
Convergence of Alternating Gradient Descent for
Matrix Factorization

Rachel Ward
University of Texas

Austin, TX
rward@math.utexas.edu

Tamara G. Kolda
MathSci.ai
Dublin, CA

tammy.kolda@mathsci.ai

Abstract

We consider alternating gradient descent (AGD) with fixed step size applied to
the asymmetric matrix factorization objective. We show that, for a rank-r matrix
A ∈ Rm×n, T = C

(σ1(A)
σr(A)

)2
log(1/ϵ) iterations of alternating gradient descent

suffice to reach an ϵ-optimal factorization ∥A −XTY
⊺
T ∥2F ≤ ϵ∥A∥2F with high

probability starting from an atypical random initialization. The factors have rank
d ≥ r so that XT ∈ Rm×d and YT ∈ Rn×d, and mild overparameterization
suffices for the constant C in the iteration complexity T to be an absolute constant.
Experiments suggest that our proposed initialization is not merely of theoretical
benefit, but rather significantly improves the convergence rate of gradient descent
in practice. Our proof is conceptually simple: a uniform Polyak-Łojasiewicz
(PL) inequality and uniform Lipschitz smoothness constant are guaranteed for a
sufficient number of iterations, starting from our random initialization. Our proof
method should be useful for extending and simplifying convergence analyses for a
broader class of nonconvex low-rank factorization problems.

1 Introduction

This paper focuses on the convergence behavior of alternating gradient descent (AGD) on the low-rank
matrix factorization objective

min f(X,Y) ≡ 1

2
∥XY⊺ −A∥2F subject to X ∈ Rm×d,Y ∈ Rn×d. (1)

Here, we assume m,n ≫ d ≥ r = rank(A). While there are a multitude of more efficient
algorithms for low-rank matrix approximation, this serves as a simple prototype and special case of
more complicated nonlinear optimization problems where gradient descent (or stochastic gradient
descent) is the method of choice but not well-understood theoretically. Such problems include
low-rank tensor factorization using the GCP algorithm descent [HKD20], a stochastic gradient variant
of the GCP algorithm [KH20], as well as deep learning optimization.

Surprisingly, the convergence behavior of gradient descent for low-rank matrix factorization is still
not completely understood, in the sense that there is a large gap between theoretical guarantees and
empirical performance. We take a step in closing this gap, providing a sharp linear convergence
rate from a simple asymmetric random initialization. Precisely, we show that if A is rank-r, then a
number of iterations T = C d

(
√
d−

√
r−1)2

σ2
1(A)

σ2
r(A) log(1/ϵ) suffices to obtain an ϵ-optimal factorization

with high probability. Here, σk(A) denotes the kth singular value of A and C > 0 is a numerical
constant. To the authors’ knowledge, this improves on the state-of-art convergence result in the
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literature [JCD22], which provides an iteration complexity T = C
((σ1(A)

σr(A)

)3
log(1/ϵ)

)
for gradient

descent to reach an ϵ-approximate rank-r approximation1.

Our improved convergence analysis is facilitated by our choice of initialization of X0,Y0, which
appears to be new in the literature and is distinct from the standard Gaussian initialization. Specifically,
for Φ1 and Φ2 independent Gaussian matrices, we consider an “unbalanced” random initialization
of the form X0 ∼ 1√

ηAΦ1 and Y0 ∼ √
ηΦ2, where η > 0 is the step-size used in (alternating)

gradient descent. A crucial feature of this initialization is that the columns of X0 are in the column
span of A, and thus by invariance of the alternating gradient update steps, the columns of Xt remain
in the column span of A throughout the optimization. Because of this, a positive rth singular value
of Xt provides a Polyak-Łojasiewicz (PL) inequality for the region of the loss landscape on which
the trajectory of alternating gradient descent is guaranteed to be confined to, even though the matrix
factorization loss function f in (1) does not satisfy a PL-inequality globally.

By Gaussian concentration, the pseudo-condition numbers σ1(X0)
σr(X0)

∼ σ1(A)
σr(A) are comparable with

high probability2; for a range of step-size η and the unbalanced initialization X0 ∼ 1√
ηAΦ1 and

Y0 ∼ √
ηΦ2, we show that σ1(Xt)

σr(Xt)
is guaranteed to remain comparable to σ1(A)

σr(A) for a sufficiently

large number of iterations t that we are guaranteed a linear rate of convergence with rate
(σr(X0)
σ1(X0)

)2
.

The unbalanced initialization, with the particular re-scaling of X0 and Y0 by 1√
η and

√
η, respectively,

is not a theoretical artifact but crucial in practice for achieving a faster convergence rate compared
to a standard Gaussian initialization, as illustrated in Fig. 1. Also in Fig. 1, we compare empirical
convergence rates to the theoretical rates derived in Theorem 3.1 below, indicating that our rates are
sharp and made possible only by our particular choice of initialization. The derived convergence
rate of (alternating) gradient descent starting from the particular asymmetric initialization where
the columns of X0 are in the column span of A can be explained intuitively as follows: in this
regime, the Xt updates remain sufficiently small with respect to the initial scale of X0, while the Yt

updates change sufficiently quickly with respect to the initial scale Y0, that the resulting alternating
gradient descent dynamics on matrix factorization follow the dynamics of gradient descent on the
linear regression problem min g(Y) = ∥X0Y

T −A∥2F where X0 is held fixed at its initialization.

We acknowledge that our unbalanced initialization of X0 and Y0 is different from the standard
Gaussian random initialization in neural network training, which is a leading motivation for studying
gradient descent as an algorithm for matrix factorization. The unbalanced initialization should not
be viewed as at odds with the implicit bias of gradient descent towards a balanced factorization
[CKL+21, WCZT21, ABC+22, CB22], which have been linked to better generalization performance
in various neural network settings. An interesting direction of future research is to compare the
properties of the factorizations obtained by (alternating) gradient descent, starting from various
(balanced versus unbalanced) initializations.

2 Preliminaries

Throughout, for an m × n matrix M, ∥M∥ refers to the spectral norm and ∥M∥F refers to the
Frobenius norm.

Consider the square loss applied to the matrix factorization problem (1). The gradients are

∇Xf(X,Y) = (XY⊺ −A)Y, (2a)
∇Yf(X,Y) = (XY⊺ −A)⊺X. (2b)

We will analyze alternating gradient descent, defined as follows.

1We note that our results are not precisely directly comparable as our analysis is for alternating gradient
descent whereas existing results hold for gradient descent. However, empirically, alternating and non-alternating
gradient descent exhibit similar behavior across many experiments

2The pseudo-condition number, σ1(A)
σr(A)

, is equivalent to and sometimes discussed as the product of the product
of the spectral norms of the matrix and its pseudoinverse, i.e., ∥A∥∥A†∥
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Figure 1: Alternating gradient descent for A ∈ R100×100 with rank(A) = 5 and factors of size
100×10, The plot shows five runs each of our proposed initialization and compared with the standard
random initialization. The title of each plot shows the condition and step length.

Assumption 1 (Alternating Gradient Descent). For fixed stepsize η > 0 and initial condition (X0,Y0),
the update is

Xt+1 = Xt − η∇Xf(Xt,Yt), (A1a)
Yt+1 = Yt − η∇Yf(Xt+1,Yt). (A1b)

We assume that the iterations are initialized in an asymmetric way, which depends on the step size η
and assumes a known upper bound on the spectral norm of A. The matrix factorization is of rank
d > r, and we also make assumptions about the relationship of d, r, and quantities s, β, and δ that
will impact the bounds on the probability of finding and ϵ-optimal factorization.

Assumption 2 (Initialization and key quantities). Draw random matrices Φ1,Φ2 ∈ Rn×d with i.i.d.
N (0, 1/d) and N (0, 1/n) entries, respectively. Fix C ≥ 1, ν < 1, and D ≤ C

9 ν, and let

X0 =
1

η1/2 C σ1(A)
AΦ1, and Y0 = η1/2 Dσ1(A)Φ2. (A2a)

The factor matrices each have d ≥ r columns.
For τ > 0, define

ρ = τ

(
1−

√
r − 1√
d

)
(A2b)

The number of iterations for convergence to ϵ-optimal factorization will ultimately be shown to
depend on

β =
ρ2σ2

r(A)

C2σ2
1(A)

. (A2c)

The probability of finding this ϵ-optimal factorization will depend on

δ = (C1τ)
d−r+1 + e−C2d + e−r/2 + e−d/2 (A2d)

where C1, C2 > 0 are the universal constants in A.1.

Observe that the initialization of X0 ensures its columns are in the column span of A.

Remark 2.1. The quantity f(X0,Y0) does not depend on the step size η or σ1(A) in Assumption 2
since

X0Y
⊺
0 −A = A

(
D

C
Φ1Φ

⊺
2 − I

)
.
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3 Main results

Our first main result gives a sharp guarantee on the number of iterations necessary for alternating
gradient descent to be guaranteed to produce an ϵ-optimal factorization.

Theorem 3.1 (Main result, informal). For a rank-r matrix A ∈ Rm×n, set d ≥ r and consider
X0,Y0 randomly initialized as in Assumption 2. For any ϵ > 0, there is an explicit step-size
η = η(ϵ) > 0 for alternating gradient descent as in Assumption 1 such that

∥A−XTY
⊺
T ∥2F ≤ ϵ for all T ≥ C

σ2
1(A)

σ2
r(A)

1

ρ2
log

∥A∥2F
ϵ

with probability 1 − δ with respect to the draw of X0 and Y0 where δ is defined in (A2d). Here,
C > 0 is an explicit numerical constant.

For more complete theorem statements, see Corollary 5.2 and Corollary 5.3 below.

We highlight a few points below.

1. The iteration complexity in Theorem 3.1 is independent of the ambient dimensions n,m.
In the edge case d = r, 1

ρ2 = O(r2), so the iteration complexity scales quadratically with

r. With mild multiplicative overparameterization d = (1 + α)r, 1
ρ2 = (1+α)

(
√
1+α−1)2

, and the
iteration complexity is essentially dimension-free. This is a direct result of the dramatic
improvement in the condition number of a (1 + α)r × r Gaussian random matrix compared
to the condition number of a square r × r Gaussian random matrix.

2. Experiments illustrate that initializing X0 in the column span of A, and especially re-scaling
X0 and Y0 by 1√

η and
√
η, respectively, is crucial in practice for improving the convergence

rate of gradient descent. See Figs. 2 to 4.

3. The iteration complexity in Theorem 3.1 is conservative. In experiments, the convergence
rate often follows a dependence on σr(A)

σ1(A) rather than σ2
r(A)

σ2
1(A)

for the first several iterations.

3.1 Our contribution and prior work

The seminal work of Burer and Monteiro [BM03, BM05] advocated for the general approach of using
simple algorithms such as gradient descent directly applied to low-rank factor matrices for solving
non-convex optimization problems with low-rank matrix solutions. Initial theoretical work on gradi-
ent descent for low-rank factorization problems such as [ZWL15], [TBS+16], [ZL16], [SWW17],
[BKS16] did not prove global convergence of gradient descent, but rather local convergence of
gradient descent starting from a spectral initialization (that is, an initialization involving SVD compu-
tations). In almost all cases, the spectral initialization is the dominant computation, and thus a more
global convergence analysis for gradient descent is desirable.

Global convergence for gradient descent for matrix factorization problems without additional explicit
regularization was first derived in the symmetric setting, where A ∈ Rn×n is positive semi-definite,
and f(X) = ∥A−XX⊺∥2F, see for example [GHJY15, JJKN17, CCFM19].

For overparameterized symmetric matrix factorization, the convergence behavior and implicit bias
towards particular solutions for gradient descent with small step-size and from small initialization
was analyzed in the work [GWB+17, LMZ18, ACHL19, CGMR20].

The paper [YD21] initiated a study of gradient descent with fixed step-size in the more challenging
setting of asymmetric matrix factorization, where A ∈ Rm×n is rank-r and the objective is ∥A−
XY⊺∥2F. This work improved on previous work in the setting of gradient flow and gradient descent
with decreasing step-size [DHL18]. The paper [YD21] proved an iteration complexity of T =

O
(
nd
(σ1(A)
σ1(A)

)4
log(1/ϵ)

)
for reaching an ϵ-approximate matrix factorization, starting from small i.i.d.

Gaussian initialization for the factors X0,Y0. More recently, [JCD22] studied gradient descent for
asymmetric matrix factorization, and proved an iteration complexity T = O

(
Cd

(σ1(A)
σr(A)

)3
log(1/ϵ)

)
to reach an ϵ-optimal factorization, starting from small i.i.d. Gaussian initialization.
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We improve on previous analysis of gradient descent applied to objectives of the form (1), providing an
improved iteration complexity T = O

((σ1(A)
σr(A)

)2
log(1/ϵ)

)
to reach an ϵ-approximate factorization.

There is no dependence on the matrix dimensions in our bound, and the dependence on the rank
r disappears if the optimization is mildly over-parameterized, i.e., d = (1 + α)r. We do note that
our results are not directly comparable to previous work as we analyze alternating gradient descent
rather than full gradient descent. Our method of proof is conceptually simpler than previous works;
in particular, because our initialization X0 is in the column span of A, we do not require a two-stage
analysis and instead can prove a fast linear convergence from the initial iteration.

4 Preliminary lemmas

Lemma 4.1 (Bounding sum of norms of gradients). Consider alternating gradient descent as in
Assumption 1. If ∥Yt∥2 ≤ 1

η , then

∥∇Xf(Xt,Yt)∥2F ≤ 2

η

(
f(Xt,Yt)− f(Xt+1,Yt)

)
. (3)

If moreover ∥Xt∥2 ≤ 2
η , then f(Xt,Yt) ≤ f(Xt,Yt−1). Consequently, if ∥Yt∥2 ≤ 1

η for all

t = 0, . . . , T, and ∥Xt∥2 ≤ 2
η for all t = 0, . . . , T, then

∑T
t=0 ∥∇Xf(Xt,Yt)∥2F ≤ 2

ηf(X0,Y0)

Likewise, if ∥Xt+1∥2 ≤ 1
η , then

∥∇Y f(Xt+1,Yt)∥2F ≤ 2

η
(f(Xt+1,Yt)− f(Xt+1,Yt+1)). (4)

and if ∥Yt∥2 ≤ 2
η , then f(Xt+1,Yt) ≤ f(Xt,Yt), and so if ∥Xt+1∥2 ≤ 1

η for all t = 0, . . . , T,

and ∥Yt∥2 ≤ 2
η for all t = 0, . . . , T, then

∑T
t=0 ∥∇Yf(Xt+1,Yt)∥2F ≤ 2

ηf(X0,Y0).

Proof. The proof of Lemma 4.1 is a direct calculation:

f(Xt+1,Yt) =
1

2
∥A−Xt+1Y

⊺
t ∥2F

=
1

2
∥A− (Xt − η∇Xf(Xt,Yt))Y

⊺
t ∥2F

=
1

2
∥A−XtY

⊺
t + η∇Xf(Xt,Yt)Y

⊺
t ∥2F

=
1

2
∥A−XtY

⊺
t ∥2F +

1

2
∥η∇Xf(Xt,Yt)Y

⊺
t ∥2F − η trace[(XtY

⊺
t −A)(∇Xf(Xt,Yt)Y

⊺
t )

⊺]

=
1

2
∥A−XtY

⊺
t ∥2F +

1

2
∥η∇Xf(Xt,Yt)Y

⊺
t ∥2F − η trace[(XtY

⊺
t −A)Yt︸ ︷︷ ︸

∇Xf(Xt,Yt)

(∇Xf(Xt,Yt))
⊺]

= f(Xt,Yt) +
η

2
∥∇Xf(Xt,Yt)Y

⊺
t ∥2F − η∥∇Xf(Xt,Yt)∥2F

≤ f(Xt,Yt) +
η2

2
∥∇Xf(Xt,Yt)∥2F∥Yt∥2 − η∥∇Xf(Xt,Yt)∥2F

≤ f(Xt,Yt) +
η

2
∥∇Xf(Xt,Yt)∥2F − η∥∇Xf(Xt,Yt)∥2F

≤ f(Xt,Yt)−
η

2
∥∇Xf(Xt,Yt)∥2F.
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Proposition 4.2 (Bounding singular values of iterates). Consider alternating gradient descent as in
Assumption 1. Set f0 := f(X0,Y0). Set T∗ =

⌊
1

32η2f0

⌋
. Suppose σ2

1(X0) ≤ 9
16η , σ

2
1(Y0) ≤ 9

16η .

Then for all 0 ≤ T ≤ T∗,

1. ∥XT ∥ ≤ 1√
η and ∥YT ∥ ≤ 1√

η ,

2. σr(X0)−
√
2Tηf0 ≤ σr(XT ) ≤ σ1(XT ) ≤ σ1(X0) +

√
2Tηf0,

3. σr(Y0)−
√
2Tηf0 ≤ σr(YT ) ≤ σ1(YT ) ≤ σ1(Y0) +

√
2Tηf0.

The proof of Proposition 4.2 is in the supplement Appendix B.

Proposition 4.3 (Initialization). Assume X0 and Y0 are initialized as in Assumption 2, which fixes
C ≥ 1, ν < 1, and D ≤ C

9 ν, and consider alternating gradient descent as in Assumption 1. Then
with probability at least 1− δ, with respect to the random initialization and δ defined in (A2d),

1.
1√
η

ρ

C

σr(A)

σ1(A)
≤ σr(X0), σ1(X0) ≤

3

C
√
η
, σ1(Y0) ≤

√
η C ν σ1(A)

3
,

2.
1

2(1− ν)2
∥A∥2F ≤ f(X0,Y0) ≤

1

2
(1 + ν)2∥A∥2F.

The proof of Proposition 4.3 is in the supplement Appendix C.

Combining the previous two propositions gives the following.

Corollary 4.4. Assume X0 and Y0 are initialized as in Assumption 2, with the stronger assumption
that C ≥ 4. Consider alternating gradient descent as in Assumption 1 with η ≤ 9

4Cνσ1(A) . With β as

in (A2c) and f0 = f(X0,Y0), set T =

⌊
β

8η2f0

⌋
. With probability at least 1− δ, with respect to the

random initialization and δ defined in (A2d), the following hold for all t = 1, . . . , T :

σr(Xt) ≥
1

2

√
β

η
, and σ1(Xt), σ1(Yt) ≤

3

C
√
η
+

1

2

√
β

η

Proof. By Proposition 4.3, we have the following event occurring with the stated probability:

ρ2σ2
r(A)

C2σ2
1(A)η

≤ σ2
r(X0) ≤ σ2

1(X0) ≤
9

16η

where the upper bound uses that C ≥ 4. Moreover, using that η ≤ 9
4Cνσ1(A) , σ2

1(Y0) ≤

9ηC2σ1(A)2 ≤ 9
16η . For β as in (A2c), note that T =

⌊
β

8η2f0

⌋
≤
⌊

1
32η2f0

⌋
, which means that we

can apply Proposition 4.2 up to iteration T , resulting in the bound σr(Xt) ≥ σr(X0)−
√
2Tηf0 ≥

1
2

√
β
η . Similarly, σ1(Xt), σ1(Yt) ≤ 3

C
√
η + 1

2

√
β
η .

Finally, we use a couple crucial lemmas which apply to our initialization of X0 and Y0.

Lemma 4.5. Consider alternating gradient descent as in Assumption 1. If ColSpan(X0) ⊆
ColSpan(A), then ColSpan(Xt) ⊆ ColSpan(A) for all t.

Proof. Suppose ColSpan(Xt) ⊆ ColSpan(A). Then ColSpan(XtY
⊺
tYt) ⊆ ColSpan(Xt) ⊆

ColSpan(A) and by the update of Assumption 1,

ColSpan(Xt+1) = ColSpan(Xt + ηAYt − ηXtY
⊺
tYt)

⊆ ColSpan(Xt) ∪ ColSpan(AYt) ∪ ColSpan(XtY
⊺
tYt)

⊆ ColSpan(A).
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Lemma 4.6. If A is rank r, ColSpan(Xt) ⊆ ColSpan(A), and σr(Xt) > 0 then

∥∇Yf(Xt,Yt−1)∥2F ≥ 2σ2
r(Xt)f(Xt,Yt−1). (5)

Proof. If A is rank r, ColSpan(Xt) ⊆ ColSpan(A), and σr(Xt) > 0, then Xt is rank-r; thus,
ColSpan(Xt) = ColSpan(A). In this case, each column of (XtY

⊺
t −A) is in the row span of X⊺

t ,
and so

∥∇Yf(Xt,Yt−1)∥2F = ∥(XtY
⊺
t−1 −A)⊺Xt∥2F

= ∥X⊺
t (XtY

⊺
t−1 −A)∥2F ≥ σ2

r(Xt) ∥XtY
⊺
t−1 −A∥2F.

Remark 4.7. While Lemmas 4.5 and 4.6 are straightforward to prove in the setting we consider where
A is exactly rank-r, these lemmas no longer hold beyond the exactly rank-r setting (while the rest of
the theorems we use do extend). Numerical experiments such as Figure 4 illustrate that the proposed
algorithm does extend to finding best low-rank approximations to general matrices, but the theory for
these experiments will require a careful reworking of Lemmas 4.5 and 4.6.

5 Main results

We are now ready to prove the main results.

Theorem 5.1. Assume X0 and Y0 are initialized as in Assumption 2, with the stronger assumption
that C ≥ 4. Consider alternating gradient descent as in Assumption 1 with

η ≤ 9

4Cνσ1(A)
.

With β as in (A2c) and f0 = f(X0,Y0), set

T =

⌊
β

8η2f0

⌋
.

Then with probability at least 1− δ, with respect to the random initialization and δ defined in (A2d),
the following hold for all t = 1, . . . , T :

∥A−XtY
⊺
t ∥2F ≤ 2 exp (−βt/4) f0

≤ exp (−βt/4) (1 + ν)
2 ∥A∥2F. (6)

Proof. Corollary 4.4 implies that σr(Xt)
2 ≥ β

4η for t = 1, . . . , T . Lemmas 4.5 and 4.6 imply since
X0 is initialized in the column space of A, Xt remains in the column space of A for all t, and

∥∇Yf(Xt+1,Yt)∥2F = ∥(A⊺ −YtX
⊺
t+1)Xt+1∥2F ≥ σr(Xt+1)

2∥(A⊺ −YtX
⊺
t+1)∥2F

≥ β

4η
∥A−Xt+1Y

⊺
t ∥2F =

β

2η
f(Xt+1,Yt).

(7)

That is, a lower bound on σr(Xt)
2 implies that the gradient step with respect to Y satisfies the

Polyak-Lojasiewicz (PL)-equality3.

We can combine this PL inequality with the Lipschitz bound from Lemma 4.1 to derive the linear
convergence rate. Indeed, by (3),

f(Xt+1,Yt+1)− f(Xt+1,Yt) ≤ −η

2
∥∇Yf(Xt+1,Yt)∥2F ≤ −β

4
f(Xt+1,Yt).

3A function f satisfies the PL-equality if for all x ∈ Rm, f(x)− f(x∗) ≤ 1
2m

∥∇f(x)∥2, where f(x∗) =
minx f(x)

7



where the final inequality is (7). Consequently, using Proposition 4.3,

f(XT ,YT ) ≤ (1− β/4)f(XT−1,YT−1) ≤ (1− β/4)
T
f(X0,Y0)

≤ exp (−βT/4) f(X0,Y0).

Corollary 5.2. Assume X0 and Y0 are initialized as in Assumption 2, with the stronger assumptions
that C ≥ 4 and ν ≤ 1

2 . Consider alternating gradient descent as in Assumption 1 with

η ≤ β√
32f0 log(2f0/ϵ)

, (8)

where β is defined in (A2c) and f0 = f(X0,Y0). Then with probability at least 1− δ, with respect
to the random initialization and δ defined in (A2d), it holds

∥A−XTY
⊺
T ∥2F ≤ ϵ at interation T =

⌊
β

8η2f0

⌋
.

Here ρ is defined in (A2b). Using the upper bound for η in (8), the iteration complexity to reach an
ϵ-optimal loss value is

T = O
((

σ1(A)

σr(A)

)2
1

ρ2
log

(∥A∥2F
ϵ

))
.

This corollary follows from Theorem 5.1 by solving for η so that the RHS of (6) is at most ϵ, and
then noting that η ≤ β√

32f0 log(2f0/ϵ)
implies that η ≤ 9

4Cνσ1(A) when ν ≤ 1
2 , using the lower bound

on f0 from Proposition 4.3.

Using this corollary recursively, we can prove that the loss value remains small for T ′ ≥ ⌊ β
8η2f0

⌋,
provided we increase the lower bound on C by a factor of 2. The proof is in supplementary section D.

Corollary 5.3. Assume X0 and Y0 are initialized as in Assumption 2, with the stronger assumptions
that C ≥ 8 and ν ≤ 1

2 . Fix ϵ < 1/16, and consider alternating gradient descent as in Assumption 1
with

η ≤ β√
32f0 log(1/ϵ)

, (9)

where β is defined in (A2c) and f0 = f(X0,Y0). Then with probability at least 1− δ, with respect
to the random initialization and δ defined in (A2d), it holds for any k ∈ N that

∥A−XTY
⊺
T ∥2F ≤ ϵk∥A−X0Y

⊺
0∥2F for T ≥

k−1∑
ℓ=0

⌊(
1

4ϵ

)ℓ
β

8η2f0

⌋
.

6 Numerical experiments

We perform an illustrative numerical experiment to demonstrate both the theoretical and practical
benefits of the proposed initialization. We use gradient descent without alternating to demonstrate
that this theoretical assumption makes little difference in practice. We factorize a rank-5 (r = 5)
matrix of size 100× 100. The matrix is constructed as A = UΣV⊺ with U and V random 100× 5
orthonormal matrices and singular value ratio σr(A)/σ1(A) = 0.9. The same matrix is used for

8



each set of experiments. We compare four initializations:

Proposed: X0 =
1

√
η
√
dCσ1

AΦ(n×d) Y0 =

√
ηDσ1√
n

Φ(n×d)

ColSpan(A): X0 =
1

10
√
d
AΦ(n×d) Y0 =

1

10
√
n
Φ(n×d)

Random: X0 =
1

10
√
m
Φ(m×d) Y0 =

1

10
√
n
Φ(n×d)

Random-Asym: X0 =
1√
η

1

10
√
m
Φ(m×d) Y0 =

√
η

1

10
√
n
Φ(n×d)

Here, Φ denotes a random matrix with independent entries from N (0, 1). The random initialization
is what is commonly used and analyzed. We include ColSpan(A) to understand the impact of starting
in the column space of A for X0. Our proposed initialization (Assumption 2) combines this with an
asymmetric scaling. In all experiments we use the defaults C = 4 and D = Cν/9 with ν = 1e−10
for computing the proposed initialization as well as the theoretical step size. We assume σ1 = σ1(A)
is known in these cases. (In practice, a misestimate of σ1 can be compensated with a different value
for C.)

Figure 2 shows how the proposed method performs using the theoretical step size and compared to
its theory. We also compare our initialization to three other initializations with the same step size. We
consider two different levels of over-factoring, choosing d = 10 (i.e, 2r) and d = 6 (i.e., r + 1). All
methods perform better for larger d = 10. The theory for the proposed initialization underestimates
its performance (there may be room for further improvement) but still shows a stark and consistent
advantage compared to the performance of the standard initialization, as well as compared to
initializing in the column span of A but not asymmetrically, or initializing asymmetrically but not in
the column span of A.

0 2000 4000 6000 8000 10000

10−2

10−6

10−10

10−14

iteration (t)

re
la
ti
v
e
er
ro
r

d = 10, η = 2.072e−4

0 2000 4000 6000 8000 10000

iteration (t)

d = 6, η = 1.792e−5

Theory

Proposed

ColSpan(A)

Random

Random-Asym

Figure 2: Theoretical advantage of proposed initialization. Gradient descent (non-alternating) for
A ∈ R100×100 with rank(A) = 5, σ1 = 1 and σr = 0.9. The plot shows five runs with each type of
initialization.

Figure 3 shows how the three initializations compare with different step lengths. The advantage of the
proposed initialization persists even with step lengths that are larger than that proposed by the theory,
up until the step length is too large for any method to converge (η = 1). We emphasize that we are
showing standard gradient descent, not alternating gradient descent. (There is no major difference
between the two in our experience.)

Although the theory requires that A be exactly rank-r, Fig. 4 shows that the proposed initialization
still maintains its advantage for noisy problems that are only approximately rank-r.
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A Non-asymptotic singular value bounds

Proposition A.1 (Theorem 1.1 of [RV09]). Let A be an d × r matrix, d ≥ r, whose entries are
independently drawn from N (0, 1). Then for every τ ≥ 0,

Pr
(
σr(A) ≤ τ(

√
d−

√
r − 1)

)
≤ (C1τ)

d−r+1 + e−C2d

where C1, C2 > 0 are universal constants.

Proposition A.2 ([Ver10]). Let A be an d× r matrix whose entries are independently drawn from
N (0, 1). Then for every t ≥ 0, with probability at least 1− exp(−t2/2), we have

σr(A) ≥
√
d−√

r − t

and for every t ≥ 0, with probability at least 1− exp(−t2/2), we have

σ1(A) ≤
√
d+

√
r + t

B Proof of Proposition 4.2

First, observe that by assumption, ∥X0∥2, ∥Y0∥2 ≤ 9
16η ≤ 1

η . Now, suppose that that
∥X0∥2, ∥Y0∥2 ≤ 9

16η and ∥Xt∥2, ∥Yt∥2 ≤ 1
η for t = 0, . . . T − 1, and 1 ≤ T ≤ ⌊ 1

32η2f0
⌋.

Then by Lemma 4.1,
T−1∑
t=0

∥∥∥∥∇Xf(Xt,Yt)

∥∥∥∥2
F

≤ 2

η
f0. (10)

Hence,

∥XT −X0∥ ≤ η

∥∥∥∥T−1∑
t=0

∇Xf(Xt,Yt)

∥∥∥∥ ≤ η

∥∥∥∥T−1∑
t=0

∇Xf(Xt,Yt)

∥∥∥∥
F

≤ η

√√√√T−1∑
t=0

∥∇Xf(Xt,Yt)∥2F ≤ η

√
2

η
f0 =

√
2ηf0. (11)

Then, for T ≤ T∗, ∥XT ∥ ≤ ∥X0∥ + ∥XT − X0∥ ≤ 3
4
√
η +

√
2Tηf0 ≤ 1√

η . It follows that

∥Xt∥2 ≤ 1
η for t = 0, . . . T . Using Lemma 4.1 again, repeating the same argument,

∥Yt∥ ≤ 1√
η
, t = 0, . . . , T.

Iterate the induction until T = T∗ = ⌊ 1
32η2f0

⌋, to obtain ∥Xt∥2, ∥Yt∥2 ≤ 1
η for t = 1, . . . , T∗.

Because ∥XT −X0∥ ≤ √
2ηTf0 for T ≤ T∗ = ⌊ 1

32η2f0
⌋,

σr(XT ) ≥ σr(X0)− ∥XT −X0∥; σ1(XT ) ≤ σ1(X0) + ∥XT −X0∥.
A similar argument applies to achieve the stated bounds for σr(YT ) and σ1(YT ).

C Proof of Proposition 4.3

Write the SVD A = Um×rΣr×rV
⊺
r×n so that AΦ1 = Um×rΣr×r(V

⊺Φ1). Note that
V⊺Φ1 ∈ Rr×d has i.i.d. Gaussian entries N (0, 1

d ). By Proposition A.1, with probability at least
1− (C1ϵ)

d−r+1 − e−C2d,

σr(V
⊺Φ1) ≥ ϵ

(
1−

√
r − 1√
d

)
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On the other hand, Proposition A.2 implies that with probability at least 1− e−r/2 − e−d/2,

σ1(Φ1) ≤
(
1 +

2
√
r√
d

)
≤ 3, and σ1(Φ2) ≤

(
1 +

2
√
d√
m

)
≤ 3.

If all aforementioned events hold, σ1(V
⊺Φ1) ≤ σ1(V)σ1(Φ1) ≤ 3, and

ϵ
(
1−

√
r−1√
d

)
√
ηCσ1(A)

σr(A) ≤ σr(X0) ≤ σ1(X0) ≤
3√
ηC

, σ1(Y0) ≤ 3
√
ηDσ1(A) ≤

√
ηCνσ1(A)

3
.

where the last inequality uses D ≤ Cν
9 . Consequently,

1− ν ≤ 1− D

C
σ1(Φ1)σ1(Φ2) ≤

∥∥∥I− D

C
Φ1Φ

⊺
2

∥∥∥ ≤ 1 +
D

C
σ1(Φ1)σ1(Φ2) ≤ 1 + ν.

Hence,

2f(X0,Y0) =
∥∥∥A(I− D

C
Φ1Φ

⊺
2)
∥∥∥2
F
≤ (1 + ν)2∥A∥2F

2f(X0,Y0) ≥ σ2
min(I−

D

C
Φ1Φ

⊺
2)∥A∥2F ≥ 1

(1− ν)2
∥A∥2F (12)

D Proof of Corollary 5.3

Set β1 = β as in (A2c). Set f0(1) = f0.

By Corollary 5.2, iterating Assumption 1 for T1 = ⌊ β1

8η2f0(1)
⌋ iterations with step-size

η ≤ β1√
32f0(1) log(1/ϵ)

guarantees that

1

2
∥A−XT1Y

′
T1
∥2F ≤ f0(2) := ϵf0(1);

∥σr(XT1
)∥2 ≥ 1

4

β1

η
.

This means that at time T1, we can restart the analysis, and appeal again to Proposition 4.2 with
modified parameters

• f(XT1
,YT1

) ≤ f02 := ϵf01,

• β2 := β1

4 .

Corollary 5.2 again guarantees that provided

η ≤ β2√
32f0(2) log(1/ϵ)

=
1

4
√
ϵ

β1√
32f0(1) log(1/ϵ)

(13)

then f(XT1+T2
,YT1+T2

) ≤ ϵf(XT1
,YT1

) ≤ ϵ2f(X0,Y0) where

T2 =
T1

4ϵ
. (14)

We have that (13) is satisfied by assumption as we assume ϵ ≤ 1
16 . Repeating this inductively,

we find that after T = T1 + · · · + Tk = T1

∑k−1
ℓ=0 (

1
4ϵ )

ℓ ≤ T1(
1
4ϵ )

k iterations, we are guaranteed
that f(XT ,YT ) ≤ ϵkf(X0,Y0). This is valid for any T ∈ N because we may always apply

13



Proposition 4.2 in light of summability and C ≥ 8: for any t,

σ1(Xt) ≤ σ1(X0) +
√
η

k∑
j=1

√
2Tkf0(k)

≤ 3

8
√
η
+

1√
η

k∑
j=1

√
2(1/(4ϵ))j

β1

8f01
ϵjf0(1)

≤ 3

8
√
η
+

√
β

2
√
η

k∑
j=1

(1/2)j

≤ 3 + 4
√
β

8
√
η

≤ 1

2
√
η
.
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