
A Potential Negative Societal Impacts

We have not trained our models with sensitive or private data, and we emphasize that our model’s direct
applicability to real-world decision-making concerning humans is currently limited. Nevertheless,
we must remain vigilant about potential unintended uses that could have harmful implications,
particularly in contexts like military or law enforcement applications or other scenarios that are
difficult to anticipate. While we acknowledge that there may not be immediate negative societal
impacts associated with our work on complete search and HIPS-ε, it is also essential to consider the
potential long-term consequences. For instance, when applying HIPS-ε to data containing human
data or collected with humans, the issues of fairness, privacy, and sensitivity must be taken into
account.

B Formal Problem Definition

We adopt the formal problem definition from Orseau and Lelis [27]. Assume that there is a single-
agent task k that is modeled as a fully observable Markov Decision Process M = (S,A, P,R, γ,S0),
where S is the state space, A the action space, P the transition dynamics, R the reward function, γ
the discount factor, and S0 the set of initial states. We also assume that the state space is discrete, the
action space is discrete and finite, and the transition function is deterministic. The reward is equal to
one when a terminal state has been reached and zero otherwise, that is, the tasks are goal-oriented.

We assume that there is a search algorithm S, and an associated task search loss Lk. The objective is
to find a solution to the task k by performing tree search using the algorithm S. Let N be the set of
all possible nodes in the tree, and let NG be the set of solution nodes. Our objective is to minimize
the search loss minn∗∈NG Lk(S, n

∗). We assume that every time the search expands a node, we incur
a node loss L(n), where L(n) : N → [0,∞] is a loss function defined for all nodes n ∈ N , and the
task search loss for node n, Lk(S, n) is equivalent to the sum of individual losses L(n′) for all nodes
n′ that have been expanded before expanding node n.

During learning, we adopt the imitation learning (offline) setting: the agent must learn to solve the
task and minimize the search loss without interacting with the environment. Instead, there is a dataset
D of trajectories τ = {s0, a0, s1, . . . , aT−1, sT }. The trajectories in the dataset are goal-reaching
but can be highly suboptimal, that is, the expert does not reach the terminal state in the fastest way
possible.

C Derivation of Complete Search Heuristic

Given a node n, its set of descendants desc∗(n) (all possible nodes following after n), and the set of
goal nodes NG , Orseau and Lelis [27] argue that the ideal heuristic factor is equal to

η(n) = min
n∗∈desc∗(n)∩NG

g(n∗)/π(n∗)

g(n)/π(n)
. (8)

Then, g(n∗) can be approximated as the sum of the path loss g(n) to the current node n, and the
predicted additional loss from the current node n to the closest descendant target node n∗. Assuming
a path from the root node n0 to n, (n0, n1, . . . , n), and that the algorithm incurs a loss of L(ni) for
expanding any node ni, the path loss g(n) of n is

∑
ni∈(n0,...,n)

L(ni), and the additional loss from
the node n to the target n∗ should be equal to

∑
ni∈(n′,...,n∗) L(ni), where n′ is the child node of n

on the path to n∗. Then, g(n∗) = g(n) +
∑

ni∈(n′,...,n∗) L(ni).

We know the value of g(n) but we do not know the path (n, n′, . . . , n∗) before executing the search,
so we need to approximate

∑
ni∈(n′,...,n∗) L(ni) using the learned heuristic h(n) trained to predict

the number of low-level steps from n to n∗ [27]. However, L(ni) may not directly depend on the
number of low-level steps between ni and its parent. In particular, we have defined that for HIPS-ε,
∀n′ ∈ N : L(n′) = 1, where N is the complete search space. Therefore, we would need to know the
predicted length of the path (n, . . . , n∗) in terms of the number of nodes, not low-level actions, which
is what h(n) predicts. To circumvent this, we assume that the average number of low-level actions
between nodes is approximately constant, and we propose scaling the heuristic h(n) by dividing it by
the average number of low-level actions per node on the path (n0, . . . , n). This results in the scaled
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heuristic ĥ(n) = h(n)/ l(n)
g(n) =

h(n)g(n)
l(n) , where l(n) is the number of low-level actions on the path

from n0 to n. Hence, the approximation of g(n∗) becomes

g(n∗) = g(n) + ĥ(n) = g(n) +
h(n)g(n)

l(n)
= g(n)

(
1 +

h(n)

l(n)

)
. (9)

Note that this scaled heuristic and the corresponding approximation for g(n∗) are valid for losses
L(n) other than the constant one as long as g(n) and l(n) are positively correlated.

Orseau and Lelis [27] proposed to approximate the probability π(n∗) as π(n∗) =
[π(n)1/g(n)]g(n)+h(n). This can be interpreted as first taking the average conditional probability
p = [π(n)1/g(n)] along the path from the root to n, and then scaling it to the full length g(n) + h(n)
as pg(n)+h(n). In our case, h(n) estimates the distance to the terminal node in terms of low-level
actions. Therefore, we use our scaled heuristic ĥ(n) to get the estimate in terms of search nodes
instead. This leads to a new approximation for π(n∗):

π(n∗) = [π(n)1/g(n)]g(n)+ĥ(n) (10)

= [π(n)1/g(n)]g(n)+
h(n)g(n)

l(n) (11)

= π(n)1+
h(n)
l(n) (12)

Then, we insert the approximations for g(n∗) and π(n∗) into (8), with h(n) predicting the distance
to the closest terminal node and thus allowing us to drop the min, similarly as Orseau and Lelis [27].

η(n) = min
n∗∈desc∗(n)∩NG

g(n∗)/π(n∗)

g(n)/π(n)
(13)

= min
n∗∈desc∗(n)∩NG

g(n∗)

g(n)
· π(n)

π(n∗)
(14)

=

(
1 +

h(n)

l(n)

)
· π(n)

π(n)1+
h(n)
l(n)

(15)

=
1 + h(n)/l(n)

πh(n)/l(n)
, (16)

which we denote by η̂ĥ. Finally, we insert (16) into φ(n) = η(n) g(n)π(n) [27] yielding

φ(n) =
g(n) · (1 + h(n)/l(n))

π(n)1+h(n)/l(n)
, (17)

which we denote by φ̂ĥ(n) and use as the evaluation function of HIPS-ε.

D Experiment Details

The code for HIPS-ε can be found on GitHub2. We implemented the BC policy πBC(a|sj−1) by
adding a new head to the conditional VQVAE prior p(e|s), which acts as the high-level policy πSG
and that has been implemented as a ResNet-based CNN. We used the hyperparameters and networks
from [18] for the other components (also shown in Tables 5 and 6). The new hyperparameter of
HIPS-ε is ε. For all four environments, we evaluated the values 10−1, 10−3, 10−5, and ε → 0, and
chose the best-performing one to be included in the results. For Sokoban and TSP that is ε → 0,
for Box-World it is ε = 10−3, and for Sliding Tile Puzzle ε = 10−5 unless specified otherwise (see
also Table 9). The results for the baselines AdaSubS, kSubS, BC, CQL, DT, and HIPS with learned
models were copied from [18].

We used the Sokoban implementation in Gym-Sokoban (MIT License) [37] and the Sliding Tile
Puzzle implementation from Orseau and Lelis [27] (Apache License 2.0). We ran our experiments
using the demonstration dataset from [18]. The dataset contains 10340 trajectories in Sokoban, 5100
in Sliding Tile Puzzle, and 22,100 in Bow-World. The number of trajectories in TSP is unlimited,

2https://github.com/kallekku/HIPS
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but they are of low quality. The datasets also contain a validation set, which we use to evaluate early
stopping.

The total number of GPU hours used on this work was approximately 7,500. Approximately 15,000
hours of GPU time in total were used for exploratory experiments during the project. We used an
HPC cluster with AMD MI250X GPUs for running the experiments in this paper. Each job was run
using a single GPU. We used 6 CPU workers (AMD Trento) per GPU.

Table 5: General hyperparameters of our method.
Parameter Value

Learning rate for dynamics 2 · 10−4

Learning rate for π, d, V 1 · 10−3

Learning rate for VQVAE 2 · 10−4

Discount rate for REINFORCE 0.99

Table 6: Environment-specific hyperparameters of our method.
Parameter Explanation Sokoban STP Box-World TSP

α Subgoal penalty 0.1 0.1 0.1 0.05
β Beta for VQVAE 0.1 0.1 0.1 0
D Codebook dimensionality 128 128 128 64
H Subgoal horizon 10 10 10 50
K VQVAE codebook size 64 64 64 32
(N,D) DRC size – – (3, 3) –

E Attaining Completeness with Learned Dynamic Models

In the main text, we assumed that we either have access to the environment dynamics and the number
of environment steps is not a cost to be minimized or that we have no access to the environment
and use a learned model. In the latter case, completeness cannot be guaranteed. However, we can
assume a setting where we have access to the environment dynamics, but each step is costly. Hence,
the objective is to minimize the number of environment interactions while retaining completeness.
To achieve this, we learn a dynamics model and perform a search with it. If a solution is found,
we validate it with the environment dynamics. Furthermore, we simulate the consequences of
the low-level actions with the known environment dynamics, which allows us to guarantee search
completeness and minimize the number of environment steps and search node expansions required to
find the solution. The results for this modification can be found in Appendix K.
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F Results for STP with GBFS and TSP with A*

In the main text, we evaluated HIPS-ε with PHS* as the underlying search algorithm on all tasks
and compared those numbers to the results of HIPS with PHS* as the search algorithm. However,
HIPS originally used Greedy Best-First Search (GBFS) in STP and A* in TSP [18]. We evaluated
HIPS-ε with these search algorithms on the environments. We tried two strategies: using low-level
actions and subgoals equally and only using low-level actions when the high-level search was about
to fail. The latter outperformed the former strategy. In TSP, high-level actions alone are sufficient for
solving the task, and in STP, the greedy approach with equal use of the low-level actions suffers from
the noisiness of the value function. The results are given in Tables 7 and 8. Using high-level actions
improves the signal-to-noise ratio [4], which was the key to good performance.

Table 7: The success rates (%) after performing N node expansions on Sliding Tile Puzzle with
GBFS as the underlying search algorithm for each method. The uncertainty is the standard error
of the mean. As we cannot control the usage of the low-level actions with ε, we expand low-level
actions only when necessary (ϵ → 0). HIPS corresponds to HIPS-env in [18].

Sliding Tile Puzzle (GBFS)

N 50 100 200 ∞
HIPS 78.6 ± 2.6 90.2 ± 1.8 91.4 ± 1.6 94.5 ± 1.0
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS 0.7 ± 0.2 79.9 ± 3.1 89.8 ± 1.5 93.3 ± 0.8

HIPS-ε 83.6 ± 2.1 94.6 ± 1.3 95.8 ± 1.2 100.0 ± 0.0

Table 8: The success rates (%) after performing N node expansions for HIPS and HIPS-ε on TSP
with A* as the underlying search algorithm. The uncertainty is the standard error of the mean. As we
cannot control the usage of the low-level actions with ε, we expand the low-level actions only when
necessary (ϵ → 0). HIPS corresponds to HIPS-env in [18].

Travelling Salesman Problem (A*)

N 20 50 100 ∞
HIPS 54.3 ± 13.7 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0
HIPS-ε 52.4 ± 13.3 99.8 ± 0.2 100.0 ± 0.0 100.0 ± 0.0
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G Full Results with Confidence Intervals

Table 9: The mean success rates (%) after performing N node expansions for different subgoal
search algorithms with access to environment dynamics and the standard error of the mean as the
uncertainty metric. For HIPS-ε, we use the value of ε that yields in the best performance: ε → 0
for Sokoban, ε = 10−5 for Sliding Tile Puzzle, ε = 10−3 for Box-World, and ε → 0 for Travelling
Salesman Problem. HIPS corresponds to HIPS-env in [18] and uses PHS* as the search algorithm in
all environments.

Sokoban

N 50 100 200 ∞
PHS* (low-level search) 0.2 ± 0.1 2.4 ± 0.4 16.2 ± 1.3 100 ± 0.0
HIPS (high-level search) 82.0 ± 0.7 87.8 ± 0.5 91.6 ± 0.4 97.9 ± 0.4
AdaSubS (high-level search) 76.4 ± 0.5 82.2 ± 0.5 85.7 ± 0.6 91.3 ± 0.5
kSubS (high-level search) 69.1 ± 2.2 73.1 ± 2.2 76.3 ± 1.9 90.5 ± 1.0

HIPS-ε (complete search) 84.3 ± 1.1 89.5 ± 1.1 93.1 ± 0.6 100 ± 0.0

Sliding Tile Puzzle

N 50 100 200 ∞
PHS* (low-level search) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100 ± 0.0
HIPS (high-level search) 8.7 ± 1.2 56.8 ± 4.5 86.3 ± 2.1 95.0 ± 0.8
AdaSubS (high-level search) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS (high-level search) 0.7 ± 0.2 79.9 ± 3.1 89.8 ± 1.5 93.3 ± 0.8

HIPS-ε (complete search) 18.5 ± 1.9 69.5 ± 3.9 93.8 ± 1.7 100 ± 0.0

Box-World

N 5 10 30 ∞
PHS* (low-level search) 0.0 ± 0.0 0.1 ± 0.1 2.2 ± 0.5 100 ± 0.0
HIPS (high-level search) 86.3 ± 0.7 97.9 ± 0.3 99.9 ± 0.0 99.9 ± 0.0

HIPS-ε (complete search) 89.7 ± 0.6 98.9 ± 0.2 100 ± 0.0 100 ± 0.0

Travelling Salesman Problem

N 20 50 100 ∞
PHS* (low-level search) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 100 ± 0.0
HIPS (high-level search) 19.6 ± 6.0 88.1 ± 4.1 97.7 ± 1.1 100 ± 0.0
AdaSubS (high-level search) 0.0 ± 0.0 0.0 ± 0.0 0.6 ± 0.3 21.2 ± 0.9
kSubS (high-level search) 0.0 ± 0.0 1.5 ± 0.6 40.4 ± 9.1 87.9 ± 3.1

HIPS-ε (complete search) 17.9 ± 5.8 87.4 ± 4.1 97.9 ± 1.2 100 ± 0.0
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Table 10: The success rates (%) of different algorithms without access to environment dynamics
in Sokoban, Sliding Tile Puzzle, and TSP with the standard errors of the mean as the uncertainty
metric. HIPS-ε outperforms the baselines and can solve 100% of the puzzles when the environment
dynamics are easy to learn, but when they are more difficult, occasional failures cannot be excluded.

HIPS HIPS-ε BC CQL DT

Sokoban 97.5 ± 0.6 100.0 ± 0.0 18.7 ± 0.7 3.3 ± 0.4 36.7 ± 1.2
Sliding Tile Puzzle 94.7 ± 1.0 100.0 ± 0.0 82.5 ± 2.2 11.7 ± 3.3 0.0 ± 0.0
Travelling Salesman 99.9 ± 0.1 100 ± 0.0 28.8 ± 8.5 33.6 ± 2.6 0.0 ± 0.0

Table 11: The success rates (%) after N node expansions in Sliding Tile Puzzle computed only on
problem instances solvable by HIPS. ⟨N⟩ is the mean number of expansions needed to find a solution.
The uncertainty metric is the standard error of the mean. We used ε = 10−5.

N 50 75 100 200 500 ⟨N⟩
HIPS 9.2 ± 1.3 38.2 ± 3.6 59.8 ± 4.7 90.8 ± 2.1 99.7 ± 0.2 108.9 ± 6.9
HIPS-ε 17.3 ± 1.6 48.4 ± 4.3 68.2 ± 4.0 93.5 ± 1.7 99.9 ± 0.1 95.6 ± 5.7

Figure 5: The percentage of puzzles remaining unsolved (y-axis) depending on the number of node
expansions (x-axis) for complete search with the best values of ε. The shaded area is two standard
errors (see also Table 9). The differences between HIPS-ε and HIPS are statistically significant except
for TSP, where ϵ → 0 and HIPS are equal since the low-level actions are never used in practice.
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Figure 6: The ratio of the number of unsolved puzzles to the number of unsolved puzzles by HIPS
as a function of the number of node expansions N (x-axis) with multiple values of ε. Values below
1 indicate that the complete search is superior to the high-level search. HIPS-ε outperforms HIPS
in every environment except TSP, where high-level actions are sufficient for solving every problem
instance.
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Table 12: The mean success rates (%) after performing N node expansions for low-level PHS*,
high-level HIPS, and HIPS-ε with access to environment dynamics and the standard error of the
mean as the uncertainty metric. The algorithms have been evaluated on a more difficult variant of
Box-World without any tuning to the new environment. HIPS corresponds to HIPS-env in [18].

Box-World (OoD)

N 10 50 200 1000 ∞
PHS* 0.5 ± 0.2 5.0 ± 0.8 28.6 ± 1.1 31.4 ± 1.0 100.0 ± 0.0
HIPS 12.3 ± 1.5 52.3 ± 3.1 64.8 ± 2.5 65.8 ± 2.4 65.8 ± 2.4

HIPS-ε, ε = 10−1 27.0 ± 2.4 59.2 ± 2.5 83.1 ± 1.4 98.3 ± 0.3 100.0 ± 0.0
HIPS-ε, ε = 10−3 27.3 ± 2.7 60.5 ± 3.2 82.8 ± 1.7 98.3 ± 0.4 100.0 ± 0.0
HIPS-ε, ε = 10−5 27.3 ± 2.3 59.7 ± 2.7 80.7 ± 1.6 98.0 ± 0.4 100.0 ± 0.0
HIPS-ε, ε → 0 26.2 ± 2.1 58.3 ± 2.8 78.9 ± 2.0 97.8 ± 0.4 100.0 ± 0.0

Table 13: The success rates (%) of HIPS-ε with different PHS evaluation functions including the
standard errors of the mean as the uncertainty metric. For all environments, we use ε = 10−3. Search
without heuristic fails on TSP due to running out of memory.

Sokoban Sliding Tile Puzzle

N 50 100 200 50 100 200

φ̂ĥ (ours) 82.5 ± 0.9 88.8 ± 0.7 92.9 ± 0.4 16.3 ± 1.9 68.6 ± 4.0 93.7 ± 1.7
φLevinTS 66.4 ± 2.7 80.1 ± 2.1 88.8 ± 1.2 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.5
φdepth 71.8 ± 2.3 83.6 ± 1.5 91.5 ± 0.8 0.0 ± 0.0 0.2 ± 0.1 1.2 ± 0.4
φdist 68.6 ± 3.2 81.3 ± 2.4 88.7 ± 1.5 0.0 ± 0.0 0.1 ± 0.1 0.7 ± 0.3

Box-World Travelling Salesman Problem

N 5 10 20 20 50 100

φ̂ĥ (ours) 89.0 ± 0.7 99.1 ± 0.2 99.9 ± 0.0 18.3 ± 5.5 82.4 ± 5.5 96.1 ± 1.5
φLevinTS 27.4 ± 1.6 66.3 ± 1.3 94.0 ± 0.5 N/A N/A N/A
φdepth 37.3 ± 2.0 75.8 ± 1.7 95.9 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
φdist 30.4 ± 2.2 70.0 ± 1.8 94.7 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
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H Out-of-Distribution Evaluation on Sokoban

(a) Percentage of unsolved puzzles (b) Ratio of unsolved puzzles (cf. HIPS)

Figure 7: Evaluation of HIPS and HIPS-ε on an out-of-distribution variant of Sokoban with 6 boxes.
The percentage of puzzles remaining unsolved (y-axis) depending on the number of node expansions
(x-axis) for complete search with different values of ε and only high-level search (left), and the ratio
of unsolved puzzles in comparison with HIPS depending on the number of node expansions (right).

To further analyze how the complete subgoal search proposed by us affects the out-of-distribution
generalization abilities of hierarchical planning algorithms, we evaluate HIPS-ε and HIPS on Sokoban
puzzles with six boxes without any adaptation to the models that have been trained on Sokoban with
four boxes. The results as a function of search node expansions have been plotted in Figure 7. Our
results demonstrate that HIPS-ε outperforms HIPS, and when the value of ε is suitably selected, it
can solve almost all puzzles within a reasonable number of search node expansions, whereas the
performance of HIPS stagnates quite early.
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I Impact of ε on Search

(a) Share of low-level actions in STP (b) Share of low-level expansions in STP
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(c) Share of low-level expansions w.r.t. expansions
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(d) Cumulative distribution of low-level expansions

Figure 8: a) The percentage of low-level actions in the solutions found by HIPS-ε for different
values of ε in Sliding Tile Puzzle. b) The percentage of expansions, where the node corresponds
to a low-level action, for different values of ε in STP. c) The share of low-level expansions in STP
with respect to the number of nodes expanded so far in the search. d) The cumulative distribution of
low-level expansions in STP for different values of ε.

In Figure 8, we plot how changing the value of ε impacts the search. In Figure 8a, we plot the value
of ε on the x-axis and the share of low-level actions in the final solutions returned by the search
on the y-axis. The greater the value of ε, the larger the share of low-level actions in the solutions
found by the search, which is expected behavior. Similarly, Figure 8b shows that when the value of ε
diminishes, fewer search nodes corresponding to low-level actions are expanded. In Figure 8c, we
plot the number of search nodes expanded on the x-axis and the probability of low-level search node
expansions on the y-axis. We see that for larger values of ε, the relative share of low-level expansions
grows as the search progresses, whereas it diminishes for smaller values of ε. Finally, Figure 8d
contains the cumulative distribution of low-level expansions as a function of the total number of
search node expansions. For instance, when ε → 0, almost no low-level nodes are expanded after the
first ten node expansions.
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J Wall-Clock Time Evaluations

So far, we have used the number of search node expansions as the evaluation metric for the search
efficiency. However, the wall-clock duration of the search is also highly relevant for the search
algorithm. Therefore, we compared HIPS-ε to low-level search PHS* and the high-level search
algorithms HIPS, kSubS, and AdaSubS and measured the running times. PHS*, kSubS, and AdaSubS
use the environment simulators, and for HIPS and HIPS-ε, we measured the running time with both
the environment simulators and learned models.

To make the results of HIPS and HIPS-ε comparable, we improved HIPS with re-planning if the agent
failed to execute the found trajectory due to model incorrectness, which explains why our results for
HIPS on Box-World are greatly superior to those in [18]. In some environments, the learned model
was significantly faster than the environment simulator, and in other environments, the environment
simulator was quicker. The results are shown in Table 14 and illustrated in Figure 9. The results show
that HIPS-ε (ours) outperforms HIPS in Sokoban and STP, and is approximately equal in Box-World
and TSP in terms of the running time. kSubS and AdaSubS are not competitive with the HIPS-based
algorithms in our experiments, most likely due to the autoregressive generative networks. Low-level
search with PHS* is clearly the best in Sliding Tile Puzzle, approximately equal in Box-World, and
clearly outperformed by HIPS-ε in Sokoban and TSP.

Figure 9: The mean percentage of puzzles solved (%) as a function of the running time in seconds for
different search methods. The shaded area is one standard error. For HIPS-ε, we use the same values
of ε as in Table 9. We use PHS* as the underlying search algorithm in Sokoban, STP and Box-World,
and A* in TSP.
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Table 14: The mean success rates (%) after s seconds of running time for different subgoal search
algorithms and the standard error of the mean as the uncertainty metric. For HIPS-ε, we use the same
values of ε as in Table 9. We use PHS* as the underlying search algorithm in Sokoban, STP and
Box-World, and A* in TSP.

Sokoban

s 1 2 5 10 20 60

PHS* 6.1 ± 1.0 27.3 ± 3.3 60.0 ± 2.3 75.1 ± 1.7 85.6 ± 1.2 94.8 ± 0.6
HIPS 5.0 ± 0.6 30.9 ± 1.8 67.3 ± 1.2 78.0 ± 0.8 87.3 ± 0.5 92.9 ± 0.6
HIPS-env 0.5 ± 0.2 7.8 ± 1.2 45.0 ± 2.4 66.2 ± 1.4 78.2 ± 0.7 88.8 ± 0.5
AdaSubS 0.0 ± 0.0 0.2 ± 0.1 8.6 ± 0.4 42.9 ± 0.8 65.6 ± 1.0 78.0 ± 1.0
kSubS 1.5 ± 0.8 19.1 ± 5.7 48.9 ± 1.9 55.9 ± 1.3 57.8 ± 2.3 64.3 ± 3.3

HIPS-ε 23.6 ± 2.2 53.4 ± 2.8 76.2 ± 2.3 83.9 ± 1.6 90.6 ± 1.0 95.5 ± 0.7
HIPS-ε-env 5.7 ± 0.8 32.7 ± 2.8 65.8 ± 1.8 78.1 ± 1.1 85.9 ± 0.9 92.6 ± 0.5

Sliding Tile Puzzle

s 2 5 10 20 40 60

PHS* 0.0 ± 0.0 98.8 ± 0.2 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HIPS 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.1 22.7 ± 2.9 70.9 ± 4.0 85.6 ± 2.2
HIPS-env 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 14.4 ± 2.0 64.5 ± 4.4 83.2 ± 2.6
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 58.2 ± 5.3 88.2 ± 1.4 89.9 ± 1.4

HIPS-ε 0.0 ± 0.0 0.1 ± 0.0 18.1 ± 3.1 71.8 ± 4.3 95.2 ± 1.3 98.9 ± 0.4
HIPS-ε-env 0.0 ± 0.0 0.0 ± 0.0 9.9 ± 1.2 65.4 ± 4.6 93.9 ± 1.6 98.3 ± 0.7

Box-World

s 1 2 5 10 20 60

PHS* 4.5 ± 0.7 9.3 ± 1.1 34.9 ± 3.3 73.6 ± 2.9 91.4 ± 0.6 92.4 ± 0.5
HIPS 0.0 ± 0.0 25.4 ± 1.5 38.0 ± 3.1 61.3 ± 3.8 88.9 ± 2.1 99.6 ± 0.1
HIPS-env 0.0 ± 0.0 28.6 ± 1.8 39.5 ± 2.6 63.4 ± 3.3 89.3 ± 2.3 99.7 ± 0.1

HIPS-ε 5.9 ± 0.7 14.6 ± 2.2 30.0 ± 3.5 64.1 ± 3.5 93.4 ± 1.1 99.7 ± 0.1
HIPS-ε-env 5.3 ± 0.5 12.3 ± 1.5 28.1 ± 3.2 61.4 ± 3.9 94.2 ± 1.2 99.9 ± 0.0

Travelling Salesman Problem

s 3.5 5 7.5 10 20 60

PHS* 0.3 ± 0.1 0.8 ± 0.2 10.6 ± 3.4 39.2 ± 8.8 87.7 ± 3.5 93.5 ± 2.3
HIPS 0.3 ± 0.3 19.0 ± 6.0 75.9 ± 8.0 97.6 ± 1.0 99.0 ± 0.0 100.0 ± 0.0
HIPS-env 8.8 ± 3.6 61.6 ± 12.6 98.5 ± 0.4 98.9 ± 0.1 99.5 ± 0.1 100.0 ± 0.0
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 33.4 ± 12.9

HIPS-ε 4.1 ± 1.5 49.2 ± 9.0 96.6 ± 1.3 98.8 ± 0.1 99.9 ± 0.0 100.0 ± 0.0
HIPS-ε-env 29.1 ± 8.5 90.0 ± 3.9 98.8 ± 0.2 98.9 ± 0.0 99.8 ± 0.1 100.0 ± 0.0
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K Environment Interactions

In addition to the number of search node expansions and running time, the search cost can be
evaluated as a function of the low-level environment steps during the search. We compare HIPS-ε
with a learned environment model and guaranteed completeness (see Appendix E) to PHS*, kSubS,
and AdaSubS and analyzed the percentage of puzzles solved given N environment steps. We omitted
HIPS from the comparison, as the variant of HIPS with environment dynamics is extremely wasteful
with the environment steps, whereas HIPS with the learned models does not rely on the environment
simulator at all, and we compared HIPS-ε to HIPS in that setting in Table 2. We also included the
results for HIPS-ε when the number of simulator calls has been included in the search cost as the last
row of the table. Our results show that HIPS-ε is very efficient in terms of environment interactions,
outperforming PHS* in every environment, even if the number of model calls is included in the
search cost. kSubS is also highly wasteful with the low-level environment steps, whereas AdaSubS is
highly competitive with HIPS-ε in Sokoban but fails to perform well in STP or TSP due to the lower
overall solution percentage.

Figure 10: The mean percentage of puzzles solved (%) as a function of the number of environment
steps for different search methods. For HIPS-ε, we have also plotted the solution percentage, assuming
that each dynamics function call is equal to an environment step. The shaded area is one standard
error. For HIPS-ε, we use the same values of ε as in Table 9. We use PHS* as the underlying search
algorithm in Sokoban, STP and Box-World, and A* in TSP.
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Table 15: The mean success rates (%) after N low-level environment steps during the search and the
standard error of the mean as the uncertainty metric.

Sokoban

N 50 100 250 1000 2500 10000

PHS* 0.0 ± 0.0 0.1 ± 0.0 0.6 ± 0.1 19.5 ± 0.5 56.5 ± 1.3 83.3 ± 1.1
AdaSubS 30.9 ± 1.3 60.3 ± 0.7 74.4 ± 0.8 85.2 ± 0.9 88.0 ± 0.9 90.2 ± 0.9
kSubS 0.0 ± 0.0 0.0 ± 0.0 1.7 ± 0.5 37.9 ± 0.4 56.0 ± 1.1 67.6 ± 1.7

HIPS-ε 9.7 ± 0.7 47.4 ± 2.3 81.3 ± 2.0 92.2 ± 0.8 96.1 ± 0.5 98.4 ± 0.2

HIPS-ε (w/ model calls) 0.0 ± 0.0 3.9 ± 0.3 42.4 ± 2.7 82.0 ± 1.8 90.1 ± 1.0 95.8 ± 0.6

Sliding Tile Puzzle

N 500 1000 2500 5000 10000 20000

PHS* 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 20.6 ± 0.5 100.0 ± 0.0
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
kSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 35.6 ± 5.4 88.7 ± 1.7

HIPS-ε 32.7 ± 3.5 93.1 ± 1.7 99.9 ± 0.1 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

HIPS-ε (w/ model calls) 0.0 ± 0.0 3.6 ± 0.8 78.9 ± 4.1 97.0 ± 1.0 99.9 ± 0.1 100.0 ± 0.0

Box-World

N 50 100 250 500 1000 2500

PHS* 0.4 ± 0.2 1.4 ± 0.2 10.9 ± 0.5 38.1 ± 1.0 82.6 ± 0.7 91.8 ± 0.5

HIPS-ε 40.1 ± 1.0 78.7 ± 1.1 94.9 ± 0.3 98.8 ± 0.1 99.7 ± 0.0 99.9 ± 0.0

HIPS-ε (w/ model calls) 0.0 ± 0.0 16.4 ± 0.4 84.0 ± 0.9 95.5 ± 0.3 99.3 ± 0.1 99.8 ± 0.0

Travelling Salesman Problem

N 250 500 1000 2500 10000 20000

PHS* 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 74.5 ± 4.1 90.9 ± 2.7
AdaSubS 0.0 ± 0.0 0.0 ± 0.0 3.3 ± 1.6 14.4 ± 2.4 24.4 ± 3.3 24.4 ± 3.3
kSubS 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 25.5 ± 10.5 42.6 ± 16.4

HIPS-ε 44.9 ± 4.4 99.9 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

HIPS-ε (w/ model calls) 0.0 ± 0.0 0.0 ± 0.0 50.2 ± 12.7 99.9 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
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