
References
[1] Olalekan Adeyinka. Internet attack methods and internet security technology. In 2008 Second

Asia International Conference on Modelling & Simulation (AMS), pages 77–82, 2008.

[2] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 34:17981–17993, 2021.

[3] Suman Banerjee, Mamata Jenamani, and Dilip Kumar Pratihar. A survey on influence maxi-
mization in a social network. Knowledge and Information Systems, 62:3417–3455, 2020.

[4] J. Behrmann, W. Grathwohl, Rtq Chen, D. Duvenaud, and J. H. Jacobsen. Invertible residual
networks. In International Conference on Machine Learning, 2019.

[5] Marián Boguná, Romualdo Pastor-Satorras, Albert Díaz-Guilera, and Alex Arenas. Models of
social networks based on social distance attachment. Physical review E, 70(5):056122, 2004.

[6] Zongmai Cao, Kai Han, and Jianfu Zhu. Information diffusion prediction via dynamic graph neu-
ral networks. In 2021 IEEE 24th international conference on computer supported cooperative
work in design (CSCWD), pages 1099–1104. IEEE, 2021.

[7] Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffu-
sion posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687,
2022.

[8] Gojko Čutura, Boning Li, Ananthram Swami, and Santiago Segarra. Deep demixing: Recon-
structing the evolution of epidemics using graph neural networks. In 2021 29th European Signal
Processing Conference (EUSIPCO), pages 2204–2208. IEEE, 2021.

[9] Ming Dong, Bolong Zheng, Nguyen Quoc Viet Hung, Han Su, and Guohui Li. Multiple
rumor source detection with graph convolutional networks. In Proceedings of the 28th ACM
international conference on information and knowledge management, pages 569–578, 2019.

[10] Fei Gao, Jiang Zhang, and Yan Zhang. Neural enhanced dynamic message passing. In
International Conference on Artificial Intelligence and Statistics, pages 10471–10482. PMLR,
2022.

[11] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning,
pages 1263–1272. PMLR, 2017.

[12] Pablo M Gleiser and Leon Danon. Community structure in jazz. Advances in complex systems,
6(04):565–573, 2003.

[13] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by
enforcing lipschitz continuity. Machine Learning, 110(2):393–416, 2021.

[14] Kilian Konstantin Haefeli, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer.
Diffusion models for graphs benefit from discrete state spaces. arXiv preprint arXiv:2210.01549,
2022.

[15] Qiang He, Hui Fang, Jie Zhang, and Xingwei Wang. Dynamic opinion maximization in social
networks. IEEE Transactions on Knowledge and Data Engineering, 35(1):350–361, 2021.

[16] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[18] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146, 2003.

11



[19] William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of
a mathematical and physical character, 115(772):700–721, 1927.

[20] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ArXiv, abs/1609.02907, 2017.

[21] Daniel B Larremore, Bailey K Fosdick, Kate M Bubar, Sam Zhang, and Yonatan H Grad.
Estimating sars-cov-2 seroprevalence and epidemiological parameters with uncertainty from
serological surveys. eLife Sciences, 10, 2021.

[22] Chen Ling, Junji Jiang, Junxiang Wang, and Zhao Liang. Source localization of graph diffusion
via variational autoencoders for graph inverse problems. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1010–1020, 2022.

[23] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471,
2022.

[24] Wuqiong Luo and Wee Peng Tay. Estimating infection sources in a network with incomplete
observations. In 2013 IEEE Global Conference on Signal and Information Processing, pages
301–304. IEEE, 2013.

[25] Wuqiong Luo and Wee Peng Tay. Estimating infection sources in a network with incomplete
observations. In 2013 IEEE Global Conference on Signal and Information Processing, pages
301–304. IEEE, 2013.

[26] Wuqiong Luo, Wee Peng Tay, and Mei Leng. How to identify an infection source with limited
observations. IEEE Journal of Selected Topics in Signal Processing, 8(4):586–597, 2014.

[27] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3:127–163,
2000.

[28] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[29] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[30] B Aditya Prakash, Jilles Vreeken, and Christos Faloutsos. Spotting culprits in epidemics: How
many and which ones? In 2012 IEEE 12th International Conference on Data Mining, pages
11–20. IEEE, 2012.

[31] Maciel M Queiroz, Dmitry Ivanov, Alexandre Dolgui, and Samuel Fosso Wamba. Impacts of
epidemic outbreaks on supply chains: mapping a research agenda amid the covid-19 pandemic
through a structured literature review. Annals of operations research, pages 1–38, 2020.

[32] Jonathan M. Read, Jessica R. E. Bridgen, Derek A. T. Cummings, Antonia Ho, and Chris P.
Jewell. Novel coronavirus 2019-ncov (covid-19): early estimation of epidemiological parameters
and epidemic size estimates. Philosophical Transactions of the Royal Society B: Biological
Sciences, 376(1829):20200265–, 2021.

[33] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[34] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[35] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

12



[36] Hao Sha, Mohammad Al Hasan, and George Mohler. Source detection on networks using
spatial temporal graph convolutional networks. In 2021 IEEE 8th International Conference on
Data Science and Advanced Analytics (DSAA), pages 1–11. IEEE, 2021.

[37] Chintan Shah, Nima Dehmamy, Nicola Perra, Matteo Chinazzi, Albert-László Barabási, Alessan-
dro Vespignani, and Rose Yu. Finding patient zero: Learning contagion source with graph
neural networks. CoRR, abs/2006.11913, 2020.

[38] Xincheng Shu, Bin Yu, Zhongyuan Ruan, Qingpeng Zhang, and Qi Xuan. Information source
estimation with multi-channel graph neural network. In Graph Data Mining, pages 1–27.
Springer, 2021.

[39] Tristan SW Stevens, Jean-Luc Robert, Faik C Yu, Jun Seob Shin, and Ruud JG van Sloun.
Removing structured noise with diffusion models. arXiv preprint arXiv:2302.05290, 2023.

[40] Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan,
Hong Zhang, Yirong Wang, Zhaohui Qian, et al. On the origin and continuing evolution of
sars-cov-2. National science review, 7(6):1012–1023, 2020.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[42] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

[43] Junxiang Wang, Junji Jiang, and Liang Zhao. An invertible graph diffusion neural network for
source localization. In Proceedings of the ACM Web Conference 2022, pages 1058–1069, 2022.

[44] Zheng Wang, Chaokun Wang, Jisheng Pei, and Xiaojun Ye. Multiple source detection without
knowing the underlying propagation model. In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, AAAI’17, page 217–223. AAAI Press, 2017.

[45] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[46] Wenwen Xia, Yuchen Li, Jun Wu, and Shenghong Li. Deepis: Susceptibility estimation on
social networks. In Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, pages 761–769, 2021.

[47] KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard
Zemel, and Xaq Pitkow. Inference in probabilistic graphical models by graph neural networks.
In 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pages 868–875. IEEE,
2019.

[48] Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal
of anthropological research, 33(4):452–473, 1977.

[49] Wenyu Zang, Peng Zhang, Chuan Zhou, and Li Guo. Locating multiple sources in social
networks under the sir model: A divide-and-conquer approach. Journal of Computational
Science, 10:278–287, 2015.

[50] Laijun Zhao, Hongxin Cui, Xiaoyan Qiu, Xiaoli Wang, and Jiajia Wang. Sir rumor spreading
model in the new media age. Physica A: Statistical Mechanics and its Applications, 392(4):995–
1003, 2013.

[51] Linhua Zhou and Meng Fan. Dynamics of an sir epidemic model with limited medical resources
revisited. Nonlinear Analysis: Real World Applications, 13(1):312–324, 2012.

[52] Kai Zhu, Zhen Chen, and Lei Ying. Catch’em all: Locating multiple diffusion sources in
networks with partial observations. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 1676–1682. AAAI Press, 2017.

13



[53] Linhe Zhu, Gui Guan, and Yimin Li. Nonlinear dynamical analysis and control strategies
of a network-based sis epidemic model with time delay. Applied Mathematical Modelling,
70:512–531, 2019.

[54] Arkaitz Zubiaga, Ahmet Aker, Kalina Bontcheva, Maria Liakata, and Rob Procter. Detection and
resolution of rumours in social media: A survey. ACM Computing Surveys (CSUR), 51(2):1–36,
2018.

14



A Broader impacts

Overall, our work offers valuable insights into how to limit the spread of malicious information. For
example, by tracing the spread of infectious diseases, we can identify potential contacts of infected
individuals, effectively containing the outbreak. However, it is important to consider the potential
negative implications of this approach for society, such as compromising the privacy of individuals
living with infectious diseases like HIV. Addressing these concerns should be important.

B Derivation of forward and backward processes

Derivation of forward processes. Extending Equation 4 by means of the Markov property:

q
(
xi
t | xi

0

)
=

∑
xi

1:t−1

t∏
k=1

q
(
xi
k | xi

k−1

)

=
∑

xi
1:t−1

t∏
k=1

xi
k−1Q

i
kx

i
k

T

=
∑

xi
1:t−1

xi
0Q

i
1x

i
1

T · · ·xi
k−1Q

i
kx

i
k

T · · ·xi
t−1Q

i
tx

i
t

T

= xi
0Q

i
1

∑
xi

1

xi
1

T
xi
1

 · · ·
∑

xi
t−1

xi
t−1

T
xi
t−1

Qi
tx

i
t

T

= xi
0Q

i
1IQ

i
2 · · · IQi

kI · · · IQi
tx

i
t

T

= xi
0Q̄

i
tx

i
t

T ∼ Cat
(
xi
t;p = xi

0Q̄
i
t

)

(18)

Where I is the identity matrix.

Derivation of backward processes. The detailed derivation of Equation 6 is as follows:

q
(
xi
t−1 | xi

t,x
i
0

)
=

q
(
xi
t | xi

t−1,x
i
0

)
q
(
xi
t−1 | xi

0

)
q
(
xi
t | xi

0

)
=

q
(
xi
t | xi

t−1

)
q
(
xi
t−1 | xi

0

)
q
(
xi
t | xi

0

)
=

xi
t−1Q

i
tx

i
t

T · xi
0Q̄

i
t−1x

i
t−1

T

xi
0Q̄

i
tx

i
t

T

=

(
xi
tQ

i
t
T
xi
t−1

T
)
·
(
xi
0Q̄

i
t−1x

i
t−1

T
)

xi
0Q̄

i
tx

i
t

T

=

(
xi
tQ

i
t
T
)
⊙

(
xi
0Q̄

i
t−1

) (
xi
t−1

T
)

xi
0Q̄

i
tx

i
t

T

∼ Cat

xi
t−1;p =

(
xi
tQ

i
t
T
)
⊙

(
xi
0Q̄

i
t−1

)
xi
0Q̄

i
tx

i
t

T



(19)

15



From the Bayesian formula, it follows that:

q
(
xi
t−1 | xi

t,x
i
0

)
= q

(
xi
t−1 | xi

t

)
=

∑
xi

0
q
(
xi
t−1,x

i
t,x

i
0

)
q
(
xi
t

)
=

∑
xi

0
q
(
xi
t−1 | xi

t,x
i
0

)
q
(
xi
0 | xi

t

)
q
(
xi
t

)
q
(
xi
t

)
=

∑
xi

0

q
(
xi
t−1 | xi

t,x
i
0

)
q
(
xi
0 | xi

t

)
= Eq(xi

0|xi
t)
q
(
xi
t−1 | xi

t,x
i
0

)
(20)

Fitting this distribution using a neural network:

q
(
xi
t−1 | xi

t

)
≈ pθ

(
xi
t−1 | xi

t

)
= Exi

0∼pθ(xi
0|xi

t)
q
(
xi
t−1 | xi

t,x
i
0

)
= Epϑ(xi

0|xi
t)
q
(
xi
t | xi

t−1,x
i
0

)
q
(
xi
t−1 | xi

0

)
q
(
xi
t | xi

0

)
= Ep0(xi

0|xi
t)
q
(
xi
t | xi

t−1

)
q
(
xi
t−1 | xi

0

)
q
(
xi
t | xi

0

)
=

∑
j

[
q
(
xi
t | xi

t−1

)
q
(
xi
t−1 | xi

0

(j)
)
pθ

(
xi
0

(j) | xi
t

)]
q
(
xi
t | xi

0

)
=

q
(
xi
t | xi

t−1

) [∑
j q

(
xi
t−1 | xi

0

(j)
)
pθ

(
xi
0

(j) | xi
t

)]
q
(
xi
t | xi

0

)

(21)

C Propagation rule constraint of information diffusion reconstruction

To investigate the circumstances under which the propagation rules may be violated, let’s revisit
Equation 6. Note that the denominator serves as the normalization term, while the numerator is
composed of two key terms -

(
xi
tQ

i
t
T
)

and
(
xi
0Q̄

i
t−1

)
- that are crucial in preserving the propagation

rule.

The three rows of Qi
t
T correspond to the distribution of q(xi

t|xi
t−1, x

i
0) when xi

t is in one of three
states: S, I , and R. Similarly, the three rows of Q̄i

t represent the distribution of q(xi
t−1|xi

0) when xi
0

is in one of three states: S, I , and R. Let
[
Q̄i

t

]
12

and
[
Q̄i

t

]
13

be denoted by qat and qbt respectively,

then qa1 = γi
1, q

b
1 = 0.

Q̄i
t =

∏t
k=1(1− βi

k)
∏t−1

k=1(1− βi
k)β

i
t + qat−1(1− γi

t) qat−1(γ
i
t) + qbt−1

0
∏t

k=1(1− γi
k)

∑t
j=1

∏t−j
k=1(1− γi

k)γ
i
k+1

0 0 1

 (22)

When xi
t and xi

0 are in different states, the results of q(xi
t−1|xi

t, x
i
0) =

(
xi
tQ

i
t
T
)
⊙

(
xi
0Q̄

i
t−1

)
are

shown in Table 4. The table reveals that q(xi
t−1|xi

t, x
i
0) = [0, 0, 0] when the propagation rule is

violated. Since we are predicting xi
0, there are only two possible states for xi

0: S (Susceptible) and I
(Infected), with xi

0 = R (Recovered) being excluded. In such instances, q(xi
t−1|xi

t, x
i
0) can be set

to [1, 0, 0] to resolve the issue. Furthermore, if xi
t = R and xi

0 = S, then xi
t−1 = S would violate

the propagation rules. However, as shown in the 9th row of Table 4, the probability of xi
t−1 = S

is much smaller than that of xi
t−1 = I and xi

t−1 = R, and such situations will not lead to training
failure. Hence, there is no need for any specific handling of this scenario.

To further minimize propagation rule violations during the training process, we incorporate supervi-
sion of the propagation rule. Specifically, when using this supervision function, nodes that have a
state of R are set to I to enforce the propagation rule.

Lconstrain1 = Relu (Xt−1 − (A+ I)X0) (23)

16



Table 4: The distribution of the unnormalized q(xi
t−1|xi

t, x
i
0) in different cases.

xi
t x

i
0

q(xi
t−1|xi

t, x
i
0)

S I R

S
S

∏t
k=1(1− βi

k)
∏t−1

k=1(1− βi
k) 0 0

I 0 0 0
R 0 0 0

I
S qat

∏t−1
k=1(1− βi

k)
∏t

k=1(1− γi
k)q

a
t−1 0

I 0
∏t

k=1(1− γi
k)

∏t−1
k=1(1− γi

k) 0
R 0 0 0

R
S qbt

∏t−1
k=1(1− βi

k) qat−1

∑t
j=1

∏t−j
k=1(1− γi

k)γ
i
k+1 qbt−1

I 0
∑t

j=1

∏t−j
k=1(1− γi

k)γ
i
k+1

·
∏t−1

k=1(1− γi
k)

∑t
j=1

∏t−j
k=1(1− γi

k)γ
i
k+1

R 0 0 1

where (A+ I)X0 represents the total number of infected nodes in a given node’s first-order neigh-
borhood. Equation 23 penalizes X0 if the node is infected and there are no other infected nodes
within its first-order neighborhood. To maintain the stability of inferred X0 generating Xt−1, we
apply the same constraint to the process. Specifically, we utilize the monotonicity regularization of
information diffusion from [22]. If the source set X(i)

0 is a superset of X(j)
0 , then the generated Xt−1

resulting from their diffusion needs to satisfy the following equation.

Lconstrain2 =
∥∥∥max

(
0,X

(j)
t−1 −X

(i)
t−1

)∥∥∥2 ,∀X(i)
0 ⊇ X

(j)
0 (24)

D Proofs of lemmas and theorems

D.1 The proof of theorem 3.1

Proof Set the initial infection seed set as: S = {xs1
0 , xs2

0 , . . . xsm
0 }. At the initial moment, the

infection status distribution of node i is: P i=Sm

S (0) = 0, P i=Sm

I (0) = 1

P i ̸=Sm

S (0) = 1, P i ̸=Sm

I (0) = 0
P i
R(0) = 0

(25)

At time t, the infection status distribution of node i is:
P i
I (t) = P i

I (t− 1)(1− γi
R(t− 1)) + P i

S(t− 1)
[
1−

∏
j(1− βj

I (t))AijP
j
I (t− 1)

]
P i
S(t) = P i

S(t− 1)
[∏

j(1− βj
I (t))AijP

j
I (t− 1)

]
P i
R(t) = P i

I (t− 1)γi
R(t)

(26)

where A is the adjacency matrix and j is the neighbor of node i. When dealing with a static graph
G, A is fixed, allowing for determination of the state distribution at any time based on the initial
node state. Specifically, if both graph G and the seed node set S are known, it becomes possible to
calculate the state distribution of each node at any given time using Equation 26. Utilizing Equations
2 and 3, Qi

t can also be determined.

D.2 Proof of lemma 3.1

Proof The graph convolution layer with batch normalization BN (g(ξ)) can be abbreviated as
GConv. In our approach, we apply spectral normalization to both the linear transformation U
and convolutional layers GConv. As a result, the weight parameters of both the networks fw and
GConv possess 1-Lipschitz continuity after spectral normalization, as described in [28].

17



Let GConv : Rn → Rm, x1, x2 ∈ Rn. Note that the nonlinear activation function σ(·) is set to
Mish(·) , which obviously possesses 1-Lipschitz continuity.

∥fθ(x1)− fθ(x2)∥p = ∥σ(GConv(x1))− σ(GConv(x2))∥p
≤ ∥GConv(x1)−GConv(x2)∥p
< ∥x1 − x2∥p

(27)

where ∥·∥p represents the p-norm (p = 2 or p =∞). Therefore, the Lipschitz constant of fθ is less
than 1.

D.3 Proof of theorem 3.2

Proof To prove that YT = F(fw(X0)) is reversible, it is necessary to ensure that F and fw are
reversible [43].{

fw(X0) = X0 + fw(X0)−X0 = ξ
ξ + fθ(ξ) = YT

⇔
{

X0 = ξ +X0 − fw(X0)
ξ = YT − fθ(ξ)

(28)

We construct the following iterative formula:{
Xk+1

0 = ξ +Xk
0 − fw(X

k
0),X

0
0 = ξ

ξk+1 = YT − fθ(ξ
k), ξ0 = YT

⇒
{

limk→∞ Xk
0 = X0

limk→∞ ξk = ξ
(29)

By Lemma 2, we can ensure that Lw < 1 and Lθ < 1. Moreover, the Lipschitz constant of
(Xk

0 − fw(X
k
0) is 1− Lw, which is less than 1. Thus, when the number of iterations k is sufficiently

large, it follows that the transformation YT = F(fw(X0)) is reversible according to the Banach
fixed point theorem [4].

D.4 Proof of theorem 3.3

Proof Specifically, Theorem 3.2 proves that (F1◦F2◦ . . . ◦Fn)(ξ) is invertible when n = 1. There-
fore, we are currently examining whether (F1◦F2◦ . . . ◦Fn)(ξ) retains its reversibility for n > 1. To
make the notation simpler, we denote (F1◦F2◦ . . . ◦Fi)(ξ) as F̂i.

F̂n = (F1◦F2◦ . . . ◦Fn)(ξ) = DP ◦ · · · ◦DP︸ ︷︷ ︸
n

[
ξ + fw(ξ) +

n−1∑
i=1

fw

(
F̂i(ξ)

)]
(30)

The application of the dropout function DP will limit the Lipschitz constant of any function f to
1− r times its original value: LDP(f) = (1− r)Lf . Additionally, we have LF̂i

≤
∏i

j=1

(
LFj

)
≤

(1− r)i(1 + Lfw)
i [13]. Therefore, the Lipschitz constant of F̂n is expressed as:

LF̂n
≤ (1− r)n

[
1 + Lfw +

n−1∑
i=1

Lfw · LF̂i

]

≤ (1− r)n

[
1 + Lfw

n−1∑
i=0

[(1− r)(1 + Lfw)]
i

]

= (1− r)n
[
1 + Lfw ·

1− [(1− r)(1 + Lfw)]
n

1− (1− r)(1 + Lfw)

]
(31)

Note that when Lfw < 1 and n > 1, we only need to set r = 1/2 to ensure that LF̂n
< 1, hereby

guaranteeing that F̂n is reversible.

E DDMSL implementation details

The DDMSL approach has been previously explained, and we will now provide further details on the
implementation of DDMSL. The linear transform U refers to a fully connected layer, and in Figure 2,
the dense layer is composed of two fully connected layers that undergo spectral normalization. The

18



final output of the nnθ is represented by an N × 1 matrix, indicating the probability that each node is
in an infected state at t = 0. We designate nodes with an infection probability higher than a certain
threshold as infected nodes.

Given a complete information diffusion instance X = {X0, . . . ,XT} where Xt =
{
x1
t , . . . , x

N
t

}
,

we sample t ∈ {1, . . . , T} to be included in the neural network nnθ based on the probability
distribution p(t) ∼ t∑T

t=1 t
, and use the sine-cosine position encoding [41] to embed t. The training

and inference processes are shown in Algorithm 1 and Algorithm 2, respectively. Additionally, the
variable T remains consistent with the information diffusion step size.

Algorithm 1: Training
Input: X0, G, Xt, threshold α

1 repeat
2 Qt ← Equation 2 and Equation 3
3 q(xt−1|xt)← Calculate Equation 6 using Xt and Qt

4 t ∼ P({1, . . . , T}), P (t) = t∑T
t=1 t

5 Xt−1
0 = nnθ(G,Xt, t)

// Using data from t, nnθ infers the source node Xt−1
0 , which is then

used to reconstruct the diffusion graph at t− 1.
6 Xt−1

0 [Xt−1
0 > α] = 1

7 Xt−1
0 [Xt−1

0 ! = 1] = 0

8 Q
′

t ← Equation 2 and Equation 3

// Q
′

t is generated by Xt−1
0 .

9 Pθ(xt−1|xt)← Calculate Equation 8 using Xt, Xt−1
0 and Q

′

t
10 Xt−1 ← Gumbel − Softmax(Pθ(xt−1|xt))
11 Take gradient descent step on:
12 ∇θ(Lsimple + Lconstrain)

Algorithm 2: Infering
Input: Xt, G, Empty set X, threshold α
Output: X

1 for t starts from T to 1 do
2 Xt−1

0 = nnθ(G,Xt, t)

3 Xt−1
0 [Xt−1

0 > α] = 1

4 Xt−1
0 [Xt−1

0 ! = 1] = 0

5 Q
′

t ← Equation 2 and Equation 3

6 Pθ(xt−1|xt)← Calculate Equation 8 using Xt, Xt−1
0 and Q

′

t
7 Xt−1 ← Gumbel − Softmax(Pθ(xt−1|xt))
8 X[t]← Xt−1

9 end

In Algorithm 1, we have Qt =
{
Q1

t , . . . , Q
N
t

}
, where Qi

t can be calculated using Equations 2 and
3. Additionally, the P i

S(t), P
i
I (t), and P i

R(t) in Equation 3 can be computed using various methods.
Monte Carlo simulations provide the most accurate results, but require at least 105 simulations to be
sufficiently precise, leading to a high time complexity. An alternative approach is to utilize a neural
network model [10, 47] to learn

[
P i
S(t), P

i
I (t), P

i
R(t)

]
, which significantly reduces the training time

of the model. When applied to the SI model, DDMSL utilizes the state transfer matrix by:

Qi
t =

[
1− βi

I(t) βi
I(t)

0 1

]
(32)

where Xt−1
0 represents the predicted source node using Xt, while Q

′

t is generated using the same
method as above. Ultimately, Pθ(xt−1|xt) is calculated using Xt−1

0 , Xt, and Xt−1
0 . We obtain

Xt−1 by sampling from Pθ(xt−1|xt), and label nodes as 0(S), 1(I), or 2(R) based on their state.
Algorithm 2 proceeds in a similar manner to the process described above.

19



F Additional algorithms and dataset parameters

F.1 Hyperparameters of the algorithms

The hyperparameters for each algorithm have been set according to the values shown in Table 5.
Any parameter that is not stated as default is common to both SI and SIR models. In the updated
version of SLVAE, the original three-layer MLP network encoder was replaced with a three-layer GCN
network, resulting in improved performance. For hyperparameters and implementation details of other
algorithms, please refer to the corresponding original papers. DDMSL and deep learning comparison

Table 5: Hyperparameter settings of different algorithms.

Algorithms Hyper-parameter karate jazz cora_ml power grid PGP Search space Description

DDMSL

Initial learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 3 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]

Learning Rate
Decline Interval [1200,1500] [200,1000] [500, 1200] [500, 1200] [200,500,800,1200] Determined by the LOSS curves

of the training and validation sets.

Learning rate
decreases by 0.97

times the set epoach.

n 6 6 6 6 8 [min = 3,max = 9,step = 1] Number of
residual blocks

Dropout rate 0.5 0.5 0.5 0.5 0.5 Determined by Theorem \3.3
α in SIR model 0.4 0.6 0.4 0.4 0.45 [min=0.3,max=0.7,step=0.05] Threshold
α in SI model 0.4 0.45 0.4 0.4 0.45 [min=0.3,max=0.7,step=0.05]

Epoch 2000 1600 1600 1600 1600 Determined by the LOSS curves
of the training and validation sets.

SLVAE

α 0.55 0.5 0.55 0.55 0.45 [min=0.3,max=0.7,step=0.05] Threshold
Learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 3 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]
GCN-based

encoder parameters [64,128,256] [64,128,256] [64,128,256] [64,128,256] [64,128,256] [64,128,256],[128,256,512] The hidden dim
of the encoder

MLP-based
decoder parameters [256,128,1] [256,128,1] [256,128,1] [256,128,1] [256,128,1] [256,128,1],[512,256,1] The hidden dim

of the decoder
Epoch 200 200 200 200 200 \

DDMIX
α 0.5 0.5 0.5 0.5 0.5 [min = 3,max = 9,step = 1] Threshold

Learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]
Epoch 100 100 100 100 100 \

algorithms are both running on Windows 10 systems and trained using a 4090 graphics card. The code
for DDMSL is already open source, please refer to: https://github.com/Ashenone2/DDMSL.

F.2 Additional details of the datasets

The description of the data sets used for the experiments and their statistics are shown as below:

• Karate [48]: It includes a network of interrelationships between 34 members of the Karate
club, comprising 34 nodes and 78 edges. The Karate dataset is a real dataset, widely
employed in complex network community discovery research.

• Jazz [12]: The Jazz dataset is a network dataset that captures the collaborative relationships
between jazz musicians. It comprises 198 nodes and 2,742 edges, and has been extensively
used in research on complex network community discovery, node importance metrics, and
other related studies.

• Cora-ML [27]: Cora-ML is a citation network dataset containing papers from the field
of machine learning. Nodes represent papers and edges represent citation relationships
between papers.

• Power Grid [45]: The Power Grid dataset is a network dataset describing the topology of
the Northeastern US power grid, containing 4,941 nodes and 6,594 edges.

• PGP [5]: It is a User network of the Pretty-Good-Privacy algorithm for secure information
exchange, consisting of 10,680 nodes and 24,316 edges.

Table 6: Statistics of the five datasets.

Datasets #Nodes #Edges #Avg(degree) #Average clustering coefficient #Density #Diameter
Karate 34 78 2.29 0.57 0.14 5
Jazz 198 2,742 27.70 0.62 0.14 6

Cora_ml 2,810 7,981 5.68 0.28 0.002 17
Power Grid 4,941 6,594 1.33 0.08 0.005 46

PGP 10,680 24,316 4.55 0.27 0.0004 24

20

https://github.com/Ashenone2/DDMSL


G Additional experiments

Experiments on Real Diffusion Datasets. In order to gauge the efficacy of DDMSL on real-
world propagation datasets, we opted for the Twitter [6] and Douban [6] datasets, encompassing
12,627 nodes with 309,631 edges, and 23,123 nodes with 348,280 edges, respectively. The detailed
performance metrics can be found in Table 7.

Table 7: Additional experiments on real diffusion datasets.

Twitter Douban
Methods PR RE F1 AUC PR RE F1 AUC
DDMSL 0.445 0.286 0.313 0.625 0.484 0.324 0.381 0.622
SLVAE 0.310 0.317 0.253 0.578 0.412 0.140 0.209 0.547

Generalization Performance. We conducted extensive tests on datasets of varying scales to assess
the generalization performance of both DDMSL and SLVAE algorithms. The comparative results are
presented in Table 8, revealing that DDMSL demonstrates commendable generalization performance
across a majority of scenarios.

Table 8: Additional generalization experiments: Test results on different network topologies after
one training on a real network, where the original performance represents the test performance of
DDMSL on real networks.

Training data Cora Ml Power Grid PGP Twitter Douban
Network PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Original
performance

DDMSL 0.790 0.908 0.845 0.941 0.763 0.966 0.852 0.966 0.754 0.887 0.815 0.928 0.445 0.286 0.313 0.625 0.484 0.324 0.381 0.622
SLVAE 0.721 0.765 0.852 0.908 0.908 0.719 0.803 0.856 0.817 0.721 0.766 0.851 0.310 0.317 0.253 0.578 0.412 0.140 0.209 0.547

Small World DDMSL 0.732 0.826 0.776 0.896 0.812 0.499 0.62 0.744 0.987 0.684 0.808 0.841 0.375 0.299 0.290 0.618 0.409 0.295 0.301 0.624
SLVAE 0.824 0.576 0.678 0.781 0.626 0.335 0.436 0.656 0.982 0.539 0.696 0.769 0.308 0.241 0.227 0.572 0.375 0.124 0.186 0.544

ER DDMSL 0.722 0.584 0.645 0.779 0.349 0.687 0.463 0.773 0.997 0.614 0.632 0.731 0.439 0.289 0.309 0.624 0.320 0.367 0.307 0.614
SLVAE 0.894 0.586 0.708 0.789 0.747 0.409 0.528 0.697 0.956 0.555 0.703 0.776 0.310 0.311 0.285 0.569 0.368 0.118 0.179 0.537

BA Tree DDMSL 0.482 0.832 0.609 0.866 0.872 0.774 0.82 0.881 0.947 0.672 0.786 0.834 0.327 0.377 0.323 0.612 0.451 0.289 0.314 0.623
SLVAE 0.961 0.577 0.721 0.787 0.939 0.399 0.560 0.698 0.993 0.548 0.708 0.774 0.252 0.285 0.193 0.517 0.312 0.126 0.180 0.525

BA Dense DDMSL 0.749 0.683 0.715 0.829 0.654 0.354 0.459 0.667 0.972 0.598 0.741 0.798 0.369 0.305 0.288 0.622 0.423 0.289 0.304 0.623
SLVAE 0.662 0.611 0.635 0.788 0.731 0.441 0.550 0.712 0.997 0.446 0.617 0.723 0.286 0.405 0.315 0.567 0.374 0.132 0.195 0.553

Time Complexity. Lastly, we conducted a comparative evaluation of the time complexity between
DDMSL and baseline algorithms across diverse datasets, revealing the outcomes illustrated in Table 9.
Owing to the gradual inference of diffusion state for each time step, the time complexity of DDMSL
tends to be substantial. However, optimization through parallel computing can effectively mitigate
this disparity.

Table 9: Additional Time complexity experiment.

Test time Cora-Ml Power-Grid PGP
DDMSL 15.84s 22.19s 22.72s
SLVAE 4.77s 7.28s 11.29s
DDMIX 9.34s 15.7s 23.26s
GCNSI 1.4s 8.14s 15.41s
LPSI 2m14s 1m51s 21m37s
OJC 6m11s 50m17s 2h41m52s

NetSleuth 2m40s 4m39s 21m24s
Training Time Cora-Ml Power-Grid PGP

DDMSL 10m36s 16m57s 32m03s
SLVAE 18s 39s 1m10s
DDMIX 16m5s 24m17s 37m53s
GCNSI 3m53 20m6s 34m26s

21



H Visualization

H.1 Visualization of reconstructing diffusion paths

To conserve space, we displayed the actual node states and corresponding prediction results every
20% of the time. Figures 5 to 9 showcase the results, where the blue nodes denote susceptible ones,
the red nodes denote infected nodes, and the green nodes denote recovered nodes. The findings
indicate that DDMSL accurately restored the node states at different times. In contrast, DDMIX
could only restore infected nodes, revealing that DDMSL far surpasses DDMIX in its expression
capability.

t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 5: DDMSL reconstructs SIR diffusion on Karate.

H.2 Visual comparison of source localization

Due to spatial limitations, we only presented the source localization results of DDMSL and benchmark
algorithms on the Karate and Jazz datasets. The results are depicted in Figures 10 and 11. The
baseline algorithm’s performance is unsatisfactory, as evidenced by significant positioning errors in
the source nodes. On the contrary, DDMSL outperforms other benchmark algorithms in accurately
identifying source nodes. Moreover, even when misidentifying source nodes, DDMSL locates them
near the actual nodes.

22



t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 6: DDMSL reconstructs SIR diffusion on Jazz.

t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 7: DDMSL reconstructs SIR diffusion on Coral ml.

23



t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 8: DDMSL reconstructs SIR diffusion on Power grid.

t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 9: DDMSL reconstructs SIR diffusion on PGP.

24



(a) DDMSL (b) SLVAE (c) DDmix (d) LPSI

(e) GCNSI (f) OJC (g) Ground Truth

Figure 10: Visualization comparisons of source localization on Karate.

(a) DDMSL (b) SLVAE (c) DDmix (d) LPSI

(e) GCNSI (f) OJC (g) Ground Truth

Figure 11: Visualization comparisons of source localization on Jazz.

25


