ∇c(xk−τk , ξk−τk) of an earlier point xk−τk .
Next, it performs a proximal update (4) to obtain the next iterate xk+1. Figure 1 illustrates the
operational dynamics of DSPL and contrast it with DSGD. Throughout the rest of this paper, we
assume that the proximal update is easy to compute. To derive the convergence results of DSPL, we
now formally state the assumptions on h and c.

C1: h(x) is convex and Lh-Lipschitz continuous over its domain; c(x, ξ) has C(ξ)-Lipschitz con-
tinuous gradient and is Lc(ξ)-Lipschitz continuous over domω. Moreover, we assume that
Eξ[C(ξ)2] ≤ C2,Eξ[Lc(ξ)2] ≤ L2

c .
Remark 4. The assumption of Lipschitz continuity for c is quite prevalent in the literature of weakly
convex optimization [8, 12, 13]. However, it may not hold if domω is unbounded and c is nonlinear,
such as in the case of quadratic functions. To circumvent this problem, we introduce the relative
Lipschitzian property and extend the method to the Bregman proximal iteration. This involves
replacing the Euclidean regularization term 1

2∥x−xk∥
2 in (4) with the divergence Vd(x, xk), which

is generated by a strongly convex function d(·). The Bregman DSPL encompasses Algorithm 2 as a
special case; the details are provided in the appendix for a thorough examination.

Under the above assumptions, fz(x, ξ) satisfies the following desirable properties.
Proposition 1 (Properties of fz(x, ξ)).

P1: fz(x, ξ) is convex for all x, z ∈ domω, and every ξ ∼ Ξ.

P2: |fz(x, ξ)− f(x, ξ)| ≤ LhC(ξ)
2 ∥x− z∥2 for all x, z ∈ domω and ξ ∼ Ξ.

P3: fz(x, ξ)− fz(y, ξ) ≤ LhLc(ξ)∥y − x∥ for all x, y, z ∈ domω and all ξ ∼ Ξ

5

From Proposition 1, we see f(x, ξ) is LhC(ξ)-weakly convex since the error between f(x, ξ) and
a convex function is bounded by a quadratic function. Furthermore, we know that f(x) is LhLc
Lipschitz-continuous and LhC-weakly convex after taking expectation. For a unified analysis, we
take Lf = LhLc, λ = LhC and use these constants to present the results. The following lemma
characterizes the descent property for our potential function in DSPL.
Lemma 2. Suppose A1, A2, A3 and C1 hold, if ρ > 2λ+ κ, γk ≥ ρ, then

ρ(ρ−2λ−κ)
2(γk−2λ−κ)∥x̂

k − xk∥2 ≤ ψ1/ρ(x
k)− Ek[ψ1/ρ(x

k+1)]− ρ(γk−ρ)
2(γk−2λ−κ)Ek[∥x

k+1 − xk∥2]

+
2ρL2

f

(γk−κ)(γk−2λ−κ) +
3ρλ

2(γk−2λ−κ)Ek[∥x
k+1 − xk−τk∥2].

Similar to the analysis of DSGD, we bound the delays to give the convergence result.
Theorem 2. Under the same conditions as Lemma 2 as well as A4, taking γk ≡ γ = ρ + 6λ +
κ+

√
K/α for some α > 0, letting k∗ be uniformly chosen between 1 and K, then

E[∥∇ψ1/ρ(x
k∗)∥2] ≤ 2ρ

ρ−2λ−κ

[
(ρ+4λ)D

K + D√
Kα

+
2ρL2

fα√
K

+
6ρλ(Lf+Lω)2α2

K ∆2

]
,

where D = ψ1/ρ(x
1)− infx ψ(x).

If we take E[∆2] = τσ2 , then Theorem 2 implies that

E[∥∇ψ1/ρ(x
k∗)∥2] = O(1√

K
+ λ∆2

K) or E[∥∇ψ1/ρ(x
k∗)∥2] = O(1√

K
+

λτσ2

K).

Compared to DSGD, the delays for DSPL appear only in a higher-order term with respect to K.
Different from DSGD where λ only characterizes weak convexity, λ for DSPL also represents the
quadratic upper-bound on f(x, ξ) in P2, which is not 0 even if the problem is convex.

Master
x, y

Worker
 x, f (x, ξ)

Worker
 x, f (x, ξ)

Worker
 x, f (x, ξ)

f′
x f′

x

f′ x

Master
,x, y h

Worker
 x, c(x, ξ)

Worker
 x, c(x, ξ)

Worker
 x, c(x, ξ)

c, ∇c
x

c, ∇cx

c, ∇c
x

 f (x, ξ) = h(c(x, ξ))

DSGD DSPL

Figure 1: DSGD and DSPL in a master-worker architecture.

DSPL vs. DSGD We give some further insights on the behavior of DSPL and DSGD for the com-
position function (2). Intuitively, as the algorithm converges, we have limk→0∥xk − xk+1∥ = 0 a.s.
When xk ≈ xk−τk , DSPL enjoys an increasingly stable estimation of the proximal mapping (4), as
the influence of delay is diminishing and the error is mainly driven by stochastic sampling. The same
conclusion holds on smooth DSGD due to the Lipschitz continuity of ∇f . On the other hand, when
DSGD is applied for a nonsmooth problem, the master node receives an out-of-date subgradient f ′
from the worker and solves (3). Since f(x, ξ) is nonsmooth, the subgradient f ′(xk−τk , ξ) may differ
significantly from f ′(xk, ξ) even when the sequence {xk} converges. Hence, DSGD will constantly
suffer from delay during all the updates (3).

DSPL with momentum We also remark that the momentum technique from DSGD can be extended
to DSPL, which gives us the same O(τmax/

√
K + τ2max/K) convergence rate as in [34]. We refer the

interested readers to the Appendix F.

When f is smooth, the analysis of DSPL can be adapted to yield a comparable convergence rate for
the proximal stochastic gradient method for minimizing ψ(·).
Theorem 3. Suppose all the assumptions in Lemma 1 and A4 hold, and that f is λ-smooth. Let
γk ≡ γ = ρ+ 6λ+ κ+

√
K/α for some α > 0, then E[∥∇ψ1/ρ(x

k∗)∥2] = O(1√
K

+ λ∆2

K).

So far we have spent two sections analyzing the two algorithms so that enough intuition can be
established. All these serve for our ultimate goal: making DSGD and DSPL robust to arbitrary delays.

6

5 Weakly convex optimization robust to arbitrary delays

This section proposes robust variants of DSGD and DSPL, for which the explicit delays are eliminated
from the convergence rate. What we will do is reduce the impact of delay to the number of agents
in the network. Moving forward, we substitute A4 with D1.

D1: The distributed environment has m workers.

The previously established results have provided sufficient intuition on how delays impact our algo-
rithms. In view of Theorem 1 and Theorem 2, we have isolated delay-dependent O(∆1/

√
K) and

O(∆2/K) in the proof. Although ∆1/
√
K seems larger, it turns out that ∆2 stands in our way. The

following lemma shows ∆1 = 1
K

∑K
k=1 τk is bounded by m.

Lemma 3. In a distributed environment of m workers ∆1 = 1
K

∑K
k=1 τk ≤ m− 1 ≤ m.

Given Lemma 3, we know ∆1/
√
K = O(m/

√
K) and we can replace dependency on ∆1 by m.

Now we consider ∆2 = 1
K

∑K
k=1 τ

2
k . Even if we have a larger denominator K neutralizing the

effect of ∆2, the following example shows that in the worst case, ∆2 can be of O(K) and result in
O(1) error.
Example 1 (Why ∆2 hurts performance). Given sequence of delays {τk} such that τk = 0, k ≤
K − 1, τK = K. Then ∆2 = K and ∆2/K = 1.

The example tells that delays of O(K) ruin our convergence. In other words, to recover an overall
O(1/

√
K) convergence rate, we need ∆2/K = O(1/

√
K) ⇒

∑K
k=1 τ

2
k = O(K3/2). The next

lemma provides a hint for our algorithm design.

Lemma 4. If a sequence of nonnegative integers {τk} satisfy
∑K
k=1 τk ≤ mK, then given T ≥ 0,

1. if τk ≤ T for all k, then
∑K
k=1 τ

2
k ≤ mKT ;

2.
∑K
k=1 I{τk ≤ T} ≥ K −mKT−1.

Lemma 4 tells us two facts about a nonnegative integer sequence of length K with sum bounded
by O(K): 1). if we restrict the elements to be less than O(T), then

∑K
k=1 τ

2
k ≤ O(KT). 2). there

will be Ω(K −mKT−1) elements bounded by T . Back to our context, this implies 1). To reduce
∆2/K to O(1/

√
K), we can discard the iterations of delays greater than T = O(

√
K). 2). We skip

no more than O(
√
K) iterations and optimization works with O(K −

√
K) = O(K) iterations left.

Having established the foundational under-
standing, we outline the main steps in Algo-
rithm 3. It is based on the aforementioned in-
tuition and incorporates a “safeguarding” step
to discard inaccurate information which could
potentially hurt the convergence performance.
As the above argument on the accumulated de-
lay is independent of any specific algorithm,
the safeguarding strategy can be applied to
both DSGD and DSPL. To make our parameter
setting more general, in our analysis we con-
sider T = r−1mKβ , r > 0, β ≥ 0.

Algorithm 3: Safeguarded DSGD/DSPL

Input: x1, T = r−1mKβ ;
for k = 1, 2,... do

if τk ≤ T then
Update with

(3) for DSGD or (4) for DSPL
else

xk+1 = xk

end
end

Intuitively, under worst-case scenarios, Algorithm 3 will perform after K iterations in a manner
similar to its non-safeguarded counterpart. However, the maximum delay will be capped at
r−1mKβ , and the iteration count will be K(1− rK−β).

Theorem 4 (Safeguarded DSGD). Under the same conditions as Lemma 1 as well as D1, taking 1)
β > 0,K > r1/β or 2) β = 0, r < 1, then letting γk ≡ γ =

√
K

α
√
η + ρ+ κ+ 4λ, η = 1 + r

Kβ−r for

7

some α > 0 and k∗ be uniformly chosen between iterations where τk ≤ T = r−1mKβ ,

E[∥∇ψ1/ρ(x
k∗)∥2] ≤ 2ρ

ρ−2λ−κ

[
η(ρ+2λ)D

K +
√
ηD√
Kα

+
4η3/2ρLf (Lf+Lω)mα√

K
+

8η2ρλ(Lf+Lω)2m2α2

rK1−β

]
,

where D = ψ1/ρ(x
1)− infx ψ(x).

Theorem 5 (Safeguarded DSPL). Under the same conditions as Lemma 2 as well as D1, taking 1)
β > 0,K > r1/β or 2) β = 0, r < 1, then letting γk ≡ γ =

√
K

α
√
η + ρ+ κ+ 6λ, η = 1 + r

Kβ−r for

some α > 0 and k∗ be uniformly chosen between iterations where τk ≤ T = r−1mKβ ,

E[∥∇ψ1/ρ(x
k∗)∥2] ≤ 2ρ

ρ−2λ−κ

[
η(ρ+4λ)D

K +
√
ηD√
Kα

+
2
√
ηρLfα√
K

+
6η2ρλ(Lf+Lω)2m2α2

rK1−β

]
.

where D = ψ1/ρ(x
1)− infx ψ(x).

Remark 5. Theorem 4 and 5 show that by employing a safeguarding step, both DSGD and DSPL
can achieve delay-independent rates. It is also interesting to see how the choice of β and r affects
performance. To recover a convergence rate of O(K−1/2), it is sufficient to have β ≤ 1/2. If we set
β > 0, then we skip rK−β of all the iterations and incur a penalty of up to η3/2 in DSGD and η1/2 in
DSPL. However, this loss becomes negligible for large K, as η = 1 + r

Kβ−r → 1. Alternatively, if
we set β = 0, DSGD achieves O(

√
m/

√
K +m/K) rate with α = 1/

√
m while DSPL yields a rate

of O(1/
√
K +m2/K) with α = 1. This setting aligns with [7, 18] and achieves optimal rate on

m. However, the penalty from η > 1 is non-negligible and adversely affects the overall convergence
rate by a constant factor. Therefore, we can strike a balance in practice by choosing β in (0, 1/2]
and allow delays of up to O(Kβ).

6 Experiments

This section performs numerical experiments on the robust phase retrieval problem to demonstrate
the efficiency of our methods. Given a measuring matrix A ∈ Rm×n and a set of observations
bi ≈ |⟨ai, x̂⟩|2, 1 ≤ i ≤ m (m in this section represents the number of samples), robust phase
retrieval aims to recover the true signal x̂ from

min
x∈Rn

1

m

m∑
i=1

|⟨ai, x⟩2 − bi|+ δ{x:∥x∥≤M},

where δS denotes the set indicator function and the ℓ1 loss function improves robustness. Our ex-
periment contains three parts. The first part profiles algorithms in an asynchronous environment
simulated via MPI; our second experiment runs sequentially with simulated delays from common
distributions; our last experiment also runs in the simulated environment and demonstrates the ef-
fectiveness of safeguarding step under adversarially chosen delays.

6.1 Experiment setup

Synthetic data. For the synthetic data, we take m = 300, n = 100 in the experiments of simulated
delay and m = 1500, n = 500 in the asynchronous environment. Data generation follows the
setup of [11], where, given some κ ≥ 1, we compute A = QD,Q ∈ Rm×n, qij ∼ N (0, 1) and
D = diag(d), d ∈ Rn, di ∈ [1/κ, 1] for all i. Then we generate a true signal x̂ ∼ N (0, I) and
obtain the measurements b using formula bi = ⟨ai, x̂⟩2. Last we randomly choose pfail-fraction of
the measurements and add N (0, 25) to them to simulate data corruption.

Real-life data. The real-life data is generated from zipcode dataset, where we vectorize a
16×16 hand-written digit from [16] and use it as the signal. The measuring matrix A comes
from a normalized Hadamard matrix H ∈ R256×256: we generate three diagonal matrices Sj =
diag(sj), j = 1, 2, 3; each element of sj ∈ R256 is taken from {−1, 1} randomly and we let
A = H[S1, S2, S3]

T ∈ R768×256. Finally pfail-fraction of the observations are set 0.

1) Dataset. In the asynchronous environment, we keep up with [34] setting κ = 1, pfail = 0 and in
the simulated environment, we follow [11] setting κ ∈ {1, 10} and pfail ∈ {0.2, 0.3}.

8

2) Initial point and radius. Synthetic data: we generate x′ ∼ N (0, In) and start from x1 = x′

∥x′∥ ;
zipcode data: we generate x′ ∼ N (x̂, In) and take x1 = 10x′. M = 1000∥x1∥.

3) Stopping criterion. We run algorithms for 400 epochs (K = 400m). In the asynchronous en-
vironment, algorithms run until reaching the maximum iteration. In the simulated environment,
algorithms stop if f ≤ 1.5f(x̂). When f contains corrupted measurements, f(x̂) > 0.

4) Stepsize. We set γ =
√
K/α, where α ∈ {0.1, 0.5, 1.0} in the asynchronous environment,

α ∈ [10−2, 101] for synthetic data and α ∈ [101, 102] for the zipcode dataset.

5) Simulated delay. In the simulated environment, we generate τk from two common distributions
from literature, which are geometric G(p) and Poisson P(λ) [37]. After the delay is generated,
it is truncated by twice the mean of the distribution.

6) Adversarial delay. We let delay happen at the last iteration of each epoch and use the informa-
tion of x1 to update. Safeguarding parameter is set to T = 0.1

√
K.

7) Trade-off between computation and communication. In the asynchronous environment, the
numerical linear algebra on the worker uses a raw implementation (not importing package) to
balance the cost of gradient computation and communication.

6.2 Asynchronous environment

Our first experiment runs in an asynchronous environment implemented by MPI Python interface
and is profiled on an Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz machine with 10 cores
and 20 threads. This experiment runs on a single machine to verify our theoretical finding rather
than to test the algorithm’s real performance on a specific distributed architecture.

表格 1

worker SGD SPL worker SGD SPL

1 316 341 1 19.6 34.7

2 157 173 2 9.04 24.3

4 82 90 4 8.8 24

8 49 55 8 9.2 25.2

16 28 33 16 10.9 33.1

worker SGD SPL

1 1 1

2 2.01273885350318 1.97109826589595

4 3.85365853658537 3.78888888888889

8 6.44897959183673 6.2

16 11.2857142857143 10.3333333333333

0

3

6

9

12

1 2

SGD
SPL

0

100

200

300

400

1 2 4 8 16

SGD
SPL

1

R
un

ni
ng

 ti
m

e

Number of workers
0 10 20 30 40

10-6

10-4

10-2

100

DSGD 1 workers
DSPL 1 workers
DSGD 2 workers
DSPL 2 workers
DSGD 4 workers
DSPL 4 workers
DSGD 8 workers
DSPL 8 workers
DSGD 16 workers
DSPL 16 workersD

is
ta

nc
e

to
 o

pt
im

al

Number of epochs
0 10 20 30 40

10-6

10-4

10-2

100

DSGD 1 workers
DSPL 1 workers
DSGD 2 workers
DSPL 2 workers
DSGD 4 workers
DSPL 4 workers
DSGD 8 workers
DSPL 8 workers
DSGD 16 workers
DSPL 16 workersFu

nc
tio

n
va

lu
e

ga
p

Number of epochs

Figure 2: First: speedup in time and the number of workers. Second: progress of ∥xk − x̂∥ in the
first 40 epochs given α = 0.1. Third: f(xk)− f(x̂) in the first 40 epochs given α = 0.5. For more
details about the two figures on the right, please refer to Figure 12 in the appendix.

The first figure plots the wall-clock time (in seconds) for DSGD and DSPL to complete 400 epochs
when the number of workers increases. It is observed that both algorithms exhibit speed-up with
more workers and note that DSPL takes more time than DSGD due to the need to pass the function
value to the master and slightly more expensive updates. But as the second and the third figure sug-
gest, this extra cost is justified by the superior convergence: in the first several epochs DSPL reaches
a high accuracy of 10−6 in both function value and distance to the optimal solution, while DSGD
stagnates at a relatively low-accuracy solution of 10−2. These observations suggest that DSPL offers
better convergence behavior than the methods only based on subgradient. Finally, our experiments
suggest both DSGD and DSPL are not sensitive to the increase in the number of workers when there
are relatively few workers.

6.3 Simulated environment

The second part of our experiment compares the performance between DSGD and DSPL and is based
on the simulated delay, where the algorithm runs sequentially but the gradient information is com-
puted from the previous iterates.

Figure 3 plots the number of iterations for each algorithm to converge under different datasets and
delay parameters. We see that in spite of delays, DSPL admits a wider range of stepsize parameters
ensuring convergence than DSGD, and the performance slightly deteriorates as delay increases.

9

Ite
ra

tio
n

co
un

t

10-2 10-1 100 101
0

2

4

6

8

10

12 104

DSGD
DSPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL

Figure 3: Left two: Geometric delay (κ, pfail) = (1, 0.3), 2p−1 ∈ {28, 47}; right two: Poisson delay
(κ, pfail) = (10, 0.2), 2λ ∈ {28, 47}. x-axis: parameter α; y-axis: number of iterations. Definition
of delay is given in experiment setup 5).

6.4 Adversarial delay

The final experiment verifies the efficacy of our safeguarding step when delays are introduced in
an adversarial setting. We evaluate the performance of DSGD, DSPL, both with and without the
safeguarding step, under the delay patterns we have generated.

Fu
nc

tio
n

va
lu

e

3.5 3.55 3.6 3.65 3.7 3.75 3.8
104

0.42

0.44

0.46

0.48

0.5

0.52

DSGD
Safe-DSGD
DSPL
Safe-DSPL

2.35 2.4 2.45 2.5 2.55 2.6 2.65

104

0.2

0.3

0.4

0.5

0.6

0.7

0.8
DSGD
Safe-DSGD
DSPL
Safe-DSPL

2.5 3 3.5

104

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

DSGD
Safe-DSGD
DSPL
Safe-DSPL

2.5 3 3.5 4 4.5 5

103

0.4

0.6

0.8

1

1.2
DSGD
Safe-DSGD
DSPL
Safe-DSPL

Figure 4: From left to right: zipcode data, pfail = 0.2, α ∈ {10, 100}, pfail = 0.3, α ∈ {10, 100}.
x-axis: iteration count; y-axis: f(xk).

Figure 4 clearly illustrates the superior performance of our method incorporating the safeguarding
step. As suggested by our theory, DSGD is notably sensitive to delays of O(K). However, upon
discarding outdated information, DSGD exhibits much greater robustness. Interestingly, even under
our adversarial setup, the performance of DSPL remains acceptable, albeit slightly inferior to its
safeguarded version, which aligns well with our theoretical findings.

7 Conclusions

We offer a sharp analysis of delayed stochastic algorithms for weakly convex optimization, dis-
cussing the widely utilized DSGD method and introducing the novel DSPL method for problems with
a composition structure. Through careful examination of delay factors, we propose a straightforward
safeguarding approach to eliminate the effect of delays, and instead derive bounds depending on the
number of agents in the distributed environment. This makes our algorithms resilient to arbitrary
delays. A promising future direction is the application of these prox-linear methods in more diverse
distributed settings, such as decentralized networks.

8 Acknowledgement

The authors thank the anonymous reviewers for their constructive suggestions. This research is par-
tially supported by National Natural Science Foundation of China (NSFC-72150001, 11831002).

References
[1] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

10

[2] Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic
gradient descent with delayed updates. In Algorithmic Learning Theory, pages 111–132. PMLR,
2020.

[3] Karl Bäckström, Marina Papatriantafilou, and Philippas Tsigas. Mindthestep-asyncpsgd: Adap-
tive asynchronous parallel stochastic gradient descent. In 2019 IEEE International Conference
on Big Data (Big Data), pages 16–25. IEEE, 2019.

[4] Dimitri Bertsekas and John Tsitsiklis. Parallel and distributed computation: numerical methods.
Athena Scientific, 2015.

[5] Vasileios Charisopoulos, Yudong Chen, Damek Davis, Mateo Díaz, Lijun Ding, and Dmitriy
Drusvyatskiy. Low-rank matrix recovery with composite optimization: good conditioning and
rapid convergence. Foundations of Computational Mathematics, 21(6):1505–1593, 2021.

[6] Shixiang Chen, Alfredo Garcia, and Shahin Shahrampour. On distributed non-convex optimiza-
tion: Projected subgradient method for weakly convex problems in networks. IEEE Transac-
tions on Automatic Control, 2021.

[7] Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous
stochastic optimization robust to arbitrary delays. Advances in Neural Information Processing
Systems, 34, 2021.

[8] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly con-
vex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[9] Damek Davis, Dmitriy Drusvyatskiy, and Kellie J MacPhee. Stochastic model-based minimiza-
tion under high-order growth. arXiv preprint arXiv:1807.00255, 2018.

[10] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed
deep networks. Advances in neural information processing systems, 25, 2012.

[11] Qi Deng and Wenzhi Gao. Minibatch and momentum model-based methods for stochastic
weakly convex optimization. Advances in Neural Information Processing Systems, 34, 2021.

[12] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of con-
vex functions and smooth maps. Mathematical Programming, pages 1–56, 2018.

[13] John C Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimiza-
tion problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018.

[14] John C Duchi and Feng Ruan. Solving (most) of a set of quadratic equalities: Composite opti-
mization for robust phase retrieval. Information and Inference: A Journal of the IMA, 8(3):471–
529, 2019.

[15] R Fletcher. A model algorithm for composite nondifferentiable optimization problems. In
Nondifferential and Variational Techniques in Optimization, pages 67–76. Springer, 1982.

[16] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements
of statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[17] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252–3261. PMLR, 2019.

[18] Anastasiia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees
for asynchronous sgd for distributed and federated learning. Advances in Neural Information
Processing Systems, 35:17202–17215, 2022.

[19] Adrian S Lewis and Stephen J Wright. A proximal method for composite minimization. Math-
ematical Programming, 158(1):501–546, 2016.

[20] Xiao Li, Zhihui Zhu, Anthony Man-Cho So, and Jason D Lee. Incremental methods for weakly
convex optimization. arXiv preprint arXiv:1907.11687, 2019.

11

[21] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gra-
dient for nonconvex optimization. Advances in Neural Information Processing Systems, 28,
2015.

[22] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decen-
tralized algorithms outperform centralized algorithms? a case study for decentralized parallel
stochastic gradient descent. Advances in Neural Information Processing Systems, 30, 2017.

[23] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochas-
tic gradient descent. In International Conference on Machine Learning, pages 3043–3052.
PMLR, 2018.

[24] Vien Mai and Mikael Johansson. Convergence of a stochastic gradient method with momentum
for non-smooth non-convex optimization. In International Conference on Machine Learning,
pages 6630–6639. PMLR, 2020.

[25] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous dis-
tributed online learning. Advances in Neural Information Processing Systems, 27, 2014.

[26] Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous
SGD beats minibatch SGD under arbitrary delays. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022.

[27] Angelia Nedić, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremen-
tal subgradient methods. Studies in Computational Mathematics, 8(C):381–407, 2001.

[28] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[29] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. volume 24, 2011.

[30] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, pages 400–407, 1951.

[31] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
optimization. In COLT, volume 2, page 5, 2009.

[32] Suvrit Sra, Adams Wei Yu, Mu Li, and Alex Smola. Adadelay: Delay adaptive distributed
stochastic optimization. In Artificial Intelligence and Statistics, pages 957–965. PMLR, 2016.

[33] Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates
for sgd with delayed gradients and compressed updates. Journal of Machine Learning Research,
21:1–36, 2020.

[34] Yangyang Xu, Yibo Xu, Yonggui Yan, and Jie Chen. Distributed stochastic inertial-accelerated
methods with delayed derivatives for nonconvex problems. SIAM Journal on Imaging Sciences,
15(2):550–590, 2022.

[35] Jinshan Zeng and Wotao Yin. On nonconvex decentralized gradient descent. IEEE Transac-
tions on signal processing, 66(11):2834–2848, 2018.

[36] Junyu Zhang and Lin Xiao. Stochastic variance-reduced prox-linear algorithms for nonconvex
composite optimization. Mathematical Programming, pages 1–43, 2021.

[37] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for distributed
deep learning. arXiv preprint arXiv:1511.05950, 2015.

[38] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan
Liu. Asynchronous stochastic gradient descent with delay compensation. In International Con-
ference on Machine Learning, pages 4120–4129. PMLR, 2017.

[39] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic gradi-
ent descent. Advances in neural information processing systems, 23, 2010.

12

Appendix

Table of Contents
A More on the related works 14

B Bregman context and auxiliary results 15
B.1 Context setup . 15
B.2 Auxiliary lemmas . 15

C Convergence Analysis of DSGD 16
C.1 Proof of Lemma 1 . 17
C.2 Proof of Theorem 1 . 18

D Convergence analysis of DSPL 19
D.1 Preliminaries and analysis of Bregman DSPL 19
D.2 Proof of Lemma 2 and Theorem 2 . 24
D.3 Proof of Theorem 3 . 24

E Delay-independent analysis 24
E.1 Proof of Lemma 3 . 24
E.2 Proof of Lemma 4 . 25
E.3 Proof of Theorem 4 . 25
E.4 Proof of Theorem 5 . 26

F DSPL with momentum 26
F.1 Preliminaries of DSEPL . 26
F.2 Convergence analysis of DSEPL . 28

G Kernel and subproblems 33
G.1 Choosing the divergence kernel . 33
G.2 Bregman proximal subproblem . 34
G.3 Euclidean subproblem with nonsmooth regularizer 35

H Additional experiments 36
H.1 Robust phase retrieval . 36
H.2 Blind deconvolution problem . 37
H.3 Proximal sub-problems . 39
H.4 Separate figures of Section 6 . 40

Structure of the appendix In this paper, we strive to provide a comprehensive treatment of de-
layed stochastic algorithms for stochastic weakly convex optimization in both theoretical and prac-
tical aspects.

1) Theoretically, we choose to employ a more general Bregman divergence context in our proof.
This broader context covers the primary results for the Euclidean setting discussed in the main
section. Specifically, this context will be invoked in our analysis for DSPL method to accommodate
real-life applications of prox-linear method and by relaxing the Lipschitz condition C1.

13

2) Practically, we provide a detailed discussion on how to implement the DSPL algorithm, both in
Euclidean and Bregman context. We specifically address the selection of the Bregman divergence
kernel and propose efficient subroutines to solve proximal subproblems. Additionally, in view of the
wide usage of momentum techniques in stochastic optimization, we analyze DSEPL, the momentum
variant of DSPL. While this is not the central contribution of our paper, we believe it represents an
important step for making DSPL applicable to real-world problems.

Main results

Practical extensions
(Optional)

Section A
Other related works

Section B
1. Context setup
2. Auxiliary results
Bregman Euclidean∋

Section C
Convergence of DSGD

(Euclidean)

Section D
Convergence of DSPL

(Bregman)

Section E
Delay-independent
Analysis for DSGD

and DSPL

Section F
Convergence of

DSEPL (Euclidean)

Section G
 Subproblem solving

Section H
Additional

Experiments

Figure 5: Structure of the appendix

The appendix is organized as follows.

The first five sections address the theoretical aspects of delayed stochastic algorithms.

In Section A, we first conduct an extended review of other related works. In Section B, we introduce
the Bregman context with some auxiliary results. In Section C, we perform convergence analysis
for the DSGD method, and Section D presents a more general Bregman DSPL that relaxes the Lips-
chitzness assumption. Section E presents the safeguarded variant of our algorithms that are robust
to arbitrary delays.

(Optional) The last three sections are devoted to more practical aspects.

In Section F, we present the convergence analysis of DSEPL, namely, the momentum variant of DSPL
using variable extrapolation. Section G discusses how to construct the kernel and solve the Bregman
proximal subproblems. Finally, Section H displays additional experiment results.

A More on the related works

First, we review the literature on stochastic weakly-convex optimization. The Prox-Linear (PL)
method [19, 12, 15] has received more attention lately. The seminal work [8] conducts a novel
complexity analysis using the Moreau envelope as the potential function. They show that SGD (and
many other stochastic algorithms) achieves an O(1

ε4) complexity in terms of convergence to the
proximity of approximate stationary points. [20] analyzes an incremental subgradient method for
finite-sum problems. [36] extends the prox-linear algorithm to the finite-sum setting and provides
analysis based on variance-reduction. SGD with momentum is studied in [24] and [11] reveals that
SPL can be accelerated by minibatching even for nonsmooth objective functions. [11] also employs
heavy-ball momentum to further improve the model-based optimization.

There is substantial literature on distributed and asynchronous optimization. We refer to the seminal
work [4]. In addition to the aforementioned asynchronous issues, another important research di-
rection concerns reducing the network communication cost by gradient compression. For example,
see [17]. Besides the centralized setting, there is also growing interest in decentralized algorithms.
Recently, [6] presents a decentralized SGD in the network where nodes exchange parameters and sub-
gradients locally. However, their method requires all the nodes to update synchronously and only

14

proves asymptotic convergence of SGD. An extensive study of decentralized optimization is beyond
our work. Therefore, we refer interested readers to [22, 23, 35] for more recent advances.

B Bregman context and auxiliary results

We initiate the theoretical discussion by introducing the Bregman context, which includes the con-
cepts of Bregman divergence, relative Lipschitzian property, and Bregman Moreau envelope. Fol-
lowing the provision of requisite definitions, we present some auxiliary results that will be used
frequently in our analysis.

B.1 Context setup

Bregman divergence and relative Lipschitzness Given a Legendre function d(·) [7] that is
proper, closed, strictly convex and essentially smooth, it induces the Bregman divergence defined by

Vd(x, y) := d(x)− d(y)− ⟨∇d(y), x− y⟩

and d is called the kernel of Vd. Since d is strictly convex, we know Vd(x, y) ≥ 0 and the equality
holds if and only if x = y. The notion of Bregman divergence greatly enhances the coverage of
the algorithms and has recently been adopted in the context of weakly convex optimization [8, 3]
to tackle a broader class of nonsmooth nonconvex optimization problems. In this paper, we mainly
leverage the concept of relative Lipschitzian property to extend the analysis of delayed stochastic
algorithms. First, we give its formal definition.

Definition 1 (Relative Lipschitzian property). [3] A function f satisfies L-relative Lipschitzian
property to kernel d if for all x, y ∈ dom d,

f(x)− f(y) ≤ L
√
2Vd(y, x). (5)

Bregman proximal mapping and Bregman envelope

As in conventional weakly convex optimization, we need an approximate measure of stationarity
in the non-Euclidean setting. A naturally choice is the Bregman envelope [3]. Assume that d is
1-strongly convex, then for any ρ > 0, the Bregman envelope of f with respect to kernel d is

ψd1/ρ(x) := min
y

{f(y) + ρVd(y, x)}

and the Bregman proximal mapping is represented using

proxdψ/ρ(x) := argmin
y

{f(y) + ρVd(y, x)}.

We sometimes refer to proxdψ/ρ(x) as x̂ and proximal distance E[Vd(x̂k, xk)] has been proven a
proper measure of the convergence of stochastic algorithms [3] under specific choice of d and ρ.

Connection with Euclidean geometry One advantage of using Bregman context is that it sub-
sumes the Euclidean case. If we take d(x) = 1

2∥x∥
2, then Vd(x, y) = 1

2∥x − y∥2 and relative
Lipschitzian property becomes standard Lipschitz condition. Particularly we have the following
relation between Vd(x̂, x) and Moreau envelope.

Vd(x̂
k, xk) =

1

2
∥x̂k − xk∥2 =

1

2ρ2
∥∇ψd1/ρ(x)∥

2.

When the context is clear, we will use ψ = ψd directly if d(x) = 1
2∥x∥

2. In the next section, we
present several useful auxiliary results that appear frequently in the proof.

B.2 Auxiliary lemmas

In this section, we present all the auxiliary lemmas that will be used in the proof of our main results.
While some of these lemmas are widely recognized in the field, we reproduce them here to ensure
that our work remains self-contained. To begin, we introduce the well-known three-point lemma.

15

Lemma 5 (Three point lemma). Let f be a closed convex function and define

z = argmin
x

{f(x) + γVd(x, y)}.

for some y ∈ dom d. Then we have

f(z) + γVd(z, y) ≤ f(x) + γVd(x, y)− γVd(x, z),∀x ∈ dom d.

The following lemma bounds, for a deterministic function, the proximal step by the regularization
term and relative Lipschitzian property.

Lemma 6 (Bounding the proximal step). Given the divergence Vd generated by some 1-strongly
convex function d. Let the function f(x) satisfy the relative Lipschitzian property (5). For any γ > 0
such that f + γd is strongly convex, if we define

x+ = argmin
y

{f(y) + γVd(y, x)},

then √
Vd(x+, x) ≤

√
2γ−1L (6)

and
∥x+ − x∥ ≤ 2γ−1L. (7)

Proof. By the optimality of x+ and relative Lipschizian property, we have

f(x+) + γVd(x
+, x) ≤ f(x)

and
γVd(x

+, x) ≤ f(x)− f(x+) ≤ L
√

2Vd(x+, x). (8)

Dividing both sides of (8) by
√
Vd(x+, x) gives (9); (10) uses Vd(x+, x) ≥ 1

2∥x
+ − x∥2.

Lemma 7 (Bounding the proximal step in expectation). Given the divergence Vd generated by some
1-strongly convex function d. Let convex stochastic function f(x, ξ) satisfy the relative Lipschitzian
property (5) with L = L(ξ) for ξ ∼ Ξ. For any γ > 0, if we define

x+ = argmin
y

{f(y, ξ) + γVd(y, x)},

then
1√
2
Eξ∼Ξ[∥x+ − x∥] ≤ Eξ∼Ξ[

√
Vd(x+, x)] ≤

√
2γ−1Eξ∼Ξ[L(ξ)] (9)

and
Eξ∼Ξ[∥x+ − x∥2] ≤ 4γ−2Eξ∼Ξ[L(ξ)

2]. (10)

Proof. We can apply Lemma 6. Then we have, for each ξ ∼ Ξ, that√
Vd(x+, x) ≤

√
2γ−1L(ξ) and Vd(x

+, x) ≤ 2γ−2L2(ξ).

Taking expectation with respect to ξ, the fact that Vd(x+, x) ≥ 1
2∥x

+−x∥2 completes the proof

C Convergence Analysis of DSGD

In this section, we present the convergence analysis of DSGD. The proof follows a standard inexact
potential reduction scheme and is done in the Euclidean setup, where Lemma 5 and Lemma 7 hold
for d = 1

2∥ · ∥
2.

16

C.1 Proof of Lemma 1

Since ρ > λ+ κ and γk ≥ ρ, by three-point lemma we get the following two relations

⟨gk−τk , xk+1⟩+ ω(xk+1) +
γk
2
∥xk+1 − xk∥2

≤ ⟨gk−τk , x̂k⟩+ ω(x̂k) +
γk
2
∥x̂k − xk∥2 − γk − κ

2
∥x̂k − xk+1∥2 (11)

f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2 ≤ f(xk+1) + ω(xk+1) +

ρ

2
∥xk+1 − xk∥2 (12)

Summing up (11) and (12) and taking expectation, we have

γk − ρ

2
Ek[∥xk+1 − xk∥2]− γk − ρ

2
∥x̂k − xk∥2 + γk − κ

2
Ek[∥x̂k − xk+1∥2]

≤ Eξk−τk [⟨gk−τk , x̂k − xk−τk⟩]− f(x̂k) + Ek[f(xk+1)]− Ek[⟨gk−τk , xk+1 − xk−τk⟩]
= Eξk−τk [⟨gk−τk , x̂k − xk−τk⟩] + f(xk−τk)− f(x̂k)

+ Ek[f(xk+1)]− f(xk−τk)− Ek[⟨gk−τk , xk+1 − xk−τk⟩]

≤ λ

2
∥x̂k − xk−τk∥2 + 2LfEk[∥xk+1 − xk−τk∥] (13)

where (13) follows from λ-weak convexity of f(x, ξ) and B1 (using [1]). Re-arranging the terms,
we have

γk − κ

2
Ek[∥x̂k − xk+1∥2]

≤ γk − ρ

2
∥x̂k − xk∥2 + λ

2
∥x̂k − xk−τk∥2

+ 2LfEk[∥xk+1 − xk−τk∥]− γk − ρ

2
Ek[∥xk+1 − xk∥2]

≤ γk − ρ

2
∥x̂k − xk∥2 + λEk[∥xk+1 − xk−τk∥2] + λEk[∥x̂k − xk+1∥2]

+ 2LfEk[∥xk+1 − xk−τk∥ − γk − ρ

2
Ek[∥xk+1 − xk∥2] (14)

where (14) follows by Cauchy’s inequality ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2. Now we re-arrange the terms
and divide both sides by γk − 2λ− κ to derive

Ek[∥x̂k − xk+1∥2]

≤ γk − ρ

γk − 2λ− κ
∥x̂k − xk∥2 + 2λ

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2]

+
4Lf

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥]− γk − ρ

γk − 2λ− κ
Ek[∥xk+1 − xk∥2]

= ∥x̂k − xk∥2 − ρ− 2λ− κ

γk − 2λ− κ
∥x̂k − xk∥2 + 2λ

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2]

+
4Lf

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥]− γk − ρ

γk − 2λ− κ
Ek[∥xk+1 − xk∥2]. (15)

17

Finally, we measure the reduction in potential function ψ1/ρ(x
k) and successively deduce that

Ek[ψ1/ρ(x
k+1)]

= Ek[f(x̂k+1) + ω(x̂k+1) +
ρ

2
∥x̂k+1 − xk+1∥2]

≤ Ek[f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk+1∥2]

≤ Ek[f(x̂k) + ω(x̂k) +
ρ

2
∥x̂k − xk∥2]− ρ(ρ− 2λ− κ)

2(γk − 2λ− κ)
∥x̂k − xk∥2

+
ρλ

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2] + 2ρLf

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥] (16)

− ρ(γk − ρ)

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

= ψ1/ρ(x
k)− ρ(ρ− 2λ− κ)

2(γk − 2λ− κ)
∥x̂k − xk∥2 + ρλ

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2]

+
2ρLf

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥]− ρ(γk − ρ)

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2].

where relation (16) plugs (15) in. A simple re-arrangement completes the proof.

C.2 Proof of Theorem 1

By the descent property revealed in Lemma 1, we multiply both sides of the inequality by γk−2λ−
κ, telescope over k = 1, . . . ,K and deduce that

ρ(ρ− 2λ− κ)

2
E[∥x̂k

∗
− xk

∗
∥2]

=
ρ(ρ− 2λ− κ)

2K

K∑
k=1

E[∥x̂k − xk∥2]

≤ γ − 2λ− κ

K
{ψ1/ρ(x

1)− E[ψ1/ρ(x
K+1)]} − ρ(γ − ρ)

2K

K∑
k=1

E[∥xk+1 − xk∥2]

+
ρ

K

K∑
k=1

E[λ∥xk+1 − xk−τk∥2 + 2Lf∥xk+1 − xk−τk∥]

≤ (γ − 2λ− κ)D

K
− ρ(γ − ρ)

2K

K∑
k=1

E[∥xk+1 − xk∥2]

+
ρ

K

K∑
k=1

E[−γ − ρ

2
∥xk+1 − xk∥2 + λ∥xk+1 − xk−τk∥2 + 2Lf∥xk+1 − xk−τk∥], (17)

where (17) is due to ψ(x∗) ≤ Ek[ψ1/ρ(x
K+1)]. Now it remains to bound the error from the stochas-

tic delays. Let’s first consider applying ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 to get

K∑
k=1

E[∥xk+1 − xk−τk∥2] ≤ 2

K∑
k=1

E[∥xk − xk−τk∥2] + 2

K∑
k=1

E[∥xk+1 − xk∥2] (18)

18

and we can bound the first term using
K∑
k=1

E[∥xk − xk−τk∥2] =
K∑
k=1

E
[∥∥∥ τk∑

l=1

xk+1−l − xk−l
∥∥∥2]

≤
K∑
k=1

τk

τk∑
l=1

E[∥xk+1−l − xk−l∥2] (19)

≤ 4(Lf + Lω)
2

γ2

K∑
k=1

τ2k , (20)

where (19) uses the fact ∥
∑k
i=1 ai∥2 ≤ k

∑k
i=1 ∥ai∥2, (20) invokes Lemma 7 since ⟨g, x⟩ + ω is

(∥g∥+Lω) Lipschitz continuous with Eξ[∥g∥2] ≤ L2
f , and we let xk−j = x1 if k ≥ j. On the other

hand, we bound the first-order terms by
K∑
k=1

E[∥xk+1 − xk−τk∥] ≤
K∑
k=1

τk∑
l=0

E[∥xk−l+1 − xk−l∥]

≤
K∑
k=1

2γ−1(Lf + Lω)(τk + 1) (21)

= 2γ−1(Lf + Lω)
(
K +

K∑
k=1

τk
)
,

where (21) again invokes Lemma 7. Plugging the bound back, we deduce that
ρ(ρ− 2λ− κ)

2
E[∥x̂k

∗
− xk

∗
∥2]

≤ (γ − 2λ− κ)D

K
+

ρ

K

K∑
k=1

E[−γ − ρ

2
∥xk+1 − xk∥2 + λ∥xk+1 − xk−τk∥2 + 2Lf∥xk+1 − xk−τk∥]

≤ (γ − 2λ− κ)D

K
+

4ρLf (Lf + Lω)

γK

K∑
k=1

(τk + 1) +
8ρλ(Lf + Lω)

2

γ2K

K∑
k=1

τ2k (22)

≤ (ρ+ 2λ)D

K
+

D√
Kα

+
4ρLf (Lf + Lω)α√

K

(1

K

K∑
k=1

τk + 1
)
+

8ρλ(Lf + Lω)
2α2

K

(1

K

K∑
k=1

τ2k

)
where (22) is by γ =

√
K/α + ρ + 4λ + κ and we cancel the first summation term in (18) with

−
∑K
k=1

γ−ρ
2 ∥xk+1 − xk∥2 since γ ≥ ρ + 4λ. The proof is complete after dividing both sides by

ρ(ρ− 2λ− κ) and using the fact that 1
2∥x̂

k − xk∥2 = 1
2ρ2 ∥∇ψ1/ρ(x)∥2.

D Convergence analysis of DSPL

In this section, we introduce a more general DSPL associated with Bregman divergence and establish
its convergence analysis. After proving the result in our Bregman context, the Euclidean results in
Section 4 follows immediately as a special case.

Why use Bregman divergence? Recall that in C1 we assume Lipschitz continuity of both c and
∇c, which does not hold without assuming a bounded set. The main issue here is to expect a
Lipschitz smooth function to also be Lipschitz continuous. Using the Bregman context, we can
relax such Lipschitz continuity to relative Lipschitzian property, so that we do not necessarily need
the bounded set assumption.

D.1 Preliminaries and analysis of Bregman DSPL

In this section, we present the convergence results of DSPL. As we mentioned in Remark 4, we
replace 1

2∥ · ∥
2 regularization by divergence Vd and summarize the update in Algorithm 4.

19

Algorithm 4: A delayed stochastic prox-linear method with Bregman proximal updates

Input: x1;
for k = 1, 2,... do

Let c(xk−τk , ξk−τk) and ∇c(xk−τk , ξk−τk) be computed by a worker with delay τk;
In the master node update

xk+1 = argmin
x

{
h
(
c(xk−τk , ξk−τk) + ⟨∇c(xk−τk , ξk−τk), x− xk⟩

)
+ ω(x) + γkVd(x, xk)

}
(23)

end

Now we overload the assumptions used in Section 4.

A1′: (i.i.d. sample) It is possible to draw i.i.d. samples {ξk} from Ξ.

A2′: (Relative Lipschitzian property) ω(x) satisfies relatively Lipschitzian property (5)

ω(x)− ω(y) ≤ Lω
√

2Vd(y, x)

A3′: (Weak convexity) ω(x) is κ-weakly convex.

A4′: (Strongly-convex kernel) Kernel function d is 1-strongly convex.

A5′: (Bounded moment) The distribution of the independent stochastic delays {τk} has bounded
first and second moments. i.e., E[τk] ≤ τ̄ <∞,E[τ2k] ≤ τσ2 <∞, for all k.

C1′: h(x) is convex and Lh-Lipschitz continuous; c(x, ξ) has C(ξ)-Lipschitz continuous gradient,
for all ξ ∼ Ξ. Moreover, during the algorithm the stochastic function fz(x, ξ), z ∈ dom d
is Lf (ξ)-relative Lipschitzian to d for all ξ ∼ Ξ. Moreover, we assume Eξ[C(ξ)2] ≤
C2,Eξ[Lc(ξ)2] ≤ L2

c .

Remark 6. It can be seen that we added extra assumptions on the kernel and relaxed the Lipschitz
continuity of c in C1′ and ω in A2′. Specially if c is Lc(ξ)-Lipschitz continuous, we have fz(x, ξ)
is LhLc(ξ)-Lipschitz continuous since

fz(x, ξ)− fz(y, ξ)

= h(c(z, ξ) + ⟨∇c(z, ξ), x− z⟩)− h(c(z, ξ) + ⟨∇c(z, ξ), y − z⟩)
≤ Lh|⟨∇c(z, ξ), x− y⟩|
≤ LhLc(ξ)∥x− y∥

With the above assumptions, we can further derive a more general version of Proposition 1.
Proposition 2 (Proposition 1 in the Bregman setting). Let {fz(·, ξ)} be the sequence of stochastic
functions queried during the DSPL algorithm, then

P1′: (Convexity) fz(x, ξ) is convex, for all x ∈ dom d and ξ ∼ Ξ.

P2′: (Two-sided approximation) |fz(x, ξ)− f(x, ξ)| ≤ LhC(ξ)
2 ∥x− z∥2, for all x ∈ dom d and all

ξ ∼ Ξ.

P3′: (Relative Lipschitzian property) fz(x, ξ)−fz(y, ξ) ≤ Lf (ξ)
√
2Vd(y, x) for all x, y ∈ dom d

and all ξ ∼ Ξ.

As we did in Section 4, we take λ = LhC and use these constants to present the results. Our analysis
adopts the conventional potential reduction framework but a more careful treatment of stochastic
noise is needed to improve the convergence result. The next lemma bounds the stochastic noise of
the algorithm and is key to our analysis of DSPL.
Lemma 8 (Stability of the stochastic iteration). Assume that the assumptions A1′ to A4′ hold. If
fx(·, ξ) is convex and satisfies Proposition 2 , then the proximal iteration

xk+1 = argmin
x

{fxk−τk (x, ξ
k−τk) + ω(x) + γkVd(x, z

k)}

20

satisfies ∣∣Ek {Eξ [fxk−τk (x
k+1, ξ)

]
− fxk−τk (x

k+1, ξk−τk)
}∣∣ ≤ 2L2

f

γ − κ
,

for any γk > κ.

Now we can get the lemmas that match our main results in a Bregman context.
Lemma 9 (Lemma 2 in the Bregman setting). Suppose A1′,A2′,A3′,A4′ and C1′ hold, if ρ >
2λ+ κ, γk ≥ ρ, then

ρ(ρ− 2λ− κ)

γk − 2λ− κ
Vd(x̂

k, xk) ≤ ψd1/ρ(x
k)− Ek[ψd1/ρ(x

k+1)]− ρ(γk − ρ)

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

+
3ρλ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk−τk∥2] +

2ρL2
f

(γk − κ)(γk − 2λ− κ)

Theorem 6 (Theorem 2 in the Bregman setting). Under the same conditions as Lemma 9, as well
as A5′, taking γk ≡ γ = ρ + 6λ + κ +

√
K/α for some α > 0, letting k∗ be uniformly chosen

between 1 and K, then

E[Vd(x̂k
∗
, xk

∗
)] ≤ 1

ρ(ρ− 2λ− κ)

[
(ρ+ 4λ)D

K
+

D√
Kα

+
2ρL2

fα√
K

+
6ρλ(Lf + Lω)

2α2

K
∆2

]
,

where D = ψd1/ρ(x
1)− infx ψ(x).

Proof Proposition 2

fz(x, ξ) inherits convexity from h. The other properties hold by

|f(x, ξ)− fy(x, ξ)|
= |h(c(x, ξ))− h(c(y, ξ) + ⟨∇c(y, ξ), x− y⟩)|
≤ Lh|c(x, ξ)− c(y, ξ)− ⟨∇c(y, ξ), x− y⟩|

≤ LhC

2
∥x− y∥2

and P3′ is by C1′.

Proof of Lemma 8

Without loss of generality, we consider the following proximal mapping

A(z, x, ξ) := argmin
w

{fz(w, ξ) + ω(w) + γVd(w, x)},

where A denotes the proximal mapping from two past iterates z, x and a given sample ξ ∼ Ξ. Then
we invoke the three-point lemma to get, for any u ∈ dom d that

fz(A(z, x, ξ), ξ) + ω(A(z, x, ξ)) + γVd(A(z, x, ξ), x)

≤ fz(u, ξ) + ω(u) + γVd(u, x)− (γ − κ)Vd(u,A(z, x, ξ)) (24)

Similarly, given some ξ′ ∼ Ξ, v ∈ dom d, we have

fz(A(z, x, ξ′), ξ′) + ω(A(z, x, ξ′)) + γVd(A(z, x, ξ′), x)

≤ fz(v, ξ
′) + ω(v) + γVd(v, x)− (γ − κ)Vd(v,A(z, x, ξ′)). (25)

Letting u = A(z, x, ξ′) in (24) and v = A(z, x, ξ) in (25), we sum the two relations up and get

(γ − κ)[Vd(A(z, x, ξ′),A(z, x, ξ)) + Vd(A(z, x, ξ),A(z, x, ξ′))]

≤ fz(A(z, x, ξ), ξ′)− fz(A(z, x, ξ′), ξ′) + fz(A(z, x, ξ′), ξ)− fz(A(z, x, ξ), ξ)

≤ Lf [
√

2Vd(A(z, x, ξ′),A(z, x, ξ)) +
√

2Vd(A(z, x, ξ),A(z, x, ξ′))] (26)

≤ 2Lf [
√
Vd(A(z, x, ξ′),A(z, x, ξ)) + Vd(A(z, x, ξ),A(z, x, ξ′))] (27)

21

where (26) is by Lipschitzness from A2′, P3′ and (27) uses the relation
√
a +

√
b ≤

√
2
√
a+ b.

Then this implies

max{
√
Vd(A(z, x, ξ′),A(z, x, ξ)),

√
Vd(A(z, x, ξ),A(z, x, ξ′))}

≤
√
Vd(A(z, x, ξ′),A(z, x, ξ)) + Vd(A(z, x, ξ),A(z, x, ξ′)) ≤ 2Lf

γ − κ
. (28)

Last we successively deduce that

|Eξ′ [Eξ[fz(A(z, x, ξ′), ξ)− fz(A(z, x, ξ′), ξ′)]]|

=
∣∣∣∫ξ′∼Ξ

∫
ξ∼Ξ

fz(A(z, x, ξ′), ξ)− fz(A(z, x, ξ′), ξ′)dµξdµξ′
∣∣∣

=
∣∣∣∫ξ′∼Ξ

∫
ξ∼Ξ

fz(A(z, x, ξ′), ξ)dµξdµξ′ −
∫
ξ′∼Ξ

fz(A(z, x, ξ′), ξ′)dµξ′
∣∣∣

=
∣∣∣∫ξ′∼Ξ

∫
ξ∼Ξ

fz(A(z, x, ξ′), ξ)dµξdµξ′ −
∫
ξ∼Ξ

fz(A(z, x, ξ), ξ)dµξ

∣∣∣
=

∣∣∣∫ξ′∼Ξ

∫
ξ∼Ξ

fz(A(z, x, ξ′), ξ)− fz(A(z, x, ξ), ξ)dµξdµξ′
∣∣∣

≤
∫
ξ′∼Ξ

∫
ξ∼Ξ

|fz(A(z, x, ξ′), ξ)− fz(A(z, x, ξ), ξ)| dµξdµξ′ (29)

≤
∫
ξ′∼Ξ

∫
ξ∼Ξ

Lf ·max
{√

Vd(A(z, x, ξ),A(z, x, ξ′)), (30)√
Vd(A(z, x, ξ′),A(z, x, ξ))

}
dµξdµξ′ (31)

≤
∫
ξ′∼Ξ

∫
ξ∼Ξ

2L2
f

γ−κdµξdµξ′ =
2L2

f

γ−κ , (32)

where the third equality holds since ξ and ξ′ are from the same distribution; (29) follows from
Jensen’s inequality and (32) uses (28). Plugging in z = xk−τk , x = zk, ξ′ = ξk−τk and γ = γk into
(32) completes the proof.

Proof of Lemma 9

First, we have, by the three-point lemma and optimality of x̂k, that

fxk−τk (x
k+1, ξk−τk) + ω(xk+1) + γkVd(x

k+1, xk)

≤ fxk−τk (x̂
k, ξk−τk) + ω(x̂k) + γkVd(x̂

k, xk)− (γk − κ)Vd(x̂
k, xk+1)

and that

f(x̂k) + ω(x̂k) + ρVd(x̂
k, xk) ≤ f(xk+1) + ω(xk+1) + ρVd(x

k+1, xk)

Summing the above two relations and taking expectations, we have

(γk − ρ)Ek[Vd(xk+1, xk)]− (γk − ρ)Vd(x̂
k, xk) + (γk − κ)Ek[Vd(x̂k, xk+1)]

≤ Eξk−τk [fxk−τk (x̂
k, ξk−τk)]− f(x̂k) + Ek[f(xk+1)]− Ek[fxk−τk (x

k+1, ξk−τk)]

= Eξk−τk [fxk−τk (x̂
k, ξk−τk)]− f(x̂k) + Ek[f(xk+1)]− Ek[Eξ[fxk−τk (x

k+1, ξ)]]

+ Ek[Eξ[fxk−τk (x
k+1, ξ)]]− Ek[fxk−τk (x

k+1, ξk−τk)]

≤ λ

2
∥xk−τk − x̂k∥2 + λ

2
Ek[∥xk+1 − xk−τk∥2] +

2L2
f

γk − κ
, (33)

where (33) uses P2 and Lemma 8. Next we lower-bound the left-hand side using the 1-strong
convexity of kernel d

γk − ρ

2
Ek[∥xk+1 − xk∥2]− (γk − ρ)Vd(x̂

k, xk) + (γk − κ)Ek[Vd(x̂k, xk+1)]

≤ (γk − ρ)Ek[Vd(xk+1, xk)]− (γk − ρ)Vd(x̂
k, xk) + (γk − κ)Ek[Vd(x̂k, xk+1)]. (34)

22

Re-arranging the terms,

(γk − κ)Ek[Vd(x̂k, xk+1)] +
γk − ρ

2
Ek[∥xk+1 − xk∥2] (35)

≤ (γk − ρ)Vd(x̂
k, xk) +

λ

2
Ek[∥xk+1 − xk−τk∥2] + λ

2
∥xk−τk − x̂k∥2 +

2L2
f

γk − κ

≤ (γk − ρ)Vd(x̂
k, xk) +

3λ

2
Ek[∥xk+1 − xk−τk∥2] + λEk[∥xk+1 − x̂k∥2] +

2L2
f

γk − κ
(36)

= (γk − ρ)Vd(x̂
k, xk) +

3λ

2
Ek[∥xk+1 − xk−τk∥2] +

2L2
f

γk − κ
+ 2λEk[Vd(x̂k, xk+1)]

+ λEk[∥xk+1 − x̂k∥2 − 2Vd(x̂
k, xk+1)]

≤ (γk − ρ)Vd(x̂
k, xk) +

3λ

2
Ek[∥xk+1 − xk−τk∥2] +

2L2
f

γk − κ
+ 2λEk[Vd(x̂k, xk+1)] (37)

where the (36) uses ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2 and (37) again follows by Vd(x̂k, xk+1) ≥ 1
2∥x

k+1−
x̂k∥2. Now we re-arrange the terms and divide both sides by γk − 2λ− κ to get

Ek[Vd(x̂k, xk+1)]

≤ γk − ρ

γk − 2λ− κ
Vd(x̂

k, xk)− γk − ρ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

+
2L2

f

(γk − κ)(γk − 2λ− κ)
+

3λ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk−τk∥2]

= Vd(x̂
k, xk)− ρ− 2λ− κ

γk − 2λ− κ
Vd(x̂

k, xk)− γk − ρ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

+
2L2

f

(γk − κ)(γk − 2λ− κ)
+

3λ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk−τk∥2] (38)

Now we are ready to evaluate the decrease in the potential function.

Ek[ψd1/ρ(x
k+1)]

= Ek[f(x̂k+1) + ω(x̂k+1) + ρVd(x̂
k+1, xk+1)]

≤ Ek[f(x̂k) + ω(x̂k) + ρVd(x̂
k, xk+1)]

≤ f(x̂k) + ω(x̂k) + ρVd(x̂
k, xk)− ρ(ρ− 2λ− κ)

γk − 2λ− κ
Vd(x̂

k, xk) (39)

+
3ρλ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk−τk∥2] +

2ρL2
f

(γk − κ)(γk − 2λ− κ)

− ρ(γk − ρ)

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

= ψd1/ρ(x
k)− ρ(ρ− 2λ− κ)

γk − 2λ− κ
Vd(x̂

k, xk)− ρ(γk − ρ)

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

+
3ρλ

2(γk − 2λ− κ)
Ek[∥xk+1 − xk−τk∥2] +

2ρL2
f

(γk − κ)(γk − 2λ− κ)
,

where (39) plugs in the relation from (38). Another re-arrangement completes the proof.

Proof of Theorem 6

23

Summing the relation from Lemma 9 from k = 1, . . . ,K and multiplying both sides by γ−2λ−κ,

ρ(ρ− 2λ− κ)E[Vd(x̂k
∗
, xk

∗
)]

=
ρ(ρ− 2λ− κ)

K

K∑
k=1

E[Vd(x̂k, xk)] (40)

≤ γ − 2λ− κ

K

{
ψd1/ρ(x

1)− E[ψd1/ρ(x
K+1)]

}
+

2ρL2
f

γ − κ

+
3ρλ

2K

K∑
k=1

E[∥xk+1 − xk−τk∥2 − ρ(γ − ρ)

2K

K∑
k=1

E[∥xk+1 − xk∥2]

≤ (γ − 2λ− κ)D

K
+

2ρL2
f

γ − κ
+

ρ

K

K∑
k=1

E
[
− γ − ρ

2
∥xk+1 − xk∥2 + 3λ

2
∥xk+1 − xk−τk∥2

]
, (41)

where (41) uses the relation ψd1/ρ(x
K+1) ≥ infx ψ

d(x). Now it remains to bound the error of delays
and recall that we have

K∑
k=1

∥xk+1 − xk−τk∥2 ≤ 2

K∑
k=1

∥xk+1 − xk∥2 + 4γ−2(Lf + Lω)
2
K∑
k=1

τ2k (42)

and plugging the bounds back, we have

ρ(ρ− 2λ− κ)E[Vd(x̂k
∗
, xk

∗
)]

≤ (γ − 2λ− κ)D

K
+

2ρL2
f

γ − κ
+

6ρλ(Lf + Lω)
2

γ2K

K∑
k=1

τ2k

≤ (ρ+ 4λ)D

K
+

D√
Kα

+
2ρL2

fα√
K

+
6ρλ(Lf + Lω)

2α2

K
∆2, (43)

where in (43) we cancel the first summation from (42) since γ−ρ =
√
K/α+6λ+κ ≥ 6λ. Finally

we divide both sides by ρ(ρ− 2λ− κ) to complete the proof.

D.2 Proof of Lemma 2 and Theorem 2

First d(x) = 1
2∥x∥

2 satisfies A4′. Since A1, A2, A3, A4 and C1 are equivalent to A1′, A2′, A3′,
A5′ and C1′, noticing that Lemma 2 is a special case of Lemma 9 and Theorem 2 is a special case
of Theorem 6, we complete the proof.

D.3 Proof of Theorem 3

Recall that in the proof of DSPL, we actually used A4 and the properties from Proposition 1 that
are deduced from A1, A2, A3 and C1. Indeed, it is straightforward to verify that fz(x, ξ) =
⟨∇f(z, ξ), x− z⟩ satisfies Proposition 1 given A1, A2, A3 and λ-smoothness of f .

E Delay-independent analysis

In this section, we further improve our analysis and show that by adopting a simple safeguarding
strategy during the iterations.

E.1 Proof of Lemma 3

We show
∑K
k=1 τk ≤ mK by noticing the following facts: 1). at each iteration there are at most

m − 1 agents accumulating 1 unit of delay; 2). τk must come from a machine’s previous delay
accumulation. 3). once the gradient is used, delay on a machine starts count from 0. Assuming
that at k = 1 there are no previously accumulated delays on each agent, then we have

∑K
k=1 τk ≤

(m− 1)K ≤ mK. We use a loose bound mK to simplify notation.

24

E.2 Proof of Lemma 4

We know that T
∑K
k=1 I{τk ≥ T} ≤

∑K
k=1 τk ≤ mK and recall that T = r−1mKβ :

K∑
k=1

I{τk ≤ T} ≥ K −
K∑
k=1

I{τk ≥ T} ≥ K − mK

T
= K − rK1−β .

Also we have
∑K
k=1 τ

2
k ≤ T

∑K
k=1 τk ≤ mKT .

E.3 Proof of Theorem 4

First we rewrite Lemma 1 by associating potential reduction with Ik := I{τk ≤ T}.

Ek[ψ1/ρ(x
k+1)] ≤ ψ1/ρ(x

k)− ρ(ρ− 2λ− κ)Ik
2(γk − 2λ− κ)

∥x̂k − xk∥2 − ρ(γk − ρ)Ik
2(γk − 2λ− κ)

Ek[∥xk+1 − xk∥2]

+
ρλIk

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2] + 2ρLfIk

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥],

where we have xk+1 = xk, thus Ek[ψ1/ρ(x
k+1)] = ψ1/ρ(x

k) if Ik = 0.

From Lemma 4, we know that
∑K
k=1 Ik ≥ K − rK1−β = K(1− rK−β) = η−1K. Then similar

telescopic sum over the un-skipped iterations will give

ρ(ρ− 2λ− κ)

2
E[∥x̂k

∗
− xk

∗
∥2]

=
ρ(ρ− 2λ− κ)

2
∑K
k=1 Ik

K∑
k=1

E[∥x̂k − xk∥2Ik]

≤ γ − 2λ− κ∑K
k=1 Ik

{ψ1/ρ(x
1)− E[ψ1/ρ(x

K+1)]} − ρ(γ − ρ)

2
∑K
k=1 Ik

K∑
k=1

E[∥xk+1 − xk∥2]Ik (44)

+
ρλ∑K
k=1 Ik

K∑
k=1

E[∥xk+1 − xk−τk∥2]Ik +
2ρLf∑K
k=1 Ik

K∑
k=1

E[∥xk+1 − xk−τk∥]Ik

≤ ρD∑K
k=1 Ik

+

√
KD

α
√
η
∑K
k=1 Ik

(45)

+
ρ∑K
k=1 Ik

K∑
k=1

E
[
− γ − ρ

2
∥xk+1 − xk∥2 + λ∥xk+1 − xk−τk∥2 + 2Lf∥xk+1 − xk−τk∥

]
Ik,

where (44) uses the fact that γk ≡ γ is the same for all the iterations; (45) uses the relation γ =√
K

α
√
η + ρ+ κ+ 4λ ≥ max{

√
K

α
√
η , ρ+ κ+ 4λ}. Then we bound the above terms, respectively, by

ρD∑K
k=1 Ik

≤ ρD

η−1K
=
ρηD

K
(46)

√
KD

α
√
η
∑K
k=1 Ik

≤
√
KD

αη−1/2K
=

√
ηD

√
Kα

, (47)

where we used the fact that
∑K
k=1 Ik ≤ K. Meanwhile,

2ρLf∑K
k=1 Ik

K∑
k=1

∥xk+1 − xk−τk∥Ik ≤ 2ρLf∑K
k=1 Ik

K∑
k=1

∥xk+1 − xk−τk∥

≤
4
√
ηρLf (Lf + Lω)α√

Kη−1

K∑
k=1

(τk + 1)

≤ 4η3/2ρLf (Lf + Lω)mα√
K

, (48)

25

where (48) uses a tighter bound
∑K
k=1 τk ≤ (m− 1)K. Finally, we bound the delays using

2ρλ∑K
k=1 Ik

K∑
k=1

E[∥xk − xk−τk∥2]Ik ≤ 8ηρλ(Lf+Lω)2α2

K
∑K

k=1 Ik

K∑
k=1

τ2k Ik ≤ 8η2ρλ(Lf+Lω)2α2

K2

K∑
k=1

τ2k Ik,

and that 1
K2

∑K
k=1 τ

2
k Ik ≤ mKT

K2 = m2

rK1−β . Putting the above bounds back, using the same tech-
nique as in (18) to cancel the error 2λ∥xk+1 − xk∥2 with −

∑K
k=1

γ−ρ
2 ∥xk+1 − xk∥2, γ − ρ ≥ 4λ,

we can re-arrange the terms to complete the proof.

E.4 Proof of Theorem 5

We prove Theorem 5 by showing its Bregman version.
Theorem 7 (Safeguarded DSPL in Bregman setting). Under the same conditions as Lemma 9 as well
as D1, taking 1) β > 0,K > r1/β or 2) β = 0, r < 1, then letting γk ≡ γ =

√
K

α
√
η +ρ+κ+6λ, η =

1 + r
Kβ−r for some α > 0 and k∗ be uniformly chosen between iterations where τk ≤

√
K, then

E[Vd(x̂k
∗
, xk

∗
)] ≤ 1

ρ(ρ−2λ−κ)

[
η(ρ+4λ)D

K +
√
ηD√
Kα

+
2
√
ηρLfα√
K

+
6η2ρλ(Lf+Lω)2m2α2

K1/β

]
,

where D = ψd1/ρ(x
1)− infx ψ

d(x).

Proof of Theorem 7

Similar to the proof of Theorem 4, we write the modified potential reduction by

Ek[ψd1/ρ(x
k+1)] ≤ ψd1/ρ(x

k)− ρ(ρ− 2λ− κ)Ik
2(γk − 2λ− κ)

Vd(x̂
k, xk)− ρ(γk − ρ)Ik

2(γk − 2λ− κ)
Ek[∥xk+1 − xk∥2]

+
3ρλIk

γk − 2λ− κ
Ek[∥xk+1 − xk−τk∥2] + 2ρLfIk

(γk − κ)(γk − 2λ− κ)

Then telescoping gives
ρ(ρ− 2λ− κ)

2
E[Vd(x̂k

∗
, xk

∗
)]

=
ρ(ρ− 2λ− κ)

2
∑K
k=1 Ik

K∑
k=1

E[Vd(x̂k, xk)Ik]

≤ γ − 2λ− κ∑K
k=1 Ik

{ψ1/ρ(x
1)− E[ψ1/ρ(x

K+1)]} − ρ(γ − ρ)

2
∑K
k=1 Ik

K∑
k=1

E[∥xk+1 − xk∥2]Ik

+
3ρλ∑K
k=1 Ik

K∑
k=1

E[∥xk+1 − xk−τk∥2]Ik +
2ρLf
γ − κ

≤ (ρ+ 4λ)D∑K
k=1 Ik

+

√
KD

α
√
η
∑K
k=1 Ik

+
2ρLf
γ − κ

(49)

+
ρ∑K
k=1 Ik

K∑
k=1

E
[
− γ − ρ

2
∥xk+1 − xk∥2 + 3λ

2
∥xk+1 − xk−τk∥2

]
Ik

≤ η(ρ+ 4λ)D

K
+

√
ηD

√
Kα

+
2
√
ηρLfα√
K

+
6η2ρλ(Lf + Lω)

2m2α2

rK1−β ,

where (49) reuses (46), (47) and (48). A re-arrangement completes the proof of Theorem 7. Taking
d(x) = 1

2∥x∥
2 completes the proof of Theorem 5.

F DSPL with momentum

F.1 Preliminaries of DSEPL

Momentum has been an important ingredient for a stochastic algorithm to be implemented in prac-
tice. In this section, we incorporate the extrapolation technique into the delayed prox-linear algo-

26

rithm. Before the master performs a proximal update, it uses two recent iterates to compute an
extrapolated iterate yk. Then a proximal update is done centered around yk with delayed informa-
tion. We summarize the procedure in Algorithm 5. Throughout this section we take γk ≡ γ.

Algorithm 5: Extrapolated DSPL

Input: x0, x1, β;
for k = 1, 2, . . . do

Let c(xk−τk , ξk−τk) and ∇c(xk−τk , ξk−τk) be computed by a worker with delay τk;
In the master node update

yk = xk + β(xk − xk−1),

xk+1 = argmin
x

{
fxk−τk (x, ξ

k−τk) + ω(x) +
γ

2
∥x− yk∥2

}
.

end

To analyze DSEPL, we extend the framework from [5] to the delayed case and the analysis is based
on a virtual iterate

zk := xk + βθ−1(xk − xk−1),

where the extrapolation parameter, also known as momentum, is fixed at some constant β ∈ [0, 1)
and θ = 1− β. Using the virtual iterate, DSEPL uses a more complicated potential function.

ψ1/ρ(z
k) +

ρβ

(γ − κ)θ2
ψ(xk) +

ρ(γβ + 2ρβ2θ−2)

2(γ − λ)θ
∥xk − xk−1∥2 (50)

As extrapolation increases the instability of the iterations, analysis of DSEPL furthers requires bound-
edness of the delays.

E1: (Bounded delay) Independent delays are bounded by τ <∞.

The following lemma presents a similar descent property for the potential function.
Lemma 10. Suppose A1, A2, A3 and C1 hold. Given 0 ≤ β < 1, ρ > 3λ+ 2κβ + κ and γ ≥ ρ,

(ρ− κθ)

2ρ(γ − κ)θ
∥∇ψ1/ρ(z

k)∥2

≤ ψ1/ρ(z
k)− Ek[ψ1/ρ(z

k+1)] +
ρβ

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}

+
ρ(2ρβ2θ−1 + γβθ)

2(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]}

+
2ρL2

f

(γ − κ)2θ2
− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + ρEk[εk]

(γ − κ)θ2
,

where εk = (λθ + λ
2)∥x

k+1 − xk−τk∥2 + λ(1−θ)
2 ∥xk − xk−τk∥2 characterizes the error of delay.

We next bound the stochastic delay using E1 and eliminate the delays.
Lemma 11. Under the same conditions as Lemma 10 as well as E1, given γ >
max

{
ρ, 2(ρ+ κβ)θ−1 + 2ρβ2θ−3

}
,

E[∥∇ψ1/ρ(z
k∗)∥2] ≤ 2ρθ

ρ−κθ

[
(γ−κ+ρβθ−2)D

K +
2ρL2

f

(γ−κ)θ2 + ρλ(3τ2+2β)
2θ2K

K∑
k=1

E[∥xk+1 − xk∥2]
]
,

where D = max{ψ1/ρ(z
1)− ψ1/ρ(z

∗), ψ(x1)− ψ(x∗)}.
Remark 7. Lemma 11 reveals the effect of extrapolation. After simplification θ = 1 − β appears
in the denominator of the error from delay and will enlarge such an error if β → 1. This is intu-
itive since when extrapolating using two iterations generated from delayed information, the error is
magnified.

27

By taking less aggressive steps, we bound the term
∑K
k=1 E[∥xk+1 − xk∥2] and arrive at the final

convergence result for DSEPL.

Theorem 8. Under the same conditions as Lemma 11, if we further choose γ ≥ 2θ−1(ρ+ κβ) +
2ρθ−3β2 + 2λθ−2β + 3λθ−1τ2, then

E[∥∇ψ1/ρ(z
k∗)∥2] ≤ 2ρθ

(ρ− κθ)
√
K

(λ(3τ2 + 2β)

Γβ
+ 1

)[
(γ − κ+ ρβθ−2)D√

K
+

2ρL2
f

√
K

(γ − κ)θ2

]
,

where Γβ := γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1 − 3λτ2 − 2λβ.

Remark 8. If γ = O(
√
K), then (γ−κ+ρβθ−2)D

K +
2ρL2

f

(γ−κ)θ2 = O(1√
K
), Γ−1

β = O(1√
K
) and

E[∥∇ψ1/ρ(z
k∗)∥2] = O

(1

K
+

1√
K

+ (
1

K
+

1√
K

)
τ2√
K

)
,

which implies that the delay is negligible if τ = o(K1/4).
Remark 9. Although our convergence result is based on the extrapolated sequence, we can leverage
Lemma 10 to show that E[∥xk∗+1 − xk

∗∥2] , and subsequently E[∥zk∗ − xk
∗∥2] is O(1

K) . Using
smoothness of the Moreau envelope, we finally have E[∥∇ψ1/ρ(x

k∗)∥2] is O(1√
K
).

F.2 Convergence analysis of DSEPL

In this section we present the convergence analysis for DSEPL.

F.2.1 Auxiliary results

To show the convergence of DSEPL, we need to define an auxiliary sequence

zk := xk +
β

1− β
(xk − xk−1).

Given xk, define x̄ = βxk+(1−β)x for x ∈ dom(ω) and θ = 1−β. The following identities hold

x̄− xk = θ(x− xk)

x̄− yk = θ(x− zk)

x̄− xk+1 = θ(x− zk+1).

and will be used frequently in the analysis.

Proof of Lemma 10

First by the (γ − κ)-strong convexity of the proximal sub-problem, we have

fxk−τk (x
k+1, ξk−τk) + ω(xk+1) +

γ

2
∥xk+1 − yk∥2

≤ fxk−τk (x̄, ξ
k−τk) + ω(x̄) +

γ

2
∥x̄− yk∥2 − γ − κ

2
∥xk+1 − x̄∥2

= fxk−τk (x̄, ξ
k−τk) + ω(x̄) +

γθ2

2
∥x− zk∥2 − (γ − κ)θ2

2
∥x− zk+1∥2. (51)

Also, since fxk−τk (·, ξk−τk) + ω(·) + κ
2 ∥ · −xk∥2 is convex, we plug x̄ in and apply convexity to

get that

fxk−τk (x̄, ξ
k−τk) + ω(x̄) +

κ

2
∥x̄− xk∥2

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ

[
fxk−τk (x, ξ

k−τk) + ω(x) +
κ

2
∥x− xk∥2

]
≤ (1− θ)

[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ

[
f(x) + ω(x) +

κ

2
∥x− xk∥2 + λ

2
∥x− xk−τk∥2

]
,

28

where the second inequality leverages two-sided approximation since
∣∣fxk−τk (x, ξ

k−τk)− f(x)
∣∣ ≤

λ
2 ∥x− xk−τk∥2. Then a simple re-arrangement gives

fxk−τk (x̄, ξ
k−τk) + ω(x̄)

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]

+ θ
[
f(x) + ω(x) +

κ

2
∥x− xk∥2 + λ

2
∥x− xk−τk∥2

]
− κθ2

2
∥x− xk∥2.

Now combining the above inequality with (51), we get that

fxk−τk (x
k+1, ξk−τk) + ω(xk+1) +

γ

2
∥xk+1 − yk∥2

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ

[
f(x) + ω(x) +

κ

2
∥x− xk∥2 + λ

2
∥x− xk−τk∥2

]
− κθ2

2
∥x− xk∥2 + γθ2

2
∥x− zk∥2 − (γ − κ)θ2

2
∥x− zk+1∥2. (52)

From now on we let x = ẑk in (52) and successively deduce that

fxk−τk (x
k+1, ξk−τk) + ω(xk+1) +

γ

2
∥xk+1 − yk∥2

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ

[
f(ẑk) + ω(ẑk) +

κ

2
∥ẑk − xk∥2 + λ

2
∥ẑk − xk−τk∥2

]
− κθ2

2
∥ẑk − xk∥2 + γθ2

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2.

= (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ[f(ẑk) + ω(ẑk)] +

κθ − κθ2

2
∥ẑk − xk∥2 + λθ

2
∥ẑk − xk−τk∥2

+
γθ2

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ[f(ẑk) + ω(ẑk)] +

λθ

2
∥ẑk − xk−τk∥2

+
γθ2

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2 + θκβ[∥xk+1 − xk∥2 + ∥ẑk − xk+1∥2] (53)

≤(1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θ[f(ẑk) + ω(ẑk)] + θ(κβ + λ)∥ẑk − xk+1∥2

+ λθ∥xk+1 − xk−τk∥2 + γθ2

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2 + θκβ∥xk+1 − xk∥2,

(54)

where the second inequality (53) applies ∥ẑk − xk∥2 ≤ 2[∥xk+1 − xk∥2 + ∥ẑk − xk+1∥2] and the
last inequality applies ∥ẑk − xk−τk∥2 ≤ 2∥ẑk − xk+1∥2 + 2∥xk+1 − xk−τk∥2.

By definition of ẑk, for ρ > λ+ κ, we have (ρ− λ− κ)-strong convexity of ψ(x) + ρ
2∥ · −x∥

2 and

f(ẑk) + ω(ẑk) +
ρ

2
∥ẑk − zk∥2

≤ f(xk+1) + ω(xk+1) +
ρ

2
∥xk+1 − zk∥2 − ρ− λ− κ

2
∥xk+1 − ẑk∥2. (55)

Multiplying (55) by θ and adding it to (54), we have
γ

2
∥xk+1 − yk∥2

≤ (1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θf(xk+1)− fxk−τk (x

k+1, ξk−τk)− (1− θ)ω(xk+1)

+
ρθ

2
∥xk+1 − zk∥2 − θ(ρ− 3λ− 2κβ − κ)

2
∥xk+1 − ẑk∥2 + λθ∥xk+1 − xk−τk∥2

+
γθ2 − ρθ

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2 + θκβ∥xk+1 − xk∥2. (56)

29

Then we bound the first line of the right hand side in (56) by

(1− θ)
[
fxk−τk (x

k, ξk−τk) + ω(xk)
]
+ θf(xk+1)− fxk−τk (x

k+1, ξk−τk)− (1− θ)ω(xk+1)

≤ (1− θ)[f(xk, ξk−τk) + ω(xk)− f(xk+1)− ω(xk+1)] + f(xk+1)− Eξ
[
fxk−τk (x

k+1, ξ)
]

+ Eξ
[
fxk−τk (x

k+1, ξ)
]
− fxk−τk (x

k+1, ξk−τk) +
(1− θ)λ

2
∥xk − xk−τk∥2

≤ (1− θ)[f(xk, ξk−τk) + ω(xk)− f(xk+1)− ω(xk+1)] +
2L2

f

γ − κ

+
λ

2
[∥xk+1 − xk−τk∥2 + (1− θ)∥xk − xk−τk∥2], (57)

where the inequalities invoke two-sided approximation
∣∣fxk−τk (x

k, ξk−τk)− f(xk, ξk−τk)
∣∣ ≤

λ
2 ∥x

k − xk−τk∥2 and bound Eξ
[
fxk−τk (x

k+1, ξ)
]
− fxk−τk (x

k+1, ξk−τk) with Lemma 8. Now
plugging (57) back into (56) gives

γ

2
∥xk+1 − yk∥2

≤ (1− θ)[f(xk, ξk−τk) + ω(xk)− f(xk+1)− ω(xk+1)] +
2L2

f

γ − κ

+
ρθ

2
∥xk+1 − zk∥2 − θ(ρ− 3λ− 2κβ − κ)

2
∥xk+1 − ẑk∥2

+
γθ2 − ρθ

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
∥ẑk − zk+1∥2 + θκβ∥xk+1 − xk∥2.

+
(
λθ +

λ

2

)
∥xk+1 − xk−τk∥2 + λ(1− θ)

2
∥xk − xk−τk∥2. (58)

Isolating the delayed error by εk =
(
λθ + λ

2

)
∥xk+1 − xk−τk∥2 + λ(1−θ)

2 ∥xk − xk−τk∥2 and we
have, by algebraic manipulations of the momentum terms, that

∥xk+1 − yk∥2 = ∥xk+1 − xk + xk − yk∥2

≥ ∥xk+1 − xk∥2 + β2∥xk − xk−1∥2 − β∥xk+1 − xk∥2 − β∥xk − xk−1∥2

= θ∥xk+1 − xk∥2 − βθ∥xk − xk−1∥2 (59)

and that
ρθ

2
∥xk+1 − zk∥2 ≤ ρθ∥xk+1 − xk∥2 + ρβ2θ−1∥xk − xk−1∥2. (60)

Combining (59), (60) with (58) and taking expectation, we have

γθ

2
Ek[∥xk+1 − xk∥2]− γβθ

2
∥xk − xk−1∥2

≤ (1− θ){ψ(xk)− Ek[ψ(xk+1)]}+
2L2

f

γ − κ

+ (ρ+ κβ)θEk[∥xk+1 − xk∥2] + ρβ2θ−1∥xk − xk−1∥2 − θ(ρ− 3λ− 2κβ − κ)

2
Ek[∥xk+1 − ẑk∥2]

+
γθ2 − ρθ

2
∥ẑk − zk∥2 − (γ − κ)θ2

2
Ek[∥ẑk − zk+1∥2] + Ek[εk].

After re-arrangement, we arrive at

(γ − κ)θ2

2
Ek[∥ẑk − zk+1∥2]

≤ (1− θ){ψ(xk)− Ek[ψ(xk+1)]}+ γθ2 − ρθ

2
∥ẑk − zk∥2

+
(
ρβ2θ−1 +

γβθ

2

)
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]} − θ(ρ− 3λ− 2κβ − κ)

2
Ek[∥xk+1 − ẑk∥2]

+
2L2

f

γ − κ
− γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1

2
Ek[∥xk+1 − xk∥2] + Ek[εk]. (61)

30

Dividing both sides of (61) by (γ−κ)θ2
2 , we obtain that

Ek[∥ẑk − zk+1∥2]

≤ 2(1− θ)

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}+ γθ − ρ

(γ − κ)θ
∥ẑk − zk∥2

+
2ρβ2θ−1 + γβθ

(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]} − ρ− 3λ− 2κβ − κ

(γ − κ)θ
Ek[∥xk+1 − ẑk∥2]

+
4L2

f

(γ − κ)2θ2
− γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1

(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + 2Ek[εk]

(γ − κ)θ2

= ∥ẑk − zk∥2 − ρ− κθ

(γ − κ)θ
∥ẑk − zk∥2 + 2β

(γ − κ)θ
{ψ(xk)− Ek[ψ(xk+1)]}

+
2ρβ2θ−1 + γβθ

(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]} − ρ− 3λ− 2κβ − κ

(γ − κ)θ
Ek[∥xk+1 − ẑk∥2]

+
4L2

f

(γ − κ)2θ2
− γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1

(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + 2Ek[εk]

(γ − κ)θ2
. (62)

Next, we consider the Moreau envelope and

Ek[ψ1/ρ(z
k+1)]

= Ek
[
ψ(ẑk+1) +

ρ

2
∥ẑk+1 − zk+1∥2

]
≤ Ek

[
f(ẑk) + ω(ẑk) +

ρ

2
∥ẑk − zk+1∥2

]
≤ f(ẑk) + ω(ẑk) +

ρ

2
∥ẑk − zk∥2 + ρβ

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}

− ρ(ρ− κθ)

2(γ − κ)θ
∥ẑk − zk∥2 + ρ(2ρβ2θ−1 + γβθ)

2(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]}

+
2ρL2

f

(γ − κ)2θ2
− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2(γ − κ)θ2
Ek[[∥xk+1 − xk∥2] + ρEk[εk]

(γ − κ)θ2
(63)

= ψ1/ρ(z
k) +

ρβ

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}

− ρ(ρ− κθ)

2(γ − κ)θ
∥ẑk − zk∥2 + ρ(2ρβ2θ−1 + γβθ)

2(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]}

+
2ρL2

f

(γ − κ)2θ2
− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + ρEk[εk]

(γ − κ)θ2
, (64)

where (63) uses the relation from (62). Last we re-arrangement the terms in (64) to get

ρ(ρ− κθ)

2(γ − κ)θ
∥ẑk − zk∥2

≤ ψ1/ρ(z
k)− Ek[ψ1/ρ(z

k+1)] +
ρβ

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}

+
ρ(2ρβ2θ−1 + γβθ)

2(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]}

+
2ρL2

f

(γ − κ)2θ2
− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + ρEk[εk]

(γ − κ)θ2
.

Recalling that ∥∇ψ1/ρ(ẑ
k)∥2 = ρ2∥ẑk − zk∥2, we complete the proof.

Proof of Lemma 11

31

By Lemma 10 we have that

ρ− κθ

2ρ(γ − κ)θ
∥ẑk − zk∥2

≤ ψ1/ρ(z
k)− Ek[ψ1/ρ(z

k+1)] +
ρβ

(γ − κ)θ2
{ψ(xk)− Ek[ψ(xk+1)]}

+
ρ(2ρβ2θ−1 + γβθ)

2(γ − κ)θ2
{∥xk − xk−1∥2 − Ek[∥xk+1 − xk∥2]} (65)

+
2ρL2

f

(γ − κ)2θ2
− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2(γ − κ)θ2
Ek[∥xk+1 − xk∥2] + ρEk[εk]

(γ − κ)θ2
.

Summing up the inequality (65) from k = 1 to K, multiplying both sides by γ + κ > 0 and taking
expectation, we have

ρ− κθ

2ρθ
E[∥∇ψ1/ρ(z

k∗)∥2]

≤ γ − κ

K
{ψ1/ρ(z

1)− Ek[ψ1/ρ(z
K+1)]}+ ρβ

θ2K
{ψ(xk)− Ek[ψ(xk+1)]}

+
ρ(2ρβ2θ−1 + γβθ)

2θ2K
∥x1 − x0∥2 +

2ρL2
fK

(γ − κ)θ2
+

ρ

θ2K

K∑
k=1

E[εk]

− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2θ2K

K∑
k=1

E[∥xk+1 − xk∥2]

≤ (γ − κ+ ρβθ−2)D

K
+

2ρL2
f

(γ − κ)θ2
+

ρ

θ2K

K∑
k=1

E[εk]

− ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1)

2θ2K

K∑
k=1

E[∥xk+1 − xk∥2] (66)

where the last inequality uses x0 = x1 and D = max{ψ1/ρ(z
1)−ψ1/ρ(z

∗), ψ(x1)−ψ(x∗)}. Now
we divide both sides of the inequality by ρ−κθ

2ρθ to get

E[∥∇ψ1/ρ(z
k∗)∥2] ≤ 2ρθ

ρ− κθ

[
(γ − κ+ ρβθ−2)D

K
+

2ρL2
f

(γ − κ)θ2
+

ρ

θ2K

K∑
k=1

Ek[εk]

]
.

Last we bound
∑K
k=1 E[εk]. First, we have the following relations

K∑
k=1

∥xk+1 − xk−τk∥2 ≤ τ2
K∑
k=1

∥xk − xk−1∥2 ≤ τ2
K∑
k=1

∥xk+1 − xk∥2,

where the first inequality is by E1 and the second inequality uses the fact that x0 = x1. Similarly

K∑
k=1

∥xk+1 − xk−τk∥2 ≤
K∑
k=1

2[∥xk − xk−τk∥2 + ∥xk+1 − xk∥2]

≤ 2(τ2 + 1)

K∑
k=1

∥xk+1 − xk∥2,

where the first inequality uses ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 and the second inequality re-uses the
bound of the first term. Plugging the above bounds back into

∑K
k=1 E[εk], we successively deduce

32

that
K∑
k=1

E[εk] =
K∑
k=1

λ(1− θ)

2
∥xk − xk−τk∥2 +

K∑
k=1

(θ + 1/2)λE[∥xk+1 − xk−τk∥2]

≤ λ[(1− θ)(τ2 + 1) + (θ + 1/2)τ2]

K∑
k=1

E[∥xk+1 − xk∥2]

= λ(3τ2/2 + β)

K∑
k=1

E[∥xk+1 − xk∥2],

which implies

E[∥∇ψ1/ρ(z
k∗)∥2]

≤ 2ρθ

ρ− κθ

[
(γ − κ+ ρβθ−2)D

K
+

2ρL2
f

(γ − κ)θ2
+
ρλ(3τ2 + 2β)

2θ2K

K∑
k=1

E[∥xk+1 − xk∥2]

]
, (67)

and this completes the proof.

Proof of Theorem 8

By Lemma 11, it remains to bound the quantity
∑K
k=1 E[∥xk+1 − xk∥2]. To this end we consider

the relation in (66), where we have

ρ(γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1 − 3λτ2 − 2λβ)

2θ2K

K∑
k=1

E[∥xk+1 − xk∥2]

≤ (γ − κ+ ρβθ−2)D

K
+

2ρL2
f

(γ − κ)θ2
.

Since we choose β, γ such that γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1 − 3λτ2 − 2λβ > 0, then

ρλ(3τ2 + 2β)

2θ2K

K∑
k=1

E[∥xk+1 − xk∥2] ≤
λ(3τ2 + 2β)

{
(γ−κ+ρβθ−2)D

K +
2ρL2

f

(γ−κ)θ2

}
γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1 − 3λτ2 − 2λβ

.

Plugging the bound back, we have

E[∥∇ψ1/ρ(z
k∗)∥2]

≤ 2ρθ

ρ− κθ

[
(γ − κ+ ρβθ−2)D

K
+

2ρL2
f

(γ − κ)θ2
+

λ(3τ2 + 2β)
{

(γ−κ+ρβθ−2)D
K +

2ρL2
f

(γ−κ)θ2

}
γθ2 − 2θ(ρ+ κβ)− 2ρβ2θ−1 − 3λτ2 − 2λβ

]
.

This completes our proof.

G Kernel and subproblems

In this section, we delve into the practical considerations related to Bregman proximal methods.
In particular, we discuss how to construct suitable divergence kernels for DSPL so that we can ac-
commodate non-Lipschitzness of the objective function. We also propose efficient subroutines for
solving Bregman proximal subproblems, which are applicable to a wide range of loss functions
typically encountered in machine learning tasks.

G.1 Choosing the divergence kernel

The selection of the kernel function is a critical aspect of the Bregman proximal method. The choice
of kernel has been widely discussed in the literature [3, 6], and we incorporate these findings to
construct suitable kernels for the DSPL method. Given the assumptions we have made throughout
the paper, it suffices to consider kernels d(x) = Ppn(∥x∥) :=

∑n
k=0 pk∥x∥k, which are degree-n

polynomials in ∥x∥. We recall the following lemma and refer the readers to [3] for its proof.

33

Lemma 12. Given f(x) such that f(x)−f(y)
∥x−y∥ ≤ Ppn(∥x∥) + Ppn(∥y∥|) =

∑n
k=0 pk(∥x∥k +

∥y∥2), p ≥ 0,∀x ∈ domh, then f satisfies 1-relative Lipschitzian property with kernel d(x) =∑n
k=0

3k+7
k+2 pk∥x∥

k+2.

The above lemma implies that once we establish a polynomial upper bound on the Lipschitzness of
fz(x, ξ) + ω(x), a kernel d is immediately available.

We note that the above kernel covers most of the applications [2] of the prox-linear method, in-
cluding phase retrieval, blind deconvolution, matrix completion, covariance estimation, robust PCA,
and so on. In many machine learning applications, c has Lipschitz continuous gradient, meaning
that ∇c is bounded by first-order growth. For example, in the phase retrieval problem, we have
ω = 0, h(x) = |x|, c(x, ξ) = ⟨a, x⟩2 − b. Hence, we get

∥∇c(z, ξ)∥ = 2|⟨a, z⟩| · ∥a∥ ≤ 2∥a∥2∥z∥ and
fz(x, ξ)− fz(y, ξ)

∥x− y∥
≤ 2∥a∥2∥z∥.

Now assume that z = x, then for any p0 ≥ 0 and p1 = 2α2, α = supa∼Ξ ∥a∥ we know that
2∥a∥2∥x∥ ≤ p0+p1∥x∥. Hence, we can take d(x) = 7

2∥x∥
2+ 10α2

3 ∥x∥3 as our kernel. Recall that
in DSPL z = xk−τk , x = xk, as long as there exist someM,N such that ∥xj∥ ≤M∥xk∥+N, k ≥ j
for all k, our assumptions are satisfied.

Now that we have specified ways to construct kernels for DSPL, we discuss how to solve the Breg-
man proximal subproblems in the next section. The subproblems’ solution determines the practical
applicability of our methods, and we show that these subproblems can be efficiently solved for a
wide range of problems.

G.2 Bregman proximal subproblem

In this section, we discuss the solution of the proximal subproblems for DSPL when ω = 0, where
the Bregman proximal subproblem can then be expressed as

min
x

h(⟨a, x⟩+ b) + Vd(x, y). (68)

Consider a piece-wise linear h(x) = max{α1x + β1, α2x + β2}. This formulation characterizes
common nonsmooth loss functions including ℓ1 loss |x| = max{x,−x} and hinge loss max{0, x}.
Substituting h in and removing terms irrelevant to x, we arrive at the following DSPL subproblem.

min
x

max{⟨a1, x⟩+ b1, ⟨a2, x⟩+ b2}+ d(x) (69)

The next proposition provides a solution to the above subproblem.
Proposition 3 (Solving the proximal subproblem). The proximal subproblem can be solved by eval-
uating solutions to the following three problems

min
x

⟨a1, x⟩+ d(x),

min
x

⟨a2, x⟩+ d(x),

and

min
x

⟨a1, x⟩+ d(x)

subject to ⟨a1 − a2, x⟩+ b1 − b2 = 0,

where the solution to the third problem satisfies x = u + αv, where u = − (a1−a2)(b1−b2)
∥a1−a2∥2 , v =

(∥a1∥2−∥a2∥2)
2∥a1−a2∥2 (a1 − a2)− a1+a2

2 and α is a positive root of the following equation

n∑
k=0

pkα∥u+ αv∥k − 1 = 0.

Proof. Recall that we are solving the following convex optimization problem

min
x

max{⟨a1, x⟩+ b1, ⟨a2, x⟩+ b2}+ d(x),

34

where d is strongly convex and thus the problem admits a unique minimizer x∗. Then we do case
analysis.

Case 1. ⟨a1, x∗⟩+ b1 > ⟨a2, x∗⟩+ b2. In this case solving minx⟨a1, x⟩+ d(x) produces x∗.

Case 2. ⟨a1, x∗⟩+ b1 < ⟨a2, x∗⟩+ b2. In this case solving minx⟨a2, x⟩+ d(x) produces x∗.

The above two cases degenerate into the subproblems from stochastic mirror descent and its solution
has been discussed in [6]. The last case is a bit more tricky.

Case 3. ⟨a1, x∗⟩+ b1 = ⟨a2, x∗⟩+ b2.

In this case, the proximal subproblem becomes an equality constrained problem.

min
x

⟨a1, x⟩+ d(x)

subject to ⟨a1 − a2, x⟩+ b1 − b2 = 0

Letting λ be the multiplier of the equality constraint and appealing to the optimality condition, we
have

a1 +∇d(x) + λ(a1 − a2) = 0 (70)
a2 +∇d(x) + λ(a1 − a2) = 0 (71)

⟨a1 − a2, x⟩+ b1 − b2 = 0. (72)

Summing (70) (71) and dividing both sides by 2, we have
a1+a2

2 +∇d(x) + λ(a1 − a2) = 0. (73)

Multiplying both sides of (73) by a1 − a2, we arrive at

∥a1∥2−∥a2∥2

2 + ⟨a1 − a2,∇d(x)⟩+ λ∥a1 − a2∥2 = 0. (74)

Since d(x) is a polynomial in ∥x∥, ∇d(x) = ζx, ζ > 0 and using (72), we have

λ = b1−b2
∥a1−a2∥2 ζ − ∥a1∥2−∥a2∥2

2∥a1−a2∥2 . (75)

Then substituting λ into (74),

0 = a1+a2
2 +∇d(x) + λ(a1 − a2)

= a1+a2
2 + ζx+ ζ (a1−a2)(b1−b2)

∥a1−a2∥2 − ∥a1∥2−∥a2∥2

2∥a1−a2∥2 (a1 − a2)

= ζ
[
x+ (a1−a2)(b1−b2)

∥a1−a2∥2

]
− ∥a1∥2−∥a2∥2

2∥a1−a2∥2 (a1 − a2) +
a1+a2

2

we get

x = ζ−1
[
(∥a1∥2−∥a2∥2)

2∥a1−a2∥2 (a1 − a2)− a1+a2
2

]
− (a1−a2)(b1−b2)

∥a1−a2∥2

for some ζ > 0. Without loss of generality, we express x = u + αv for u = − (a1−a2)(b1−b2)
∥a1−a2∥2 and

v = (∥a1∥2−∥a2∥2)
2∥a1−a2∥2 (a1 − a2)− a1+a2

2 and α > 0. Substituting back gives ζ =
∑n
k=0 pk∥x∥k and

∥ζ(x− u)− v∥ = ∥αζv − v∥ = |αζ − 1| · ∥v∥ = 0.

Therefore, we only need to verify the positive roots of
∑n
k=0 pkα∥u+αv∥k − 1 = 0, which can be

done efficiently if n is not large. This completes the proof.

G.3 Euclidean subproblem with nonsmooth regularizer

In this section, we discuss the solution of the proximal subproblems for DSPL when d(x) = 1
2∥x∥

2

and ω takes on one of two forms: 1). Indicator function of ball δ{∥x∥≤R}. 2). ℓ1 regularizer ∥x∥1.
We still assume h(x) = max{α1x+β1, α2x+β2}, which covers all the popular applications of SPL
from [2, 4]. Following the same argument as in the previous section, each DSPL iteration is reduced
to

min
x

max{⟨a1, x⟩+ b1, ⟨a2, x⟩+ b2}+ ω(x) + 1
2∥x− y∥2

35

and after doing case analysis on ⟨a1, x∗⟩ + b1 and ⟨a2, x∗⟩ + b2 as in Proposition 3, it suffices to
solve

min
x

ω(x) + 1
2∥x− y∥2

subject to ⟨a, x⟩ − b = 0

efficiently.

Case 1. ω(x) = δ{∥x∥≤R}. In this case, we need to solve

min
x

1
2∥x− y∥2

subject to ⟨a, x⟩ = b

∥x∥2 ≤ r = R2,

whose KKT condition is given by

⟨a, x⟩ = b

λ ≥ 0

λ(∥x∥2 − r) = 0

x− y + νa+ 2λx = 0

After simplification, we arrive at

x =
y

1 + 2λ
− ⟨a, y⟩a− (1 + 2λ)ba

(1 + 2λ)∥a∥2
.

Then either λ = 0 or the solution can be obtained using bisection.

Case 2. ω(x) = ∥x∥1. In this case, we need to solve

min
x

∥x∥1 + 1
2∥x− y∥2

subject to ⟨a, x⟩ − b = 0

Given the Lagrangian multiplier ν associated with the equality constraint, we have that x(ν) =
S(y − νa), which is given by the soft-thresholding operator. The residual of the equality constraint
is given by:

f(ν) = ⟨a, x⟩ − b = ⟨a, x(ν)⟩ − b.

This function is univariate in ν and is semi-smooth. Therefore, semi-smooth Newton method can
efficiently find its root. This makes the computation tractable.

H Additional experiments

In this section, we present additional experiments incorporating momentum. Our experiments focus
on both robust phase retrieval and blind deconvolution problems.

H.1 Robust phase retrieval

We refer readers to Section 6 for the detailed formulation of phase retrieval. Most of the experiment
settings in this section are consistent with Section 6.

H.1.1 Experiment setup

1) Initial point and radius. For the synthetic data, we generate x′ ∼ N (0, In) and start from
x0 = x1 = x′

∥x′∥ and for zipcode data, we generate x′ ∼ N (x̂, In) and take x0 = x1 = x′.
M = 1000∥x0∥.

36

2) Stepsize. We tune the stepsize parameter setting γ =
√
K/α, where α ∈ {0.1, 0.5, 1.0} in the

asynchronous environment, α ∈ [10−2, 101] for synthetic data in the simulated environment and
α ∈ [100, 101] for the zipcode dataset.

3) Momentum parameter. In the asynchronous environment, we allow β ∈ {0, 0.1, 0.3, 0.6}
and in the simulated environment, we test β ∈ {0.6, 0.9} for the synthetic and zipcode data
respectively.

4) Others. Other settings are consistent with Section 6.

H.1.2 Asynchronous environment

0 10 20 30 40

10-6

10-4

10-2

100

DSEGD = 0
DSEPL = 0
DSEGD = 0.1
DSEPL = 0.1
DSEGD = 0.3
DSEPL = 0.3
DSEGD = 0.6
DSEPL = 0.6

0 10 20 30 40

10-6

10-4

10-2

100

DSEGD 1 workers
DSEPL 1 workers
DSEGD 2 workers
DSEPL 2 workers
DSEGD 4 workers
DSEPL 4 workers
DSEGD 8 workers
DSEPL 8 workers
DSEGD 16 workers
DSEPL 16 workers

Figure 6: First: speedup in time and the number of workers. Second: progress of ∥xk − x̂∥ in the
first 40 epochs given 16 workers and α = 0.5. Third: progress of f(xk)−f(x̂) in the first 40 epochs
given β = 0.3 and different number of workers.

The first figure plots the effect of different momentum parameters in the distributed environment. It
can be seen that both DSEGD and DSEPL perform better with momentum. Moreover, the performance
of DSEPL dominate DSEGD as we observed in the previous experiments.

H.1.3 Simulated Environment

101 102 103
0

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

101 102 103
0

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

102 103
0

0.5

1

1.5

2

2.5

3

3.5
105

DSGD
DSEGD
DSPL
DSEPL

102 103
0

0.5

1

1.5

2

2.5

3

3.5
105

DSGD
DSEGD
DSPL
DSEPL

Figure 7: Left to right: (κ, pfail) = (10, 0.3), α = 5.0, Geometric and Poisson delays; zipcode
data of pfail = 0.2,α = 6.0, Geometric and Poisson delays. x-axis represents τmax and y-axis shows
average iteration number to reach the stopping criterion over 20 tests.

Figure 7 plots the impact of staleness on the number of iterations each algorithm takes to reach the
desired accuracy. It can be seen that with other parameters fixed, DSPL tends to be more robust
against delays than the pure subgradient-based methods, which is consistent with the theoretical
results. Moreover, we observe that when extrapolation is used, the algorithm converges faster at the
cost of less robustness as delay increases.

Our last experiment investigates the robustness of DSPL compared to DSGD and justifies the use of
extrapolation in presence of delay. Figure 8 plots the number of iterations for each algorithm to
converge with different datasets, extrapolation parameters, and delays. In spite of delays, DSPL and
DSEPL still admit a wider range of stepsize parameters ensuring convergence than DSGD. Also, when
the stepsize is not large, the use of extrapolation can effectively accelerate the convergence.

H.2 Blind deconvolution problem

In this section, we present the additional experiments on blind deconvolution problem to further
illustrate the efficiency of DSPL. The blind deconvolution problem, unlike robust phase retrieval,

37

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

100 101
0

0.5

1

1.5

2

2.5

3
105

DSGD
DSPL
DSEGD
DSEPL

100 101
0

0.5

1

1.5

2

2.5

3
105

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

100 101
0

0.5

1

1.5

2

2.5

3
105

DSGD
DSPL
DSEGD
DSEPL

100 101
0

0.5

1

1.5

2

2.5

3
105

DSGD
DSPL
DSEGD
DSEPL

Figure 8: First row(Geometric) left: (κ, pfail) = (1, 0.3), β = 0.6, τ ∈ {28, 47}, right: zipcode
pfail = 0.3, β = 0.9, τ ∈ {28, 600}. Second row(Poisson) left: (κ, pfail) = (10, 0.2), β = 0.6, τ ∈
{28, 47}. right: zipcode pfail = 0.3, β = 0.9, τ ∈ {28, 600}.

aims to recover two signals from their convolution and its mathematical formulation is given by

min
x,y∈Rn

1

m

m∑
i=1

|⟨ui, x⟩⟨vi, y⟩ − bi|+ I{∥x∥, ∥y∥ ≤ ∆},

where {bi} are the measurements, {(ui, vi)} are the measuring data and x, y are the optimization
variables corresponding to the signals. Similar to phase retrieval, we first present the detailed setup
and then inspect the performance of DSPL in both real and simulated asynchronous environments.

H.2.1 Experiment setup

Data generation. We use synthetic data for blind deconvolution problems.

Synthetic data. We take m = 300, n = 100 in the experiments of simulated delay and m =
1500, n = 150 in the asynchronous environment. The data is generated similar to phase retrieval,
where, given some conditioning parameter κ ≥ 1, we compute U = Q1D2, V = Q2D2, Q ∈
Rm×n, qij ∼ N (0, 1) and D = diag(d), d ∈ Rn, di ∈ [1/κ, 1],∀i. Then two true signals are
generated like x̂ in phase retrieval and we random corruption is applied.

1) Dataset. In the asynchronous environment, we set κ = 1, pfail = 0 and in the simulated environ-
ment, we set κ = 1 and pfail ∈ {0.2, 0.3}.

2) Initial point and radius. We generate x′, y′ ∼ N (0, In) and start from x0 = x1 = x′

∥x′∥ , y
0 =

y1 = y′

∥y′∥ . ∆ = 1000∥(x0, y0)∥.

3) Stepsize. We tune the stepsize parameter setting γ =
√
K/α, where α ∈ {0.1, 0.5, 1.0} in the

asynchronous environment, α ∈ [10−2, 101] for synthetic data in the simulated environment.

The rest of the experiment setup are consistent with in phase retrieval.

H.2.2 Asynchronous environment

The experiments for blind deconvolution again justifies the effect of DSPL in its convergence behav-
ior and robustness to the stochastic delays. By retaining the smooth structure of the inner composite
function, DSPL gives a more accurate approximation of the original objective function only at cost
of transmitting one more scaler (i.e., the inner objective value). Hence DSPL serves as a competitive
alternative to DSGD when the problem enjoys composite structure (2) in the distributed setting.

38

表格 1

worker SGD SPL worker SGD SPL

1 356.3469 342.7290 1 19.6 34.7

2 180.8643 176.2393 2 9.04 24.3

4 97.0473 93.2318 4 8.8 24

8 50.8297 49.7579 8 9.2 25.2

16 29.1966 33.4136 16 10.9 33.1

worker SGD SPL

1 1 1.0000

2 1.97024454245531 1.94467976211889

4 3.6718888624413 3.67609549531383

8 7.01060403661639 6.88793136366286

16 12.2050820986005 10.2571707328752

0

3.5

7

10.5

14

1 2

SGD
SPL

0

100

200

300

400

1 2 4 8 16

SGD
SPL

1

0 10 20 30 40

10-2

10-1

100

DSEGD = 0
DSEPL = 0
DSEGD = 0.1
DSEPL = 0.1
DSEGD = 0.3
DSEPL = 0.3
DSEGD = 0.6
DSEPL = 0.6

0 10 20 30 40

10-6

10-4

10-2

100

DSEGD 1 workers
DSEPL 1 workers
DSEGD 2 workers
DSEPL 2 workers
DSEGD 4 workers
DSEPL 4 workers
DSEGD 8 workers
DSEPL 8 workers
DSEGD 16 workers
DSEPL 16 workers

Figure 9: First: speedup in time and the number of workers. Second: progress of ∥(xk, yk)−(x̂, ŷ)∥
in the first 40 epochs given 16 workers and α = 0.5. Third: progress of f(xk, yk) − f(x̂, ŷ) in the
first 40 epochs given β = 0.1 and different number of workers.

101 102 103
0

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

102 103
0

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

101 102 103
0

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

101 102 103

2

4

6

8

10

12
104

DSGD
DSEGD
DSPL
DSEPL

Figure 10: From left to right: (κ, pfail) = (1, 0.2), α = 4.6, Geometric and Poisson delays;
(κ, pfail) = (1, 0.3),α = 2.1, Geometric and Poisson delays. The x-axis represents delay τ and
the y-axis gives the number of iterations to reach the stopping criterion.

H.2.3 Simulated environment

In the simulated experiments for blind deconvolution, we can see similar robustness of DSPL against
delay and stepsize selection, which confirms our previous observations.

H.3 Proximal sub-problems

This subsection shows how the sub-problems from DSPL and DSPL are solved for completeness.
The results are a direct adaptation from [1] and interested readers can check [1] for the detailed
derivations.

Phase retrieval problem In phase retrieval problem, we denote x to be the point where the
stochastic model function is constructed and y to be the center of the proximal term. Then the
DSPL proximal subproblem is given by

min
x

∣∣⟨a, z⟩2 + 2⟨a, z⟩⟨a, x− z⟩ − b
∣∣+ γ

2
∥x− y∥2

and it admits closed-form solution when away from the boundary

x+ = y + Proj[−1,1](− δ
∥ζ∥2)ζ,

where δ = γ−1(⟨a, z⟩2 + 2⟨a, z⟩⟨a, x − z⟩ − b) and ζ = 2γ−1⟨a, z⟩a and Proj[−1,1](·) denotes
projection onto the box [−1, 1].

Blind deconvolution problem In the blind deconvolution problem, we use z = (zx, zy) to de-
note the point of model construction and w = (wx, wy) to denote the proximal center. Then the
subproblem is given by

min
∥x∥,∥y∥≤∆

|⟨u, zx⟩⟨v, zy⟩+⟨v, zy⟩⟨u, x−zx⟩+⟨u, zx⟩⟨v, y−zy⟩−b|+
γ

2
[∥x−wx∥2+∥y−wy∥2].

First we assume that the constraints are inactive, then the solution is available in closed form

w+ = w + Proj[−1,1](− δ
∥ζ∥2)ζ,

39

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

10-2 10-1 100 101
0

2

4

6

8

10

12
104

DSGD
DSPL
DSEGD
DSEPL

Figure 11: From left to right: (κ, pfail) = (1, 0.2), Geometric and Poisson delays with τ = 10;
(κ, pfail) = (1, 0.3), Geometric and Poisson delays with τ = 216.

where

δ = γ−1 [⟨u, zx⟩⟨v, zy⟩+ ⟨v, zy⟩⟨u,wx − zx⟩+ ⟨u, zx⟩⟨v, wy − zy⟩ − b]

ζ = γ−1(⟨v, zy⟩u, ⟨u, zx⟩v).

H.4 Separate figures of Section 6

0 10 20 30 40
Number of epochs

10-1

100

D
is

ta
n

ce
 t

o
 o

p
ti

m
al

DSGD 1 workers
DSGD 2 workers
DSGD 4 workers
DSGD 8 workers
DSGD 16 workers

0 10 20 30 40
Number of epochs

10-6

10-4

10-2

100

D
is

ta
n

ce
 t

o
 o

p
ti

m
al

DSPL 1 workers
DSPL 2 workers
DSPL 4 workers
DSPL 8 workers
DSPL 16 workers

0 10 20 30 40
Number of epochs

10-1

100

F
u

n
ct

io
n

 v
al

u
e

g
ap

DSGD 1 workers
DSGD 2 workers
DSGD 4 workers
DSGD 8 workers
DSGD 16 workers

0 10 20 30 40
Number of epochs

10-6

10-4

10-2

100

F
u

n
ct

io
n

 v
al

u
e

g
ap

DSPL 1 workers
DSPL 2 workers
DSPL 4 workers
DSPL 8 workers
DSPL 16 workers

Figure 12: Figure 2 after splitting DSGD and DSPL. Two plots on the left: ∥xk − x̂∥ in the first 40
epochs given α = 0.1; two on the right: f(xk)− f(x̂) in the first 40 epochs given α = 0.5.

References in the appendix
[1] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly

convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[2] Damek Davis and Dmitriy Drusvyatskiy. Graphical convergence of subgradients in nonconvex
optimization and learning. Mathematics of Operations Research, 47(1):209–231, 2022.

[3] Damek Davis, Dmitriy Drusvyatskiy, and Kellie J MacPhee. Stochastic model-based mini-
mization under high-order growth. arXiv preprint arXiv:1807.00255, 2018.

[4] Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for
nonsmooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019.

[5] Qi Deng and Wenzhi Gao. Minibatch and momentum model-based methods for stochastic
weakly convex optimization. Advances in Neural Information Processing Systems, 34, 2021.

[6] Haihao Lu. "relative continuity" for non-lipschitz nonsmooth convex optimization using
stochastic (or deterministic) mirror descent. INFORMS Journal on Optimization, 1(4):288–
303, 2019.

[7] R Tyrrell Rockafellar. Convex analysis princeton university press. Princeton, NJ, 1970.

[8] Siqi Zhang and Niao He. On the convergence rate of stochastic mirror descent for nonsmooth
nonconvex optimization. arXiv preprint arXiv:1806.04781, 2018.

40

	Introduction
	Preliminaries
	Assumptions

	Delayed proximal subgradient method
	Delayed stochastic prox-linear method
	Weakly convex optimization robust to arbitrary delays
	Experiments
	Experiment setup
	Asynchronous environment
	Simulated environment
	Adversarial delay

	Conclusions
	Acknowledgement
	
	Appendix

	 Appendix
	More on the related works
	Bregman context and auxiliary results
	Context setup
	Auxiliary lemmas

	Convergence Analysis of DSGD
	Proof of Lemma 1
	Proof of Theorem 1

	Convergence analysis of DSPL
	Preliminaries and analysis of Bregman DSPL
	Proof of Lemma 2 and Theorem 2
	Proof of Theorem 3

	Delay-independent analysis
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 4
	Proof of Theorem 5

	DSPL with momentum
	Preliminaries of DSEPL
	Convergence analysis of DSEPL
	Auxiliary results

	Kernel and subproblems
	Choosing the divergence kernel
	Bregman proximal subproblem
	Euclidean subproblem with nonsmooth regularizer

	Additional experiments
	Robust phase retrieval
	Experiment setup
	Asynchronous environment
	Simulated Environment

	Blind deconvolution problem
	Experiment setup
	Asynchronous environment
	Simulated environment

	Proximal sub-problems
	Separate figures of Section 6

