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Abstract

Recent years have witnessed a surge of certified robust training pipelines against
text adversarial perturbation constructed by synonym substitutions. Given a base
model, existing pipelines provide prediction certificates either in the discrete word
space or the continuous latent space. However, they are isolated from each other
with a structural gap. We observe that existing training frameworks need unifica-
tion to provide stronger certified robustness. Additionally, they mainly focus on
building the certification process but neglect to improve the robustness of the base
model. To mitigate the aforementioned limitations, we propose a unified framework
named UniT that enables us to train flexibly in either fashion by working in the
word embedding space. It can provide a stronger robustness guarantee obtained
directly from the word embedding space without extra modules. In addition, we
introduce the decoupled regularization (DR) loss to improve the robustness of the
base model, which includes two separate robustness regularization terms for the
feature extraction and classifier modules. Experimental results on widely used text
classification datasets further demonstrate the effectiveness of the designed unified
framework and the proposed DR loss for improving the certified robust accuracy.†

1 Introduction

Despite the tremendous performance of deep neural networks (DNNs) in natural language process-
ing (NLP) tasks, their robustness has been doubted due to their vulnerability against adversarial
attacks [15]. Particularly, a type of word-level adversarial perturbation named synonym substitution
can generate adversarial examples with high semantic similarity even in the hard-label setting with
limited information [14, 26]. Accordingly, recent years have seen an urge for robust NLP models
that can provide certified robust predictions [23, 25, 31] for this type of attack. A prediction for a
text sample is certified if the hard-label prediction is correct and remains unchanged when the input
is changed to any text sample constructed from the synonym substitution. The key to producing
certified predictions is certified robust training, which introduces perturbation during training to ask
the model to adapt to it and enables it to still perform well in the inference stage under perturbation.

Due to the large scale of NLP models nowadays, certification methods adopted for text data are
usually probabilistic ones. In this context, given a base model that outputs a single prediction, a
smoothed model is built on it in the inference stage with randomized mechanisms, whose outputs
are used to decide whether predictions are certified. Thus, two aspects are essential for generating
certified predictions: the robustness of the base model and the certification of the smoothed model.
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Existing studies have established the foundation for designing smoothing techniques and their
corresponding certification conditions. As Figure 1(a) manifests, a base model usually consists of
three modules: (1) an embedding module that converts discrete words into continuous embeddings,
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Figure 1: Given the (a) base model, (b) Type I frameworks
construct the smoothed model in the discrete word space
while (c) Type II frameworks construct it in the latent space
with IBP. There is a need for unifying these training frame-
works and improving the robustness of the base model.

(2) a feature extraction module that
obtains its deep representation, and
(3) a classifier constructed by the fully
connected (FC) layer that converts the
deep representation to logits. Given
that, randomized mechanisms can ei-
ther build in the discrete word space
(Type I) or the continuous latent space
(Type II). Figure 1(b) shows that Type
I pipelines, including SAFER [25] and
WordDP [23], use perturbed text sam-
ples generated by replacing original
words with their corresponding syn-
onyms to train the base model and
construct a smoothed model for cer-
tification. Another type of training,
the Type II one, is shown in Fig-
ure 1(c), which are recently proposed
by CISS [31]. They add Gaussian
noise to latent features of original text samples to train the base model and certify the prediction in the
latent space in a randomized smoothing [1] fashion with the help of the interval bound propagation
(IBP) [5] module.

Given these profound pioneering works, the observation motivating our work is that existing pipelines
ignore the unification of training frameworks and robustness of the base model. For one thing,
structure-wise speaking, Type II frameworks like CISS need to include an extra IBP module compared
to Type I frameworks, which affects the certification because of the loose bound problem [30] of IBP.
This is validated by our finding that IBP can cause the failure to strike a balance between natural
accuracy and certification ratio. For another, both types of frameworks mainly use the cross-entropy
(CE) loss calculated from the perturbed inputs for training to improve the discriminative ability of
the base model, which is the same as normal training. However, this strategy lacks fine-grained
robustness regularization for individual modules and consideration of the final certification target.

To develop a new method that mitigates the aforementioned limitations, we will face two research
questions: (RQ1) how to build a unified framework for these two types of pipelines to provide
stronger certified robustness and (RQ2) how to design robustness regularization terms for individual
modules to further improve the base model robustness. Our solution to them is as follows:

For RQ1, we propose a new framework named UniT to unify Type I and Type II training. UniT
resorts to the embedding space as an intermediate for unification. In the Type I scenario, it uses
embeddings of perturbed words to train the base model directly. For the Type II scenario, it does not
need the IBP module and adds Gaussian noise directly to the concatenated word embeddings of the
text sample. We accordingly provide a novel certification condition in the embedding space.

For RQ2, we design a novel loss for certified robust training named decoupled regularization (DR)
loss that compensates the CE loss with the modular regularization (MR) term. It consists of two parts.
Part I is the l2 norm between the representations of the original sample and the perturbed input, which
concentrates on the feature extraction module. Part II includes a novel term calculating the prediction
margin from the logits when the original sample representation is slightly perturbed (modeled by
Gaussian noise), which takes the certification target into consideration and aims to regularize the
classifier module. They are linearly combined to provide supportive regularization for different
modules based on their responsibilities and refine the robustness. To sum up, our contributions are:

• To the best of our knowledge, we are the first to provide a comprehensive viewpoint on certified
robust training in text. We design a unified structure named UniT built in the embedding space that
enables Type II frameworks to be conducted without using IBP during training and certification.

• We propose the DR loss to improve the robustness of the base model. It provides modular
regularization directly to aid the CE loss. That is, the feature extraction module is regularized by
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the representational l2 norm, while the classifier module is regularized based on the prediction
margin calculated from the perturbed representations obtained by adding noise to the original ones.

• Experimental results show that the design of the UniT with DR loss is effective in improving the
certified robust accuracy of both types of certification scenarios.

2 Preliminaries and Related Work

2.1 Certified Robust Training in Image

The development of certified robust training dates back to certifying multi-layer perceptions (MLPs)
for image data. Early work tries to formulate certification as an optimization problem with the
techniques of mixed integer linear programming [21] and semidefinite relaxation [18]. A practical
solution to this problem is using the IBP [3] method and its variants [8], whose key idea is to regard
the upper and lower bounds of activated output in each layer as parameters and they are trained by
backpropagation. Later development on deterministic certification methods also includes developing
Lipschitz networks [10]. However, they can only certify the robustness of shallow neural networks.
Another line of certified robust training is conducted by randomized smoothing [1]. It helps provide a
certificate in a probabilistic manner, which is more scalable and can certify larger DNNs.

2.2 Certified Robust Training in Text

Problem Formulation. Suppose that we are given a text classification dataset D. Let Y =
{y1, · · · , yc} denote the set of c classes of D. We have (X, y) as a sample drawn from D. For
the text sample X = [w1, · · · , wn] with n words, wi is the i-th word, and its ground truth is y ∈ Y .
We denote f as the base model for the text classification task, which outputs the prediction logits
[fy1

(X), · · · , fyc
(X)] for each class in Y . Suppose that f can make the correct prediction, i.e.,

argmaxyi∈Y fyi
(X) = y. In the context of certified robustness, we are interested in getting a

certified prediction result such that argmaxyi∈Y fyi
(X ′) = y holds for any allowed perturbed sam-

ple X ′ of X . In this paper, we center on certifying perturbed samples that are constructed by a
powerful adversarial attack named synonym substitutions [9] (an example is shown in Table 10 in the
Appendix). Note that this setting is different from the one in [27] which certifies the prediction under
unconstrained word perturbation for a limited amount of words, and adversarial examples generated
from synonym substitution have lower perturbation rates compared to the ones from rephrasing [17]
and prompting. In this setting, for each word wi ∈ X , suppose it has mi synonyms, its allowable
adversarial substitution set is denoted by S(wi) = {w(1)

i , · · · , w(mi)
i } (Note that S(wi) includes wi).

All perturbed samples X ′ obtained by replacing original words with their synonyms construct the
allowed perturbed sample set A(X) = {X ′|X ′ = [w′

1, · · · , w′
n], w

′
i ∈ S(wi), i = 1, · · · , n}.

Training and Certification. Since A(X) is a large set of perturbed samples (|A(X)| =
∏n

i=1 mi),
it is impractical to certify the prediction by asking f to make a prediction on every X ′ ∈ A(X).
Therefore, existing techniques usually certify prediction results by the upper bound condition. If
such a certification condition satisfies, the prediction is certified robust. Certified robust training
is needed to attain a certified prediction result for X such that the certification condition can be
satisfied in testing. For example, [4] and [5] introduce the IBP-based methods and use the upper
bound of text representation in the final layer to certify the result. However, due to the costly bound
propagation, IBP-based methods can only be used in shallow MLPs and cannot be applied to large
language models like BERT [2]. Besides, IBP has a loose bound problem [30], i.e., upper bounds get
loose in the last several layers during propagation, which obstructs the certification of some samples.

Thus, recent studies mainly use probabilistic certified defense methods to obtain certified predictions
for more powerful but intricate networks. As demonstrated in Figure 1, existing certified robust
training methods for probabilistic certification are categorized into two types. Their common
treatment is to introduce perturbation during training. They ask the whole network to get used to the
perturbed samples, which are either perturbed input texts X ′ (Type I) [23, 25] or perturbed latent
features injected into Gaussian noise (Type II) [31]. They usually use the CE loss to improve the
discriminative ability of the base model. In certification, they construct a smoothed model F for
f . A prediction is certified when the logit score of the ground truth class output by F is larger than
that of the runner-up class by a large enough margin, which we refer to as the certification condition.
Denote Fyi

as the soft-label prediction score of F on class yi. The runner-up class is defined as
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yB = argmaxyi∈Y,yi ̸=y Fyi(X) with the largest logit except for Fy. We now briefly mention their
certification and kindly ask readers to review their works for a more complete picture if needed.

(1) For the Type I scenario, F is constructed by averaging the results attained from inputting
several perturbed text samples to f . The certification depends explicitly on the prediction margin
Fy(X) − FyB

(X). For example, the certification condition of SAFER (Proposition 1 in [25]) is
Fy(X)− FyB

(X) > 2qX , where qX is a constant calculated from the synonym set of the input X .

(2) In the Type II scenario, F is constructed by repeatedly adding Gaussian noise δ ∼ N (0, σ2I)
to the text representation in the latent space, where σ is the standard deviation and I is the identity
matrix. To illustrate, under the randomized smoothing framework, CISS [31] repeatedly draws
Gaussian noise perturbations and adds them to the latent feature of the original sample. It counts the
top-1 prediction distribution of Y given all perturbed inputs. After that, the prediction is certified
if py > 0.5 and R = σΦ−1(py) > R̂ (Algorithm 2 in [31]), where py is the lower bound of the
expected value of the event that the hard-label prediction output by f of the given perturbed input is
class y, R is the certified radius, Φ−1 is the inverse of the standard Gaussian cumulative distribution
function (CDF), and R̂ is the maximum l2 norm between X and any X ′ ∈ A(X) in the latent space
obtained from IBP. The certification implicitly depends on the prediction margin. If the prediction
margin is large, the calculated py and R will get greater, which helps the certification.

There are also some interesting discussions extended from certified robustness such as whether
certified robustness helps fairness [16]. We mainly focus on the certification performance herein and
kindly ask readers to review related works for further information about those discussions.

3 UniT: Unified Certified Robust Training
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Figure 2: Given the base model, UniT unifies two
frameworks by working in the embedding space.
Type I training replaces original embeddings with
embeddings of perturbed samples. Type II training
adds Gaussian noise to original word embeddings.

To provide stronger certified robustness for
those important but independent frameworks,
we design a unified one named UniT that can
unify these two types of training without intro-
ducing extra modules such as the IBP module
used in CISS. In this paper, we utilize BERT as
the base model because it yields the best perfor-
mance for state-of-the-art training frameworks
such as SAFER and CISS in two settings. The
basic processing procedure of the base model is
shown in Figure 2, indicated by the black solid
lines. It first transforms the input sample with
n words to a concatenated BERT word embedding x ∈ Rn×d where d = 768 is the dimension of
word embedding. Then the word embeddings will be processed by the BERT feature extraction
module (Transformer [22, 24] blocks) which outputs the [CLS] token embedding z ∈ Rd as the
representation of the whole text. Finally, the classifier module (FC layer) outputs logits from z, and
the loss is calculated for training. We shall notice that the structural decomposition analysis above is
general among different models, e.g., RoBERTa [11] and ALBERT [7], so we can also adopt DR loss
for other structures when needed. We now detail our motivation and design of UniT.

3.1 Motivation: Why Do We Need Unification and Better Supervision?

The supervision for improving the discriminative ability of the model during certified robust training
generally builds on the CE loss. Since the calculation of the loss function is only related to the last
FC layer in the classifier, we denote the last FC layer as g for illustration. We denote z′ ∈ Rd as the
representation obtained from the feature extraction module given a perturbed input.

The CE loss is calculated from z′, i.e., ℓce = − log(
exp(gy(z′))∑
i exp(gyi (z

′)) ), where [gy1
, · · · , gyc

] is the logit
distribution given the perturbed input for each class in yi ∈ Y . As depicted in Figure 1, Type I training
builds a smoothed model in the discrete word space, and its training is almost the same as normal
training except for perturbed inputs. Meanwhile, the loss for Type II training is ℓtr = ℓce + γ · ℓR̂,
where γ is the weight hyperparameter. It contains not only the CE loss but also a certified radius
regularizer ℓR̂ = max(R̂−R+ µ, 0), where µ is the relaxation hyperparameter, R is the certified
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radius, and R̂ is the maximum deviation caused by synonym substitution in the latent space that we
introduce in Sec. 2.2. We notice that there is a trade-off between the certification ratio and the natural
accuracy for ℓtr in Type II training: a relaxed regularization on the certified radius can make the
base model have higher natural accuracy but a lower certification ratio, and vice versa.

Regularization ℓR̂ ℓR̂ub
ℓR̂lb

Natural Acc. (%) 93.88 89.57 96.34
Cert. Ratio (%) 94.38 99.56 0.81

CRA (%) 88.60 89.18 0.78

Table 1: Trade-off between natural accuracy
and certification ratio. Experiments are con-
ducted in Yelp [19] with CISS.

We verify this observation by taking CISS for in-
stance. We can obtain a relaxed regularization on cer-
tified radius by replacing R̂ with its lower bound R̂lb

and a strict one by its upper bound R̂ub. Suppose the
minimum and the maximum deviation in any dimen-
sion is ρ and ρ̄, respectively, and the number of dimen-
sions in the latent space is dI . We then have R̂lb =√
dI · ρ and R̂ub =

√
dI · ρ̄. We denote the corre-

sponding regularizers as ℓR̂lb
= max(R̂lb−R+µ, 0)

and ℓR̂ub
= max(R̂ub −R+ µ, 0).

We show the results of how this trade-off affects certified robust accuracy in Table 1. Compared to
the original ℓR̂, if we impose a relaxed regularization ℓR̂lb

, the natural accuracy will increase but the
certification condition is hard to satisfy, and consequently, the certified robust accuracy is near 0%.
On the contrary, a stricter regularization ℓR̂ub

makes the smoothed model satisfy the certification
condition easily (almost 100%), but it hurts the natural accuracy. An interesting finding in Table 1 is
that strict regularization ℓR̂ub

helps obtain a higher certified robust accuracy (CRA) than the original
regularization ℓR̂ used in CISS. This is because R̂ in CISS is obtained from IBP, and it has a loose
bound problem. The certified radius regularization ℓR̂ from IBP is a somewhat strict one, so CISS
cannot strike a balance for this trade-off with IBP. Therefore, we shall remove IBP and avoid this
calculation. In addition, since the CE loss is deployed to improve discriminative ability, another
direction for mitigation is to adopt better supervision other than the CE loss for ameliorating the
model robustness, which motivates us to provide individual supervision for each module.

3.2 Training Input

Recall that in the Type I scenario, the original input X = [w1, · · · , wn] is replaced by the perturbed
sample X ′ = [w′

1, · · · , w′
n] ∈ A(X). Correspondingly, in this scenario, UniT uses the embedding

x′ = [u(w′
1), · · · , u(w′

n)] as the input to train the base model, where u is the BERT embedding
function. For the Type II scenario, to facilitate randomized smoothing, UniT needs to inject Gaussian
noise into the BERT embeddings for training. Thus, given a sample of zero-mean Gaussian noise
δ ∼ N (0, σ2I) ∈ Rn×d, UniT uses the embedding x + δ as the input. In this sense, we unify
two types of certified robust training in one framework by utilizing the embedding space as the
intermediate. Thus, all modules can remain the same for either type of certified robust training.

3.3 Certification

For the Type I scenario, we can obtain the certified robustness guarantee from Proposition 1 of
SAFER [25] by constructing the smoothed model based on synonym substitutions. We thereby intend
to detail our proposed certification for the Type II scenario without IBP. Note that the key calculation
for certification in this scenario is R̂, which is the maximum l2 norm caused by allowed perturbed
synonyms in the embedding space. This calculation by UniT is different from CISS because UniT
does not need IBP module, and it is directly obtained in the BERT embedding space Rn×d as follows.

Given the text sample X = [w1, · · · , wn], its BERT embedding is x = [u(w1), · · · , u(wn)].
Similarly, for any perturbed sample X ′ = [w′

1, · · · , w′
n] ∈ A(X), its embedding x′ =

[u(w′
1), · · · , u(w′

n)]. Since each word is independent of the others in the embedding space, the
l2 norm between x and any x′ is ||x′ − x|| =

√∑n
i=1 ||u(wi)− u(w′

i)||2. For each word wi ∈ X ,
because its synonym embedding set is Ui = {u(w(1)

i ), · · · , u(w(mi)
i )}, the maximum deviation

between wi and any word in S(wi) measured by u is ||vi|| = maxe∈Ui ||u(wi) − e||. Due to the
independence of embedding of each word, the maximum deviation caused by all synonyms is

R̂ =
√
||v1||2 + · · ·+ ||vn||2. (1)
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By adopting Eq. (1) to calculate R̂, we can train and certify in the Type II scenario without IBP and
avoid bound propagation. We can conduct the certification in the embedding space with Theorem 1.

Theorem 1 Given(X, y) from D, suppose that the text embedding of X is x. Let h : s → Y be
the hard-label prediction function of UniT in the Type II scenario that takes as the input a vector
s ∈ Rn×d in the text embedding space and outputs the class with the largest logit. Let δ ∼ N (0, σ2I),
where σ is the standard deviation of the added Gaussian noise. If

Eδ[h(x+ δ) = y] ≥ max
yi∈Y,yi ̸=y

Eδ[h(x+ δ) = yi], (2)

then ∀x′, h(x′) = y is robust where x′ is the text embedding of any X ′ ∈ A(X) if R̂ ≤ R, and

R =
σ

2
[Φ−1(Eδ[h(x + δ) = y]) − Φ−1( max

yi∈Y,yi ̸=y
Eδ[h(x + δ) = yi])], (3)

where Φ−1 is the inverse of the standard Gaussian CDF, and R̂ is calculated from Eq. (1). Due to
the space limit, the proof and certification algorithm are shown in Sec. A.7 in the Appendix.

3.4 Training Loss

To provide better supervision for training the base model, we propose a decoupled regularization
(DR) learning paradigm that directly conducts modular regularization to aid the CE loss. We decouple
the regularization on the whole model into one on the feature extraction module and the other on the
classifier module. Thus, this pathway includes two branches. Such a regularization decomposition
requires each module to be robust under the perturbation, which contributes to enhancing the
robustness of the base model with more flexibility, leading to better training and certification results.

𝑧!
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𝜖～𝒩(0, 𝜐"𝐼)

||𝑧! − 𝑧||
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#$$#
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DR Loss

MR Term

𝑔
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Figure 3: DR loss contains a pathway (MR term)
for providing modular regularization for CE loss.

Feature Extraction Regularization. For the
feature extraction module, its responsibility is
to output a deep representation of a given text.
The stability of representation, i.e., the degree
of change in the representation space given a
small change of input, depicts the robustness
of the feature extraction module. To regularize
it, we calculate the l2 norm between perturbed
representation z′ and original representation z,

ℓfr = ||z′ − z||, (4)

where || · || is the l2 norm.

We choose l2 norm over cosine similarity because it is directly related to the prediction margin
defined in Sec. 2.2 in calculation. Thus, it can limit the influence of perturbation on downgrading the
certification performance. Intuitively, it functions as a regularization term that asks the representations
obtained from the feature extraction module given the original sample and perturbed sample to be
similar to each other, which is helpful for obtaining a similar logit for z′ given the same classifier
module. Hence, it further enhances the representational stability and the model robustness.

Classifier Robustness Regularization. Since the representational stability regularization in Eq. (4)
only concerns the feature extraction module, another direction for strengthening the base model
robustness is to design a feedback signal in the classifier level that is complementary to Eq. (4). We
know that the classifier module is the one that outputs the logits. Recall that in Sec. 2.2 we discuss
that the certification is highly dependent on the prediction margin output by the smoothed model,
which is the difference between the logits of the ground truth class and the runner-up class. By
connecting these two observations together, in the context of certified robust training, we can interpret
the robustness of the classifier module as being able to generate a positive prediction margin despite
the perturbation added to the original input z.

Consequently, we introduce a novel regularization term for the classifier module based on its ability
to output a positive prediction margin against a small perturbation. Since this regularizer is confined
to the classifier, we introduce a small amount of Gaussian noise ϵ here to model the perturbation
and sample a point z + ϵ from the neighbor of z. Note that ϵ only serves for modeling small
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perturbation in training. It will not be added in certification and is not related to the Gaussian noise
δ used for certification in Type II scenario. That is, it starts with adding Gaussian noise ϵ ∈ Rd

to z, where ϵ ∼ N (0, ν2I) is drawn from the zero-mean isotropic Gaussian distribution with ν as
the standard deviation hyperparameter. Denote the prediction margin given a vector k ∈ Rd as
M(k) = gy(k) − maxyi∈Y,yi ̸=y gyi

(k), where gy(·) and maxyi∈Y,yi ̸=y gyi
(·) refers to the logits

of the ground truth class and the runner-up class, respectively. We then calculate the margin given
perturbed input z + ϵ asM(z + ϵ). We take its negative as an optimization term for minimization:

ℓcr = −max(M(z + ϵ), 0). (5)

ℓcr has a max operation that outputs 0 whenM(z + ϵ) < 0. This operation acts as feedback for
asking the optimization to concentrate on improving the representation space and the discriminative
ability through the other terms whenM(z + ϵ) < 0, which will not regularize g if z is not well
learned.

Modular Regularization Term. After that, these two regularizers are combined as

ℓmr = max(ℓfr + α · ℓcr, ξ), (6)

which we refer to as the modular regularization (MR) term. In Eq. (6), the MR term is calculated
from the linear combination of ℓfr and ℓcr, where α is a weight hyperparameter greater than 0.
Additionally, we introduce relaxation during optimization with max operation, and ξ > 0 is the
relaxation hyperparameter. Putting them together provides a regularization on how small ||z′ − z||
should be given the margin information. This geometric interpretation is detailed in Sec. A.8.

DR loss. Given the MR term, we can combine it with the CE loss as the DR loss, which is

ℓdr = ℓce + β · ℓmr, (7)

where β is a weight hyperparameter for ℓmr term. Given that, in the Type I training, we can
directly use ℓdr for training. For Type II training, since the certification is related to R̂, we also
have a regularizer for R̂ with ℓR̂ = max(R̂−R+ µ, 0) as CISS does, where R is calculated from
Eq. (3) and µ is the relaxation hyperparameter. Thus, the training loss in the Type II scenario is
ℓtr = ℓdr + γ · ℓR̂, where β and γ are hyperparameters.

Remark. From Eq. (7), we observe that the DR loss is composed of the CE loss and the MR term,
which are indispensable to each other. If we only use the CE loss, the individual regularization will
be ignored. With the help of the MR term, the introduced regularizers in Eq. (6) directly request the
representation to be stable and the classifier to be robust under the perturbation, which helps the CE
loss to improve the base model robustness. Meanwhile, since the MR term does not penalize the
wrongly classified cases, the CE loss is necessary for improving the discriminative ability.

As for computation cost, we acknowledge that compared to CE loss calculating the proposed DR
loss needs to increase the computation complexity due to the calculation of getting the features
of perturbed input and original input during training. Such a tradeoff is natural: to obtain better
robustness it is generally unavoidable to increase computation cost, and the increase of computation
cost also occurs for existing training techniques for improving robustness such as using PGD [13]
loss and TRADES [28] loss. We want to point out that the computation cost of calculating DR loss is
relatively lower which is approximately twice of the cost of caluating CE loss, which is similar to
that of single-step PGD and is acceptable in implementation.

4 Experiments

Given the proposed method above, the questions of interest include: (Q1) Does the unified framework
UniT outperform existing state-of-the-art approaches in both scenarios? (Q2) How does UniT
improve the robustness of the base model in certified robust training? (Q3) Is the design of the UniT
reasonable? We now answer them with the following experimental results.

4.1 Experimental Setup

We describe the experimental setup first. Due to the space limit, we kindly ask the readers to refer to
the Appendix for the details of hyperparameters, dataset description, and metric calculation.
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Datasets. We conduct experiments on four widely used text classification datasets: (1) IMDB [12],
(2) SST2 [20], (3) Yelp [19] and (4) AG [29].

Baselines. Because of different certification conditions used in different works, to gain a fair
comparison, we compare the proposed method with baselines individually in Type I and Type II
scenarios. To illustrate: (1) Since the code of WordDP [23] is unavailable, the Type I baseline we
use is SAFER [25], which is the ground-breaking method that trains a model by inputting perturbed
text samples constructed by randomly sampled synonyms and certifies the prediction results directly
by the prediction margin. (2) The Type II baseline is CISS [31], a recently proposed method that
trains the model and certifies the prediction with IBP in a randomized smoothing manner. Their
implemented base models are BERT because it yields the best performance. Since [31] has shown
that IBP methods [4, 5] cannot certify large networks like BERT, we hereby do not discuss them. We
also include adversarial training losses like PGD loss [13] and TRADES loss [28] as baselines.

Metric. Naturally, certified robust accuracy (CRA) is the used comparison metric, and certified
robust accuracy = natural accuracy × certification ratio. It denotes the fraction of predictions that
are not only correctly classified but also certified robust. As for its calculation, we follow the same
process used in the baseline methods to have a fair comparison. Further details are in Appendix.

4.2 Comparison Results

Comparison of Certified Robustness in Type I Scenario. To answer Q1, we first conduct the
comparison experiments in Type I scenario. For SAFER and UniT, both of them use BERT as the
base model, and the difference is that SAFER is trained with the CE loss and UniT is with the DR
loss. The comparison results are in Table 2, which show that the DR loss increases the certified
robust accuracy up to 3.68%, 1.37%, 0.68%, and 0.53% in IMDB, SST2, Yelp, and AG datasets,
respectively. These results indicate that the MR term enlarges the prediction margin from the CE loss
under perturbation to yield a higher certified robust accuracy. Hence, the DR loss can improve the
robustness of the base model and help UniT achieve better performance in Type I scenario.

We also include adversarial training losses as baselines for Type I Scenario. From Table 2, DR loss
can consistently perform better than PGD loss and TRADES loss in four datasets. Especially, DR loss
is able to obtain a relatively high increment in terms of CRA on the datasets with long text samples
such as IMDB and SST2. Thus, DR loss is a more suitable choice for certified robust training for its
decomposed regularization, which requires each module to be robust under perturbation.

Base Model Loss IMDB SST2 Yelp AG

BERT

CE Loss (SAFER) 85.36 91.65 97.19 93.78
PGD Loss 87.52 90.28 97.86 93.98

TRADES Loss 86.80 90.44 97.56 93.96
DR Loss (UniT) 89.04 93.02 97.87 94.31

Table 2: Comparison of certified robust accuracy (%) in the Type I scenario.

Method Loss Yelp AG
CISS CE 88.60 82.47
CISS DR 89.22 82.93
UniT DR 91.24 84.32

Table 3: Comparison of certified
robust accuracy (%) in the Type II
scenario.

Comparison of Certified Robustness in Type II Scenario.
We further conduct the comparison experiments in the Type
II scenario to answer Q1, and the results are shown in Ta-
ble 3. During implementation, we find that the training for
randomized smoothing in CISS can only work in relatively
large datasets (100k+ training samples). Therefore, we can only
report comparison results on two large datasets satisfying this
condition, i.e., Yelp and AG, with CISS as the baseline. As we
have seen before, directly replacing the CE loss (first row) with
the DR loss (second row) can help improve CRA.

In this setting, we are more interested in the analysis of whether using the structure of UniT can make
Type II training achieve stronger certification without using extra modules. By comparing the last
two rows in Table 3, we find that UniT achieves an increase of 2.02% and 1.39% in Yelp and AG
in terms of certified robust accuracy than the CISS structure trained with the DR loss, respectively.
This improvement shows that by directly conducting randomized smoothing in the BERT embedding
space, UniT not only adapts to both Type I and Type II training but also improves the certified robust
accuracy by avoiding the loose bound problem of the IBP module.
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Comparison of Empirical Robustness. We also conduct experiments on comparing empirical
robustness. We employ BERT as the base model and use PGD loss and TRADES loss as baselines.
In our experiments, we conduct adversarial attacks by utilizing TextBugger [9], a commonly used
method for generating text adversarial examples. Following the existing adversarial attack setup,
we randomly draw 1,000 test samples for adversarial example generation. The defense results of
different methods are shown in Table 4, which demonstrate the empirical robust accuracy of DR loss
is higher than those of PGD loss and TRADES loss. Compared to baselines, the improvement is
obtained by the individual robustness supervision for each module provided by DR loss.

Base Model Loss IMDB SST2 Yelp AG

BERT
PGD Loss 62.0 (87.1) 87.6 (91.5) 92.4 (96.9) 85.5 (93.7)

TRADES Loss 57.8 (84.8) 86.3 (91.7) 91.9 (97.0) 84.4 (94.3)
DR Loss 72.7 (86.9) 89.8 (93.3) 96.9 (98.4) 87.6 (92.9)

Table 4: Comparison of empirical robust accuracy (%) with adversarial training losses. We also show
the corresponding natural accuracy indicated by the parentheses.

4.3 Insight Analysis on UniT

Method Loss Yelp AG
CISS CE 94.37 94.48
CISS DR 95.15 94.86
UniT DR 97.21 98.71

Table 5: Comparison of certifica-
tion ratio (%) in the Type II sce-
nario.

Analysis on Certification Condition. For Q2, we first find
that the improvement is achieved by improving the certifica-
tion ratio in the Type II scenario. As shown in Theorem 1,
UniT includes a stronger certification condition in the Type
II scenario that does not require the calculation from IBP. We
now verify it by comparing the certification ratio between CISS
and UniT. The certification ratio results shown in Table 5 in-
dicate that UniT has a larger ratio of correctly classified test
samples that increases up to 2.84% and 4.23% compared to
CISS, and 2.06% and 3.85% compared to CISS trained with
the DR loss, in Yelp and AG, respectively. This is mainly because the calculation of R̂ in UniT does
not need IBP and is able to avoid the loose bound problem caused by IBP. Consequently, directly
certifying in the BERT embedding space leads to more correctly classified samples that satisfy
the certification condition. Note that the certified robust accuracy equals to the natural accuracy
times the certification ratio. Thus, UniT can contribute to higher certified robust accuracy in the
Type II setting, as it can have a higher ratio of test samples that satisfy the certification condition.

Measure ||z′ − z|| M(z′)−M(z)
Loss CE DR CE DR
Mean 1.752 0.382 -0.060 -0.032

Variance 1.374 0.494 0.877 0.282

Table 6: Comparison of representational l2
norm and margin change between the CE and
DR loss in IMDB.

Analysis on the Effect of the DR Loss. Another
aspect of the answer to Q2 is that the DR loss helps
improve the robustness of the base model. To obtain
a better understanding of the improvement achieved
by the DR loss, w.l.o.g., we analyze how the DR loss
improves the perturbed sample representation and
classification in IMDB in the Type I scenario. We
calculate the average l2 norm between the representa-
tions of the perturbed and original samples, i.e., ||z′ − z||, learned from the CE loss and the DR loss
in the test set, which are the inputs of the last FC layer. We also evaluate how the classifier (FC layer)
is affected by calculating the margin changeM(z′)−M(z) given perturbed samples.

Regularization ℓR̂ ℓR̂ub
ℓR̂lb

Natural Acc. (%) 93.86 90.37 96.72
Cert. Ratio (%) 97.21 99.15 1.08

CRA (%) 91.24 89.60 1.05

Table 7: Trade-off between natural accuracy
and certification ratio of UniT in Yelp.

For both of them, the closer to 0, the better. In Table 6,
it is shown that the mean and variance of ||z′−z|| ob-
tained from the DR loss is significantly smaller than
the ones obtained from the CE loss, which means that
the DR loss effectively improves the representation
compactness between perturbed samples and original
ones. Besides, if we replace the CE loss with the
DR loss, on average, the margin change will reduce
from -0.060 to -0.032, given the perturbed samples
in testing. Therefore, the DR loss can improve the quality of representation and certified results. To
further demonstrate, we take one test sample as a visualization example for demonstration. Due to
the space limit, we present the visualization result in Sec. A.9 in the Appendix.
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Analysis on Trade-Off Balance. To answer Q3, we conduct the trade-off experiment in Yelp again
but on UniT. Comparing Table 7 and Table 1, we can see that UniT does not suffer as much drop
in certification ratio as CISS does when it adopts ℓR̂ compared to ℓR̂ub

, and ℓR̂ leads to the best
performance. It is because UniT avoids the restriction caused by IBP. Therefore, the design of UniT
for conducting certification in the embedding space can achieve a balance for the mentioned trade-off.

CE ALP ℓfr ℓcr CRA (%)
✓ 85.36 (86.03)
✓ ✓ 86.64 (86.36)
✓ ✓ 88.08 (87.62)
✓ ✓ (z + ϵ) 85.92 (87.42)
✓ ✓ ✓ (z) 87.68 (87.45)
✓ ✓ ✓ (z′) 85.76 (85.71)
✓ ✓ ✓ (z + ϵ) 89.04 (87.87)

Table 8: Ablation study results on loss design in
IMDB. ℓfr and ℓfr are indispensable. The natural
accuracy is indicated by the parentheses.

Analysis on the Design of DR Loss. For Q3,
w.l.o.g., we further justify the design of the DR
loss with ablation studies in IMDB in the Type
I scenario. First, we illustrate the necessity of
designing separate regularization terms for dif-
ferent modules. A straightforward choice that
regularizes these two modules simultaneously is
||g(z′) − g(z)||, which is referred to as the ad-
versarial logit pairing (ALP) [6], and g(·) ∈ Rc

is the corresponding logit vector. From Table 8,
if we adopt ALP that penalizes two modules
together, the CRA only improves from 85.36%
to 86.64%. Thus, the decoupled regularization
brings optimization flexibility.

Meanwhile, from Table 8, we can see that only using ℓfr or ℓcr causes a drop of 0.96% and
3.12%, respectively, compared to the DR loss. Thus, these two terms are indispensable for modular
regularization. Additionally, we also validate our design of modeling perturbation for classifier by
Gaussian noise. We incorporate the negative margin calculated from z′ with ℓfr, but this regularization
does not collaborate with the representational l2 norm and worsens the regularization effectiveness.
Thus, we should use z+ϵ to model the perturbation for the classifier module to enhance its robustness.

Feature Extraction Reg. Classifier Reg. CRA (%)
||z′ − z|| ||g(z′)− g(z)|| 85.44
||z′ − z|| max(−t, 0) 86.24
||z′ − z|| −t 86.64
||z′ − z||2 −max(t, 0) 87.36
||z′ − z|| −max(t, 0) 89.04

Table 9: Ablation study results on the regularization
(Reg.) design in IMDB. We denote t =M(z + ϵ).

We further justify the design of each term
in the MR term. For clarity, we here denote
t =M(z + ϵ). For the choice of the clas-
sifier regularization, it could be the ALP
term, the margin loss max(−t, 0), or the
function without max operation −t. Ta-
ble 9 indicates that these choices all un-
dermine the improvement brought by the
representational l2 norm. This is because
the calculation of ||g(z′)− g(z)|| depends
on ||z′ − z|| too, and it attaches too much
weight to ||z′−z||. Additionally, compared to max(−t, 0) or−t, the used−max(t, 0) has a selected
gradient activation area for t > 0, so it adjusts the optimization direction when z has not been trained
well yet and sends a clearer optimization guidance than the others. We also note that the improvement
decreases if we change the l2 norm to the squared l2 norm. Thus, the design in Figure 3 is reasonable.

5 Conclusion

The development of certified robust training in text is restricted by the lack of a unified framework
and modular regularization. To alleviate these problems, we propose a unified framework named
UniT to strengthen the certification of prediction results for text data. Under this framework, we
introduce the DR loss combining the CE loss with the modular regularization term for different
modules specifically to improve the base model robustness. Experiments show that UniT allows more
correctly classified samples to satisfy the certification condition by avoiding IBP. Additionally, the
DR loss can generate more similar representations for perturbed samples to the original ones and
reduce the drop of prediction margin. Higher certified robust accuracy is achieved consequently.
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A Appendix

A.1 Limitations

The datasets used in experiments are mainly the ones used in the text classification task. We notice
that there are other types of text datasets, such as question answering and text generation ones. In our
experiments, we follow the existing works and test our methods in text classification datasets only.
We expect future works to include a discussion on defending adversarial synonym substitution on
text datasets of other types.

A.2 Broader Impacts

The proposed UniT has a positive societal impact because it is able to generate not only accurate but
also certified robust predictions on text-related tasks. Nowadays, large language models (LLMs) such
as ChatGPT have attracted great attention due to their powerful performance and intriguing interface.
However, they are mostly deployed as a black-box service for users to use and lack reliability for
their predictions. For UniT, it can provide a robustness guarantee for predictions for tasks such as
text classification, and it can be scalable for LLMs. As a result, UniT can positively impact the
employment of LLMs in real-world applications and improve the trust between users and LLM
service providers.

A.3 Dataset Details

The used datasets are all in English. Each text sample is tokenized by the “BertTokenizer” provided
by the Transformers [24] library. The detailed descriptions of the datasets are as follows:

1. IMDB [12] is a sentiment analysis dataset for movie reviews with either positive or negative
sentiment.† Its text samples have comparatively longer lengths than the ones of the rest
datasets. It has 25,000 train and test samples, respectively.

2. SST2 [20] is another binary text classification dataset for movie reviews. It has 67,349 train
samples and 1,821 test samples.‡ Its license is CC0.

3. Yelp [19] is a large-scale sentiment analysis dataset collected from restaurant reviews written
by Yelp users with two classes, i.e., positive and negative ones.§ It has 444,101 samples for
training and 126,670 samples for testing. Its license is the Apache-2.0 license.

4. AG [29] is a comparably large-scale news classification dataset with 4 classes, including
world, sports, science/technology and business.¶ The number of train and test samples are
120,000 and 7,600, respectively.

A.4 Calculation of Certified Robust Accuracy

Because the existing approaches use different ways to calculate the certified robust accuracy, to
make a fair comparison, we follow the methods used in different scenarios and compare baselines
separately.

• When comparing with SAFER, we follow the same setting that conducts sampling for
choosing test samples and construct 5,000 perturbed samples for each test sample through
random synonym replacement. The output from the smoothed model is derived by averaging
the prediction of the 5,000 perturbed samples for each original text sample. We calculate the
certified robust accuracy in this setting for both SAFER and UniT based on the certification
condition proposed in Proposition 1 of SAFER [25]. The confidence level is set to 99.0%.
We take a text sample in IMDB as an example and show one of the perturbed samples
constructed by adversarial synonym substitution in Table 10.

†https://ai.stanford.edu/~amaas/data/sentiment/
‡https://www.kaggle.com/datasets/atulanandjha/stanford-sentiment-treebank-v2-sst2
§https://github.com/shentianxiao/language-style-transfer/tree/master/

data/yelp
¶https://www.kaggle.com/datasets/amananandrai/ag-news-classification-dataset
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Sample Text
Original Text (Label:
Negative)

I went and saw this movie last night after being coaxed to by a few friends
of mine. I’ll admit that I was reluctant to see it because from what I knew
of Ashton Kutcher he was only able to do comedy. I was wrong. Kutcher
played the character of Jake Fischer very well, and Kevin Costner played
Ben Randall with such professionalism. The sign of a good movie is that
it can toy with our emotions. This one did exactly that. The entire theater
(which was sold out) was overcome by laughter during the first half of
the movie, and were moved to tears during the second half. While exiting
the theater I not only saw many women in tears, but many full grown
men as well, trying desperately not to let anyone see them crying. This
movie was great, and I suggest that you go see it before you judge.

Perturbed Sample I went and saw this cinematographic last nuit after being coaxed to by a
few friends of mined. I’ll admit that I was loath to see it because from
what I knew of Ashton Kutcher he was only able to do comedy. I was
awry. Kutcher played the character of Jake Fischer very well, and Kevin
Costner played Ben Randall with such professionalism. The sign of a
good cinematic is that it can plaything with unser emotions. This one did
exactly that. The totaled theatres (which was sale out) was overcoming
by laughter during the firstly half of the movie, and were moved to tears
during the second half. While exit the theatres I not exclusively saw many
daughter in tears, but varying full grown males as well, trying desperately
not to letting anyone see them crying. This films was great, and I suggest
that you go see it avant you judges.

Table 10: Example of a perturbation sample. We color and underline the perturbed words (corre-
sponding synonyms of original words) in the perturbed sample to demonstrate the difference between
these two text samples.

• When comparing with CISS, we follow its setting of using the whole test set for calculating
certified robust accuracy. The certified robust accuracy of CISS is calculated based on
Algorithm 2 proposed in CISS [31], and we adopt the same certification process except that
we adopt Theorem 1 as the certification condition for our unified framework in this setting.
We show the pseudocode for prediction and certification under UniT in the Type II setting in
Algorithm 1, and its details are discussed in Sec. A.7. Due to computing restrictions, the
certification results are calculated from 9,000 perturbed samples constructed in the hidden
space by adding Gaussian noise to the original sample embedding. The confidence level is
set to 99.9%. During certification, the required inputs are the original text sample and the
corresponding synonym set of each original word.

A.5 Implementation

Since UniT is based on BERT, it has a similar parameter number to the one of BERT, which is 110M.
We use the pretrained BERT model “bert-base-uncased” provided by the Transformers [24] library.
When we conduct Type I training with UniT, for every dataset, we fine-tune the pretrained model
with 3 epochs, which usually takes 10 minutes on an Nvidia A6000 GPU. When we conduct Type II
training with UniT, the training takes about 48 hours for both datasets on an Nvidia A100 GPU. For
Yelp and AG, we fine-tune the pretrained model with 110 and 200 epochs, respectively.

A.6 Hyperparameters

The tuning of hyperparameters is not tricky for the DR loss due to their clear interpretation. During
training with the DR loss, we set the hyperparameters ν = 0.1 to keep the Gaussian noise relatively
small, α = 0.7 to allow the margin to increase while penalizing l2 norm, and ξ = 0.6 to allow
appropriate relaxation. In addition, while calculating the final loss, we set β = 1 to make the MR
term and the CE loss have equal weight. In the Type II setting, the extra hyperparameters µ and γ
have been studied by [31], so we follow them to set µ = 1 and incrementally increase γ to 4 as the
training epoch increases.
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Algorithm 1: Prediction and certification by UniT in Type II Setting
function PREDICT
Input: Hard-label prediction function based on UniT h, Standard deviation of Gaussian noise σ,
Embedding of original text x, Number of Gaussian noise η, Confidence level ω
Process:
Draw η samples of Gaussian noise, add them to x repeatedly, and obtain a vector of class counts
CNT for all perturbed inputs;
ŷA, ŷB ← top two indices in CNT;
ηA, ηB ← CNT(ŷA), CNT(ŷB);
if BINOMPVALUE(ηA, ηA + ηB , 0.5) ≤ ω then

Return ŷA; else
Return ABSTAIN

end
end
function CERTIFY
Input: Hard-label prediction function based on UniT h, Standard deviation of Gaussian noise σ,
Embedding of original text x, 1st number of Gaussian noise η1, 2nd number of Gaussian noise
η2, Lower confidence 1− ω
Process:
Draw η1 samples of Gaussian noise, add them to x repeatedly, and obtain a vector of class
counts CNT1 for all perturbed inputs;
ŷA ← top index in CNT1;
Obtain a vector of class counts CNT2 similarly with η2 samples of Gaussian noise;
pA ← LOWERCONFBOUND(CNT2[ŷA], η2, 1− ω);
if pA > 0.5 and R̂ ≤ σΦ−1(pA) then

Return ŷA;
end

We also include the results of the influence of hyperparameters on the DR loss. Without the loss of
generality, we test on the IMDB dataset in the Type I scenario. The results are obtained when we
keep the values of other hyperparameters fixed as the ones we use.

Influence of ν. From Table 11, a comparably small ν is beneficial to modeling the perturbation and
loss optimization. Selecting a small ν as 0.05 has already increased the performance compared to
that of using the CE loss. As ν grows greater than 0.1, the positive impact of using Gaussian noise to
improve the robustness of the classifier module will gradually downgrade. Thus, a comparably small
ν as 0.1 is most beneficial.

ν 0.05 0.1 0.15 0.2
Result 87.44 89.04 88.08 86.96

Table 11: Influence of ν on certified robust accuracy (%).

Influence of α. α is the weight of the negative margin in the DR loss. As we have seen in the ablation
study, the introduction of the negative margin contributes to enhancing the base model robustness by
regularizing the robustness of the feature extraction and the classifier module. Thus, from Table 12,
setting α comparatively high will be helpful for improving the certified robust accuracy. Thus, we
can set α = 0.7 to help improve the l2 norm.

α 0.1 0.3 0.5 0.7 0.9
Result 88.08 88.72 88.24 89.04 89.04

Table 12: Influence of α on certified robust accuracy (%).

Influence of β. As the weight of the MR term, β shall be set approximately equal to 1. From Table 13,
we observe that only when β is too large, e.g., β = 2, can the MR term damage the training of the
base model. Therefore, we can just set β to have equal weights with the CE loss to improve the
robustness of the base model.
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β 0.5 1 1.5 2.0
Result 88.40 89.04 88.24 83.60

Table 13: Influence of β on certified robust accuracy (%).

Influence of ξ. From Table 14, the introduction of relaxation will be helpful for getting high certified
robust accuracy. As shown in Table 14, the certified robust accuracy grows as ξ increases from 0 to
0.6 and gradually decreases when ξ gets higher. Therefore, 0.6 is the relaxation hyperparameter we
use in our experiment.

ξ 0 0.2 0.4 0.6 0.8 1.0
Result 86.40 86.96 87.92 89.04 88.34 87.44
Table 14: Influence of ξ on certified robust accuracy (%).

A.7 Proof for Theorem 1

Proof. Given the results of Theorem 1 in [1], for all ||∆|| < R, we have h(x + ∆) = y.
Denote u the word embedding function. Recall that x = [u(w1), · · · , u(wn)] for the text
sample X = [w1, · · · , wn], and x′ = [u(w′

1), · · · , u(w′
n)] for any allowed perturbed sample

X ′ = [w′
1, · · · , w′

n] ∈ A(X). Because each word is independent of the others in the embedding
space, the l2 norm between x and any x′ is

||x′ − x|| =

√√√√ n∑
i=1

||u(wi)− u(w′
i)||2. (8)

Note that for each word wi ∈ X , the embedding set of its synonyms is Ui =

{u(w(1)
i ), · · · , u(w(mi)

i )}, and the maximum deviation between wi and any word w′
i ∈ S(wi)

is ||vi|| = maxe∈Ui
||u(wi) − e||. Since each word is independent of the others, the maximum

deviation of ||x′ − x|| caused by all possible combinations of the synonyms of different words is

R̂ = max ||x′ − x|| =
√
||v1||2 + · · ·+ ||vn||2. (9)

Now since we have R̂ ≤ R, we correspondingly have ||x′ − x|| ≤ R for all X ′ ∈ A(X), thus

h(x′) = h(x+ (x′ − x)) = h(x) = y, (10)

for any X ′ ∈ A(X) whose corresponding text embedding is x′. Q.E.D.

Remark. In certification, we also follow the calculation used by [1] and [31] that R is lower
bounded by σΦ−1(py), where py is the lower bound of Eδ[h(x + δ) = y] estimated from the
Binomial proportion confidence interval. Thus, the certification condition becomes py > 0.5 and

R̂ ≤ σΦ−1(py), which is harnessed in [1] and [31] as well.

We also show the prediction and certification process in the Type II setting in Algorithm 1. This
process mainly follows the same idea as those of [1] and [31]. In Algorithm 1, BINOMPVALUE(ηA, ηA+
ηB , p) returns the p-value of the two-sided hypothesis test that ηA ∼ Binomial(ηA + ηB , p). And
LOWERCONFBOUND(κ, η, 1−ω) returns a one-sided (1−ω) lower confidence interval for the Binomial
parameter p given a sample κ ∼ Binomial(η, p).

A.8 Geometric Interpretation of MR Term

Eq. (6) has an explicit geometric interpretation. As shown in Figure 4, after projecting the original
sample and perturbed sample in the high-dimensional representation space Rd (the input space of the
last FC layer g), Eq. (6) requires the perturbed representation z′ to locate around z within the radius
r = ξ+α·M(z+ϵ). That is, it tries to guide the original sample and perturbed sample representations
to be close to each other and improve the inter-sample compactness of the high-dimensional space
with the margin information.
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Figure 4: Geometric interpretation of the MR term.
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Figure 5: Comparison of perturbed text sample
representation distribution. The representations
of perturbed samples obtained from DR loss are
closer to the original ones than the ones obtained
from CE loss.

A.9 Visualization of Representation Distribution

As mentioned in the Experiment section, we take one test sample as a visualization example to
demonstrate that DR loss is able to improve the representation compactness between perturbed
samples and the original ones. The used text sample is randomly chosen from the IMDB dataset and
the visualization experiment is conducted in the Type I scenario. We now show the visualization
result as follows.

Given this randomly chosen text sample, in the certification process, we will need 5,000 perturbed
samples to certify the prediction result. As Figure 5 shows, for all the used perturbed samples for
certification, we first obtain two groups of representations with the CE and DR loss from the feature
extraction module, respectively. We denote the l2 distance between the original sample representation
z and the representation of any perturbed sample z′ as L. We then project those high-dimensional
representations z′ into a two-dimensional space based on L: if the l2 distance and angle of z′ with z
is L and ω respectively, the coordinate of z′ in Figure 5 is (L cosω,L sinω), and the origin (0, 0)
represents z. In this example, the average ||z′ − z|| for representations obtained from the CE and
DR loss are 1.768 and 0.353, respectively. From the visualization in Figure 5, the perturbed sample
representation obtained from the DR loss distributes much closer to z with a smaller divergence,
which demonstrates that the representation learned from the DR loss is of higher quality.
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