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Abstract

Information diffusion problems, such as the spread of epidemics or rumors, are
widespread in society. The inverse problems of graph diffusion, which involve
locating the sources and identifying the paths of diffusion based on currently
observed diffusion graphs, are crucial to controlling the spread of information.
The problem of localizing the source of diffusion is highly ill-posed, presenting
a major obstacle in accurately assessing the uncertainty involved. Besides, while
comprehending how information diffuses through a graph is crucial, there is a
scarcity of research on reconstructing the paths of information propagation. To
tackle these challenges, we propose a probabilistic model called DDMSL (Discrete
Diffusion Model for Source Localization). Our approach is based on the natural
diffusion process of information propagation over complex networks, which can
be formulated using a message-passing function. First, we model the forward
diffusion of information using Markov chains. Then, we design a reversible
residual network to construct a denoising-diffusion model in discrete space for both
source localization and reconstruction of information diffusion paths. We provide
rigorous theoretical guarantees for DDMSL and demonstrate its effectiveness
through extensive experiments on five real-world datasets.

1 Introduction

Information diffusion is a pervasive phenomenon in our daily lives. Data scientists have conducted ex-
tensive research on information diffusion along the direction of entropy increase, such as maximizing
the influence of nodes in social networks [15, 3], and developing control policies to curb the scale of
epidemics in disease transmission networks [53]. However, merely comprehending the mechanism of
forward diffusion is insufficient. When destructive information spreads across a network, it can cause
huge damage on the entire system. For example, the rapid spread of rumors in social networks can
cause harm to society [54], and the spread of computer viruses on the Internet can paralyze a system
consisting of millions of users [1]. Additionally, pandemics such as SARS and COVID-19 in human
interaction networks pose serious challenges to human health and social functioning [31]. Therefore,
accurately identifying the sources of transmission and cutting off their possible transmission paths in
time is crucial. This can help limit the spread of negative information and maintain the stability of
the network.

Common information dissemination models like SIR (Susceptible-Infected-Recovered) and SI
(Susceptible-Infected) [19] are subject to uncertainties during the process of information diffu-
sion. As illustrated in Figure 1, the diffusion graph of information should follow a non-explicit
distribution, implying that a single diffusion source may correspond to multiple different diffusion
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graphs, and a diffusion graph may have multiple different diffusion sources. Therefore, the inverse
problem of information diffusion is underdetermined.
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Figure 1: The SIR diffusion process of information over complex networks. Distinct sources may
produce identical infection graphs (xT ), and initiating forward diffusion from xT may lead to
different diffusion outcomes. The distribution of sources and forward diffusion can be represented by
probability models P−1 and P , respectively.

Previous source localization research has primarily relied on manually formulating rules to filter
source nodes, such as using Jordan centrality [24, 26] to locate multiple source nodes in SI model, or
unbiased intermediary centrality to identify source nodes in SIR model [49]. Besides, IVGD [43]
exploited fixed point theorem for source localization of IC model [18]. However, these algorithms
impose relatively strict requirements on information diffusion patterns, which could hardly
be satisfied in real-world applications. To address this issue, some algorithms [38, 36] have been
proposed using graph neural networks (GNN) [35] to learn source nodes under different diffusion
models. Unfortunately, most deep learning-based algorithms ignore the underdeterminacy of infor-
mation propagation and attempt to establish a direct mapping between observed data and source
nodes. As a result, inference results are often deterministic and fail to quantify the uncertainty
of source localization. In addition to source localization, it is equally important to recover the
possible propagation paths of information. For example, when an infectious disease breaks out,
it is necessary to promptly trace the virus transmission trajectory and corresponding close contacts.
However, in reality, this can only be achieved by analyzing the genetic evolution tree of the virus
strain [40], which is both time-consuming and labor-intensive. In summary, there is a current
dearth of methods that can simultaneously locate information sources and restore information
propagation paths.

Inspired by diffusion phenomena, the diffusion denoising model [16] has garnered significant achieve-
ments in the realm of image generation. It effectively restores the original image within a noise
distribution through gradual refinement. This process bears resemblance to the challenges encountered
in information reconstruction and diffusion, demanding our attention. Throughout the propagation
process, the source information continually undergoes blurring, presenting an exceedingly arduous
task of restoring the original source node. In this scenario, employing a diffusion model for the
reverse recovery of the entire information dissemination process proves highly appropriate. However,
using diffusion models to solve inverse problems in graphs presents several challenges: (1) Infor-
mation diffusion occurs on non-Euclidean space graphs, making learning discrete non-Euclidean
data difficult; (2) Diffusion over graphs is governed by information propagation rules that operate
in non-Euclidean spaces, making it challenging to establish both the forward process and reverse
inference process of information diffusion within the network; and (3) Most existing algorithms only
work for specific propagation patterns, suffering from the problem of model generalization.

To address the aforementioned challenges, we propose a new framework, DDMSL2(Discrete Diffusion
Model for Source Localization). DDMSL excels at source localization and reconstructing the evolu-
tion of diffusion, showing promising results across different propagation patterns. Our contributions
can be summarized as follows:

2The code for DDMSL is available at https://github.com/Ashenone2/DDMSL.
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• We model the information diffusion process using Markov chains and demonstrate that at each
moment, the state transition matrix converges, enabling us to reconstruct the information diffusion
paths from any time point.

• We design a residual network block based on graph convolutional networks to approximate the
information diffusion process and provide a theoretical proof for the model’s reversibility.

• We propose an end-to-end framework being capable of both reconstructing the evolution of
information diffusion and source localization. To the best of our knowledge, this is the first study
to employ denoising diffusion models for solving graph inverse problems. Extensive experiments
on five real-world datasets demonstrate its effectiveness.

2 Related work

Diffusion models for inverse problems. The diffusion denoising model [16, 29] is currently one
of the best available deep generative models, which has been extensively applied in image-related
inverse problems [33, 23, 34]. Previous studies have extended DP3Ms [2] to discrete spaces and
used this work as a foundation for developing multiple generative diffusion models for graph data
[14, 42]. Additionally, Stevens et al. [39] and Chung et al. [7] demonstrated that the diffusion model
can solve nonlinear inverse problems. These works collectively demonstrate the effectiveness of
diffusion models across different domains in addressing inverse problems.

Localization of information sources on the graph. To facilitate the localization of infection sources,
various algorithms have been proposed [25, 52, 44, 9]. Early algorithms focused on screening source
nodes by employing feature engineering. For instance, Luo et al. [25] identified the diffusion source
by the centrality of the diffusion subgraphs, while Prakash et al. [30] and Zhu et al. [52] respectively
developed NETSLEUTH and OJC algorithms based on the minimum description length of nodes and
the shortest path. Wang et al. [44] designed a series of label propagation algorithms based on the
aggregation process of information diffusion, on which Dong et al. [9] further improved using GCN
[20]. Recently, the proposed reversible perception algorithm IVGD based on graph diffusion [43]
has been applied to the IC model. However, these algorithms generally have strict limitations on
diffusion patterns or network structures. DDMIX [8] was the first algorithm to use a generative
model for reconstructing the dissemination paths of information. It leverages a VAE (variational
autoencoder) to learn the state of nodes across all time steps; however, as the number of time steps
increases, the solution space of the dissemination path becomes significantly more complex, leading
to low accuracy in source localization. Ling et al. later introduced SLVAE [22], which is also based
on VAE and can efficiently localize the source node but cannot directly reconstruct the propagation
paths. Current generative model-based approaches for source localization cannot simultaneously
handle the problems of source localization and reconstructing diffusion paths.

3 Methodology

3.1 Problem definition

We consider an undirected graph G = (V,E) where V =
{
x1, x2, . . . , xN

}
is the node set and E

is the edge set. Let S = {xs1
0 , xs2

0 , . . . xsm
0 } denote the set of initial diffusion source nodes at t = 0.

The source nodes undergo diffusion on the graph G for T time steps, governed by the diffusion pattern
g(·), and the set of node states at time step t is denoted by Xt =

{
x1
t , . . . , x

N
t

}
with xi

t ∈ {0, 1}
M

(e.g., if g(·) is the SIR model, then M ∈ {S, I,R}, where S, I,R denote susceptible, infected and
recovered state, respectively). If the node i ∈ S, then xi

0 = 1, otherwise xi
0 = 0. We define the

research problem as finding the intermediate state X = {X0,X1, . . . ,XT−1} that maximizes the
likelihood function X∗ = argmax

P{XT|X,G}
X , given the observed XT.

3.2 Information diffusion in discrete spaces

Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models [19] are commonly used
to model diffusion phenomena in nature, such as the spread of epidemics [51] and rumors [50]. In this
paper, we will demonstrate our approach using the SIR model. The SIR model categorizes node states
into susceptible (S), infected (I), and recovered (R) states. The S state represents individuals who are
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susceptible to infection, while the I state represents those who have been infected, and the R state
indicates recovery from the infected state. The transition between these three states is irreversible.
We assume that all nodes on the graph are homogeneous and follow the same transition process for
the different states of the SIR model3:{

P
(
xi
t+1 = I | xi

t = S
)
= 1−

∏
j

(
1− βj

I (t)AijIj(t)
)

P
(
xi
t+1 = R | xi

t = I
)
= γi

R(t)
(1)

And, the SIR diffusion process can be represented using a state transfer matrix:

Qi
t =

1− βi
I(t) βi

I(t) 0
0 1− γi

R(t) γi
R(t)

0 0 1

 (2)

where Qi
t denotes the state transfer matrix of node i at moment t, and

[
Qi

t

]
uv

denotes the probability
of transferring from state u to state v4. βi

I(t) and γi
R(t) denote the infection rate and recovery rate

at moment t, respectively. Let [P i
S(t), P

i
I (t), P

i
R(t)] to be the probabilities of node i being in three

states S, I , and R at time t, then βi
I(t) and γi

R(t) can be calculated by the following equation:
βi
I(t) =

P i
I (t+ 1)− P i

I (t)(1− γi
R(t))

P i
S(t)

= 1− P i
S(t+ 1)

P i
S(t)

γi
R(t) =

P i
R(t+ 1)− P i

R(t)

P i
I (t)

(3)

Theorem 3.1 Given graph G and the infected seed set S, it can be determined that the state transfer
matrix Qi

t for the SIR diffusion process on G converges at all times.

Sketch of Proof. Given G and S , the initial state of information diffusion can be determined. Based
on the SIR propagation rule, an iterative equation can be constructed for the state distribution of the
nodes at any given time. Finally, Qi

t can be calculated according to Equations 2 and 3.

Referring to Equations 2 and 3, we can readily demonstrate the convergence of the state transition
matrix Qi

t at every moment, rendering the discrete diffusion model a practicable solution [2]. The
proof is shown in Theorem3.1.

3.3 Discrete diffusion model for source localization

3.3.1 Forward process

We represent the state of node i by an one-hot vector xi
t ∈ R1×M , and the state distribution of node i

at time t is written as:

q
(
xi
t | xi

t−1

)
= xi

t−1Q
i
tx

i
t

T ∼ Cat
(
xi
t;p = xi

t−1Q
i
t

)
(4)

Information diffusion is a Markov process that allows for inference of the node state at any given
moment based on the initial state:

q
(
xi
t | xi

0

)
=

∑
xi

1:t−1

t∏
k=1

q
(
xi
k | xi

k−1

)
= xi

0Q̄
i
tx

i
t

T ∼ Cat
(
xi
t;p = xi

0Q̄
i
t

)
(5)

3.3.2 Reverse process

Reconstructing the information diffusion process requires backward inference of the forward process,
which can be achieved through Bayesian formulation5:

q
(
xi
t−1 | xi

t,x
i
0

)
∼ Cat

xi
t−1;p =

(
xi
tQ

i
t
T
)
⊙

(
xi
0Q̄

i
t−1

)
xi
0Q̄

i
tx

i
t

T

 (6)

3A denotes the graph’s adjacency matrix, and Ij(t) represents whether neighbor j is in an infected state at t.
4In the SIR model, u, v ∈ {1, 2, 3}, representing the three states: S, I and R, respectively.
5Please refer to Appendix B for the formula derivation of forward and backward processes.
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In the absence of knowledge about xi
0, the posterior distribution q

(
xi
t−1 | xi

t,x
i
0

)
becomes in-

tractable to compute directly. As a result, we must approximate this distribution using other methods.
Continuing with Bayes’ theorem, we can express the posterior distribution as follows:

q
(
xi
t−1 | xi

t,x
i
0

)
= q

(
xi
t−1 | xi

t

)
=

∑
xi

0
q
(
xi
t−1,x

i
t,x

i
0

)
q
(
xi
t

) = Eq(xi
0|xi

t)
q
(
xi
t−1 | xi

t,x
i
0

)
(7)

We utilize a neural network model (nnθ) to learn about pθ
(
xi
t−1 | xi

t

)
and estimate q

(
xi
0 | xi

t

)
.

The detailed design of nnθ will be elaborated later in Section 3.4.

q
(
xi
t−1 | xi

t

)
≈ pθ

(
xi
t−1 | xi

t

)
= Exi

0∼pθ(xi
0|xi

t)
q
(
xi
t−1 | xi

t,x
i
0

)
=

q
(
xi
t | xi

t−1

) [∑
j q

(
xi
t−1 | xi

0

(j)
)
pθ

(
xi
0

(j) | xi
t

)]
q
(
xi
t | xi

0

) (8)

Similar to [2], we predict xi
0 and then use this prediction to learn the distribution of q

(
xi
0 | xi

t

)
. This

approach offers several benefits. First, it leverages prior knowledge by exploiting the fact that at t = 0
there are only two states: susceptible and infected. This makes nnθ easier to train. Second, locating
xi
0 is a key target of our task. Finally, predicting xi

0 can help constrain errors in the information
reconstruction process (Refer to Appendix C).

Li
vb =Eq(xi

0)

DKL

[
q
(
xi
T | xi

0

)
∥p

(
xi
T

)]︸ ︷︷ ︸
LT

+

T∑
t=2

Eq(xi
t|xi

0)
[DKL

[
q
(
xi
t−1 | xi

t,x
i
0

)
∥pθ

(
xi
t−1 | xi

t

)]
]︸ ︷︷ ︸

Lt−1

−Eq(xi
1|xi

0)
[
log pθ

(
xi
0 | xi

1

)]
︸ ︷︷ ︸

L0


(9)

Equation 9 presents the variational lower bound loss function of the denoising diffusion model [16],
where DKL represents relative entropy. Furthermore, as highlighted in our earlier discussion, it is
crucial for us to supervise xi

0 directly. As a result, we arrive at the simplified variational lower bound
loss (Lsimple), which is denoted as:

Lsimple =
1

N

∑N
i=1

(
Li
vb + Eq(xi

0)
Eq(xi

t|xi
0)
[
− log p̃θ

(
xi
0 | xi

t

)])
(10)

3.3.3 Supervision of information propagation rules

Our reconstructed information diffusion must adhere to the propagation rules of model g(·). During
early training, the predictions of nnθ for xi

t−1 may not be accurate enough, which could lead to
violations of the propagation rules. For example, using the SIR model, if the state of node i at time t
is classified as I , then the state of i at time t− 1 can only be either S or I . However, the prediction
result of nnθ may erroneously output state R, resulting in the failure to calculate q

(
xi
t−1 | xi

t,x
i
0

)
.

To prevent violations of the propagation rules, we can take two measures: (1) In cases where the
inference result of nnθ violates the propagation rule, q(xi

t−1|xi
t, x

i
0) should be set to [1, 0, 0]. and

(2) To supervise the training of nnθ, the propagation rule loss function Lconstrain = Lconstrain1 +
Lconstrain2 is introduced. The detailed derivations of (1) and (2) are shown in Appendix C.{

Lconstrain1 = Relu (Xt−1 − (A+ I)X0)

Lconstrain2 =
∥∥∥max

(
0,X

(j)
t−1 −X

(i)
t−1

)∥∥∥2
2
,∀X(i)

0 ⊇ X
(j)
0

(11)

In order to evaluate Equation 11, we must first sample Xt−1 from the discrete probability distribution
computed in Equation 8. To ensure gradient preservation during the sampling process, we employ
the Gumbel-Softmax technique [17]: Xt−1 ∼ Gumbel-Softmax(q(xi

t−1|xi
t, x

i
0)). Equation 11

demonstrates that each node’s contribution to the information diffusion process is non-negative. In
summary, the constrained loss function is Lconstrain= = Lconstrain1 + Lconstrain2, and the loss
function of DDMSL is:

Loss = Lsimple + Lconstrain (12)

5



3.4 Design of the inference model
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Figure 2: Multi-layer reversible residual network.

In this section, we discuss the
design of the nnθ in detail. Let
X0 =

{
x1
0, x

2
0 . . . x

N
0

}
and YT ={

x1
T , x

2
T . . . , xN

T

}
. The diffusion

of information on complex net-
works can be modeled using the
following processes [46, 43]:

X0
fw−→ ξ

F−→ YT (13)

Within this framework, fw and F
serve as the feature vector construc-
tion and feature propagation func-
tions, respectively. The relationship between YT and X0 be expressed as:YT = P(X0) =
F(fw(X0)). Our research objective focuses on the inverse problem of the SIR or SI diffusion
model, which entails a large number of stochastic processes. Thus, when F = RD, solving P−1 can
be extremely challenging. In the following subsections, we will explore how to construct suitable
functions fw and F to facilitate the calculation of P−1.

3.4.1 Relationship between GCN and SIR diffusion models

According to [37], diffusion models such as SIR are analogous to message passing neural networks
(MPNNs [11]), where each node’s state is only updated based on the states of its neighboring nodes.
However, the operational architecture must be designed to enable each node to aggregate both its
own features and those of its neighbors, and update its state via nonlinear activation as shown in
Equation 26. Therefore, we propose using MPNNs to remodel the SIR diffusion process. Denoting
P i
Ω(t) ≡ P (xi

t = Ω) as the probability that node i is in state Ω ∈ {S, I,R} at time t in the SIR
diffusion process. It can be observed that this process is structurally equivalent to:

mi
Ω(t+ 1) =

∑
j∈N(i) Mt

(
h(P i

Ω(t)), h(P
j
Ω(t)), eij

)
P i
Ω(t+ 1) = Ut

(
h(P i

Ω(t)),m
i
Ω(t+ 1)

)
h(P i

Ω(t)) = σ
(
WΩP

i
Ω(t) + bΩ

) (14)

where Mt is the aggregate function and Ut represents the node status update function. σ(·) is a
nonlinear activation function. eij represents the edge between nodes i and j. Additionally, since
h(P i

Ω(t)) already contains nonlinear transformations, more complex forms of transformation are not
necessary and Ut can be defined as: Ut(a, b) = a+ b. To sum up, Equation 14 can be simplified as:

P i
Ω(t+ 1) = h(P i

Ω(t)) + σ

 ∑
j∈N(i)

h(P j
Ω(t))

 (15)

We can achieve this using a residual block composed of graph convolutional networks, which allows
us to easily fit the SIR model:

h
(0)
i,t = SN(Uxt

i) with U ∈ RC×M

g(h) = σg(D
−1/2AD−1/2 · h ·w + b)

h
(l+1)
i,t = h

(l)
i,t + σ

(
SN

(
BN

(
g
(
h
(l)
i,t

)))) (16)

Among them, U is a linear transformation, h(l)
i,t denotes the representation of the l-th layer of the

network, D is the degree matrix, SN(·) and BN(·) represent spectral normalization and batch
normalization, respectively. σ(·) and σg(·) are nonlinear activation functions6. In fact, fw and F7 in
Equation 13 are the SN (U(·)) and residual blocks in Equation 16.

6We set σ(·) and σg(·) to Mish and LeakyReLu respectively.
7F = ξ + fθ(ξ), where fθ(ξ) = σ (SN (BN (ξ))).
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3.4.2 Reversibility of residual blocks

We now discuss the invertibility of Equation 13 as reconstructed from Equation 16. Equation 13 can
be written as: {

SN (U(X0)) = fw(X0) = ξ;
ξ + σ (SN (BN (g(ξ)))) = ξ + fθ(ξ) = F(ξ) = YT.

(17)

Lemma 3.1 Denoting the Lipschitz constants of fw and fθ to be Lw and Lθ, then Lw < 1 and
Lθ < 1.

Sketch of Proof. Since fw and BN (g(ξ)) are spectrally normalized, their Lipschitz coefficients are
less than 1 [28]. Additionally, since the σ(·) is set to Mish(·), it can be determined that the Lipschitz
constant of their composite function (i.e., fθ) is less than 1.
Theorem 3.2 If Lw < 1 and Lθ < 1, then YT = F(fw(X0)) is reversible.

Sketch of Proof. YT = F(fw(X0)) can be written as
{

X0 = ξ +X0 − fw(X0)
ξ = YT − fθ(ξ)

. Since

fw < 1 and fθ < 1, constructing the iteration according to the Banach fixed point theorem [4],
YT = F(fw(X0)) is invertible.

In practical applications, we typically use multiple residual blocks to form a residual network. This
approach is employed to improve the receptive field of the GCN and alleviate the problem of node
smoothing caused by multi-layer graph convolution. The multi-layer reversible residual network that
we designed is depicted in Figure 2, where DP represents dropout. If the dropout rate is r and the
i-th layer residual block is Fi, then we have Fi(ξ) = DP(ξ + fw(ξ)).
Theorem 3.3 If dropout-rate = 0.5, Lw < 1, and Lθ < 1, the residual network YT =
(F1◦F2◦ . . . ◦Fn)(fw(X0)) is reversible.

Sketch of Proof. Denoting this multilayer residual network as F , the upper bound of LF is the
product of the Lipschitz constants of each function [13]. Additionally, with a dropout rate of r, the
Lipschitz constants of the functions will be limited to (1− r) times their original values. Using these
two conclusions, we can calculate the upper bound of the Lipschitz constant of a multilayer reversible
network with LF ≤ 1 when r = 0.5.

4 Experiments

4.1 Datasets and evaluation metrics

Datasets. The diffusion of information occurs in a broad range of network types, and DDMSL was
evaluated on five distinct realistic datasets: Karate [48], Jazz [12], Cora-ML [27], Power Grid
[45], and PGP [5]. The detailed parameters of these networks are provided in the Appendix F.2.
Following previous research [43, 9, 22], we conducted SIR and SI diffusion simulations on each
dataset by randomly selecting 10% of the nodes as source nodes at the initial moment, and stopping
the simulation when approximately 50% of the nodes were infected8 (For PGP dataset, simulation
stopped at 30% infection rate). We randomly divided each generated dataset into a training set, a
validation set and a test set in the ratio of 8 : 1 : 1.

Evaluation Metrics. Our objective consists of two components: source localization and information
diffusion paths recovery. The source localization task is a binary classification task, and thus evaluated
using four metrics: Precision (PR), which denotes the proportion of nodes predicted as sources that
are true sources; Recall (RE), which represents the proportion of actual source nodes that are correctly
predicted; F1 score, the harmonic mean of PR and RE; and ROC-AUC (AUC), quantifying the model’s
ability to classify accurately. To evaluate the performance of the recovering information diffusion

paths, we adopted the Mean Squared Error (MSE) error in [8]: MSE = 1
NT

∑T−1
t=0

∥∥∥Xt − X̂t

∥∥∥2,

where X̂t is the ground truth. This metric is solely computed for infected nodes, with nodes in the
recovered and susceptible states being marked as 0.

8While some previous studies [9, 44] commenced source localization when the infection rate reached 30%,
we set it to 50% to consider more complex scenarios.
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4.2 Baseline algorithms and experimental settings

Six algorithms for source location were selected to compare with DDMSL: DDMIX [8] employs a
Variational Autoencoder (VAE) to reconstruct the outbreak propagation process; LPSI [44] aggregates
information to learn source detection through label propagation; GCNSI [9] uses graph convolu-
tional network to learn manually formulated node features, enabling the discrimination of multiple
source nodes; OJC [52] locates the source node by minimising the eccentricity of the infection;
NETSLEUTH [30] filters multi-source nodes based on minimum description distance, but works
solely on the SI diffusion model; and SLVAE [22] deploys generative models to learn the distribution
of source nodes. Appendix F.1 provides the experimental settings and tuned hyperparameters for
these algorithms, while implementation details on DDMSL are shown in Appendix E.

4.3 Experimental results

while comparing DDMSL with other algorithms on different diffusion models, we have focused on the
widely used SIR and SI models, which are effective in capturing the dynamics of various information
diffusion processes found in nature. It is noteworthy that DDMSL’s flexibility and robustness enable
it to handle real-world scenarios where the diffusion process may undergo significant variations by
simply designing the corresponding state transfer matrices9.

Table 1: Performance comparison (mean of five rounds) of source localization under the SIR model.
The best results are highlighted in bold, while the underlined indicates the best of the five baselines.
Statistical significance from paired t-test depicts: ∗∗∗, ∗∗, ∗ for p-value < 0.01, 0.05, 0.1 respectively.

Karate Jazz Cora Ml Power Grid PGP
Methods PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC
DDMSL 0.708 0.736 0.722 0.853 0.817 0.881 0.848 0.930 0.894 0.867 0.880 0.928 0.833 0.879 0.855 0.930 0.856 0.903 0.879 0.943
GCNSI 0.275 0.410 0.329 0.671 0.301 0.363 0.330 0.641 0.247 0.273 0.260 0.591 0.165 0.182 0.173 0.540 0.554 0.543 0.549 0.748
LPSI 0.211 0.393 0.274 0.646 0.400 0.098 0.158 0.543 0.246 0.026 0.048 0.509 0.193 0.012 0.022 0.503 0.518 0.437 0.474 0.696

SLVAE 0.552 0.400 0.464 0.696 0.750 0.576 0.651 0.778 0.815 0.721 0.765 0.852 0.908 0.719 0.803 0.856 0.817 0.721 0.766 0.851
OJC 0.178 0.265 0.213 0.594 0.147 0.161 0.154 0.535 0.114 0.114 0.114 0.508 0.109 0.109 0.109 0.505 0.128 0.128 0.128 0.516

DDMIX 0.289 0.234 0.258 0.308 0.215 0.197 0.205 0.238 0.162 0.273 0.204 0.250 0.333 0.253 0.287 0.346 0.172 0.194 0.182 0.213
Improve. 28.3% 84.3% 55.7% 22.5% 8.9% 52.9% 30.1% 19.6% 9.7% 20.2% 15.0% 8.9% -8.3% 22.2% 6.6% 8.7% 4.8% 25.3% 14.8% 10.8%

Significance ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗ ∗∗∗ ∗ ∗∗ ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Table 2: Performance comparison (mean of five rounds) of source localization under the SI model.
The best results are highlighted in bold, while the underlined indicates the best of the six baselines.
Statistical significance from paired t-test depicts: ∗∗∗, ∗∗, ∗ for p-value < 0.01, 0.05, 0.1 respectively.

Karate Jazz Cora Ml Power Grid PGP
Methods PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC
DDMSL 0.706 0.980 0.798 0.972 0.782 0.853 0.813 0.914 0.790 0.908 0.845 0.941 0.763 0.966 0.852 0.966 0.754 0.887 0.815 0.928
GCNSI 0.357 0.456 0.401 0.687 0.366 0.426 0.394 0.676 0.321 0.354 0.337 0.636 0.335 0.325 0.330 0.639 0.487 0.370 0.421 0.665
LPSI 0.339 0.414 0.351 0.681 0.474 0.097 0.156 0.544 0.494 0.207 0.291 0.592 0.343 0.277 0.306 0.609 0.453 0.284 0.349 0.623

SLVAE 0.591 0.477 0.503 0.733 0.888 0.579 0.691 0.785 0.841 0.728 0.780 0.856 0.815 0.780 0.797 0.880 0.844 0.633 0.723 0.810
OJC 0.267 0.396 0.318 0.663 0.120 0.127 0.123 0.517 0.125 0.125 0.125 0.514 0.178 0.178 0.178 0.544 0.118 0.118 0.118 0.510

DDMIX 0.253 0.377 0.303 0.654 0.244 0.133 0.172 0.212 0.220 0.222 0.221 0.247 0.345 0.235 0.280 0.340 0.189 0.186 0.187 0.207
NetSleuth 0.239 0.339 0.279 0.634 0.216 0.252 0.233 0.580 0.217 0.229 0.223 0.569 0.206 0.216 0.211 0.562 0.200 0.210 0.205 0.558
Improve. 19.4% 105.5% 58.5% 32.5% -11.9% 47.3% 17.6% 16.3% -6.0% 24.8% 8.3% 9.9% -6.3% 23.8% 7.0% 9.8% -10.6% 40.2% 12.7% 14.5%

Significance ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗ ∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Source Location. Table 1 shows the performance of DDMSL in SIR diffusion mode, where it
outperforms all baseline algorithms regarding almost all metrics. Notably, DDMSL leads the best
of the baseline algorithms by approximately 25% and 14% on F1 score and AUC, respectively.
Meanwhile, Table 2 shows similar results in the SI diffusion mode. While SLVAE has a higher
precision than DDMSL, DDMSL surpasses SLVAE by approximately 21% and 17% in terms of F1
score and AUC, indicating that DDMSL is more accurate in identifying source nodes. Moreover, the
performance of DDMSL varies across datasets and is mainly influenced by the network’s typologies
(Refer to Table 6) and the scale of information diffusion. The performance of DDMSL in solving
the inverse problem generally has a negative correlation with the average clustering coefficient and
density of the network. The larger these two parameters are, the more complex the scenario of
information diffusion is, and the accuracy of DDMSL in detecting source points decreases, which
aligns with our intuition.

9Please refer to Appendix E for measuring the state transition matrices for different propagation models.
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(a) MSE reconstruction error in SIR mode.
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(b) MSE reconstruction error in SI mode.

Figure 3: Comparisons of DDMSL and DDMIX on reconstructed information diffusion processes.

Reconstructing information diffusion paths. Both DDMSL and DDMIX can reconstruct the
evolution of information diffusion, but DDMIX can only recover the states of susceptible nodes
(S) and infected nodes (I), whereas DDMSL can reconstruct nodes of all states. To facilitate fair
comparison, we calculate MSE loss for node reconstruction in states S and I , as shown in Figure 3.
DDMSL consistently outperforms DDMIX on all datasets, especially in SI diffusion mode where
DDMSL’s average reconstruction loss is 69% lower than DDMIX’s. Unlike DDMIX, which recovers
the entire graph state, DDMSL allows for fine-grained node-level reconstruction.

Additional experiments. DDMSL represents a source detection algorithm relying on diffusion
models, necessitating an assessment of its aptitude for generalization. Concurrently, we assessed its
computational complexity while also incorporating experiments utilizing two real diffusion datasets.
We have documented the results of these experiments in Appendix G.

Visualization. To further showcase the efficacy of DDMSL in solving the inverse problem of
information diffusion on complex networks, we designed a visualization that demonstrates source
localization and the propagation evolution process. Due to space constraints, we have presented the
visualization in Appendix H.

4.4 Ablation study

Table 3: The results of the ablation study.

Karate Jazz Cora Ml Power Grid PGP
Methods PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC
DDMSL 0.708 0.736 0.722 0.853 0.817 0.881 0.848 0.930 0.894 0.867 0.880 0.928 0.833 0.879 0.855 0.930 0.856 0.903 0.879 0.943

DDMSL(a) 0.264 0.910 0.379 0.827 0.254 0.683 0.367 0.741 0.277 0.626 0.384 0.722 0.459 0.605 0.522 0.706 0.366 0.857 0.513 0.846
DDMSL(b) 0.655 0.850 0.718 0.860 0.648 0.822 0.723 0.889 0.834 0.856 0.845 0.915 0.818 0.875 0.845 0.919 0.811 0.888 0.848 0.922
DDMSL(c) 0.339 0.185 0.236 0.592 0.931 0.111 0.1943 0.556 0.817 0.043 0.08 0.521 0.998 0.2756 0.432 0.638 0.997 0.656 0.792 0.823
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Figure 4: MSE error in ablations.

To evaluate the effectiveness of each component,
we conducted ablation experiments on DDMSL
in SIR diffusion mode. One essential compo-
nent of DDMSL is the reversible residual net-
work. We removed this component and replaced
each reversible residual block with a GCN net-
work, denoted as DDMSL(a). Additionally,
DDMSL is also supervised by Lconstarin on
the propagation rules. The model without the
propagation rule supervision module is denoted
as DDMSL(b). Finally, to assess the impact
of GCN (Graph Convolutional Network) in re-
versible residual blocks, DDMSL(c) represents
the model after removing the GCN modules
from residual blocks. We ran the three vari-
ants on five datasets and compared the results,

9



which are shown in Table 3 and Figure 4. As can be seen in table 3, we have these observations: (1)
removing the residual module (DDMSL(a)) leads to a significant degradation in model performance,
with the F1 score and AUC decreasing by 49% and 17%, respectively. Although the GCN network is
also a form of MPNNs, we noticed that the output of the inference network composed of GCNs were
very similar, indicating node feature oversmoothing, and further highlighting the effectiveness of the
reversible residual network module; (2) Lconstraint is also effective, which contributes to 5% and
2% performance improvement in terms of F1 score and AUC, respectively. Similar results can be
obtained in Figure 4 regarding the task of reconstructing the information diffusion processes; and
(3) upon the drop of the GCNs from the reversible residual network (DDMSL(c)), a noteworthy
deterioration model performance was observed, manifesting as a substantial decrease in F1 scores
and AUC by 59% and 32% respectively. This compellingly signifies the indispensable role of GCN
in acquiring the diffusion mode of the SIR model through the process of learning. Similar results can
be obtained in Figure 4 regarding the task of reconstructing the information diffusion processes.

5 Conclusions

In this paper, we introduced a reversible residual network block based on the relationship between
diffusion phenomena and message passing neural networks, while ensuring the reversibility of the
network by limiting its Lipshitz coefficient. Using this, we constructed a discrete denoising diffusion
model (DDMSL) which can locate the source of graph diffusion and restore the diffusion paths.
Extensive experiments on five real datasets have demonstrated the effectiveness of DDMSL and its
constituent modules. Our work offers insights into how to calculate the distribution of solutions to
graph diffusion inverse problems based on the information propagation laws on complex networks.

Solving the inverse problem of graph diffusion plays a crucial role in many social operations, including
controlling the spread of infectious diseases, rumors, and computer viruses. It provides valuable
insights on enhancing source detection performance and fills the gap in methods for recovering
diffusion evolution. However, our work has some limitations. For instance, DDMSL requires the
prior knowledge about propagation models, such as infection rate and recovery rate. Although we can
infer these parameters from existing observation data [32, 21], it limits the application of DDMSL in
situations with insufficient observations of propagation conditions. Our future research will focus on
reducing the dependence of DDMSL on prior conditions.
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A Broader impacts

Overall, our work offers valuable insights into how to limit the spread of malicious information. For
example, by tracing the spread of infectious diseases, we can identify potential contacts of infected
individuals, effectively containing the outbreak. However, it is important to consider the potential
negative implications of this approach for society, such as compromising the privacy of individuals
living with infectious diseases like HIV. Addressing these concerns should be important.

B Derivation of forward and backward processes

Derivation of forward processes. Extending Equation 4 by means of the Markov property:
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Where I is the identity matrix.

Derivation of backward processes. The detailed derivation of Equation 6 is as follows:
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From the Bayesian formula, it follows that:
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Fitting this distribution using a neural network:
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C Propagation rule constraint of information diffusion reconstruction

To investigate the circumstances under which the propagation rules may be violated, let’s revisit
Equation 6. Note that the denominator serves as the normalization term, while the numerator is
composed of two key terms -

(
xi
tQ

i
t
T
)

and
(
xi
0Q̄

i
t−1

)
- that are crucial in preserving the propagation

rule.

The three rows of Qi
t
T correspond to the distribution of q(xi

t|xi
t−1, x

i
0) when xi

t is in one of three
states: S, I , and R. Similarly, the three rows of Q̄i

t represent the distribution of q(xi
t−1|xi

0) when xi
0

is in one of three states: S, I , and R. Let
[
Q̄i

t

]
12

and
[
Q̄i

t

]
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be denoted by qat and qbt respectively,

then qa1 = γi
1, q

b
1 = 0.
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k)β
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t) qat−1(γ
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When xi
t and xi

0 are in different states, the results of q(xi
t−1|xi

t, x
i
0) =

(
xi
tQ

i
t
T
)
⊙

(
xi
0Q̄

i
t−1

)
are

shown in Table 4. The table reveals that q(xi
t−1|xi

t, x
i
0) = [0, 0, 0] when the propagation rule is

violated. Since we are predicting xi
0, there are only two possible states for xi

0: S (Susceptible) and I
(Infected), with xi

0 = R (Recovered) being excluded. In such instances, q(xi
t−1|xi

t, x
i
0) can be set

to [1, 0, 0] to resolve the issue. Furthermore, if xi
t = R and xi

0 = S, then xi
t−1 = S would violate

the propagation rules. However, as shown in the 9th row of Table 4, the probability of xi
t−1 = S

is much smaller than that of xi
t−1 = I and xi

t−1 = R, and such situations will not lead to training
failure. Hence, there is no need for any specific handling of this scenario.

To further minimize propagation rule violations during the training process, we incorporate supervi-
sion of the propagation rule. Specifically, when using this supervision function, nodes that have a
state of R are set to I to enforce the propagation rule.

Lconstrain1 = Relu (Xt−1 − (A+ I)X0) (23)
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Table 4: The distribution of the unnormalized q(xi
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0) in different cases.
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where (A+ I)X0 represents the total number of infected nodes in a given node’s first-order neigh-
borhood. Equation 23 penalizes X0 if the node is infected and there are no other infected nodes
within its first-order neighborhood. To maintain the stability of inferred X0 generating Xt−1, we
apply the same constraint to the process. Specifically, we utilize the monotonicity regularization of
information diffusion from [22]. If the source set X(i)

0 is a superset of X(j)
0 , then the generated Xt−1

resulting from their diffusion needs to satisfy the following equation.

Lconstrain2 =
∥∥∥max

(
0,X

(j)
t−1 −X

(i)
t−1

)∥∥∥2 ,∀X(i)
0 ⊇ X

(j)
0 (24)

D Proofs of lemmas and theorems

D.1 The proof of theorem 3.1

Proof Set the initial infection seed set as: S = {xs1
0 , xs2

0 , . . . xsm
0 }. At the initial moment, the

infection status distribution of node i is: P i=Sm

S (0) = 0, P i=Sm

I (0) = 1

P i ̸=Sm

S (0) = 1, P i ̸=Sm

I (0) = 0
P i
R(0) = 0

(25)

At time t, the infection status distribution of node i is:
P i
I (t) = P i

I (t− 1)(1− γi
R(t− 1)) + P i

S(t− 1)
[
1−

∏
j(1− βj

I (t))AijP
j
I (t− 1)

]
P i
S(t) = P i

S(t− 1)
[∏

j(1− βj
I (t))AijP

j
I (t− 1)

]
P i
R(t) = P i

I (t− 1)γi
R(t)

(26)

where A is the adjacency matrix and j is the neighbor of node i. When dealing with a static graph
G, A is fixed, allowing for determination of the state distribution at any time based on the initial
node state. Specifically, if both graph G and the seed node set S are known, it becomes possible to
calculate the state distribution of each node at any given time using Equation 26. Utilizing Equations
2 and 3, Qi

t can also be determined.

D.2 Proof of lemma 3.1

Proof The graph convolution layer with batch normalization BN (g(ξ)) can be abbreviated as
GConv. In our approach, we apply spectral normalization to both the linear transformation U
and convolutional layers GConv. As a result, the weight parameters of both the networks fw and
GConv possess 1-Lipschitz continuity after spectral normalization, as described in [28].
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Let GConv : Rn → Rm, x1, x2 ∈ Rn. Note that the nonlinear activation function σ(·) is set to
Mish(·) , which obviously possesses 1-Lipschitz continuity.

∥fθ(x1)− fθ(x2)∥p = ∥σ(GConv(x1))− σ(GConv(x2))∥p
≤ ∥GConv(x1)−GConv(x2)∥p
< ∥x1 − x2∥p

(27)

where ∥·∥p represents the p-norm (p = 2 or p =∞). Therefore, the Lipschitz constant of fθ is less
than 1.

D.3 Proof of theorem 3.2

Proof To prove that YT = F(fw(X0)) is reversible, it is necessary to ensure that F and fw are
reversible [43].{

fw(X0) = X0 + fw(X0)−X0 = ξ
ξ + fθ(ξ) = YT

⇔
{

X0 = ξ +X0 − fw(X0)
ξ = YT − fθ(ξ)

(28)

We construct the following iterative formula:{
Xk+1

0 = ξ +Xk
0 − fw(X

k
0),X

0
0 = ξ

ξk+1 = YT − fθ(ξ
k), ξ0 = YT

⇒
{

limk→∞ Xk
0 = X0

limk→∞ ξk = ξ
(29)

By Lemma 2, we can ensure that Lw < 1 and Lθ < 1. Moreover, the Lipschitz constant of
(Xk

0 − fw(X
k
0) is 1− Lw, which is less than 1. Thus, when the number of iterations k is sufficiently

large, it follows that the transformation YT = F(fw(X0)) is reversible according to the Banach
fixed point theorem [4].

D.4 Proof of theorem 3.3

Proof Specifically, Theorem 3.2 proves that (F1◦F2◦ . . . ◦Fn)(ξ) is invertible when n = 1. There-
fore, we are currently examining whether (F1◦F2◦ . . . ◦Fn)(ξ) retains its reversibility for n > 1. To
make the notation simpler, we denote (F1◦F2◦ . . . ◦Fi)(ξ) as F̂i.

F̂n = (F1◦F2◦ . . . ◦Fn)(ξ) = DP ◦ · · · ◦DP︸ ︷︷ ︸
n

[
ξ + fw(ξ) +

n−1∑
i=1

fw

(
F̂i(ξ)

)]
(30)

The application of the dropout function DP will limit the Lipschitz constant of any function f to
1− r times its original value: LDP(f) = (1− r)Lf . Additionally, we have LF̂i

≤
∏i

j=1

(
LFj

)
≤

(1− r)i(1 + Lfw)
i [13]. Therefore, the Lipschitz constant of F̂n is expressed as:

LF̂n
≤ (1− r)n

[
1 + Lfw +

n−1∑
i=1

Lfw · LF̂i

]

≤ (1− r)n

[
1 + Lfw

n−1∑
i=0

[(1− r)(1 + Lfw)]
i

]

= (1− r)n
[
1 + Lfw ·

1− [(1− r)(1 + Lfw)]
n

1− (1− r)(1 + Lfw)

]
(31)

Note that when Lfw < 1 and n > 1, we only need to set r = 1/2 to ensure that LF̂n
< 1, hereby

guaranteeing that F̂n is reversible.

E DDMSL implementation details

The DDMSL approach has been previously explained, and we will now provide further details on the
implementation of DDMSL. The linear transform U refers to a fully connected layer, and in Figure 2,
the dense layer is composed of two fully connected layers that undergo spectral normalization. The
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final output of the nnθ is represented by an N × 1 matrix, indicating the probability that each node is
in an infected state at t = 0. We designate nodes with an infection probability higher than a certain
threshold as infected nodes.

Given a complete information diffusion instance X = {X0, . . . ,XT} where Xt =
{
x1
t , . . . , x

N
t

}
,

we sample t ∈ {1, . . . , T} to be included in the neural network nnθ based on the probability
distribution p(t) ∼ t∑T

t=1 t
, and use the sine-cosine position encoding [41] to embed t. The training

and inference processes are shown in Algorithm 1 and Algorithm 2, respectively. Additionally, the
variable T remains consistent with the information diffusion step size.

Algorithm 1: Training
Input: X0, G, Xt, threshold α

1 repeat
2 Qt ← Equation 2 and Equation 3
3 q(xt−1|xt)← Calculate Equation 6 using Xt and Qt

4 t ∼ P({1, . . . , T}), P (t) = t∑T
t=1 t

5 Xt−1
0 = nnθ(G,Xt, t)

// Using data from t, nnθ infers the source node Xt−1
0 , which is then

used to reconstruct the diffusion graph at t− 1.
6 Xt−1

0 [Xt−1
0 > α] = 1

7 Xt−1
0 [Xt−1

0 ! = 1] = 0

8 Q
′

t ← Equation 2 and Equation 3

// Q
′

t is generated by Xt−1
0 .

9 Pθ(xt−1|xt)← Calculate Equation 8 using Xt, Xt−1
0 and Q

′

t
10 Xt−1 ← Gumbel − Softmax(Pθ(xt−1|xt))
11 Take gradient descent step on:
12 ∇θ(Lsimple + Lconstrain)

Algorithm 2: Infering
Input: Xt, G, Empty set X, threshold α
Output: X

1 for t starts from T to 1 do
2 Xt−1

0 = nnθ(G,Xt, t)

3 Xt−1
0 [Xt−1

0 > α] = 1

4 Xt−1
0 [Xt−1

0 ! = 1] = 0

5 Q
′

t ← Equation 2 and Equation 3

6 Pθ(xt−1|xt)← Calculate Equation 8 using Xt, Xt−1
0 and Q

′

t
7 Xt−1 ← Gumbel − Softmax(Pθ(xt−1|xt))
8 X[t]← Xt−1

9 end

In Algorithm 1, we have Qt =
{
Q1

t , . . . , Q
N
t

}
, where Qi

t can be calculated using Equations 2 and
3. Additionally, the P i

S(t), P
i
I (t), and P i

R(t) in Equation 3 can be computed using various methods.
Monte Carlo simulations provide the most accurate results, but require at least 105 simulations to be
sufficiently precise, leading to a high time complexity. An alternative approach is to utilize a neural
network model [10, 47] to learn

[
P i
S(t), P

i
I (t), P

i
R(t)

]
, which significantly reduces the training time

of the model. When applied to the SI model, DDMSL utilizes the state transfer matrix by:

Qi
t =

[
1− βi

I(t) βi
I(t)

0 1

]
(32)

where Xt−1
0 represents the predicted source node using Xt, while Q

′

t is generated using the same
method as above. Ultimately, Pθ(xt−1|xt) is calculated using Xt−1

0 , Xt, and Xt−1
0 . We obtain

Xt−1 by sampling from Pθ(xt−1|xt), and label nodes as 0(S), 1(I), or 2(R) based on their state.
Algorithm 2 proceeds in a similar manner to the process described above.
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F Additional algorithms and dataset parameters

F.1 Hyperparameters of the algorithms

The hyperparameters for each algorithm have been set according to the values shown in Table 5.
Any parameter that is not stated as default is common to both SI and SIR models. In the updated
version of SLVAE, the original three-layer MLP network encoder was replaced with a three-layer GCN
network, resulting in improved performance. For hyperparameters and implementation details of other
algorithms, please refer to the corresponding original papers. DDMSL and deep learning comparison

Table 5: Hyperparameter settings of different algorithms.

Algorithms Hyper-parameter karate jazz cora_ml power grid PGP Search space Description

DDMSL

Initial learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 3 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]

Learning Rate
Decline Interval [1200,1500] [200,1000] [500, 1200] [500, 1200] [200,500,800,1200] Determined by the LOSS curves

of the training and validation sets.

Learning rate
decreases by 0.97

times the set epoach.

n 6 6 6 6 8 [min = 3,max = 9,step = 1] Number of
residual blocks

Dropout rate 0.5 0.5 0.5 0.5 0.5 Determined by Theorem \3.3
α in SIR model 0.4 0.6 0.4 0.4 0.45 [min=0.3,max=0.7,step=0.05] Threshold
α in SI model 0.4 0.45 0.4 0.4 0.45 [min=0.3,max=0.7,step=0.05]

Epoch 2000 1600 1600 1600 1600 Determined by the LOSS curves
of the training and validation sets.

SLVAE

α 0.55 0.5 0.55 0.55 0.45 [min=0.3,max=0.7,step=0.05] Threshold
Learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 3 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]
GCN-based

encoder parameters [64,128,256] [64,128,256] [64,128,256] [64,128,256] [64,128,256] [64,128,256],[128,256,512] The hidden dim
of the encoder

MLP-based
decoder parameters [256,128,1] [256,128,1] [256,128,1] [256,128,1] [256,128,1] [256,128,1],[512,256,1] The hidden dim

of the decoder
Epoch 200 200 200 200 200 \

DDMIX
α 0.5 0.5 0.5 0.5 0.5 [min = 3,max = 9,step = 1] Threshold

Learning rate 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 2 × 10−3 [2 × 10−3 ,4 × 10−3 ,5 × 10−3]
Epoch 100 100 100 100 100 \

algorithms are both running on Windows 10 systems and trained using a 4090 graphics card. The code
for DDMSL is already open source, please refer to: https://github.com/Ashenone2/DDMSL.

F.2 Additional details of the datasets

The description of the data sets used for the experiments and their statistics are shown as below:

• Karate [48]: It includes a network of interrelationships between 34 members of the Karate
club, comprising 34 nodes and 78 edges. The Karate dataset is a real dataset, widely
employed in complex network community discovery research.

• Jazz [12]: The Jazz dataset is a network dataset that captures the collaborative relationships
between jazz musicians. It comprises 198 nodes and 2,742 edges, and has been extensively
used in research on complex network community discovery, node importance metrics, and
other related studies.

• Cora-ML [27]: Cora-ML is a citation network dataset containing papers from the field
of machine learning. Nodes represent papers and edges represent citation relationships
between papers.

• Power Grid [45]: The Power Grid dataset is a network dataset describing the topology of
the Northeastern US power grid, containing 4,941 nodes and 6,594 edges.

• PGP [5]: It is a User network of the Pretty-Good-Privacy algorithm for secure information
exchange, consisting of 10,680 nodes and 24,316 edges.

Table 6: Statistics of the five datasets.

Datasets #Nodes #Edges #Avg(degree) #Average clustering coefficient #Density #Diameter
Karate 34 78 2.29 0.57 0.14 5
Jazz 198 2,742 27.70 0.62 0.14 6

Cora_ml 2,810 7,981 5.68 0.28 0.002 17
Power Grid 4,941 6,594 1.33 0.08 0.005 46

PGP 10,680 24,316 4.55 0.27 0.0004 24
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G Additional experiments

Experiments on Real Diffusion Datasets. In order to gauge the efficacy of DDMSL on real-
world propagation datasets, we opted for the Twitter [6] and Douban [6] datasets, encompassing
12,627 nodes with 309,631 edges, and 23,123 nodes with 348,280 edges, respectively. The detailed
performance metrics can be found in Table 7.

Table 7: Additional experiments on real diffusion datasets.

Twitter Douban
Methods PR RE F1 AUC PR RE F1 AUC
DDMSL 0.445 0.286 0.313 0.625 0.484 0.324 0.381 0.622
SLVAE 0.310 0.317 0.253 0.578 0.412 0.140 0.209 0.547

Generalization Performance. We conducted extensive tests on datasets of varying scales to assess
the generalization performance of both DDMSL and SLVAE algorithms. The comparative results are
presented in Table 8, revealing that DDMSL demonstrates commendable generalization performance
across a majority of scenarios.

Table 8: Additional generalization experiments: Test results on different network topologies after
one training on a real network, where the original performance represents the test performance of
DDMSL on real networks.

Training data Cora Ml Power Grid PGP Twitter Douban
Network PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Original
performance

DDMSL 0.790 0.908 0.845 0.941 0.763 0.966 0.852 0.966 0.754 0.887 0.815 0.928 0.445 0.286 0.313 0.625 0.484 0.324 0.381 0.622
SLVAE 0.721 0.765 0.852 0.908 0.908 0.719 0.803 0.856 0.817 0.721 0.766 0.851 0.310 0.317 0.253 0.578 0.412 0.140 0.209 0.547

Small World DDMSL 0.732 0.826 0.776 0.896 0.812 0.499 0.62 0.744 0.987 0.684 0.808 0.841 0.375 0.299 0.290 0.618 0.409 0.295 0.301 0.624
SLVAE 0.824 0.576 0.678 0.781 0.626 0.335 0.436 0.656 0.982 0.539 0.696 0.769 0.308 0.241 0.227 0.572 0.375 0.124 0.186 0.544

ER DDMSL 0.722 0.584 0.645 0.779 0.349 0.687 0.463 0.773 0.997 0.614 0.632 0.731 0.439 0.289 0.309 0.624 0.320 0.367 0.307 0.614
SLVAE 0.894 0.586 0.708 0.789 0.747 0.409 0.528 0.697 0.956 0.555 0.703 0.776 0.310 0.311 0.285 0.569 0.368 0.118 0.179 0.537

BA Tree DDMSL 0.482 0.832 0.609 0.866 0.872 0.774 0.82 0.881 0.947 0.672 0.786 0.834 0.327 0.377 0.323 0.612 0.451 0.289 0.314 0.623
SLVAE 0.961 0.577 0.721 0.787 0.939 0.399 0.560 0.698 0.993 0.548 0.708 0.774 0.252 0.285 0.193 0.517 0.312 0.126 0.180 0.525

BA Dense DDMSL 0.749 0.683 0.715 0.829 0.654 0.354 0.459 0.667 0.972 0.598 0.741 0.798 0.369 0.305 0.288 0.622 0.423 0.289 0.304 0.623
SLVAE 0.662 0.611 0.635 0.788 0.731 0.441 0.550 0.712 0.997 0.446 0.617 0.723 0.286 0.405 0.315 0.567 0.374 0.132 0.195 0.553

Time Complexity. Lastly, we conducted a comparative evaluation of the time complexity between
DDMSL and baseline algorithms across diverse datasets, revealing the outcomes illustrated in Table 9.
Owing to the gradual inference of diffusion state for each time step, the time complexity of DDMSL
tends to be substantial. However, optimization through parallel computing can effectively mitigate
this disparity.

Table 9: Additional Time complexity experiment.

Test time Cora-Ml Power-Grid PGP
DDMSL 15.84s 22.19s 22.72s
SLVAE 4.77s 7.28s 11.29s
DDMIX 9.34s 15.7s 23.26s
GCNSI 1.4s 8.14s 15.41s
LPSI 2m14s 1m51s 21m37s
OJC 6m11s 50m17s 2h41m52s

NetSleuth 2m40s 4m39s 21m24s
Training Time Cora-Ml Power-Grid PGP

DDMSL 10m36s 16m57s 32m03s
SLVAE 18s 39s 1m10s
DDMIX 16m5s 24m17s 37m53s
GCNSI 3m53 20m6s 34m26s
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H Visualization

H.1 Visualization of reconstructing diffusion paths

To conserve space, we displayed the actual node states and corresponding prediction results every
20% of the time. Figures 5 to 9 showcase the results, where the blue nodes denote susceptible ones,
the red nodes denote infected nodes, and the green nodes denote recovered nodes. The findings
indicate that DDMSL accurately restored the node states at different times. In contrast, DDMIX
could only restore infected nodes, revealing that DDMSL far surpasses DDMIX in its expression
capability.

t=T t=4T/5 t=3T/5 t=2T/5

Ground Truth

t=0

Prediction

Figure 5: DDMSL reconstructs SIR diffusion on Karate.

H.2 Visual comparison of source localization

Due to spatial limitations, we only presented the source localization results of DDMSL and benchmark
algorithms on the Karate and Jazz datasets. The results are depicted in Figures 10 and 11. The
baseline algorithm’s performance is unsatisfactory, as evidenced by significant positioning errors in
the source nodes. On the contrary, DDMSL outperforms other benchmark algorithms in accurately
identifying source nodes. Moreover, even when misidentifying source nodes, DDMSL locates them
near the actual nodes.
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Figure 6: DDMSL reconstructs SIR diffusion on Jazz.
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Figure 7: DDMSL reconstructs SIR diffusion on Coral ml.
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Figure 8: DDMSL reconstructs SIR diffusion on Power grid.
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Figure 9: DDMSL reconstructs SIR diffusion on PGP.
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(a) DDMSL (b) SLVAE (c) DDmix (d) LPSI

(e) GCNSI (f) OJC (g) Ground Truth

Figure 10: Visualization comparisons of source localization on Karate.

(a) DDMSL (b) SLVAE (c) DDmix (d) LPSI

(e) GCNSI (f) OJC (g) Ground Truth

Figure 11: Visualization comparisons of source localization on Jazz.
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