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Abstract

To make effective decisions in novel environments with long-horizon goals, it is
crucial to engage in hierarchical reasoning across spatial and temporal scales. This
entails planning abstract subgoal sequences, visually reasoning about the under-
lying plans, and executing actions in accordance with the devised plan through
visual-motor control. We propose Compositional Foundation Models for Hierarchi-
cal Planning (HiP), a foundation model which leverages multiple expert foundation
model trained on language, vision and action data individually jointly together to
solve long-horizon tasks. We use a large language model to construct symbolic
plans that are grounded in the environment through a large video diffusion model.
Generated video plans are then grounded to visual-motor control, through an in-
verse dynamics model that infers actions from generated videos. To enable effective
reasoning within this hierarchy, we enforce consistency between the models via
iterative refinement. We illustrate the efficacy and adaptability of our approach in
three different long-horizon table-top manipulation tasks.

1 Introduction

Consider the task of making a cup of tea in an unfamiliar house. To successfully execute this task, an
effective approach is to reason hierarchically at multiple levels: an abstract level, e.g. the high level
steps needed to heat up the tea, a concrete geometric level e.g., how we should physically navigate
to and in the kitchen, and at a control level e.g. how we should actuate our joints to lift a cup. It is
further important that reasoning at each level is self-consistent with each other – an abstract plan to
look in cabinets for tea kettles must also be physically plausible at the geometric level and executable
given the actuations we are capable of. In this paper, we explore how we can create agents capable of
solving novel long-horizon tasks which require hierarchical reasoning.
Large “foundation models" have become a dominant paradigm in solving tasks in natural language
processing [36, 47, 7], computer vision [26], and mathematical reasoning [27]. In line with this
paradigm, a question of broad interest is to develop a “foundation model” that can solve novel and
long-horizon decision-making tasks. Some prior works [39, 6] collected paired visual, language
and action data and trained a monolithic neural network for solving long-horizon tasks. However,
collecting paired visual, language and action data is expensive and hard to scale up. Another line
of prior works [10, 28] finetune large language models (LLM) on both visual and language inputs
using task-specific robot demonstrations. This is problematic because, unlike the abundance of
text on the Internet, paired vision and language robotics demonstrations are not readily available
and are expensive to collect. Furthermore, finetuning high-performing language models, such as
GPT3.5/4 [37, 36] and PaLM [7], is currently impossible, as the model weights are not open-sourced.
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Figure 1: Compositional Foundation Models for Hierarchical Planning. HiP uses a task model, represented
using a LLM, to create an abstract plan, a visual model, represented using a video model, to generate an image
trajectory plan, and an ego-centric action model to infer actions from the image trajectory.

The key characteristic of the foundation model is that solving a new task or adapting to a new
environment is possible with much less data compared to training from scratch for that task or
domain. Instead of building a foundation model for long-term planning by collecting paired language-
vision-action data, in this work we seek a scalable alternative – can we reduce the need for a costly
and tedious process of collecting paired data across three modalities and yet be relatively efficient
at solving new planning tasks? We propose Compositional Foundation Models for Hierarchical
Planning (HiP), a foundation model that is a composition of different expert models trained on
language, vision, and action data individually. Because these models are trained individually, the
data requirements for constructing the foundation models are substantially reduced (Figure 1). Given
an abstract language instruction describing the desired task, HiP uses a large language model to
find a sequence of sub-tasks (i.e., planning). HiP then uses a large video diffusion model to capture
geometric and physical information about the world and generates a more detailed plan in form
of an observation-only trajectory. Finally, HiP uses a large pre-trained inverse model that maps a
sequence of ego-centric images into actions. The compositional design choice for decision-making
allows separate models to reason at different levels of the hierarchy, and jointly make expert decisions
without the need for ever collecting expensive paired decision-making data across modalities.
Given three models trained independently, they can produce inconsistent outputs that can lead to
overall planning failure. For instance, a naïve approach for composing models is to take the maximum-
likelihood output at each stage. However, a step of plan which is high likelihood under one model, i.e.
looking for a tea kettle in a cabinet may have zero likelihood under a seperate model, i.e. if there is no
cabinet in the house. It is instead important to sample a plan that jointly maximizes likelihood across
every expert model. To create consistent plans across our disparate models, we propose an iterative
refinement mechanism to ensure consistency using feedback from the downstream models [28].
At each step of the language model’s generative process, intermediate feedback from a likelihood
estimator conditioned on an image of the current state is incorporated into the output distribution.
Similarly, at each step of the video model generation, intermediate feedback from the action model
refines video generation. This iterative refinement procedure promotes consensus among the different
models and thereby enables hierarchically consistent plans that are both responsive to the goal
and executable given the current state and agent. Our proposed iterative refinement approach is
computationally efficient to train, as it does not require any large model finetuning. Furthermore, we
do not require access to the model’s weights and our approach works with any models that offer only
input and output API access.
In summary, we propose a compositional foundation model for hierarchical planning that leverages a
composition of foundation models, learned separately on different modalities of Internet and ego-
centric robotics data, to construct long-horizon plans. We demonstrate promising results on three
long-horizon tabletop manipulation environments.

2 Compostional Foundation Models for Hierarchical Planning

We propose HiP, a foundation model that decomposes the problem of generating action trajectories
for long-horizon tasks specified by a language goal g into three levels of hierarchy: (1) Task planning
– inferring a language subgoal wi conditioned on observation xi,1 and language goal g; (2) Visual
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Figure 2: Planning with HiP. Given a language goal g and current observation xt, LLM generates next subgoal
w with feedback from a visual plausibility model. Then, Diffusion uses observation xt and subgoal w to generate
observation trajectory τx with feedback from an action feasibility model. Finally, action planning uses inverse
dynamics to generate action at from current xt and generated observation ˆxt+1 (action planning).

planning – generating a physically plausible plan as a sequence of image trajectories τ ix = {xi,1:T },
one for each given language subgoal wi and observation at first timestep xi,1; (3) Action planning –
inferring a sequence of action trajectories τ ia = {ai,1:T−1} from the image trajectories τ ix executing
the plan. Figure 2 illustrates the model architecture and a pseudocode is provided in Algorithm 1.
Let pΘ model this hierarchical decision-making process. Given our three levels of hierarchy, pΘ can
be factorized into the following: task distribution pθ, visual distribution pϕ, and action distribution
pψ. The distribution over plans, conditioned on the goal and an image of the initial state, can be
written under the Markov assumption as:

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

(
N∏
i=1

pθ(wi|g)

)
︸ ︷︷ ︸

task planning

(
N∏
i=1

pϕ(τ
i
x|wi, xi,1)

)
︸ ︷︷ ︸

visual planning

(
N∏
i=1

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1)

)
︸ ︷︷ ︸

action planning

(1)

We seek to find action trajectories τ ia, image trajectories τ ix and subgoals W = {wi} which maximize
the above likelihood. Please see Appendix A for a derivation of this factorization. In the following
sub-sections, we describe the form of each of these components, how they are trained, and how they
are used to infer a final plan for completing the long-horizon task.

2.1 Task Planning via Large Language Models

Given a task specified in language g and the current observation xi,1, we use a pretrained LLM as the
task planner, which decomposes the goal into a sequence of subgoals. The LLM aims to infer the next
subgoal wi given a goal g and models the distribution pLLM(wi|g). As the language model is trained
on a vast amount of data on the Internet, it captures powerful semantic priors on what steps should be
taken to accomplish a particular task. To adapt the LLM to obtain a subgoal sequence relevant to our
task, we prompt it with some examples of domain specific data consisting of high-level goals paired
with desirable subgoal sequences.
However, directly sampling subgoals using a LLM can lead to samples that are inconsistent with the
overall joint distribution in Eqn (1), as the subgoal wi not only affects the marginal likelihood of task
planning but also the downstream likelihoods of the visual planning model. Consider the example in
Figure 2 where the agent is tasked with packing computer mouse, black and blue sneakers, pepsi box
and toy train in brown box. Let’s say the computer mouse is already in the brown box. While the
subgoal of placing computer mouse in brown box has high-likelihood under task model pθ(wi|g), the
resulting observation trajectory generated by visual model pϕ(τ ix|wi, xi,1) will have a low-likelihood
under pϕ given the subgoal is already completed. Next, we describe how we use iterative refinement
to capture this dependency between language decoding and visual planning to sample from Eqn (1).
Consistency with Visual Planning To ensure that we sample subgoal wi that maximizes the joint
distribution in Eqn (1), we should sample a subgoal that maximizes the following joint likelihood

w∗
i = argmax

wi

pLLM(wi|g)pϕ(τ ix|wi, xi,1), (2)

i.e. a likelihood that maximizes both conditional subgoal generation likelihood from a LLM and the
likelihood of sampled videos τ ix given the language instruction and current image xi,1. One way to
determine the optimal subgoal w∗

i is to generate multiple wi from LLM and score them using the
likelihood of videos sampled from our video model pϕ(τ ix|wi, xi,1). However, the video generation
process is computationally expensive, so we take a different approach.
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Algorithm 1 Decision Making with HiP
1: Models: Large language model pLLM, Subgoal classifier fϕ, Noise model of diffusion ϵϕ, Observation

trajectory classifier gψ , Inverse dynamics pψ
2: Hyperparameters: Guidance scales ω, ω′, Denoising diffusion steps K
3: Input: Current observation xt, Language goal g
4: # Task Planning
5: for i = 1 . . .M do
6: Generate subgoal wi ∼ pLLM (wi|g)
7: end for
8: Collect candidate subgoals W ← {wi}Mi=1

9: # Iterative Refinement from Visual Planning
10: w ← argmaxw fϕ(xt,W, g)
11: # Visual Planning
12: Initialize (τx)K ∼ N (0, I)
13: for k = K . . . 1 do
14: # Iterative Refinement from Action Planning
15: ϵ̂← ϵϕ((τx)k, xt, k) + ω(ϵϕ((τx)k, xt, w, k)− ϵϕ((τx)k, xt, k))− ω′∇(τx)k log gψ(1|(τx)k)
16: (τx)k−1 ← Denoise((τx)k, ϵ̂)
17: end for
18: # Action Planning
19: Extract (xt, ˆxt+1) from (τx)0
20: Execute at ← pψ(at|xt, ˆxt+1)

The likelihood of video generation pϕ(τ
i
x|wi, xi,1) primarily corresponds to the feasibility of a

language subgoal wi with respect to the initial image xi,1. Thus an approximation of Eqn (2) is to
directly optimize the conditional density

w∗
i = argmax

wi

p(wi|g, xi,1). (3)

We can rewrite Eqn (3) as

w∗
i = argmax

wi

log pLLM(wi|g) + log

(
p(xi,1|wi, g)
p(xi,1|g)

)
We estimate the density ratio p(xi,1|wi,g)

p(xi,1|g) with a multi-class classifier fϕ(xi,1, {wj}Mi=1, g) that
chooses the appropriate subgoal w∗

i from candidate subgoals {wj}Mj=1 generated by the LLM. The
classifier implicitly estimates the relative log likelihood estimate of p(xi,1|wi, g) and use these logits
to estimate the log density ratio with respect to each of the M subgoals and find w∗

i that maximizes the
estimate [45]. We use a dataset Dclassify := {xi,1, g, {wj}Mj=1, i} consisting of observation xi,1, goal
g, candidate subgoals {wj}Mj=1 and the correct subgoal label i to train fϕ. For further architectural
details, please refer to Appendix B.1.

2.2 Visual Planning with Video Generation

Upon obtaining a language subgoal wi from task planning, our visual planner generates a plausible
observation trajectory τ ix conditioned on current observation xi,1 and subgoal wi. We use a video
diffusion model for visual planning given its success in generating text-conditioned videos [20, 53].
To provide our video diffusion model with a rich prior for physically plausible motions, we pretrain
it pϕ(τ ix|wi, xi,1) on a large-scale text-to-video dataset Ego4D [13]. We then finetune it on the
task-specific video dataset Dvideo := {τ ix, wi} consisting of observation trajectories τ ix satisfying
subgoal wi. For further architectural details, please refer to Appendix B.2.
However, analogous to the consistent sampling problem in task planning, directly sampling observa-
tion trajectories with video diffusion can lead to samples that are inconsistent with the overall joint
distribution in Eqn (1). The observation trajectory τ ix not only affects the marginal likelihood of
visual planning, but also the downstream likelihood of the action planning model.
Consistency with Action Planning To ensure observation trajectories τ ix that correctly maximize
the joint distribution in Eqn (1), we optimize an observation trajectory that maximizes the following
joint likelihood

(τ ix)
∗ = argmax

τ i
x

pϕ(τ
i
x|wi, xi,1)

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1), (4)
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i.e. an image sequence that maximizes both conditional observation trajectory likelihood from video
diffusion and the likelihood of sampled actions τ ia given the observation trajectory τ ix.
To sample such an observation trajectory, we could iteratively bias the denoising of video diffusion
using the log-likelihood of the sampled actions

∏T−1
t=1 log pψ(ai,t|xi,t, xi,t+1). While this solution is

principled, it is slow as it requires sampling of entire action trajectories and calculating the corre-
sponding likelihoods during every step of the denoising process. Thus, we approximate the sampling
and the likelihood calculation of action trajectory

∏T−1
t=1 pψ(ai,t|xi,t, xi,t+1) with a binary classifier

gψ(τ
i
x) that models if the observation trajectory τ ix leads to a high-likelihood action trajectory.

We learn a binary classifier gψ to assign high likelihood to feasible trajectories sampled from our video
dataset τ ix ∼ Dvideo and low likelihood to infeasible trajectories generated by randomly shuffling
the order of consecutive frames in feasible trajectories. Once trained, we can use the likelihood
log gψ(1|τ ix) to bias the denoising of the video diffusion and maximize the likelihood of the ensuing
action trajectory. For further details on binary classifier, please refer to Appendix C.2.

2.3 Action Planning with Inverse Dynamics

After generating an observation trajectory τ ix from visual planning, our action planner generates
an action trajectory τ ia from the observation trajectory. We leverage egocentric internet images for
providing our action planner with useful visual priors. Our action planner is parameterized as an
inverse dynamics model [1, 38] that infers the action ai,t given the observation pair (xi,t, xi,t+1):

ai,t ∼ pψ(ai,t|xi,t, xi,t+1)

Training To imbue the inverse dynamics pψ with useful visual priors, we initialize it with VC-
1 [32] weights, pretrained on ego-centric images and ImageNet. We then finetune it on dataset
Dinv := {τ ix, τ ia} consisting of paired observation and action trajectories by optimizing:

max
ψ

Eτ∈Dinv [log pψ(ai,t|xi,t, xi,t+1)]

For further architectural details, please refer to Appendix B.3.

3 Experimental Evaluations

We evaluate the ability of HiP to solve long-horizon planning tasks that are drawn from distributions
with substantial variation, including the number and types of objects and their arrangements. We
then study the effects of iterative refinement and of pretraining on overall performance of HiP. We
also compare against an alternative strategy of visually grounding the LLM without any task-specific
data. In addition, we study how granularity of subgoals affects HiP’s performance, ablate over
choice of visual planning model and analyze sensitivity of iterative refinement to hyperparameters
(Appendix E).

3.1 Evaluation Environments

We evaluate HiP on three environments, paint-block, object-arrange, and kitchen-tasks
which are inspired by combinatorial planning tasks in Mao et al. [33], Shridhar et al. [43] and Xing
et al. [50] respectively.

• paint-block: A robot has to manipulate blocks in the environment to satisfy language goal
instructions, such as stack pink block on yellow block and place green block right of them. However,
objects of correct colors may not be present in the environment, in which case, the robot needs to
first pick up white blocks and put them in the appropriate color bowls to paint them. After that, it
should perform appropriate pick-and-place operations to stack a pink block on the yellow block
and place the green block right of them. A new task T is generated by randomly selecting 3 final
colors (out of 10 possible colors) for the blocks and then sampling a relation (out of 3 possible
relations) for each pair of blocks. The precise locations of individual blocks, bowls, and boxes are
fully randomized across different tasks. Tasks have 4 ∼ 6 subgoals.

• object-arrange: A robot has to place appropriate objects in the brown box to satisfy language
goal instructions such as place shoe, tablet, alarm clock, and scissor in brown box. However, the
environment may have distractor objects. Furthermore, some objects can be dirty, indicated by
a lack of texture and yellow color. For these objects, the robot must first place them in a blue
cleaning box and only afterwards place those objects in the brown box. A new task T is generated
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Figure 3: Example Executions. Example long-horizon generated plans on tasks in paint-block,
object-arrange, and kitchen-tasks domains.

by randomly selecting 7 objects (out of 55 possible objects), out of which 3 are distractors, and
then randomly making one non-distractor object dirty. The precise locations of individual objects
and boxes are fully randomized across different tasks. Tasks usually have 3 ∼ 5 subgoals.

• kitchen-tasks: A robot has to complete kitchen subtasks to satisfy language goal instructions
such as open microwave, move kettle out of the way, light the kitchen area, and open upper right
drawer. However, the environment may have objects irrelevant to the subtasks that the robot
must ignore. Furthermore, some kitchen subtasks specified in the language goal might already be
completed, and the robot should ignore those tasks. There are 7 possible kitchen subtasks: opening
the microwave, moving the kettle, switching on lights, turning on the bottom knob, turning on
the top knob, opening the left drawer, and opening the right drawer. A new task T is generated
by randomly selecting 4 out of 7 possible kitchen subtasks, randomly selecting an instance of
microwave out of 3 possible instances, randomly selecting an instance of kettle out of 4 possible
instances, randomly and independently selecting texture of counter, floor and drawer out of 3
possible textures and randomizing initial pose of kettle and microwave. With 50% probability, one
of 4 selected kitchen subtask is completed before the start of the task. Hence, tasks usually have
3 ∼ 4 subtasks (i.e. subgoals).

Train and Test Tasks For all environments, we sample two sets of tasks Ttrain, Ttest ∼ p(T ). We
use the train set of tasks Ttrain to create datasets Dclassify, Dvideo, Dinv and other datasets required
for training baselines. We ensure the test set of tasks Ttest contains novel combinations of object
colors in paint-block, novel combinations of object categories in object-arrange, and novel
combinations of kitchen subtasks in kitchen-tasks.

Evaluation Metrics We quantitatively evaluate a model by measuring its task completion rate for
paint-block and object-arrange, and subtask completion rate for kitchen tasks. We use the
simulator to determine if the goal, corresponding to a task, has been achieved. We evaluate a model
on Ttrain (seen) to test its ability to solve long-horizon tasks and on Ttest (unseen) to test its ability to
generalize to long-horizon tasks consisting of novel combinations of object colors in paint-block,
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Paint-block Object-arrange Kitchen-tasks

Model Seen Unseen Seen Unseen Seen Unseen
Transformer BC (oracle subgoals) 8.3± 1.9 5.1± 1.6 10.2± 2.9 7.3± 1.7 48.4± 21.6 32.1± 24.2
Gato (oracle subgoals) 31.2± 2.4 28.6± 2.9 37.9± 3.3 36.5± 3.2 70.2± 10.8 66.8± 12.2
Trajectory Transformer (oracle subgoals) 22.1± 2.1 22.3± 2.5 30.5± 2.3 29.8± 2.9 66.4± 20.7 52.1± 22.3
Action Diffuser (oracle subgoals) 21.6± 2.6 18.2± 2.3 29.2± 2.4 27.6± 2.1 65.9± 23.2 55.1± 22.8
HiP (Ours, oracle subgoals) 81.2± 1.8 79.6± 1.9 91.8± 2.9 92.3± 2.3 92.8± 7.1 89.8± 7.6

UniPi 37.2± 3.8 35.3± 3.2 44.1± 3.1 44.2± 2.9 74.6± 14.8 73.4± 11.2
SayCan 67.2± 3.3 62.8± 3.7 70.3± 2.6 66.9± 2.8 - -
HiP (Ours) 74.3± 1.9 72.8± 1.7 75± 2.8 75.4± 2.6 85.8± 9.4 83.5± 10.2

Table 1: Performance on Long-Horizon tasks. HiP not only outperforms the baselines in solving seen
long-horizon tasks but its performance remains intact when solving unseen long-horizon tasks containing novel
combination of objects colors in paint-block, novel combination of objects categories in object-rearrange
and novel combination of subtasks in kitchen-tasks.

object categories in object-arrange, and kitchen subtasks in kitchen-tasks. We sample 1000
tasks from Ttrain and Ttest respectively, and obtain average task completion rate on paint-block
and object-arrange domains and average subtask completion rate on kitchen tasks domain.
We report the mean and the standard error over 4 seeds in Table 1.

3.2 Baselines

There are several existing strategies for constructing robot manipulation policies conditioned on
language goals, which we use as baselines in our experiments:

• Goal-Conditioned Policy A goal-conditioned transformer ai,t ∼ p(ai,t|xi,t, wi) that outputs action
ai,t given a language subgoal wi and current observation xi,t (Transformer BC) [6]. We provide
the model with oracle subgoals and encode these subgoals with a pretrained language encoder
(Flan-T5-Base). We also compare against goal-conditioned policy with Gato [39] transformer.

• Video Planner A video diffusion model (UniPi) [12] {τ ix} ∼ p({τ ix}|g, xi,1), ai,t ∼
p(ai,t|xi,t, xi,t+1) that bypasses task planning, generates video plans for the entire task {τ ix},
and infers actions ai,t using an inverse model.

• Action Planners Transformer models (Trajectory Transformer) [23] and diffusion models (Dif-
fuser) [24, 4] {ai,t:T−1} ∼ p({ai,t:T−1}|xi,t, wi) that produce an action sequence {ai,t:T−1}
given a language subgoal wi and current visual observation xi,t. We again provide the agents with
oracle subgoals and encode these subgoals with a pretrained language encoder (Flan-T5-Base).

• LLM as Skill Manager A hierarchical system (SayCan) [2] with LLM as high level policy that
sequences skills sampled from a repetoire of skills to accomplish a long-horizon task. We use
CLIPort [43] policies as skills and the unnormalized logits over the pixel space it produces as
affordances. These affordances grounds the LLM to current observation for producing next subgoal.

3.3 Results

We begin by comparing the performance of HiP and baselines to solve long-horizon tasks in
paint-block, object-arrange, kitchen-tasks environments. Table 1 shows that HiP signifi-
cantly outperforms the baselines, although the baselines have an advantage and have access to oracle
subgoals. HiP’s superior performance shows the importance of (i) hierarchy given it outperforms goal-
conditioned policy (Transformer BC and Gato), (ii) task planning since it outperforms video planners
(UniPi), and (iii) visual planning given it outperforms action planners (Trajectory Transformer, Action
Diffuser). It also shows the importance of representing skills with video-based planners which can
be pre-trained on Internet videos and can be applied to tasks (such as kitchen-tasks). SayCan, in
contrast, requires tasks to be decomposed into primitives paired with an affordance function, which
can be difficult to define for many tasks like the kitchen task. Thus, we couldn’t run SayCan on
kitchen-tasks environment. Finally, to quantitatively show how the errors in fθ(xi,1, wi, g) affect
the performance of HiP, we compare it to HiP with oracle subgoals. For further details on the training
and evaluation of HiP, please refer to Appendix C. For implementation details on Gato and SayCan,
please refer to Appendix D. For runtime analysis of HiP, please refer to Appendix F.

Combinatorial Generalization to Unseen Long-horizon Tasks We also quantitatively test the
ability of HiP to generalize to unseen long-horizon tasks, consisting of novel combinations of object
colors in paint-block, object categories in object-arrange, and subtasks in kitchen-tasks.
Table 1 shows that HiP’s performance remains intact when solving unseen long-horizon tasks, and
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Figure 4: Execution trajectory of HiP on an novel long-horizon task in paint-block environment.

still significantly outperforms the baselines. Figure 4 visualizes the execution of HiP in unseen
long-horizon tasks in paint-block.
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Figure 5: Pretraining video diffusion model with the Ego4D dataset consistently yields higher success rate
and lower FVD scores (lower is better), even with reduced training dataset sizes. With pretraining, the model’s
FVD score escalates less gradually and its success rate falls less steeply as the dataset size shrinks.

Pre-training Video Diffusion Model We investigate how much our video diffusion model benefits
from pre-training on the Internet-scale data. We report both the success rate of HiP and Fréchet
Video Distance (FVD) score that quantifies the similarity between generated videos and ground truth
videos, where lower scores indicate greater similarity in Figure 5. We see that pretraining video
diffusion leads to a higher success rate and lower FVD score. If we reduce the training dataset to 75%
and 50% of the original dataset, the FVD score for video diffusion models (both, with and without
Ego4D dataset pretraining) increases and their success rate falls. However, the video diffusion model
with Ego4D dataset pretraining consistently gets higher success rate and lower FVD scores across
different dataset sizes. As we decrease the domain-specific training data, it is evident that the gap in
performance between the model with and without the Ego4D pre-training widens. For details on how
we process the Ego4D dataset, please refer to Appendix C.2.
Pre-training Inverse Dynamics Model We also analyze the benefit of pre-training our inverse
dynamics model and report the mean squared error between the predicted and ground truth actions
in Figure 6. The pre-training comes in the form of initializing the inverse dynamics model with
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Figure 6: Pretraining inverse dynamics model. In paint-block and object-arrange (kitchen-tasks),
when initialized with VC-1 weights, inverse dynamics model matches the performance of a randomly initialized
model trained on 10K trajectories with just 1K (3.5k) trajectories. A smaller ResNet-18 model requires 2.5K (6k)
trajectories to approach the same performance. The yellow and brown lines are overlaid on top of each other.

weights from VC-1 [32], a vision-transformer (ViT-B) [9] trained on ego-centric images with masked-
autoencoding objective [16]. In paint-block and object-arrange, we see that the inverse
dynamics, when initialized with weights from VC-1, only requires 1K labeled robotic trajectories
to achieve the same performance as the inverse dynamics model trained on 10K labeled robotic
trajectories but without VC-1 initialization. We also compare against an inverse dynamics model
parameterized with a smaller network (ResNet-18). However, the resulting inverse dynamics model
still requires 2.5K robotic trajectories to get close to the performance of the inverse dynamics
model with VC-1 initialization in paint-block and object-arrange. In kitchen-tasks, inverse
dynamics, when initialized with weights from VC-1, only requires 3.5k labeled robotic trajectories
to achieve the same performance as the inverse dynamics model trained on 10K labeled robotic
trajectories but without VC-1 initialization. When parameterized with ResNet-18, the inverse
dynamics model still requires 6k robotic trajectories to get close to the performance of the inverse
dynamics model with VC-1 initialization.
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Figure 7: Ablation Studies. (Left) While task plan refinement is critical to HiP’s performance, visual plan
refinement improves HiP’s performance by a smaller margin in paint block environment. (Right) While frozen
pretrained VLM (MiniGPT4) matches the performance of a learned classifier in paint-block environment, its
performance deteriorates in a more visually complex object-arrange environment.

Importance of Task Plan and Visual Plan Refinements We study the importance of refinement
in task and visual planning in Figure 7. We compare to HiP without visual plan refinement and
HiP without visual and task plan refinement in paint block environment. We see that task plan
refinement for visual grounding of LLM is critical to the performance of HiP. Without it, the task
plan is agnostic to the robot’s observation and predicts subgoals that lead to erroneous visual and
action planning. Furthermore, visual plan refinement improves the performance of HiP as well, albeit
by a small margin. For a description of the hyperparameters used, please refer to Appendix C.4.

Exploring Alternate Strategies for Visually Grounding LLM We use a learned classifier
fθ(xi,1, wi, g) to visually ground the LLM. We explore if we can use a frozen pretrained Vision-
Language Model (MiniGPT-4 [58]) as a classifier in place of the learned classifier. Although we
didn’t use any training data, we found the prompt engineering using the domain knowledge of
the task to be essential in using the Vision-Language Model (VLM) as a classifier (see Appendix
C.1 for details). We use subgoal prediction accuracy to quantify the performance of the learned
classifier and the frozen VLM. Figure 7 illustrates that while both our learned multi-class classifier
and frozen VLM perform comparably in the paint-block environment, the classifier significantly
outperforms the VLM in the more visually complex object-arrange environment. We detail the
two common failure modes of the VLM approach in object-arrange environment in Appendix
C.1. As VLMs continue to improve, it is possible that their future versions match the performance of
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learned classifiers and thus replace them in visually complex domains as well. For further details on
the VLM parameterization, please refer to Appendix C.1.

4 Related Work

The field of foundation models for decision-making [52] has seen significant progress in recent years.
A large body of work explored using large language models as zero-shot planners [21, 22, 29, 30, 2],
but it is often difficult to directly ground the language model on vision. To address this problem
of visually grounding the language model, other works have proposed to directly fine-tune large
language models for embodied tasks [28, 10]. However, such an approach requires large paired
vision and language datasets that are difficult to acquire. Most similar to our work, SayCan [2]
uses an LLM to hierarchically execute different tasks by breaking language goals into a sequence of
instructions, which are then inputted to skill-based value functions. While SayCan assumes this fixed
set of skill-based value functions, our skills are represented as video-based planners [12], enabling
generalization to new skills.
Another set of work has explored how to construct continuous space planners with diffusion mod-
els [25, 4, 49, 55, 48, 57, 12]. Existing works typically assume task-specific datasets from which the
continuous-space planner is derived [24, 3, 55]. Most similar to our work, UniPi [12] proposes to use
videos to plan in image space and similarily relies on internet videos to train image space planners.
We build on top of UniPi to construct our foundation model for hierarchical planning, and illustrate
how UniPi may be combined with LLMs to construct longer horizon continuous video plans.
Moreover, some works [28, 54, 5] explored how different foundation models may be integrated with
each other. In Flamingo [5], models are combined through joint finetuning with paired datasets, which
are difficult to collect. In contrast both Zeng et al. [54] and Li et al. [28] combine different models
zero-shot using either language or iterative consensus. Our work proposes to combine language,
video, and ego-centric action models together by taking the product of their learned distributions
[11]. We use a similar iterative consensus procedure as in Li et al. [28] to sample from the entire joint
distribution and use this combined distribution to construct a hierarchical planning system.

5 Limitations and Conclusion

Limitations Our approach has several limitations. As high-quality foundation models for visual
sequence prediction and robot action generation do not exist yet, our approach relies on smaller-scale
models that we directly train. Once high-quality video foundation models are available, we can use
them to guide our smaller-scale video models [51] which would reduce the data requirements of our
smaller-scale video models. Furthermore, our method uses approximations to sample from the joint
distribution between all the model. An interesting avenue for future work is to explore more efficient
and accurate methods to ensure consistent samples from the joint distribution.

Conclusion In this paper, we have presented an approach to combine many different foundation
models into a consistent hierarchical system for solving long-horizon robotics problems. Currently,
large pretrained models are readily available in the language domain only. Ideally, one would train a
foundation model for videos and ego-centric actions, which we believe will be available in the near
future. However, our paper focuses on leveraging separate foundation models trained on different
modalities of internet data, instead of training a single big foundation model for decision making.
Hence, for the purposes of this paper, given our computational resource limitations, we demonstrate
our general strategy with smaller-scale video and ego-centric action models trained in simulation,
which serve as proxies for larger pretrained models. We show the potential of this approach in
solving three long-horizon robot manipulation problem domains. Across environments with novel
compositions of states and goals, our method significantly outperforms the state-of-the-art approaches
towards solving these tasks.
In addition to building larger, more general-purposed visual sequence and robot control models, our
work suggests the possibility of further using other pretrained models in other modalities, such as
touch and sound, which may be jointly combined and used by our sampling approach. Overall, our
work paints a direction towards decision making by leveraging many different powerful pretrained
models in combination with a tiny bit of training data. We believe that such a system will be
substantially cheaper to train and will ultimately result in more capable and general-purpose decision
making systems.
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Appendix
In this Appendix, we discuss how we factorize the hierarchical decision-making process in Section A.
In Section B, we then detail the background and architecture for visually grounded task planning,
visual planning with video diffusion, and action planning with inverse dynamics model. In Section C,
we discuss the training and evaluation details for the different levels of planning in HiP and the
corresponding training hyperparameters. In Section D, we discuss implementation details for Gato
and SayCan. In Section E, we showcase additional ablation studies comparing different approaches
to enforce consistency across the levels of hierarchy, analyzing effect of granularity of subgoals
on performance of HiP, ablating on the choice of video planning model and analyzing sensitivity
of iterative refinement to hyperparameters. Finally, in Section F, we analyze runtime of different
components of HiP.

A Factorizing Hierarchical Decision-Making Process

We model the hierarchical decision-making process described in Section 2 with pΘ which can be
factorized into the task distribution pθ, visual distribution pϕ, and action distribution pψ .

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1, w<i, τ<ix , τ<ia )

N∏
i=1

pϕ(τ
i
x|w≤i, xi,1, g, τ

<i
x , τ<ia )

N∏
i=1

pψ(τ
i
a|τ≤ix , w≤i, xi,1, g, τ

<i
a )

Here, given random variables Y i, Y <i and Y ≤i represents {Y 1, . . . , Y i−1} and {Y 1, . . . , Y i}
respectively. Now, we apply Markov assumption: Given current observation xi,1, future variables
(wi, τ ix, τ

i
a) and past variables (wj , τ jx, τ

j
a ∀j < i) are conditionally independent.

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

N∏
i=1

pθ(wi|g, xi,1)
N∏
i=1

pϕ(τ
i
x|wi, xi,1, g)

N∏
i=1

pψ(τ
i
a|τ ix, wi, xi,1, g)

We model task distribution pθ with a large language model (LLM) which is independent of observation
xi,1. Since the image trajectory τ ix = {xi,1:T } describes a physically plausible plan for achieving
subgoal wi from observation xi,1, it is conditionally independent of goal g given subgoal wi and
observation xi,1. Furthermore, we assume that an action ai,t can be recovered from observation at
the same timestep xi,t and the next timestep xi,t+1. Thus, we can write the factorization as

pΘ(W, {τ ix}, {τ ia}|g, x1,1) =

(
N∏
i=1

pθ(wi|g)

)(
N∏
i=1

pϕ(τ
i
x|wi, xi,1)

)(
N∏
i=1

T−1∏
t=1

pψ(ai,t|xi,t, xi,t+1)

)

B Background and Architecture

B.1 Task Planning

Background on Density Ratio Estimation Let p and q be two densities, such that q is absolutely
continuous with respect to p, denoted as q << p i.e. q(x) > 0 wherever p(x) > 0. Then, their ratio
is defined as r(x) = p(x)/q(x) over the support of p. We can estimate this density ratio r(x) by
training a binary classifier to distinguish between samples from p and q [46, 14, 17]. More recent
work [45] has shown one can introduce auxiliary densities {mi}Mi=1 and train a multi-class classifier
to distinguish samples between M classes to learn a better-calibrated and more accurate density ratio
estimator. Once trained, the log density ratio can be estimated by log r(x) = ĥp(x)− ĥq(x), where
ĥi(x) is the unnormalized log probability of the input sample under the ith density, parameterized by
the model.

Learning a Classifier to Visually Ground Task Planning We estimate the density ratio p(xi,1|wi,g)
p(xi,1|g)

with a multi-class classifier fϕ(xi,1, {wj}, g) trained to distinguish samples amongst the conditional
distributions p(xi,1|wi, g), ..., p(xi,1|wM , g) and the marginal distribution p(xi,1|g). Upon conver-
gence, the classifier learns to assign high scores to (xi,1, wi, g) if wi is the subgoal corresponding to
the observation xi,1 and task g and low scores otherwise.
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Architecture We parameterize fϕ as a 4-layer multi-layer perceptron (MLP) on top of an ImageNet-
pretrained vision encoder (ResNet-18 [15]) and a frozen pretrained language encoder (Flan-T5-
Base [8]). The vision encoder encodes the observation xi,1, and the text encoder encodes the subgoals
wj and the goal g. The encoded observation, the encoded subgoals, and the encoded goal are
concatenated, and passed through a MLP with 3 hidden layers of sizes 512, 256, and 128. The
output dimension for MLP (i.e., number of classes for multi-classification) M is 6 for paint-block
environment, 5 for object-arrange environment and 4 for kitchen-tasks environment.
Choice of Large Language Model We use GPT3.5-turbo [37] as our large language model.

B.2 Visual Planning

Background Diffusion Probabilistic Models [44, 19] learn the data distribution h(x) from a
dataset D := {xi}. The data-generating procedure involves a predefined forward noising process
q(xk+1|xk) and a trainable reverse process pϕ(xk−1|xk), both parameterized as conditional Gaussian
distributions. Here, x0 := x is a sample, x1,x2, ...,xK−1 are the latents, and xK ∼ N (0, I) for a
sufficiently large K. Starting with Gaussian noise, samples are then iteratively generated through a
series of “denoising” steps. Although a tractable variational lower-bound on log pϕ can be optimized
to train diffusion models, Ho et al. [19] propose a simplified surrogate loss:

Ldenoise(θ) := Ek∼[1,K],x0∼h,ϵ∼N (0,I)[||ϵ− ϵϕ(xk, k)||2]
The predicted noise ϵθ(xk, k), parameterized with a deep neural network, estimates the noise ϵ ∼
N (0, I) added to the dataset sample x0 to produce noisy xk.
Guiding Diffusion Models with Text Diffusion models are most notable for synthesizing high-
quality images [41, 35] and videos [20, 53] from text descriptions. Modeling the conditional data
distribution q(x|y) makes it possible to generate samples satisfying the text description y. To enable
conditional data generation with diffusion, Ho and Salimans [18] modified the original training setup
to learn both a conditional ϵϕ(xk,y, k) and an unconditional ϵϕ(xk, k) model for the noise. The
unconditional noise is represented, in practice, as the conditional noise ϵϕ(xk, ∅, k), where a dummy
value ∅ takes the place of y. The perturbed noise ϵϕ(xk, ∅, k) + ω

(
ϵϕ(xk,y, k)− ϵϕ(xk, ∅, k)

)
(i.e.

classifier-free guidance) is used to later generate samples.
Video Diffusion in Latent Space As diffusion models generally perform denoising in the input
space [19], the optimization and inference become computationally demanding when dealing with
high-dimensional data, such as videos. Inspired by recent works [40, 53], we first use an autoencoder
venc to learn a latent space for our video data. It projects an observation trajectory τx (i.e., video) into
a 2D tri-plane representation [53] τz = [τTz , τ

H
z , τWz ] where τTz , τHz , τWz capture variations in the

video across time, height, and width respectively. We then diffuse over this learned latent space [53].
Latent Space Video Diffusion for Visual Planning Our video diffusion model pϕ(τ ix|wi, xi,1)
generates video τ ix given a language subgoal wi and the current observation xi,1. It is param-
eterized through its noise model ϵϕ((τ iz)k, wi, xi,1, k) := ϵϕ((τ

i
z)k, lenc(wi), venc(xi,1), k) where

τ iz := venc(τ
i
x) is the latent representation of video τ ix over which we diffuse. We condition the noise

model ϵϕ on subgoal wi using a pretrained language encoder lenc and on current observation xi,1
using video encoder venc. To use venc with a single observation xi,1, we first tile the observation along
the temporal dimension to create a video.
Architecture We now detail the architectures of different components:

• Video Autoencoder We borrow our architecture for venc from PVDM [53] which uses transformers
to project video τx ∈ RT×H×W to latent codes τz = [τTz , τ

H
z , τWz ] where τTz ∈ RC×H′×W ′

,
τHz ∈ RC×T×W ′

, τWz ∈ RC×H′×T . Here, T = 50 represents the time horizon of a video, H = 48
represents video height, W = 64 represents video width, C = 4 represents latent codebook
dimension, H ′ = 12 represents latent height, and W ′ = 8 represents latent width.

• Language Encoder We use Flan-T5-Base [8] as the pretrained frozen language encoder lenc.
• Noise Model We borrow PVDM-L architecture [53] which uses 2D UNet architecture, similar to

the one in Latent Diffusion Model (LDM) [40], to represent p(τz|τ ′z). In our case, τz = venc(τ
i
x)

and τ ′z = venc(xi,1). To further condition noise model ϵϕ on lenc(wi), we augment the 2D UNet
Model with cross-attention mechanism borrowed by LDM [40].

For implementing these architectures, we used the codebase https://github.com/sihyun-yu/PVDM
which contains the code for PVDM and LDM.
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Classifier for Consistency between Visual Planning and Action Planning To ensure consistency
between visual planning and action planning, we want to sample observation trajectories that maxi-
mizes both conditional observation trajectory likelihood from diffusion and the likelihood of sampled
actions given the observation trajectory (see equation 4). To approximate likelihood calculation of
action trajectory, we learn a binary classifier gψ that models if the observation trajectory leads to
a high likelihood action trajectories. Since diffusion happens in latent space and we use gradients
from gψ to bias the denoising of the video diffusion, gψ(τ iz) takes the observation trajectory in
latent space. The binary classifier gψ is trained to distinguish between observation trajectories in
latent space sampled from video dataset τ iz = venc(τ

i
x), τ

i
x ∼ Dvideo (i.e. label of 1) and observa-

tion trajectories in latent space sampled from video dataset whose frames where randomly shuffled
(τ iz)

′ = venc(σ(τ
i
x)), τ

i
x ∼ Dvideo (i.e. label of 0). Here, σ denotes the random shuffling of frames.

To randomly shuffle frames in an observation trajectory (of length 50), we first randomly select 5
frames in the observation trajectory. For each of the selected frame, we randomly permute it with its
neighboring frame (i.e. either with the frame before it or with the frame after it). Once gψ is trained,
we use it to bias the denoising of the video diffusion

ϵ̂ := ϵϕ((τz)k, venc(xt), k) + ω(ϵϕ((τz)k, venc(xt), lenc(w), k)− ϵϕ((τz)k, venc(xt), k))

− ω′∇(τz)k log gψ(1|(τz)k)
Here, ϵ̂ is the noise used in denoising of the video diffusion and ω, ω′ are guidance hyperparameters.
Classifier Architecture The classifier gψ(τz = [τTz , τ

H
z , τWz ]) has a ResNet-9 encoder that converts

τTz , τHz , and τWz to latent vectors, then concatenate those latent vectors and passes the concatenated
vector through an MLP with 2 hidden layers of sizes 256 and 128 and an output layer of size 1.

B.3 Action Planning

To do action planning, we learn an inverse dynamics model to pψ(ai,t|xi,t, xi,t+1) predicts 7-
dimensional robot states si,t = pψ(xi,t) and si,t+1 = pψ(xi,t+1). The first 6 dimensions of the robot
state represent joint angles and the last dimension of the robot state represents the gripper state (i.e.,
whether it’s open or closed). The first 6 action dimension is represented as joint angle difference
ai,t[: 6] = si,t+1[: 6] − si,t[: 6] while the last action dimension is gripper state of next timestep
ai,t[−1] = si,t+1[−1].
Architecture We use ViT-B [9] (VC-1 [32] initialization) along with a linear layer to parameterize
pψ . ViT-B projects the observation xi,t ∈ R48×64×3 to 768 dimensional latent vector from which the
linear layer predicts the 7 dimensional state si,t.

C Training and Evaluation

C.1 Task Planning

Inability	to	recognize	uncommon	objects Hallucination	leading	to	wrong	spatial	reasoning
Is	screwdriver	in	brown	box?

Yes,	screwdriver	is	in	brown	box

Is	computer	hard	drive	in	
brown	box?

No,	the	computer	hard	drive	is	
not	in	the	brown	box

Is	scissor	in	brown	box?

Yes,	scissor	is	in	brown	box

User Vision	Language	Model

Figure 8: Failure in VLM. to recognize uncommon objects like computer hard drives and occasional hallucina-
tion of object presence, leading to incorrect visual reasoning.

Training Objective and Dataset for Learned Classifier We use a softmax cross-entropy loss
to train the multi-class classifier fϕ(xi,1, {wj}Mj=1, g) to classify an observation xi,1 into one of
the M given subgoal. We train it using the classification dataset Dclassify := {xi,1, g, {wj}Mj=1, i}
consisting of observation xi,1, goal g, candidate subgoals {wj}Mj=1 and the correct subgoal label
i. The classification dataset for paint-block, object-arrange, and kitchen-tasks consists of
58k, 82k and 50k datapoints respectively.
Vision-Language Model (VLM) as a Classifier We use a frozen pretrained Vision-Language
Model (VLM) (MiniGPT4 [58]) as a classifier. We first sample a list of all possible subgoals
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W = {wi}Mi=1 from the LLM given the language goal g. We then use the VLM to eliminate subgoals
from W that have been completed. For each subgoal, we question the VLM whether that subgoal
has been completed. For example, consider the subgoal "Place white block in yellow bowl". To see
if the subgoal has been completed, we ask the VLM "Is there a block in yellow bowl?". Consider
the subgoal "Place green block in brown box" as another example. To see if the subgoal has been
completed, we ask the VLM "Is there a green block in brown box?". Furthermore, if the VLM
says "yes" and the subgoal has been completed, we also remove other subgoals from W that should
have been completed, such as "Place white block in green bowl". Once we have eliminated the
completed subgoals, we use the domain knowledge to determine which subgoal to execute out of
all the remaining subgoals. As an example, if the goal is to "Stack green block on top of blue block
in brown box" and we have a green block in green bowl and a blue block in blue bowl, we should
execute the subgoal "Place blue block in brown box" before the subgoal "Place green block on blue
block". While this process of asking questions from VLM to determine the remaining subgoals and
then sequencing the remaining subgoals doesn’t require any training data, it heavily relies on the
task’s domain knowledge.

Failure Modes of VLM We observe two common failure modes of the VLM approach in
object-arrange environment and visualize them in Figure 8. First, because the model is not
trained on any in-domain data, it often fails to recognize uncommon objects, such as computer hard
drives, in the observations. Second, it occasionally hallucinates the presence of objects at certain
locations and thus leads to incorrect visual reasoning.

VLM as a Subgoal Predictor We also tried to prompt the VLM with 5 examples of goal g
and subgoal candidates {wi}Mi=1 and then directly use it to generate the next subgoal wi given the
observation xi,1 and the goal g. However, it completely failed. We hypothesize that the VLM fails to
directly generate the next subgoal due to its inability to perform in-context learning.

Evaluation We evaluate the trained classifier fϕ and the frozen VLM for subgoal prediction
accuracy on 5k unseen datapoints, consisting of observation, goal, candidate subgoals and correct
subgoal, generated from test tasks Ttest. We average over 4 seeds and show the results in Figure 7.

C.2 Visual Planning

Ego4D dataset processing We pre-train on canonical clips of the Ego4D dataset which are text-
annotated short clips made from longer videos. We further divide each canonical clip into 10sec
segments from which we derive 50 frames. We resize each frame to 48× 64. We create a pretraining
Ego4D dataset of (approximately) 344k short clips, each consisting of 50 frames and a text annotation.
We use the loader from R3M [34] codebase (https://github.com/facebookresearch/r3m) to load our
pretraining Ego4D dataset.

Training Objective and Dataset We use pixel-level L1 reconstruction and negative perceptual
similarity for training the autoencoder venc. We borrow this objective from PVDM [53] paper
except we don’t use adversarial loss. We keep the language encoder frozen. We use denoising loss
in video latent space Ek∼[1,K],τz,w,x∼D,ϵ∼N (O,I)[∥ϵ − ϵϕ((τz)k, lenc(w), venc(x), k)∥2] to train the
noise model ϵϕ. We replace w with a null token so that ϵϕ learns both a text-conditional model and
an unconditional model. We pretrain the autoencoder venc and the noise model ϵϕ on the processed
Ego4D dataset. We then finetune it on our dataset Dvideo := {τ ix, wi} consisting of approximately
100k observation trajectories of length T = 50 and associated text subgoals.

Classifier Training Objective and Dataset We use a binary cross-entropy loss to train the binary
classifier gψ(τz) that predicts if the observation trajectory in latent space τz = venc(τx) leads to
high-likelihood action trajectory. It is trained using trajectories from video dataset τx ∼ Dvideo.

C.3 Action Planning

Training Objective and Dataset We train inverse dynamics pψ on a dataset Dinv. Since actions are
differences between robotic joint states, we train pψ to directly predict robotic state si,t = pψ(xi,t)
by minimizing the mean squared error between the predicted robotic state and ground truth robotic
state. Hence, Dinv := {τ ix, τ is} consists of 1k paired observation and robotic state trajectories, each
having a length of T = 50, in paint-block and object-arrange domains. In kitchen-tasks
domain, it consists of 3.5k paired observation and robotic state trajectories, each having a length of
T = 50.
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Evaluation We evaluate the trained pψ (i.e., VC-1 initialized model and other related models in
Figure 6) on 100 unseen paired observation and robotic state trajectories generated from test tasks
Ttest. We use mean squared error to evaluate our inverse dynamics models. We use 4 seeds to calculate
the standard error, represented by the shaded area in Figure 6.

C.4 Hyperparameters

Task Planning We train fϕ for 50 epochs using AdamW optimizer [31], a batch size of 256, a
learning rate of 1e− 3 and a weight decay of 1e− 6. We used one V100 Nvidia GPU for training the
multi-class classifier.

Visual Planning We borrow our hyperparameters for training video diffusion from the PVDM
paper [53]. We use AdamW optimizer [31], a batch size of 24 and a learning rate of 1e − 4 for
training the autoencoder. We use AdamW optimizer, a batch size of 64, and a learning rate of 1e− 4
for training the noise model. During the pretraining phase with the Ego4D dataset, we train the
autoencoder for 5 epochs and then the noise model for 5 epochs. During the finetuning phase with
Dvideo, we train the autoencoder for 10 epochs and then the noise model for 40 epochs. We used two
A6000 Nvidia GPUs for training these diffusion models. We train gψ for 10 epochs using AdamW
optimizer, a batch size of 256 and a learning rate of 1e − 4. We used one V100 Nvidia GPU for
training the binary classifier. During classifier-free guidance, we use ω = 4 and ω′ = 1.

Action Planning We train VC-1 initialized inverse dynamics model for 20 epochs with AdamW
optimizer [31], a batch size of 256 and a learning rate of 3e−5. We trained other randomly initialized
ViT-B inverse dynamics models and randomly initialized ResNet-18 inverse dynamics models for 20
epochs with AdamW optimizer, a batch size of 256, and a learning rate of 1e− 4. We used one V100
Nvidia GPU for training these inverse dynamics models.

D Implementation Details for Gato and SayCan

In training the visual and action planning for HiP, we use 100k robot videos for visual planner and
the inverse dynamics, when trained from scratch, utilizes 10k state-action trajectory pairs. In order to
ensure fair comparison, we use 110k datapoints for training Gato [39] and SayCan [2].

Gato We borrow the Gato [39] architecture from Vima Codebase and use it for training a language
conditioned policy with imitation learning. We use 110k (langauge, observation trajectory, action
trajectory) datapoints in each of the three domains for training Gato. Furthermore, we provide oracle
subgoals to Gato.

SayCan We borrow the SayCan [2] algorithm from the SayCan codebase and adapt it to our
settings. Following the recommendations of SayCan codebase, we use CLIPort policies as primitives.
CLIPort policies take in top-down RGBD view and outputs pick and place pixel coordinates. Then,
an underlying motion planner picks the object from the specified pick-coordinate and places the
object at the specified place-coordinate. We train CLIPort policies on 110k (language, observation,
action) datapoints in paint-block and object-arrange domain. The SayCan paper uses value
function as an affordance function to select the correct subgoal given current observation and high
level goal. However, CLIPort policies don’t have a value function. The SayCan codebase uses a
hardcoded scoring function which doesn’t apply to object-arrange domain. To overcome these
issues, we use the LLM grounding strategy from ? ]. It uses unnormalized logits over the pixel
space given by CLIPort policies as affordance and uses it to ground LLM to current observation and
thus predict the subgoal. We then compare SayCan with HiP and other baselines on paint-block
and object-arrange domain in Table 1. While SayCan outpeforms other baselines, HiP still
outperforms it both on seen and unseen tasks of paint-block and object-arrange domain. We
couldn’t run SayCan on kitchen-tasks domain as there’s no clear-cut primitive in that domain.
This points to a limitation of SayCan which requires tasks to be expressed in terms of primitives with
each primitive paired with an affordance function.

E Additional Ablation Studies

E.1 Consistency between task planning and visual planning

To make task planning consistent with visual planning, we need to select subgoal w∗
i which maximizes

the joint likelihood (see equation 2) of LLM pLLM(wi|g) and video diffusion pϕ(τ
i
x|wi, xi,1). While
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generating videos for different subgoal candidates wi and calculating the likelihood of the generated
video is computationally expensive, we would still like to evaluate its performance in subgoal
prediction given it is theoretically grounded. To this end, we first sample M subgoals W = {wj}Mj=1

from the LLM. Then, we calculate w∗
i = argmaxw∈W log pϕ(τ

i
x|w, xi,1) and use w∗

i as our predicted
subgoal. Since log pϕ(τ

i
x|w, xi,1) is intractable, we estimate its variational lower-bound as an

approximation. We use this approach for subgoal prediction in paint-block environment and
compare its performance to that of the learned classifier. It achieves a subgoal prediction accuracy of
54.3± 7.2% whereas the learned classifier achieves a subgoal prediction accuracy of 98.2± 1.5%
in paint-block environment. Both approaches outperform the approach of randomly selecting
a subgoal from W (i.e., no task plan refinement), which yields a subgoal prediction accuracy of
16.67% given M = 6. The poor performance of the described approach could result from the fact
that the diffusion model only coarsely approximates the true distribution p(τ ix|wi, xi,1), which results
in loose variational lower-bound and thus uncalibrated likelihoods from the diffusion model. A larger
diffusion model could better approximate p(τ ix|wi, xi,1), resulting in tighter variational lower-bound
and better-calibrated likelihoods.

E.2 Consistency between visual planning and action planning

To make visual planning consistent with action planning, we need to select observation trajectory
(τ ix)

∗ which maximizes joint likelihood (see equation 4) of conditional video diffusion pϕ(τ
i
x|wi, xi,1)

and inverse model
∏T−1
t=1 pψ(ai,t|xi,t, xi,t+1). While sampling action trajectories and calculating

their likelihoods during every step of the denoising process is computationally inefficient, we would
still like to evaluate its effectiveness in visual plan refinements. However, we perform video diffusion
in latent space while our inverse model is in observation space. Hence, for purpose of this experiment,
we learn another inverse model pψ(τ

i
a|τ iz) that uses a sequence model (i.e. a transformer) to produce

an action trajectory τ ia given an observation trajectory in latent space τ iz . We train pψ for 20
epochs on 10k paired observation and action trajectories, each having a length of T = 50. We use
AdamW optimizer, a batch size of 256 and a learning rate of 1e− 4 during training. To generate an
observation trajectory that maximizes the joint likelihood, we first sample 30 observation trajectories
from video diffusion pϕ(τ

i
x|wi, xi,1) conditioned on subgoal wi and observation xi,1. For each

generated observation trajectory τ ix, we sample a corresponding action trajectory τ ia and calculate
its corresponding log-likelihood log pψ(τ

i
a|venc(τ

i
x)). We select the observation trajectory τ ix with

highest log-likelihood. Note that we only use pψ for visual plan refinement and use pψ for action
execution to ensure fair comparison. If we use this approach for visual plan refinement with HiP, we
obtain a success rate of 72.5±1.9 on unseen tasks in paint-block environment. This is comparable
to the performance of HiP with visual plan refinements from learned classifier gψ which obtains a
success rate of 72.8± 1.7 on unseen tasks in paint-block environment. In contrast, HiP without
any visual plan refinement obtains a success rate of 71.1 ± 1.3 on unseen tasks in paint-block
environment. These results show that gψ serves as a good approximation for estimating whether an
observation trajectory leads to a high-likelihood action trajectory, while still being computationally
efficient.
Architecture for pψ We use a transformer model to represent pψ(τa|τz = [τTz , τ

H
z , τWz ]). We first

use a ResNet-9 encoder to convert τTz , τHz , and τWz to latent vectors. We then concatenate those
latent vectors and project the resulting vector to a hidden space of 64 dimension using a linear layer.
We then pass the 64 dimensional vector to a trajectory transformer model [23] which generates an
action trajectory τa of length 50. The trajectory transformer uses a transformer architecture with 4
layers and 4 self-attention heads.

E.3 How granularity of subgoals affects performance of HiP ?

We conduct a study in paint-block environment to analyze how granuality of subgoals affect HiP.
In our current setup, a subgoal in paint-block domain is of form "Place <block color> block
in/on/to <final block location>" and involves a pick and a place operation. We refer to our
current setup as HiP (standard). We introduce two additional level of subgoal granuality:

• Only one pick or place operation: The subgoal will be of form "Pick <block color> block
in/on <initial block location>" or "Place <block color> block in/on/to <final
block location>". It will involve either one pick or one place operation. We refer to the
model trained in this setup as HiP (more granular).

20



• Two pick and place operations: The subgoal will be of form "Place <1st block color>
block in/on/to <final 1st block location> and Place <2nd block color> block
in/on/to <final 2nd block location>". It will involve two pick and place operations.
We refer to the model trained in this setup as HiP (less granular).

Model HiP (more granular) HiP (Standard) HiP (less granular) UniPi

Paint-block (Seen) 74.5± 1.8 74.3± 1.9 61.8± 3.1 37.2± 3.8
Paint-block (Unseen) 73.1± 2.1 72.8± 1.7 58.2± 3.4 35.3± 3.2

Table 2: Granularity of Subgoals. Performance of HiP as we vary the granularity of subgoals. Initially, it
doesn’t get affected but then starts to deteoriate when subgoals become too coarse.

Note that UniPi has the least granuality in terms of subgoals as it tries to imagine the entire trajectory
from goal description. Table 2 in the rebuttal document compares HiP (standard), HiP (more granular),
HiP (less granular) and UniPi on seen and unseen tasks in paint-block environment. We observe
that HiP (standard) and HiP (more granular) have similar success rates where HiP (less granular)
has a lower success rate. UniPi has the lowest success rate amongst these variants. We hypothesize
that success rate of HiP remains intact when we decrease the subgoal granuality as long as the
performance of visual planner doesn’t degrade. Hence, HiP (standard) and HiP (more granular)
have similar success rates. However, when the performance of visual planner degrades as we further
decrease the subgoal granuality, we see a decline in success rate as well. That’s why HiP (less
granular) sees a decline in success rate and UniPi has the lowest success rate amongst all variants.

E.4 Ablation on Visual Planning Model

Paint-block Object-arrange Kitchen-tasks

Model Seen Unseen Seen Unseen Seen Unseen
HiP (RSSM) 70.2± 2.4 69.5± 1.6 59.6± 3.8 59.2± 3.9 50.6± 16.2 46.8± 19.4
HiP 74.3± 1.9 72.8± 1.7 75± 2.8 75.4± 2.6 85.8± 9.4 83.5± 10.2

Table 3: Ablating Visual Planner. While performance gap between HiP and HiP (RSSM) is small in
Paint-block, it widens in more visually complex domains, such as Object-arrange and Kitchen-tasks,
thereby showing the importance of video diffusion model.

To show the benefits of video diffusion model, we perform an ablation where we use (text-conditioned)
recurrent state space model (RSSM), taken from DreamerV3 [? ], as visual model for HiP. We borrow
the RSSM code from dreamerv3-torch codebase. To adapt RSSM to our setting, we condition RSSM
on subgoal (i.e. subgoal encoded into a latent representation by Flan-T5-Base) instead of actions.
Hence, sequence model of RSSM becomes ht = f(ht−1, zt−1, w) where w is latent representation of
subgoal. Furthermore, we don’t predict any reward since we aren’t in a reinforcement learning setting
and don’t predict continue vector since we decode for a fixed number of steps. Hence, we remove
reward prediction and continue prediction from the prediction loss. To make the comparisons fair,
we pretrain RSSM with Ego4D data as well. We report the results in Table 3. We see that HiP with
video diffusion model outperforms HiP with RSSM in all the three domains. While the performance
gap between HiP(RSSM) and HiP (i.e. using video diffusion) is small in paint-block environment,
it widens in object-arrange and kitchen-tasks domains as the domains become more visually
complex.

E.5 Analyzing sensitivity of iterative refinement to hyperparameters

HiP ω′ = 0.5 ω′ = 0.75 ω′ = 1.0 ω′ = 1.25 ω′ = 1.5 ω′ = 1.75 ω′ = 2.0

Paint-block (Seen) 71.8± 2.3 72.3± 2.0 74.3± 1.9 73.9± 2.2 72.1± 1.7 70.4± 2.4 68.2± 1.9
Paint-block (Unseen) 71.1± 2.5 71.4± 1.8 72.8± 1.7 73.1± 1.5 71.4± 1.5 69.3± 2.7 66.8± 1.4

Table 4: Sensitivity of visual iterative refinement to guidance scale. Performance of HiP as we vary the
guidance scale ω′. HiP performs best when ω′ ∈ {1, 1.25} but performance degrades for higher values of ω′.

The subgoal classifier doesn’t introduce any test time hyperparameters and we use standard hyper-
parameters (1e− 3 learning rate, 1e− 6 weight decay, 256 batch size, 50 epochs, Adam optimizer)
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for its training which remains fixed across all domains. We observed that the performance changes
minimally across different hyperparameters, given a learning rate decay over training. However,
the observation trajectory classifier gψ introduces an additional test time hyperparameter ω′ which
appropriately weights the gradient from observation trajectory classifier. Table 4 in the rebuttal
document varies ω′ between 0.5 and 2 in intervals of 0.25 and shows success rate of HiP. We see that
HiP gives the best performance when ω′ ∈ {1, 1.25} but it’s performance degrades for higher values
of ω′.

F Analyzing Runtime of HiP

Domain
Subgoal
candidate generation

Subgoal
classification

Visual planning
per subgoal

Action planning
per subgoal

Action execution
per subgoal

Episodic
runtime

Paint-block 1.85s 0.41s 7.32s 0.91s 6.35s 80.61
Object-arrange 1.9s 0.43s 7.39s 0.89s 9.57s 78.71
Kitchen-tasks 1.81s 0.41s 7.35s 0.98s 1.28s 40.37

Table 5: Run time of HiP. Average episodic run-time of HiP, along with average run-time of its different com-
ponents for Paint-block, Object-arrange and Kitchen-tasks domains. While HiP has similar planning
times across different domains, it has different action execution times and episodic runtimes across domains due
to differences in simulation properties and average number of subgoals.

We provide average runtime of HiP for a single episode in all the three domains in Table 5 of the
rebuttal document. We average across 1000 seen tasks in each domain. We break the average runtime
by different components: task planning (subgoal candidate generation and subgoal classification),
visual planning, action planning and action execution. We execute the action plan for a subgoal in
open-loop and then get observation from the environment for deciding the next subgoal. From Table 5,
we see that majority of the planning time is taken by visual planning. Recent works [24, 42, 56] have
proposed techniques to reduce sampling time in diffusion models, which can be incorporated into our
framework for improving visual planning speed in the future.
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