
A Non-asymptotic singular value bounds

Proposition A.1 (Theorem 1.1 of [RV09]). Let A be an d ⇥ r matrix, d � r, whose entries are
independently drawn from N (0, 1). Then for every ⌧ � 0,
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where C1, C2 > 0 are universal constants.

Proposition A.2 ([Ver10]). Let A be an d⇥ r matrix whose entries are independently drawn from
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B Proof of Proposition 4.2
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A similar argument applies to achieve the stated bounds for �r(YT ) and �1(YT ).

C Proof of Proposition 4.3

Write the SVD A = Um⇥r⌃r⇥rV
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On the other hand, Proposition A.2 implies that with probability at least 1� e
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D Proof of Corollary 5.3

Set �1 = � as in (A2c). Set f0(1) = f0.
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This means that at time T1, we can restart the analysis, and appeal again to Proposition 4.2 with
modified parameters

• f(XT1 ,YT1)  f02 := ✏f01,
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Proposition 4.2 in light of summability and C � 8: for any t,
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