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Abstract

In reinforcement learning (RL), balancing exploration and exploitation is crucial for
achieving an optimal policy in a sample-efficient way. To this end, existing sample-
efficient algorithms typically consist of three components: estimation, planning,
and exploration. However, to cope with general function approximators, most of
them involve impractical algorithmic components to incentivize exploration, such
as data-dependent level-set constraints or complicated sampling procedures. To
address this challenge, we propose an easy-to-implement RL framework called
Maximize to Explore (MEX), which only needs to optimize unconstrainedly a single
objective that integrates the estimation and planning components while balancing
exploration and exploitation automatically. Theoretically, we prove that the MEX
achieves a sublinear regret with general function approximators and is extendable
to the zero-sum Markov game setting. Meanwhile, we adapt deep RL baselines to
design practical versions of MEX in both the model-based and model-free settings,
which outperform baselines in various MuJoCo environments with sparse reward by
a stable margin. Compared with existing sample-efficient algorithms with general
function approximators, MEX achieves similar sample efficiency while also enjoying
a lower computational cost and is more compatible with modern deep RL methods.
Our codes are available at https://github.com/agentification/MEX.

1 Introduction

The crux of online reinforcement learning (online RL) lies in maintaining a balance between exploiting
the current knowledge of the agent about the environment and exploring unfamiliar areas [69]. To
fulfill this, agents in existing sample-efficient RL algorithms predominantly undertake three tasks: i)
estimate a hypothesis using historical data to encapsulate their understanding of the environment; ii)
perform planning based on the estimated hypothesis to exploit their current knowledge; iii) further
explore the unknown environment via carefully designed exploration strategies.

There exists a long line of research on integrating the aforementioned three components harmoniously,
to find optimal policies in a sample-efficient manner. From theoretical perspectives, existing theories
aim to minimize the notion of online external regret which measures the cumulative suboptimality gap
of the policies learned during online learning. It is well studied that one can design both statistically
and computationally efficient algorithms (e.g., upper confidence bound (UCB), [6, 39, 12, 91])
with sublinear online regret for tabular and linear Markov decision processes (MDPs). But when it
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comes to MDPs with general function approximations, most of them involve impractical algorithmic
components to incentivize exploration. Usually, to cope with general function approximations,
agents need to solve constrained optimization problems within data-dependent level-sets [37, 20],
or sample from complicated posterior distributions over the space of hypotheses [19, 2, 89], both of
which pose considerable challenges for implementation. From a practical perspective, a prevalent
approach in deep RL for balancing exploration and exploitation is to use an ensemble of neural
networks [75, 59, 14, 53, 44, 18, 45], which serves as an empirical approximation of the UCB method.
However, such an ensemble method suffers from high computational cost and lacks theoretical
guarantee when the underly MDP is neither linear nor tabular. As for other deep RL algorithms for
exploration [29, 3, 11, 9, 17, 65], such as curiosity-driven method [60], it also remains unknown in
theory whether they are provably sample-efficient in the context of general function approximations.

Hence, in this paper, we are aimed at tackling these issues and answering the following question:
Under general function approximation, can we design a sample-efficient and

easy-to-implement RL framework to trade off between exploration and exploitation?
To this end, we propose an easy-to-implement RL framework, Maximize to Explore (MEX), as an
affirmative answer to the question. To strike a balance between exploration and exploitation, MEX
propose to maximize a weighted sum of two objectives: (i) the optimal expected total return associated
with a given hypothesis and (ii) the negative estimation error of that hypothesis. Consequently, MEX
naturally combines planning and estimation components in just a single objective. By choosing the
hypothesis that maximizes the weighted sum and executing the optimal policy with respect to the
chosen hypothesis, MEX automatically balances between exploration and exploitation.

We highlight that the objective of MEX is not obtained by taking the Lagrange dual of the constrained
optimization objective within data-dependent level-sets [37, 20, 15].This is because the coefficient
of the weighted sum, which remains fixed, is data-independent and predetermined for all episodes.
Contrary to Lagrangian methods, MEX does not necessitate an inner loop of optimization for dual
variables, thereby circumventing the complications associated with minimax optimization. As a
maximization-only framework, MEX is friendly to implementations with neural networks and does not
rely on sampling or ensemble.

In the theory part, we prove that MEX achieves a sublinear regret Õ(Poly(H) ·d1/2GEC(1/
√
HK) ·K1/2)

under mild assumptions and is thus sample-efficient, where K is the number of episodes and H is the
horizon length. Here dGEC(·) is the Generalized Eluder Coefficient (GEC) [89] that characterizes the
complexity of learning the underlying MDP under general function approximations. Because the
class of low-GEC MDPs includes almost all known theoretically tractable MDP instances, our proved
result can be tailored to a multitude of specific settings with either a model-free or a model-based
hypothesis, such as MDPs with low Bellman eluder dimension [37], MDPs of bilinear class [20],
and MDPs with low witness rank [67]. Besides, thanks to the flexibility of the MEX framework, we
further extend it to online RL in two-player zero-sum Markov games (MGs), for which we further
extend the definition of GEC to two-player zero-sum MGs and establish the sample efficiency with
general function approximations. Moving beyond theory and into practice, we adapt famous RL
baselines TD3 [27] and MBPO [34] to design practical versions of MEX in model-free and model-based
fashion, respectively. On various MuJoCo environments [71] with sparse rewards, experimental
results show that MEX outperforms baselines steadily and significantly. Compared with other deep
RL algorithms, MEX has low computational overhead and straightforward implementation while
maintaining a theoretical guarantee.

Contributions. We conclude our contributions from three perspectives.

1. We propose an easy-to-implement RL algorithm framework MEX that unconstrainedly maximizes
a single objective to fuse estimation and planning, automatically trading off between exploration
and exploitation. Under mild structural assumptions, we prove that MEX achieves a sublinear regret
Õ(Poly(H) · d1/2GEC(1/

√
HK)K1/2) with general function approximators, and thus is sample-

efficient. Here dGEC(·) is the generalized Eluder Coefficient (GEC) of the underlying MDP.
2. We instantiate the generic MEX framework to several model-based and model-free examples and

establish corresponding theoretical results. Further, we extend the MEX framework to two-player
zero-sum MGs and also prove the sample efficiency with an extended definition of GEC.

3. We design practical implementations of MEX for MDPs in both model-based and model-free styles.
Experiments on various MuJoCo environments with sparse reward demonstrate the effectiveness
of our proposed MEX framework.
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1.1 Related work

Sample-efficient RL with function approximation. The success of DRL methods has motivated a
line of work focused on function approximation scenarios. This work originated in the linear case
[74, 81, 12, 39, 84, 5, 82, 57, 91, 90] and is later extended to general function approximation. Wang
et al. [73] first study the general function approximation using the notion of eluder dimension [63],
which takes the linear MDP [39] as a special case but with inferior results. Zanette et al. [85] consider
a different type of framework based on Bellman completeness, which assumes that the class used
for approximating the optimal Q-functions is closed in terms of the Bellman operator and improves
the results for linear MDP. After this, Jin et al. [37] consider the eluder dimension of the class of
Bellman residual associated with the RL problems, which captures more solvable problems. Another
line of works focuses on the low-rank structures of the problems, where Jiang et al. [35] propose
the Bellman rank for model-free RL and Sun et al. [67] propose the witness rank for model-based
RL. Following these two works, Du et al. [20] propose the bilinear class, which contains more MDP
models with low-rank structures [6, 67, 39, 57, 12, 91] by allowing a flexible choice of discrepancy
function class. However, it is known that neither BE nor bilinear class captures each other. Dann
et al. [19] first consider eluder-coefficient-type complexity measure on the Q-type model-free RL.
It was later extended by Zhong et al. [89] to cover all the above-known solvable problems in both
model-free and model-based manners. Foster et al. [25, 23] study another notion of complexity
measure, the decision-estimation coefficient (DEC), which also unifies the Bellman eluder dimension
and bilinear class. The DEC framework is appealing due to the matching lower bound in some
decision-making problems, where all other complexity measures do not have. However, due to the
presence of a minimax subroutine in its definition, they require a much more complicated minimax
optimization oracle and cannot apply to the classical optimism-based or sampling-based methods.
Chen et al. [13], Foster et al. [24] extend the vanilla DEC (to the model-free case) by incorporating an
optimistic modification, which was originally referred to as the feel-good modification in Zhang [87].
Chen et al. [15] study Admissible Bellman Characterization (ABC) class to generalize BE. They also
extend the GOLF algorithm and Bellman completeness in model-free RL to the model-based case by
considering more general (vector-form) discrepancy loss functions to construct sharper in-sample
error estimators and obtain sharper bounds compared to Sun et al. [67]. Xie et al. [79] connect the
online RL with the coverage condition in the offline RL, and also study the GOLF algorithm proposed
in Jin et al. [37].

Algorithmic design in sample-efficient RL with function approximation. The most prominent
approach in this area is based on the principle of “Optimism in the Face of Uncertainty” (OFU),
which dates back to Auer et al. [4]. For instance, for linear function approximation, Jin et al. [39]
propose an optimistic variant of Least-Squares Value Iteration (LSVI), which achieves optimism by
adding a bonus at each step. For the general case, Jiang et al. [36] first propose an elimination-based
algorithm with optimism in model-free RL and is extended to model-based RL by [67]. After
these, Du et al. [20], Jin et al. [37] propose two OFU-based algorithms, which are more similar
to the lin-UCB algorithm [1] studied in the linear contextual bandit literature. The model-based
counterpart (Optimistic Maximum Likelihood Estimation) is studied in Liu et al. [46], Chen et al.
[13]. Specifically, these algorithms explicitly maintain a confidence set that contains the ground
truth with high probability and conducts a constraint optimization step at each iteration to select the
most optimistic hypothesis in the confidence set. The other line of work studies another powerful
algorithmic framework based on posterior sampling. For instance, Zanette et al. [84] study randomized
least-squares value iteration (RLSVI), which can be interpreted as a sampling-based algorithm and
achieves an order-optimal result for linear MDP. For general function approximation, the works
mainly follow the idea of the “feel-good” modification proposed in Zhang [87]. These algorithms
start from some prior distribution over the hypothesis space and update the posterior distribution
according to the collected samples but with certain optimistic modifications in either the prior or
the loglikelihood function. Then the hypothesis for each iteration is sampled from the posterior and
guides data collection. In particular, Dann et al. [19] studies the model-free Q-type problem, and
Agarwal and Zhang [2] studies the model-based problems, but under different notions of complexity
measures. Zhong et al. [89] further utilize the idea in Zhang [87] and extend the posterior sampling
algorithm in Dann et al. [19] to be a unified sampling-based framework to solve both model-free and
model-based RL problems, which is also shown to apply to the more challenging partially observable
setting. In addition to the OFU-based algorithm and the sampling-based framework, Foster et al. [25]
propose the Estimation-to-Decisions (E2D) algorithm, which can solve problems with low DEC but
requires solving a complicated minimax subroutine to fit in the framework of DEC.
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Due to the limitation of the page, we defer the remaining discussions of Relationship with reward-
biased maximum likelihood estimation, Exploration of DRL, and Two-player Zero-Sum Markov
Game to Appendix B.

2 Preliminaries
2.1 Episodic Markov Decision Processes and Online Reinforcement Learning
We consider an episodic MDP defined by a tuple (S,A, H,P, r), where S and A are the state and
action spaces, H is a finite horizon, P = {Ph}Hh=1 with Ph : S ×A 7→ ∆(S) the transition kernel at
the h-th timestep, and r = {rh}Hh=1 with rh : S ×A → [0, 1] the reward function at the h-th timestep.
Without loss of generality, we assume that the reward function rh is both deterministic and known.

In the episodic MDP, the agent interacts with the environment by the following online protocol. At
the beginning of the k-th episode, the agent selects a policy πk = {πk

h : S 7→ ∆(A)}Hh=1. It takes an
action akh ∼ πk

h(· |xkh) at timestep h and state xkh. After receiving the reward rkh = rh(x
k
h, a

k
h) from

the environment, it transits to the next state xkh+1 ∼ Ph(· |xkh, akh). When the agent reaches the state
xkH+1, it ends the k-th episode. Without loss of generality, we assume that the initial state x1 = x is
fixed. Our analysis can be generalized to the setting where x1 is sampled from a distribution on S.

Policy and value functions. For a policy π = {πh : S 7→ ∆(A)}Hh=1, we denote by V π
h : S 7→ R

and Qπ
h : S ×A 7→ R its value function and state-action value function at the h-th timestep, which

characterizes the expected total rewards received by the agent under policy π afterward, starting from
some xh = x ∈ S (or xh = x ∈ S, ah = a ∈ A, resp.), till the end of the episode. Specifically,

V π
h (x) := Eπ

[
H∑

h′=h

rh′(xh′ , ah′)

∣∣∣∣∣xh = x

]
, ∀x ∈ S, (2.1)

Qπ
h(x, a) := Eπ

[
H∑

h′=h

rh′(xh′ , ah′)

∣∣∣∣∣xh = x, ah = a

]
, ∀(x, a) ∈ S ×A. (2.2)

We know there exists an optimal policy π∗ which has the optimal value function for all initial states
[61], that is, V π∗

h (s) = supπ V
π
h (x) for all h ∈ [H] and x ∈ S . For simplicity, we abbreviate V π∗

as
V ∗ and the optimal state-action value function Qπ∗

as Q∗. Moreover, the optimal value functions Q∗

and V ∗ satisfy the following Bellman optimality equation [61], given by
V ∗
h (x) = max

a∈A
Q∗

h(x, a), V ∗
H+1(x) = 0, (2.3)

Q∗
h(x, a) =

(
ThQ∗

h+1

)
(x, a) := rh(x, a) + Ex′∼Ph(· | x,a)[V

∗
h+1 (x

′)], (2.4)

for all (x, a, h) ∈ S ×A× [H]. We call Th the Bellman optimality operator at timestep h. Also, for
any two functions Qh and Qh+1 on S ×A, we define

Eh(Qh, Qh+1;x, a) := Qh(x, a)− ThQh+1(x, a), ∀(x, a) ∈ S ×A, (2.5)
as the Bellman residual at timestep h of (Qh, Qh+1).

Performance metric. We measure the online performance of an agent after K episodes by regret.
We assume that the learner predicts the optimal policy π∗ via πk in the k-th episode for each k ∈ [K].
Then the regret of K episodes is defined as the cumulative suboptimality gap of {πk}k∈[K]

2,

Regret(K) =

K∑
k=1

V ∗
1 (x1)− V πk

1 (x1). (2.6)

The target of sample-efficient online RL is to achieve sublinear regret (2.6) with respect to K.

2.2 Function Approximation: Model-Free and Model-Based Hypothesis

To handle MDPs with large or even infinite state space, we introduce a family of function approxi-
mators. In specific, we consider a hypothesis class H = H1 × · · · × HH , which can be specified to
model-based and model-free settings respectively. Also, we denote by Π = Π1 × · · · ×ΠH as the
space of Markovian policies. We now specify H for model-free and model-based settings.

2We allow the agent to predict the optimal policy via πk while executing some other exploration policy πk
exp

to interact with the environment and collect data, as is considered in the related literature [67, 20, 89]
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Algorithm 1 Maximize to Explore (MEX)
1: Input: Hypothesis class H, parameter η > 0.
2: for k = 1, · · · ,K do
3: Solve fk ∈ H via

fk = argsup
f∈H

{
V1,f (x1)− η ·

H∑
h=1

Lk−1
h (f)

}
. (3.1)

4: Execute πexp(fk) to collect data Dk = {Dk
h}h∈[H] with Dk

h = (xkh, a
k
h, r

k
h, x

k
h+1).

5: Predict the optimal policy via πfk .
6: end for

Example 2.1 (Model-free hypothesis). For model-free hypothesis class, H contains state-action value
functions of the MDP, i.e., Hh ⊆ {fh : S ×A 7→ R}. Specifically, for any f = (f1, · · · , fH) ∈ H,
we denote Qf = {Qh,f}h∈[H] with Qh,f = fh. Also, we denote the corresponding optimal state-
value function Vf = {Vh,f}h∈[H] with Vh,f (·) = maxa∈AQh,f (·, a) and denote the corresponding
optimal policy by πf = {πh,f}h∈[H] with πh,f (·) = argmaxa∈AQh,f (·, a). Finally, we denote the
optimal state-action value function under the true model, i.e., Q∗, by f∗.

Example 2.2 (Model-based hypothesis). For model-based hypothesis class, H contains models of
the MDP, i.e., the transition kernel. Specifically, we denote f = Pf = (P1,f , · · · ,PH,f ) ∈ H. For
any (f, π) ∈ H×Π, we define V π

f = {V π
h,f}h∈[H] as the state-value function induced by model Pf

and policy π. We use Vf = {Vh,f}h∈[H] to denote the corresponding optimal state-value function,
i.e., Vh,f = supπ∈Π V

π
h,f . The corresponding optimal policy is denoted by πf = {πh,f}h∈[H], where

πh,f = arg supπ∈Π V
π
h,f . Finally, we denote the true model P of the MDP as f∗.

We remark that the main difference between the model-based hypothesis (Example 2.2) and the
model-free hypothesis (Example 2.1) is that model-based RL directly learns the transition kernel of
the underlying MDP, while model-free RL learns the optimal state-action value function. Since we
do not add any specific structural form to the hypothesis class, e.g., linear function or kernel function,
we are in the context of general function approximations [67, 37, 20, 89, 15].

3 Algorithm: Maximize to Explore for Online RL
In this section, we propose Maximize to Explore (MEX, Algorithm 1) for online RL in MDPs with
general function approximations. With a novel single objective, MEX automatically balances the goal
of exploration and exploitation. We first give a generic algorithm framework and then instantiate it to
model-free (Example 2.1) and model-based (Example 2.2) hypotheses respectively.

Generic algorithm design. In each episode k ∈ [K], the agent first estimates a hypothesis fk ∈ H
using historical data {Ds}k−1

s=1 by maximizing a composite objective (3.1). Specifically, in order to
achieve exploiting history knowledge while encouraging exploration, the agent considers a single
objective that sums: (a) the negative loss −Lk−1

h (f) induced by the hypothesis f , which represents
the exploitation of the agent’s current knowledge; (b) the expected total return of the optimal policy
associated with this hypothesis, i.e., V1,f , which represents exploration for a higher return. With a
tuning parameter η > 0, the agent balances the weight put on the tasks of exploitation and exploration.
The agent then predicts π∗ via the optimal policy with respect to the hypothesis that maximizes the
composite exploration-exploitation objective function, i.e., πfk . Also, the agent executes certain
exploration policy πexp(fk) to collect data Dk = {(xkh, akh, rkh, xkh+1)}Hh=1 and updates the loss
function Lk

h(f). The choice of πexp(fk) depends on the specific MDP structure, and we refer to
examples in Section 5 for detailed discussions.

We highlight that MEX is not a Lagrangian duality of constrained optimization objectives within
data-dependent level-sets [37, 20, 15]. In fact, MEX only needs to fix the parameter η across each
episode. Thus η is independent of data and predetermined, which contrasts Lagrangian methods that
involve an inner loop of optimization for the dual variables. We also remark that we can rewrite
(3.1) as a joint optimization (f, π) = argsupf∈H,π∈Π V

π
1,f (x1)− η

∑H
h=1 L

k−1
h (f). When η tends

to infinity, MEX can be reduced to vanilla Actor-Critic framework [41], where critic f minimizes
estimation error and actor π conducts greedy policy following the critic f . In the following two parts,
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we instantiate Algorithm 1 to model-based and mode-free hypotheses by specifying the loss function
Lk
h(f).

Model-free algorithm. For model-free hypothesis (Example 2.1), (3.1) becomes

fk = argsup
f∈H

{
max
a1∈A

Q1,f (x1, a1)− η ·
H∑

h=1

Lk−1
h (f)

}
. (3.2)

Regarding the choice of the loss function, for seek of theoretical analysis, to deal with MDPs with
low Bellman eluder dimension [37] and MDPs of bilinear class [20], we assume the existence of
certain function l which generalizes the notion of Bellman residual.
Assumption 3.1. Suppose the function l : H×Hh ×Hh+1 × (S ×A× R× S) 7→ R satisfies:
i) (Generalized Bellman completeness) [89, 15] there exists an operator Ph : Hh+1 7→ Hh such that
for any (f ′, fh, fh+1) ∈ H×Hh ×Hh+1 and Dh = (xh, ah, rh, xh+1) ∈ S ×A×R×S , it holds

lf ′
(
(fh, fh+1),Dh

)
− lf ′

(
(Phfh+1, fh+1),Dh

)
= Exh+1∼Ph(·|xh,ah)

[
lf ′
(
(fh, fh+1),Dh

)]
,

where we require that Phf
∗
h+1 = f∗h and that Phfh+1 ∈ Hh for any fh+1 ∈ Hh+1 and step h ∈ [H];

ii) (Boundedness) it holds that supf ′∈H ∥lf ′((fh, fh+1),Dh)∥∞ ≤ Bl for some constant Bl > 0.

We then set the loss function Lk
h as an empirical estimation of the generalized squared Bellman error

|Exh+1∼Ph(·|xh,ah)[lfs((fh, fh+1),Ds
h)]|2, given by

Lk
h(f) =

k∑
s=1

lfs

(
(fh, fh+1),Ds

h

)2 − inf
f ′
h∈Hh

k∑
s=1

lfs

(
(f ′h, fh+1),Ds

h

)2
. (3.3)

We remark that the subtracted infimum term in (3.3) is to handle the variance terms in the estimation to
achieve a fast theoretical rate. Similar essential ideas are also adopted by [37, 78, 19, 38, 52, 2, 89, 15].

Model-based algorithm. For model-based hypothesis (Example 2.2), (3.1) becomes

fk = argsup
f∈H

{
sup
π∈Π

V π
1,Pf

(x1)− η

H∑
h=1

Lk−1
h (f)

}
, (3.4)

which is a joint optimization over the model Pf and the policy π. In the model-based algorithm, we
choose the loss function Lk

h as the negative log-likelihood loss, defined as

Lk
h(f) = −

k∑
s=1

logPh,f (x
s
h+1|xsh, ash). (3.5)

4 Regret Analysis for MEX Framework

In this section, we establish a regret analysis for the MEX framework (Algorithm 1). We give a generic
theoretical guarantee which holds for both model-free and model-based settings. We first present
three key assumptions needed for sample-efficient learning with MEX. In Section 5, we specify the
generic theory to specific examples of MDPs and hypothesis classes satisfying these assumptions.

Firstly, we assume that the hypothesis class H is well-specified, containing the true hypothesis f∗.
Assumption 4.1 (Realizablity). We assume that the true hypothesis f∗ ∈ H.
Then we need to make a structural assumption on the MDP to ensure sample-efficient online learning.
Inspired by Zhong et al. [89], we require the MDP to have low Generalized Eluder Coefficient
(GEC). A low GEC indicates that the agent can effectively mitigate out-of-sample prediction errors
by minimizing in-sample errors derived from historical data. To introduce, we define a discrepancy
function ℓf ′(f ; ξh) : H×H× (S ×A×R× S) 7→ R which characterizes the error of a hypothesis
f ∈ H on data ξh = (xh, ah, rh, xh+1). Specific choices of ℓ are given in Section 5 for concrete
model-free and model-based examples.
Assumption 4.2 (Low Generalized Eluder Coefficient [89]). We assume that given an ϵ > 0, there
exists d(ϵ) ∈ R+, such that for any sequence of {fk}k∈[K] ⊂ H, {πexp(fk)}k∈[K] ⊂ Π,
K∑

k=1

V1,fk − V
π
fk

1 ≤ inf
µ>0

{
µ

2

H∑
h=1

K∑
k=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(fk; ξh)]+
d(ϵ)

2µ
+
√
d(ϵ)HK+ϵHK

}
.

We denote the smallest number d(ϵ) ∈ R+ satisfying this condition as dGEC(ϵ).
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As is shown by Zhong et al. [89], the low-GEC MDP class covers almost all known theoretically
tractable MDP instances, such as linear MDP [81, 39], linear mixture MDP [5, 57, 12], MDPs of low
witness rank [67], MDPs of low Bellman eluder dimension [37], and MDPs of bilinear class [20].

Finally, we make a concentration-style assumption which characterizes how the loss function Lk
h is

related to the expectation of the discrepancy function E[ℓ] appearing in the definition of GEC. For
ease of presentation, we assume that H is finite, i.e., |H| <∞, but our result can be directly extended
to an infinite H using covering number arguments [72, 37, 49, 38].
Assumption 4.3 (Generalization). We assume that H is finite, i.e., |H| < +∞, and that with
probability at least 1− δ, for any episode k ∈ [K] and hypothesis f ∈ H, it holds that
H∑

h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +B
(
H log(HK/δ) + log(|H|)

)
,

where B = B2
l for model-free hypothesis (Assumption 3.1) and B = 1 for model-based hypothesis.

Such a concentration style inequality is well known in the literature of online RL with general function
approximation and similar analysis is also adopted by [37, 15]. With Assumptions 4.1, 4.2, and 4.3,
we can present our main result (see Appendix D.1 for a proof).
Theorem 4.4 (Online regret of MEX (Algorithm 1)). Under Assumptions 4.1, 4.2, and 4.3, by setting

η =

√
dGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B ·K
,

then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(K) ≲
√
dGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·B ·K,

with probability at least 1− δ. Here dGEC(·) is defined in Assumption 4.2.
Theorem 4.4 shows that the regret of Algorithm 1 scales with the square root of the number of episodes
K and the polynomials of horizon H , GEC dGEC(1/

√
K), and log covering number logN (H, 1/K).

When the number of episodes K tends to infinity, the average regret vanishes, meaning that the output
policy of Algorithm 1 achieves global optimality. Since the regret of Algorithm 1 is sublinear with
respect to the number of episodes K, Algorithm 1 is proved to be sample-efficient. In Appendix C,
we extend the algorithm framework and the analysis to the two-player zero-sum Markov game (MG)
setting, for which we also extend the definition of GEC to two-player zero-sum MGs.

Besides, as we can see from Theorem 4.4 and its specifications in Section 5, MEX matches existing theo-
retical results in the literature of online RL with general function approximations [89, 67, 20, 37, 19, 2].
But in the meanwhile, MEX does not require explicitly solving a constrained optimization problem
within data-dependent level-sets or performing a complex sampling procedure. This advantage makes
MEX a principled approach with easier practical implementation. We conduct deep RL experiments
for MEX in Section 6 to demonstrate its power in complicated online problems.

5 Examples of MEX Framework

In this section, we specify Algorithm 1 to model-based and model-free hypothesis classes for various
examples of MDPs of low GEC (Assumption 4.2), including MDPs with low witness rank [67], MDPs
with low Bellman eluder dimension [37], and MDPs of bilinear class [20]. For ease of presentation,
we assume that |H| <∞, but our result can be directly extended to infinite H using covering number
arguments [72, 37, 49]. All the proofs of the propositions in this section are in Appendix E.

We note that another important step in specifying Theorem 4.4 to concrete hypothesis classes is to
check Assumption 4.3 (supervised learning guarantee). It is worth highlighting that, in our analysis,
for both model-free and model-based hypotheses, we provide supervised learning guarantees in a
neat and unified manner, independent of specific MDP structures.

5.1 Model-free online RL in Markov Decision Processes

In this subsection, we specify Algorithm 1 for model-free hypothesis class H (Example 2.1). For a
model-free hypothesis class, we choose the discrepancy function ℓ as, given Dh = (xh, ah, rh, xh+1),

ℓf ′(f ;Dh) =
(
Exh+1∼Ph(·|xh,ah)[lf ′((fh, fh+1),Dh)]

)2
. (5.1)
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where the function l : H ×Hh × Hh+1 × (S × A × R × S) 7→ R satisfies Assumption 3.1. We
specify the choice of l in concrete examples of MDPs later. In the following, we check and specify
Assumptions 4.2 and 4.3 in Section 4 for model-free hypothesis classes.
Proposition 5.1 (Generalization: model-free RL). We assume that H is finite, i.e., |H| < +∞. Then
under Assumption 3.1, with probability at least 1− δ, for any k ∈ [K] and f ∈ H, it holds that
H∑

h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +B2
l

(
H log(HK/δ) + log(|H|)

)
,

where L and ℓ are defined in (3.3) and (5.1) respectively. Here Bl is specified in Assumption 3.1.
Proposition 5.1 specifies Assumption 4.3 for model-free hypothesis classes. For Assumption 4.2, we
need structural assumptions on the MDP. Given an MDP with generalized eluder dimension dGEC,
we have the following corollary of our main theoretical result (Theorem 4.4).
Corollary 5.2 (Online regret of MEX: model-free hypothesis). Given an MDP with generalized eluder
coefficient dGEC(·) and a finite model-free hypothesis class H with f∗ ∈ H, under Assumption 3.1,
setting

η =

√
dGEC(1/

√
HK)

(H log(HK/δ) + log(|H|)) ·B2
l ·K

, (5.2)

then the regret of Algorithm 1 after K episodes is upper bounded by

Regret(T ) ≲ Bl ·
√
dGEC(1/

√
HK) · (H log(HK/δ) + log(|H|)) ·K, (5.3)

with probability at least 1− δ. Here Bl is specified in Assumption 3.1.
Corollary 5.2 can be directly specified to MDPs with low GEC, including MDPs with low Bellman
eluder dimension [37] and MDPs of bilinear class [20]. See Appendix E.1 for a detailed discussion.

5.2 Model-based online RL in Markov Decision Processes

In this subsection, we specify Algorithm 1 for model-based hypothesis class H (Example 2.2). For
model-based hypothesis class, we choose the discrepancy function ℓ in Assumption 4.2 and 4.3 as the
hellinger distance. Given data Dh = (xh, ah, rh, xh+1), we let

ℓf ′(f ;Dh) = DH(Ph,f (·|xh, ah)∥Ph,f∗(·|xh, ah)), (5.4)

where DH(·∥·) denotes the Hellinger distance. We note that by (5.4), the discrepancy function ℓ does
not depend on the input f ′ ∈ H. In the following, we check and specify Assumption 4.2 and 4.3.
Proposition 5.3 (Generalization: model-based RL). We assume that H is finite, i.e., |H| < +∞.
Then with probability at least 1− δ, for any k ∈ [K], f ∈ H, it holds that

H∑
h=1

Lk−1
h (f∗)− Lk−1

h (f) ≲ −
H∑

h=1

k−1∑
s=1

Eξh∼πexp(fs)[ℓfs(f ; ξh)] +H log(H/δ) + log(|H|),

where L and ℓ are defined in (3.5) and (5.4) respectively.

Proposition 5.3 specifies Assumption 4.3 for model-based hypothesis classes. For Assumption 4.2,
we also need structural assumptions on the MDP. Given an MDP with generalized eluder dimension
dGEC, we have the following corollary of our main theoretical result (Theorem 4.4).
Corollary 5.4 (Online regret of MEX: model-based hypothesis). Given an MDP with generalized
eluder coefficient dGEC(·) and a finite model-based hypothesis class H with f∗ ∈ H, by setting

η =

√
dGEC(1/

√
HK)

(H log(H/δ) + log(|H|)) ·K
,

then the regret of Algorithm 1 after K episodes is upper bounded by, with probability at least 1− δ,

Regret(K) ≲
√
dGEC(1/

√
HK) · (H log(H/δ) + log(|H|)) ·K, (5.5)

Corollary 5.4 can be directly specified to MDPs with low GEC, including MDPs with low witness
rank [67]. We refer to Appendix E.2 for a detailed discussion.
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6 Experiments

In this section, we aim to answer the following two questions: (a) What are the practical approaches
to implementing MEX in both model-based (MEX-MB) and model-free (MEX-MF) settings? (b) Can MEX
handle challenging exploration tasks, especially in sparse reward scenarios?

Experimental setups. We evaluate the effectiveness of MEX by assessing its performance in both
standard gym locomotion tasks and sparse reward locomotion and navigation tasks within the MuJoCo
[71] environment. For sparse reward tasks, we select cheetah-vel, walker-vel, hopper-vel,
ant-vel, and ant-goal adapted from Yu et al. [83], where the agent receives a reward only when it
successfully attains the desired velocity or goal. To adapt to deep RL settings, we consider infinite-
horizon γ-discounted MDPs and MEX variants. We report the results averaged over five random seeds.
The full experimental settings are in Appendix H.

Implementation details. For the model-based variant MEX-MB, we use the following objective:

max
ϕ

max
π

E(x,a,r,x′)∼β [logPϕ(x
′, r |x, a)] + η′ · Ex∼σ

[
V π
Pϕ
(x)
]
, (6.1)

where we denote by σ the initial state distribution, β the replay buffer, and η′ corresponds to 1/η in the
previous theory sections. We leverage the score function to obtain the model value gradient ∇ϕV

π
Pϕ

in a similar way to likelihood ratio policy gradient [70], with the gradient of action log-likelihood
replaced by the gradient of state and reward log-likelihood in the model. Specifically,

∇ϕ Ex∼σ

[
V π
Pϕ
(x)
]
= Eτπ

ϕ

[(
r + γV π

Pϕ
(x′)−Qπ

Pϕ
(x, a)

)
· ∇ϕ logPϕ(x

′, r |x, a)
]
, (6.2)

where τπϕ is the trajectory under policy π and transition Pϕ, starting from σ. We refer the readers
to previous works [62, 76] for a derivation of (6.2). The model ϕ and policy π in (6.1) are updated
iteratively in a Dyna [68] style, where model-free policy updates are performed on model-generated
data. Particularly, we adopt SAC [30] to update the policy π and estimate the valueQπ

Pϕ
by performing

temporal difference on the model data generated by Pϕ. We also follow [62] to update the model
using mini-batches from β and normalize the advantage rh + γV π

Pϕ
−Qπ

Pϕ
within each mini-batch.

For the model-free variant MEX-MF, we observe from (3.2) that adding a maximization bias term to
the standard TD error is sufficient for exploration. However, this may lead to instabilities as the bias
term only involves the state-action value function of the current policy, and thus the policy may be
ever-changing. To address this issue, we adopt a similar treatment as in CQL [42] by subtracting a
baseline state-action value from random policy µ = Unif(A) and obtain the following objective:

max
θ

max
π

Eβ

[(
r + γQθ(x

′, a′)−Qθ(x, a)
)2]

+ η′ · Eβ

[
Ea∼πQθ(x, a)− Ea∼µQθ(x, a)

]
. (6.3)

We update θ and π in (6.3) iteratively in an actor-critic fashion. Due to space limits, we refer the
readers to Appendix H for more implementation details of MEX-MF.

Results. We report the performance of MEX-MB and MEX-MF in Figures 1 and 2, respectively. We
compare MEX-MB with MBPO [34], where our method differs from MBPO only in the inclusion of the
value gradient in (6.2) during model updates. We find that MEX-MB offers an easy implementation
with minimal computational overhead and yet remains highly effective across sparse and standard
MuJoCo tasks. Notably, in the sparse reward settings, MEX-MB excels at achieving the goal velocity
and outperforms MBPO by a stable margin. In standard gym tasks, MEX-MB showcases greater sample
efficiency in challenging high-dimensional tasks with higher asymptotic returns.

We then compare MEX-MF with the model-free baseline TD3 [27]. We observe that TD3 fails in many
sparse reward tasks, while MEX-MF significantly boosts the performance. In standard MuJoCo gym
tasks, MEX-MF also steadily outperforms TD3 with faster convergence and higher final returns.

7 Conclusions

In this paper, we introduce a novel RL algorithm framework—Maximize to Explore (MEX)—aimed at
striking a balance between exploration and exploitation in online learning scenarios. MEX is provably
sample-efficient under general function approximations and is easy to implement. Theoretically, we
prove that under mild structural assumptions (low generalized eluder coefficient (GEC)), MEX achieves
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Figure 1: Model-based MEX-MB in sparse and standard MuJoCo locomotion tasks.
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Figure 2: Model-free MEX-MF in sparse and standard MuJoCo locomotion tasks.

Õ(
√
K)-online regret for MDPs. We further extend the definition of GEC and MEX framework to

two-player zero-sum Markov games (see Appendix C) and also prove the Õ(
√
K)-online regret. In

practice, we adapt MEX to deep RL methods in both model-based and model-free styles and apply
them to sparse-reward MuJoCo environments, outperforming baselines significantly. We hope our
work can shed light on future research of designing both statistically efficient and practically effective
RL algorithms with powerful function approximation.
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