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Abstract

The use of anthropomorphic robotic hands for assisting individuals in situations
where human hands may be unavailable or unsuitable has gained significant im-
portance. In this paper, we propose a novel task called human-assisting dexterous
grasping that aims to train a policy for controlling a robotic hand’s fingers to
assist users in grasping objects. Unlike conventional dexterous grasping, this task
presents a more complex challenge as the policy needs to adapt to diverse user
intentions, in addition to the object’s geometry. We address this challenge by
proposing an approach consisting of two sub-modules: a hand-object-conditional
grasping primitive called Grasping Gradient Field (GraspGF), and a history-
conditional residual policy. GraspGF learns ‘how’ to grasp by estimating the
gradient from a success grasping example set, while the residual policy deter-
mines ‘when’ and at what speed the grasping action should be executed based
on the trajectory history. Experimental results demonstrate the superiority of our
proposed method compared to baselines, highlighting user awareness and practi-
cality in real-world applications. The codes and demonstrations can be viewed at
https://sites.google.com/view/graspgf.

1 Introduction
step 1 step i step n

…

ObjectsHow to grasp? When to grasp?

✓

trajectory 2

pose 1

trajectory 1
pose 2

step 1 step i step n

… …

a)

b)

Figure 1: a) Demonstration of human-assisting dexter-
ous grasping. b) Challenges of our setting.

The significance of human hands in everyday
life cannot be overstated. However, there are sit-
uations where they may not always be available,
especially in scenarios where an individual may
have upper limb loss or need to interact with
hazardous objects. In such instances, utilising
an anthropomorphic dexterous robotic hand for
assistance can be a viable option [1]. Such a dex-
terous hand possesses a high degree of freedom,
allowing it to handle diverse daily tasks [2, 3, 4],
given that many everyday objects are designed
to match the structure of the human hand. This
inspired us to propose a novel task called human-
assisting dexterous grasping, in which a policy
is trained to assist users with upper limb loss
in grasping objects by controlling the robotic
hand’s fingers, as illustrated in Figure 1a.

Traditional teleoperation methods [5, 6] are unsuitable for assisting upper limb amputees in grasping
because no information about the human fingers can be accessed. Compared to conventional dexterous
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grasping, human-assisting dexterous grasping poses a more complex challenge, as the policy must
adapt to an exponentially growing number of pre-conditions. As shown in Figure 1b, human users
may grasp an object with various intentions, such as grasping different parts for different purposes
or moving the hand and wrist at different speeds due to the complexity and diversity of human
behaviour. Consequently, the conditional policy must be tailored not only to the object’s geometry, as
required by conventional dexterous grasping, but also to the user’s intentions, requiring the policy to
be user-aware. In this context, open-looped methods such as grasp pose generation [7, 8, 9, 10] and
classification-based methods [11, 12, 13] may fall short, as they do not factor in the user’s intention.
Reinforcement learning (RL) [2, 14, 15] presents a natural solution by enabling the training of a
closed-loop human-object-conditioned policy. However, in human-assisting dexterous grasping, RL
may encounter more severe generalisation issues, due to the need to generalise to diverse grasping
pre-conditions. Prior RL-based approaches [16, 17] have explored leveraging human-collected and
engineering-heavy demonstrations to address this issue. However, collecting a large volume of diverse
demonstrations that encompass different objects, grasping timings, and locations may not be feasible.

To address the challenges associated with achieving dexterous grasping for assisting humans, an
effective policy needs to tackle the following two crucial questions:

1) How should the robot grasp the object considering the current relative pose
between the user and the object? 2) When and at what speed should the robot
execute the grasping action based on the user movement trajectory history?

In this paper, we present a novel approach that consists of two sub-modules designed to address
the aforementioned questions individually: 1) a hand-object-conditional grasping primitive, and
2) a history-conditional residual policy. The grasping primitive, which we call Grasping Gradient
Field (GraspGF), is trained to learn ‘how to grasp’ by estimating the score function, i.e., the gradient
of the log-density, of a success grasping example set. The GraspGF outputs a gradient that indicates
the fastest direction to increase the ‘grasping likelihood’ conditioned on an object and the user’s wrist.
The gradient can be translated into primitive controls on each finger joint, enabling the fingers to
reach an appropriate grasp pose iteratively. However, GraspGF is not capable of determining how fast
the fingers should move along the gradient as it is history-agnostic. To determine ‘when to grasp’,
we train a residual policy that outputs a ‘scaling action’ that determines how fast the finger joints
should move along with the primitive action, based on the history of the wrist’s trajectory. Besides, as
the primitive policy is not aware of the environment dynamics due to the offline training, we further
require the residual policy to output a ‘residual action’ to correct the primitive action.

Our proposed approach offers several conceptual advantages. GraspGF leverages the strong condi-
tional generative modelling of score-based methods, as demonstrated in prior works [18, 19, 20],
enabling it to output promising primitive actions conditioned on novel user’s intentions. Additionally,
the residual-learning design of GraspGF facilitates cold start exploration and enhances the efficiency
of residual policy training. Compared to demonstration-based methods, our approach only requires
a synthesised grasping example set and does not rely on exhaustive human labelling or extensive
engineering effort, making it more practical for implementation in real-world applications.

In our experiments, we evaluate several methods on a dexterous grasping environment that assists
humans in grasping over 4900+ on-table objects with up to 200 realistic human wrist movement
patterns. Our comparative results demonstrate that our proposed method significantly outperforms the
baselines across various metrics. Ablation studies further confirm the effectiveness of our proposed
grasping gradient field and residual-learning design. Our analysis reveals that our method’s superiority
lies in its user-awareness, i.e., our trained policy is more tailored to the user’s intentions. Additionally,
we conduct real-world experiments to validate the practicality of our approach. Our results indicate
that our trained model can generalise to the real world to some degree without fine-tuning.

Our contributions are summarized as follows:

• We introduce a novel and challenging human-assisting dexterous grasping task, which may
potentially help social welfare.

• We propose a novel two-stage framework that decomposes the task into learning a primitive policy
via score-matching and training a residual policy to complement the primitive policy via RL.

• We conduct experiments to demonstrate our method significantly outperforms the baselines and
the effectiveness of our method deployed in the real world.
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2 Human-assisting Dexterous Grasping

We study the human-assisting dexterous grasping, in which a policy is trained to assist users in
grasping objects by controlling the robotic hand’s fingers. We formulate the problem as follows:

State and Action Spaces: In this task, we consider a human-assisting grasping scenario involving
a 28-DoF 5-fingered robotic hand. The 18-DoF joints of the fingers are denoted as J ∈ R18, the
4-DoF under-actuated joints of the fingers are denoted as Ju ∈ R4, and the 6-DoF pose of the wrist is
represented by b = [bp,bq], where bp ∈ R3 denotes the 3-D position and bq ∈ R4 represents the
4-D quaternion. The action space A ⊆ R18 corresponds to the 18-D relative changes applied to the
hand joints. Unlike traditional dexterous grasping tasks, the action space does not include the 6-D
relative changes for the wrist, since the wrist pose is controlled by a human user.

Task Simulation: To simulate the movement of the human user’s wrist, we sample a wrist trajectory
at the start of each episode τb = {b1,b2, ...,bT } (T denotes the horizon). At each time step t, the
wrist’s pose is set to bt. Specifically, we initially sample a target object O ∼ pO(O) from an object
prior distribution. Then, the wrist trajectory is sampled τb ∼ pτb(τb|O) conditioned on the target
object O. The terminal wrist state, bT , is designed to be ‘graspable’. In other words, there exists a
feasible hand joint J∗ such that the grasp pose [J∗,bT ] can successfully grasp the object O.

Observations: This task requires the agent to adapt to both the wrist trajectories τb and different
objects O. Consequently, the policy π(a|·) should be conditioned on the finger joints J, visual
observations o, and the history of hand wrist poses Ht = [bt−k,bt−k+1, ...,bt], where k is a hyper-
parameter. In this work, we use the full point cloud of the target object as the visual observation o and
consider the last five wrist states as the history Ht = [bt−4, ...,bt]. Note that the RL-based policies
used in all the experiments also take under-actuated joints Ju ∈ R4 as input, for simplicity, we omit
this input in the following notations.

Objective: The objective is to find a policy π(a|J, o,H) that maximizes the expected grasping
success rate over the initial distributions, i.e. O ∼ pO(O) and τb ∼ pτb(τb|O):

π∗ = argmax
π

EO∼pO(O),τb∼pτb
(τb|O),

at∼π(·|Jt,ot,Ht)

[1(success)] (1)

Eq. 1 poses a challenging objective since the policy should generalize not only to different objects
O ∼ pO(O), as required in conventional dexterous grasping, but also to different hand wrist
trajectories τb ∼ pτb(τb|O). In other words, the agent should be user-aware.

3 Method

Overview: A user-aware policy needs to tackle the following two crucial questions: 1) How should
the robot grasp the object considering the current relative pose between the user and the object? 2)
When and at what speed should the robot execute the grasping action based on the user movement
trajectory history? As illustrated in Figure 2, our key idea is to partition the task into two stages that
address these questions individually: 1) Learning a primitive policy πθ

p(a
p
t |Jt, ot,bt) that proposes a

primitive action apt that can guide the fingers forming into a pre-grasp pose, from an success grasping
pose example set. 2) Learning a residual policy πϕ

r (a
s
t ,a

r
t |Jt, ot, Ht) that outputs a scaling action at

to determine ‘how fast’ the joints should move with the primitive action and a residual action art that
further corrects the overall action, via RL. The combined policy πθ,ϕ(at|Jt, ot, Ht) is as follows:

apt ∼ πθ
p(a

p
t |Jt, ot,bt), (a

s
t ,a

r
t ) ∼ πϕ

r (a
s
t ,a

r
t |Jt, ot, Ht)

πθ,ϕ(·|Jt, ot, Ht) = apt ⊙ ast + art
(2)

Initially, we employ the score-matching to train the primitive policy πθ
p from a grasping poses dataset.

Subsequently, the combined policy, which is constructed from the residual policy πϕ
r is combined

with the frozen πθ
p , and is trained under RL. In the following, we will introduce the motivations and

the training procedures of the primitive policy (i.e., GraspGF) and the residual policy in Sec 3.1 and
Sec 3.2, respectively. The implementation details of both policies are described in Appendix B.
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Figure 2: We decompose the human-assisting dexterous grasping into learning a primitive policy πθ
p that learns

to form a pre-grasp pose and a residual policy πϕ
r that learns to adjust the proceeding of the primitive action. a)

The primitive policy πθ
p is trained on success grasping examples via score-matching objective. b) The residual

policy πϕ
r is trained to adjust the primitive policy via RL.

3.1 Learning GraspGF from Synthetic Examples

To address the first question above, we aim to search for a primitive policy πθ
p that outputs action

to maximize the likelihood of success, given a set of static conditions (Jt, ot,bt). Inspired by [21],
we can train such a policy by estimating the score function (i.e., gradient of the log-density) of a
conditional distribution psuccess(J|ot,bt):

ap = πθ
p(·|J, o,b) = ∇J log psuccess(J|o,b) (3)

the psuccess(J|o,b) denotes a fingers-joints’ distribution that can successfully grasp the objects, given
the current observation o and the hand wrist b. By definition, the score function of the distribution
∇J log psuccess(J|o,b) indicates the fastest direction to increase the likelihood of the psuccess(J|o,b).
Intuitively, if the fingers move in the direction of ∇J log psuccess(J|o,b), they will probably reach a
feasible grasp-pose in the future with the success-likelihood psuccess(J|o,b) increases. Hence, we
formulate learning the primitive policy πθ

p as estimating the gradient field of the log-success-likelihood
∇J log psuccess(J|o,b), namely Grasping Gradient Field (GraspGF).

Thanks to the Denoising Score Matching (DSM) [22], we can obtain a guaranteed estimation of the
GraspGF ∇J log psuccess(J|o,b) from a set of success examples Dsuccess = {(J∗

i , o
∗
i ,b

∗
i )}Ni=1 where

the J∗
i is the feasible finger joints for grasping conditioned on (o∗i ,b

∗
i ). In the following, we first

revisit the preliminaries of DSM and then introduce how to employ DSM to estimate the GraspGF.

Denoising Score-Matching Given a set of data-points {xi ∼ p(x)}Ni=1 from an unknown data
distribution p(x), the score-based generative model aims at estimating the score function of a data
distribution ∇x log p(x) via a score network sω(x) : R|X | → R|X |. During inference, a new sample
is generated by the Langevin Dynamics, which is out of our interest.

To estimate ∇x log p(x), the Denoising Score-Matching (DSM) [22] proposes a tractable objective by
pre-specifying a noise distribution qσ(x̃|x), e.g., N (0, σ2I), and train the score network to denoise
the perturbed data samples:

L(ω) = Ex̃∼qσ,x∼p(x)

[
||sω(x̃)−∇x̃ log qσ(x̃|x)||22

]
(4)

where ∇x̃ log qσ(x̃|x) = 1
σ2 (x− x̃) are tractable for the Gaussian kernel. DSM guarantees that the

optimal score network holds s∗ω(x) = ∇x log p(x) for almost all x.

Employing DSM to Estimate GraspGF To estimate the GraspGF ∇J log psuccess(J|o,b), we employ
the DSM in Eq 4, the training objective of the primitive policy πθ

p is derived as follows:

L(θ) = E J̃∼qσ(J̃|J∗),
(J∗,o∗,b∗)∼Dsuccess

∥∥∥∥∥πθ
p(·|J̃, o∗,b∗)− J∗ − J̃

σ2

∥∥∥∥∥
2

2

 (5)
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The Eq 5 is the L2 distance between the output of the primitive policy and the denoising direction
J∗−J̃
σ2 , i.e., a direction pointing from the perturbed joints J̃ to the original joints J∗. Intuitively, this

objective is forcing the primitive policy to denoise the current joints to regions where the fingers are
more likely to grasp the object.

3.2 Training Residual Policy via Reinforcement Learning

The human-assisting dexterous grasping cannot be effectively addressed solely through the primitive
policy πθ

p. Although πθ
p predicts the fastest direction to form a pre-grasp pose, it fails to determine

the appropriate ‘velocities’ at which the joints should move in that direction. If the fingers close
too quickly or too slowly, the agent may struggle to grasp the object. Additionally, due to offline
training, the primitive policy lacks awareness of the dynamics of the environment, leading to potential
violations of physical constraints.

To overcome these limitations, we propose the training of a residual policy πϕ
r , which complements

the primitive policy. The role of πϕ
r is twofold: firstly, it outputs a scaling action as that adjusts the

speed of the primitive action, and secondly, it produces a residual action ar that corrects the final
output action. Eq 2 demonstrates that as can be interpreted as 18-D ‘pseudo-velocities’ imposed
on the finger joints. With outputs less than 1 for as, the residual policy can decelerate the primitive
action, whereas values greater than 1 accelerate it.

To effectively control the proceeding of the primitive action, the residual policy πϕ
r (a

r
t |Jt, ot, Ht)

takes into account the history of the wrist Ht and the object’s point cloud o as inputs. This enables
the policy to infer the agent’s speed of approach towards the object. Furthermore, the policy network
incorporates the current joint state Jt to infer how to correct the primitive action ap.

We employ Proximal Policy Optimization (PPO) [23] to search for a final policy πθ,ϕ that maximises
the following objective, where the primitive policy’s parameters θ are frozen during training:

J(ϕ) = EO∼pO(O),τb∼pτb
(τb|O),

at∼πθ,ϕ(·|Jt,ot,Ht)

[
T∑

t=0

γtrt

]
(6)

where γ > 0 denotes a discounted factor and rt is the reward at time-step t. To encourage the policy
to successfully grasp the object while leveraging the primitive action apt for efficient exploration, we
assign the following simple reward function for training:

rt = (1− dt) · (rsim + rh) + dt · λs, dt = 1(success, t = T )

rsim = λa ·
〈

ap

||ap||2
,Jt − Jt−1

〉
, rh = λh ·∆h

(7)

where λa, λh, λs > 0 are hyperparameters and ∆h represents the change in the height of the object’s
centre of gravity after lifting. The term dt rewards the agent if the final grasp pose can successfully lift
the target object. The term rsim is an intrinsic reward that encourages the agent when the joints-change
follows the direction of the primitive action apt . We defer the PPO’s hyperparameters to Appendix B.

3.3 Implementation Details

Primitive Policy Network This module takes the hand joints J ∈ R18, object point cloud o ∈
R3×1024 and the hand wrist b ∈ SE(3) as input, we first project the point cloud into the hand wrist’s
coordinate ob. We encode ob into a 512-D global feature by PointNet++ [24]. The hand joints J
and the noise-condition t ∈ [0, 1] are further encoded into 1024-D and 512-D features respectively.
Concatenating the features together, we feed the concatenated feature into MLPs to obtain the 18-D
output.

Residual Policy Network Taking the hand joints Jt ∈ R18, under-actuated joints Ju
t ∈ R4, visual

observation ot ∈ R3×1024 and the hand wrists’ trajectory Ht = [bt, ...,bt−4], bi ∈ SE(3) as input,
this module use the PointNet [25]to encoder the point cloud. Similarly, we first obtain the global
feature fob ∈ R512 of the projected point cloud. The primitive action apt = πθ

p(Jt, ot,bt), hand
joints J and the history H are concatenated and further encoded into 512-D features. Concatenating
the above features together, we feed the concatenated feature into MLPs to obtain the 36-D output.
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4 Experiment Setups
4.1 Task Simulation
Environment setup: We created a simulation environment based on the ShadowHand environment in
Isaac Gym [26], using the ShadowHand model from IBS [27]. The simulation environment enables
parallel training on hundreds of environments. Each environment consists of an object placed on the
ground and a hand that follows a pre-generated human wrist trajectory. The agent can only control
the joints of the hand. The episode horizon is 50 steps, and each episode only terminates at the final
step. Following a similar setting to IBS [27], when the episode terminates, part of the joints of each
finger will automatically close by 0.1 radians, and then the wrist of the hand will be lifted by 1m.

Grasping pose generation: We created our success grasping pose based on the UniDexGrasp
dataset [10]. We filtered the data to match our ShadowHand model’s degrees of freedom. The dataset
was split into three sets: training instances (3127 objects, 363,479 grasps), seen category unseen
instances (519 objects, 2595 grasps), and unseen category instances (1298 objects, 6490 grasps).

Human grasping wrist patterns: To mimic real human grasping patterns, we resampled 200 real
human grasping wrist trajectories from HandoverSim! [28], from which we extracted 200 wrist
movement patterns. These patterns were split into 150 training patterns and 50 testing patterns.

The details are deferred to Appendix A.

4.2 Metrics

Following the DexVIP [29], we report the following three metrics: 1) Success: The object can be
lifted more than 0.1m off the table, while the change in distance between the object and hand position
after lifting is smaller than 0.05m. 2) Posture: The distance between the target human hand pose and
the agent hand pose. It tells us how human-like the learned grasps are. 3) Stability: The translation
and rotation changes of the object during the agent’s grasping process. Translation is measured by
the Euclidean distance between the final object position and the initial object position. Rotation is
measured by the cosine distance between the x-axis of the initial object and the final object.

4.3 Baselines

We compare our method with the following RL-based methods. Note that all baselines are re-trained
by taking the latest 5-frame wrist states as input. 1) IBS [27]: IBS explicitly compute rich contact
information according to hand mesh and object mesh, which has good generalisation to objects
and different contact situation. We modify the baseline to only output joint actions, and keep the
reward the same as previous. 2) PPO [23]: We adopt PPO as ours pure RL baseline. For pure RL,
we use the reward of fingertip distance (distance of fingertip to the closest point of object point
cloud), rh and success reward. 3) PPO (Goal): We randomly sample the goal which corresponds
to the current object as additional input to the agent. We add another goal pose matching reward
compared to PPO baseline. 4) ILAD [30]: We choose ILAD as our RL+Imitation learning baseline,
which will first generate sub-optimal grasping trajectories according to example grasp pose, then use
these demonstrations for imitation learning and RL. We regenerate the trajectories for ILAD training
based on our grasp data. We use the same reward as the PPO baseline. The details are deferred to
Appendix C.

Initial 
State

Final 
State

GT

PPO PPO
(Goal)

ILAD IBS Ours Traj1 Traj2 Traj3 Traj4 Traj5GT
a) b)

Figure 3: Qualitative results of comparison with baselines and different trajectories. a): final grasp poses of
different methods. b): final grasp poses of our method under different human trajectories
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Figure 4: Quantitative comparative results. Left: training curve of different methods. Note that IBS takes 144
hours on V100 to reach 3.5 million agent steps, while ours only takes 15 hours to reach 10 million agent steps.
Middle: Success and Posture of different methods on seen category unseen instances. Right: Success and
Posture of different methods on unseen category instances.

5 Experimental Results

5.1 Comparative Results

As shown in Figure 4, Ours achieves comparable training efficiency to ILAD, even without the use of
extra trajectory demonstrations, Ours can converge to a higher Success. Ours also surpasses other
baselines of Success for both unseen and unseen category instances. This demonstrates the robust
generalisation capabilities of our method. Ours also has the highest performance of Posture, which
indicates that our method is better aware of the user’s intentions. The qualitative results in Figure 3
b) demonstrate the successful grasping of objects across different user’s intentions. As indicated in
Table 1, Ours also causes the least disturbance to the object.

ILAD and IBS are considered as the strongest baseline. ILAD utilises additional trajectory demon-
strations for RL training. However, Ours still surpasses this baseline because ILAD still relies on
RL to generalise across diverse object categories. For IBS, we observed that IBS tends to fail when
the human wrist trajectory has the potential to collide with the ground. This could be attributed to
the reward design of IBS, which needs to balance between colliding with the scene and grasping the
object. Additionally, computing the IBS representation is ten times more computationally expensive.

Seen Category Unseen Category
Tran(cm) ↓ Rot (rad) ↓ Tran(cm) ↓ Rot (rad) ↓

PPO(Goal) 2.621±0.415 0.589±0.038 2.537±0.296 0.543±0.040

PPO 2.745±0.168 0.594±0.045 2.771±0.254 0.563±0.039

IBS 2.653±0.030 0.572±0.002 2.596±0.119 0.520±0.011

ILAD 2.443±0.042 0.548±0.027 2.534±0.101 0.515±0.022

Ours 2.131±0.138 0.449±0.020 2.127±0.165 0.428±0.029

Table 1: Results of Stability on seen category unseen instances and
unseen category instances. Tran: translation of objects from the initial
position to the final position. Rot: rotation of objects from initial orienta-
tion to final orientation.

PPO primarily fails because it at-
tempts to learn a general policy
that can grasp most objects, as
shown in Figure 3 a), which is
not suitable for diverse objects
and grasp poses. PPO (Goal)
faces challenges due to its inabil-
ity to adjust the goal during the
approach phase. Since the wrist
is continuously moving during
the process, the goal set at the
initial state may not be suitable.

5.2 Ablation Studies and Analysis

We conduct the ablation studies to investigate: 1) The effectiveness of decomposing the policy into
primitive policy and residual policy. 2) The necessity of different action modules. 3) The impact of
different action modules on final action.

The ablation results depicted in Figure 5 demonstrate the significance of our proposed approaches.
Ours w/o GF experiences a significant performance decline, indicating the significance of combining
RL policy with primitive action. Similarly, Ours w/o RL shows a substantial drop in performance
by focusing solely on the ‘how’ of grasping, which results in collisions during the grasping process.
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Although Ours w/o ar and Ours w/o as exhibit higher training efficiency, both methods eventually
experience training collapse. During this collapse, we observe that the agent tends to either follow the
primitive action more closely or deviate from it to a greater extent. This suggests that the combination
of both action modules allows for a better policy learning process that effectively utilises the primitive
action.
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Figure 5: Ablation Study on decomposing policy and
different action modules.

The results shown in Table 2 indicate that the
primitive action, which does not consider col-
lisions due to physical constraints in the grasp-
ing procedure, can achieve similar performance
to Ours. This suggests that the primitive ac-
tion module has a good understanding of how
to grasp, but it moves quickly towards the tar-
get without considering potential collisions, as
shown in Figure 6. The inclusion of the as mod-
ule slows down the progress of ap to avoid colli-
sions, as illustrated in Appendix D.1. However,
this conservative approach leads to a drop in suc-
cess. Nevertheless, after further addition of ar,
the performance increases to 56.50%, which is
comparable to ap w/o coll. By further combin-
ing the ar module, the final action is corrected
to achieve the ‘how to grasp’ knowledge learned by ap while also incorporating correct ‘when to
grasp’ knowledge.

Figure 6: Qualitative results of grasping procedure governed by the primitive
policy. The yellow circle highlights the collision between the finger and the
object caused by premature closure.

Action Type Success

ap 19.49 %
ap w/o coll 55.60 %
ap ⊙ as 5.08 %
ap ⊙ as + ar 56.50 %

Table 2: Success rate of differ-
ent combinations of action mod-
ules.

5.3 Adaptability Results

To further demonstrate the adaptability of our method, we conduct both quantitative and qualitative
experiments. Quantitatively, as shown in Table 3, we calculate the success rate for each object across
five different grasp poses. For the objects that have been successfully grasped, Ours excels at grasping
various parts of the objects. Qualitatively, Figure 7 demonstrates that the grasp pose generated by
Ours closely resembles a human’s intended grasp pose. Furthermore, we also show that GraspGF can
adapt to wrist rotation; videos can be viewed at https://sites.google.com/view/graspgf.

Success Rate 1/5 2/5 3/5 4/5 5/5

Ours 13.67% 27.70% 31.41% 20.82% 6.40%
ILAD 25.44% 32.53% 26.61% 12.53% 2.89%
IBS 27.70% 34.73% 25.67% 10.29% 1.61%
PPO 48.20% 35.49% 13.10% 3.01% 0.20%
PPO (Goal) 77.04% 18.96% 3.62% 0.30% 0.08%

Table 3: Percentages of objects with varying success rates of grasp-
ing under different methods. The results are averaged over five
different random seeds.

GT

Ours

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5

Figure 7: Qualitative results of grasp-
ing different parts of shoes with the same
shape but different scales.

5.4 Real-world Results

In this section, we construct a real-world system to validate our method. As shown in Figure 8, the
system consisted of calibrated multi-view RGB-D cameras (four Intel RealSense D415 sensors), a
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UR10e robot arm equipped with a Shadow Hand as the end-effector, and an optical hand tracking
sensor (Leap Motion Controller). To obtain the visual observation of the object, we reconstruct the

Leap Motion 

Controller

4 × Intel RealSense 

D415

Shadow Hand

UR10e

100cm wrist pose

hand pose

wrist pose 1

…
…

wrist pose i

wrist pose n

Figure 8: Real-world Experiment. Left: the real-world setup for
real human-assisting dexterous grasping. Right: the qualitative
result of real human-assisting dexterous grasping.

scene point clouds from the multi-
view RGB-D cameras. We only get
the point cloud at the beginning of
each grasping, assuming the point
cloud observation does not change
during the grasping. Then, we de-
velop a teleoperation system inspired
by the design of DexPilot [5] to en-
able the robot arm to track the trajec-
tory of a human wrist, but with the dif-
ference of using a Leap Motion Con-
troller as the hand tracking device to
obtain human wrist and hand pose. It
should be noted that we remove the
estimated hand pose to emulate the
human-assisting setting where only
the wrist can be controlled by humans.

Following a similar setting in [16],
we evaluated our policy in the real world using ten objects from the YCB dataset [31]. For each
object, we selected two grasp poses that were intended to be achieved by a human. Each pose
was tested five times, with a human randomly randomised initial object pose and wrist movement
trajectories. The details of evaluation in the real world are deferred to D.2. As shown in Table 4, our
policy achieved an average success rate of 66% in real-world human-assisted grasping, demonstrating
its generalisation ability in a real-world setting. The grasping policy tended to fail for certain large
objects that were difficult for the dexterous hand to hold firmly, as well as for thin objects that were
prone to colliding with the table. One of the reasons our policy still achieved a certain success rate
in the real world is that when humans control the wrist of their hand, human will also try to adjust
according to the grasping pose of the joint, which may help to grasp the object. Our real-world
demonstrations can be viewed at https://sites.google.com/view/graspgf.

Object Average Success
Rate

Pose 1 5/5 5/5 5/5 1/5 1/5 5/5 4/5 5/5 1/5 1/5
Pose 2 4/5 4/5 3/5 3/5 4/5 4/5 2/5 4/5 1/5 4/5 66%

Table 4: Results of success rate on 10 different YCB objects with two different poses in the real world.

6 Related Works

6.1 Dexterous Hand Grasping

Existing studies on dexterous hand robotics mainly focus on dexterous grasping, assuming full control
over the hand, including both the hand base and joint movements by the agent [27, 32, 14, 29, 30].

However, Reinforcement Learning (RL) based methods struggle with generalisation to different
objects due to object diversity, high-dimensional state and action spaces, and sparse rewards [33].
To address this issue, most existing approaches rely on human-collected demonstrations [17, 16],
which require engineering-heavy retargeting. The most relevant work, IBS [27], combines RL with a
human-designed representation that explicitly incorporates contact information between the hand and
objects to aid in grasping. However, this computationally costly representation limits the practicality.
Furthermore, in our proposed approach, we address a different setting where the movement of the
hand base is determined by the user, requiring the agent to be ’user-centric’ rather than ’object-centric’.
Additionally, our approach only requires a set of grasp examples and is free of human design.
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In the medical AI field, there are studies with a similar setting to ours, known as prosthetic dexterous
grasping [11, 12, 13]. These studies aim to control a prosthetic hand to assist users in grasping and
explore open-looped approaches that initially predict the grasp type and then execute predefined
primitives for control. In contrast, we explore a closed-loop control policy that adaptively adjusts the
grasp pose based on the current user-object relationship and the user’s movement trajectory history.

6.2 Score-based Generative Models

In the pursuit of estimating the gradient of the log-likelihood associated with given data distribution,
the score-based generative model, originally introduced by [34], has garnered substantial attention
in the research community [22, 34, 35, 36, 37, 19, 38]. The denoising score-matching (DSM), as
proposed by [22], further introduces a tractable surrogate objective for score-matching. To enhance
the scalability of score-based generative models, [35] introduces a sliced score-matching objective
that projects the scores onto random vectors before comparing them. Song et al. also introduce
annealed training for denoising score matching [36], along with corresponding improved training
techniques [37]. They also extend the discrete levels of annealed score matching to a continuous
diffusion process and demonstrate promising results in image generation [19]. Recent works further
explore the design choices of the diffusion process [39], maximum likelihood training [38], and
deployment on the Riemann manifold [40]. These recent advances show promising results when
applying score-based generative models in high-dimensional domains and promote wide applications
in various fields, such as object rearrangement [21], medical imaging [41], point cloud generation
[42], scene graph generation [43], point cloud denoising [44], depth completion [45], and human pose
estimation [18]. These works formulate perception problems into conditional generative modelling
or inpainting, allowing the utilisation of score-based generative models to address these tasks.

In contrast, our focus lies in the application of score-based generative models for training low-level
control policies. In this domain, [46] and [20] have proposed learning diffusion models from offline
trajectories and leveraging these models for model predictive control. However, these approaches
suffer from the drawback of requiring a substantial amount of offline data and inefficiency during
test-time sampling. To the best of our knowledge, our method represents the first exploration of
score-based generative models for learning closed-loop dexterous grasping policies.

7 Conclusion

In this work, we introduce human-assisting dexterous grasping, wherein a policy is trained to assist
users in grasping objects by controlling the robotic hand’s fingers. To search for a user-aware policy,
we propose a novel two-stage framework that decomposes the task into learning a primitive policy
via score-matching and training a residual policy to complement the primitive policy via RL. In
experiments, we introduce a human-assisting dexterous grasping environment that consists of 4900+
on-table objects with up to 200 realistic human wrist movement patterns. Results demonstrate that
our proposed method significantly outperforms the baselines across various metrics. Our analysis
reveals that our trained policy is more tailored to the user’s intentions. Our real-world experiments
indicate that our learned policy can generalise to the real world to some degree without fine-tuning.

Limitations and Future works. Our method takes the full point cloud as the visual observation,
which is not accessible in the wild. In the future, we may leverage teacher-student learning to
generalise our method to a partial observation setting.

Ethics Statement. Our method has the potential to develop home-assistant robots and assist individu-
als with hand disabilities, thus contributing to social welfare. We evaluate our method in simulated
environments, which may introduce data bias. However, similar studies also have such general
concerns. We do not see any possible major harm in our study.

Acknowledgments and Disclosure of Funding

We would like to thank Qianxu Wang and Haoran Lu for supporting the real-world experiments. This
work is supported by the National Natural Science Foundation of China - General Program (Project
ID: 62376006), the National Youth Talent Support Program (Project ID: 8200800081) and the Beijing
Municipal Science & Technology Commission (Project ID: Z221100003422004).

10



References
[1] Francesca Cordella, Anna Lisa Ciancio, Rinaldo Sacchetti, Angelo Davalli, Andrea Giovanni

Cutti, Eugenio Guglielmelli, and Loredana Zollo. Literature review on needs of upper limb
prosthesis users. Frontiers in neuroscience, 10:209, 2016.

[2] Yuanpei Chen, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang, Zongqing Lu,
Stephen McAleer, Hao Dong, Song-Chun Zhu, and Yaodong Yang. Towards human-level
bimanual dexterous manipulation with reinforcement learning. Advances in Neural Information
Processing Systems, 35:5150–5163, 2022.

[3] Yuzhe Qin, Yueh-Hua Wu, Shaowei Liu, Hanwen Jiang, Ruihan Yang, Yang Fu, and Xiaolong
Wang. Dexmv: Imitation learning for dexterous manipulation from human videos. In Com-
puter Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXIX, pages 570–587. Springer, 2022.

[4] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models
for learning dexterous manipulation. In Conference on Robot Learning, pages 1101–1112.
PMLR, 2020.

[5] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-Wei Chao, Qian Wan, Stan Birchfield,
Nathan Ratliff, and Dieter Fox. Dexpilot: Vision-based teleoperation of dexterous robotic
hand-arm system. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 9164–9170. IEEE, 2020.

[6] Dandan Zhang, Weiyong Si, Wen Fan, Yuan Guan, and Chenguang Yang. From teleoperation to
autonomous robot-assisted microsurgery: A survey. Machine Intelligence Research, 19(4):288–
306, 2022.

[7] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Dinesh Manocha. Generating grasp
poses for a high-dof gripper using neural networks. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1518–1525. IEEE, 2019.

[8] Min Liu, Zherong Pan, Kai Xu, Kanishka Ganguly, and Dinesh Manocha. Deep differentiable
grasp planner for high-dof grippers. arXiv preprint arXiv:2002.01530, 2020.

[9] Puhao Li, Tengyu Liu, Yuyang Li, Yiran Geng, Yixin Zhu, Yaodong Yang, and Siyuan Huang.
Gendexgrasp: Generalizable dexterous grasping. arXiv preprint arXiv:2210.00722, 2022.

[10] Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu, Zikang Shan, Hao Shen, Ruicheng
Wang, Haoran Geng, Yijia Weng, Jiayi Chen, et al. Unidexgrasp: Universal robotic dexterous
grasping via learning diverse proposal generation and goal-conditioned policy. arXiv preprint
arXiv:2303.00938, 2023.

[11] Ghazal Ghazaei, Ali Alameer, Patrick Degenaar, Graham Morgan, and Kianoush Nazarpour.
Deep learning-based artificial vision for grasp classification in myoelectric hands. Journal of
neural engineering, 14(3):036025, 2017.

[12] Ghazal Ghazaei, Federico Tombari, Nassir Navab, and Kianoush Nazarpour. Grasp type
estimation for myoelectric prostheses using point cloud feature learning. arXiv preprint
arXiv:1908.02564, 2019.

[13] Chunyuan Shi, Dapeng Yang, Jingdong Zhao, and Hong Liu. Computer vision-based grasp
pattern recognition with application to myoelectric control of dexterous hand prosthesis. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 28(9):2090–2099, 2020.

[14] Yuzhe Qin, Binghao Huang, Zhao-Heng Yin, Hao Su, and Xiaolong Wang. Dexpoint: General-
izable point cloud reinforcement learning for sim-to-real dexterous manipulation. In Conference
on Robot Learning, pages 594–605. PMLR, 2023.

[15] Tianhao Wu, Fangwei Zhong, Yiran Geng, Hongchen Wang, Yongjian Zhu, Yizhou Wang, and
Hao Dong. Grasparl: Dynamic grasping via adversarial reinforcement learning. arXiv preprint
arXiv:2203.02119, 2022.

[16] Zoey Qiuyu Chen, Karl Van Wyk, Yu-Wei Chao, Wei Yang, Arsalan Mousavian, Abhishek
Gupta, and Dieter Fox. Dextransfer: Real world multi-fingered dexterous grasping with minimal
human demonstrations. arXiv preprint arXiv:2209.14284, 2022.

[17] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learning generalizable dexterous manipula-
tion from human grasp affordance. In Conference on Robot Learning, pages 618–629. PMLR,
2023.

11



[18] Hai Ci, Mingdong Wu, Wentao Zhu, Xiaoxuan Ma, Hao Dong, Fangwei Zhong, and
Yizhou Wang. Gfpose: Learning 3d human pose prior with gradient fields. arXiv preprint
arXiv:2212.08641, 2022.

[19] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[20] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit
Agrawal. Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

[21] Mingdong Wu, Fangwei Zhong, Yulong Xia, and Hao Dong. TarGF: Learning target gradient
field for object rearrangement. arXiv preprint arXiv:2209.00853, 2022.

[22] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[24] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[26] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High
performance gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470,
2021.

[27] Qijin She, Ruizhen Hu, Juzhan Xu, Min Liu, Kai Xu, and Hui Huang. Learning high-dof
reaching-and-grasping via dynamic representation of gripper-object interaction. ACM Transac-
tions on Graphics (SIGGRAPH 2022), 41(4), 2022.

[28] Yu-Wei Chao, Chris Paxton, Yu Xiang, Wei Yang, Balakumar Sundaralingam, Tao Chen,
Adithyavairavan Murali, Maya Cakmak, and Dieter Fox. Handoversim: A simulation framework
and benchmark for human-to-robot object handovers. In 2022 International Conference on
Robotics and Automation (ICRA), pages 6941–6947. IEEE, 2022.

[29] Priyanka Mandikal and Kristen Grauman. Dexvip: Learning dexterous grasping with human
hand pose priors from video. In Conference on Robot Learning, pages 651–661. PMLR, 2022.

[30] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learning generalizable dexterous manipula-
tion from human grasp affordance. arXiv preprint arXiv:2204.02320, 2022.

[31] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M
Dollar. The ycb object and model set: Towards common benchmarks for manipulation research.
In 2015 international conference on advanced robotics (ICAR), pages 510–517. IEEE, 2015.

[32] Qiuyu Chen, Karl Van Wyk, Yu-Wei Chao, Wei Yang, Arsalan Mousavian, Abhishek Gupta,
and Dieter Fox. Learning robust real-world dexterous grasping policies via implicit shape
augmentation. In 6th Annual Conference on Robot Learning.

[33] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[34] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[35] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[36] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

12



[37] Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

[38] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in Neural Information Processing Systems, 34:1415–
1428, 2021.

[39] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
diffusion-based generative models. arXiv preprint arXiv:2206.00364, 2022.

[40] Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
Arnaud Doucet. Riemannian score-based generative modeling. arXiv preprint arXiv:2202.02763,
2022.

[41] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical
imaging with score-based generative models. arXiv preprint arXiv:2111.08005, 2021.

[42] Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely,
and Bharath Hariharan. Learning gradient fields for shape generation. In European Conference
on Computer Vision, pages 364–381. Springer, 2020.

[43] Mohammed Suhail, Abhay Mittal, Behjat Siddiquie, Chris Broaddus, Jayan Eledath, Gerard
Medioni, and Leonid Sigal. Energy-based learning for scene graph generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13936–13945,
2021.

[44] Shitong Luo and Wei Hu. Score-based point cloud denoising. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4583–4592, 2021.

[45] Ruizhi Shao, Zerong Zheng, Hongwen Zhang, Jingxiang Sun, and Yebin Liu. Diffustereo: High
quality human reconstruction via diffusion-based stereo using sparse cameras. arXiv preprint
arXiv:2207.08000, 2022.

[46] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[47] Kai Chen and Qi Dou. Sgpa: Structure-guided prior adaptation for category-level 6d object pose
estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2773–2782, 2021.

[48] Hansheng Chen, Pichao Wang, Fan Wang, Wei Tian, Lu Xiong, and Hao Li. Epro-pnp:
Generalized end-to-end probabilistic perspective-n-points for monocular object pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2781–2790, 2022.

13



A Task Details

A.1 Simulation

Human Wrist Trajectory Generation: We generate the human wrist trajectories using the following
steps based on the human trajectory pattern dataset in A.2:

• Randomly select one object sample for each environment and add random noise to the x and y
position change of the sampled object pose within the range of (-0.5, 0.5) meters.

• Sample a grasp pose that is different from the last sampled grasp pose for this object. We measure
the distance between each grasp example of the object and the last sampled grasp example. If
the sampled grasp example is already in the sample history, we randomly choose a new grasp
example and clear the history.

• Based on the sampled grasp pose, we generate the initial wrist pose. First, we compute the centre
of the fingertip pose and the wrist pose to obtain a vector pointing from the fingertip centre to the
wrist. Then, we randomly sample the initial wrist position within a length range of 0.15 to 0.2
meters and randomly sample a deviation angle within the range of 0 to 20 degrees according to
the vector.

• For the initial orientation, we randomly sample the delta angle change, denoted as δa, from a
distribution based on human rotation data. We set the initial angle as Atarget * (1 - δa / 2*π),
where Atarget represents the target angle.

• After obtaining the initial and final poses of the wrist, we aim to add noise to the trajectories
during training. However, simply adding random noise would result in a shaking wrist trajectory
that does not resemble human behaviour. To address this, we randomly sample two normalized
trajectory patterns p1 and p2 during training. We then combine these two patterns using a random
coefficient c sample from (0,1) to generate a new pattern: c * p1 + (1 - c) * p2. This generated
pattern is then used to define the trajectory of the wrist, which serves as the human wrist trajectory,
as shown in Figure 9.

By following the above generation process, we can obtain human trajectories with diverse human-
like grasping patterns, diverse velocities, and diverse initial hand poses for diverse objects, while
guaranteeing that the agent can grasp the object at the final wrist pose.

Figure 9: Visualizations of generated human trajectories.

State Space: For all joints J and under-actuated joints Ju, we normalize the joint states to the range
of (-1, 1) based on their respective joint limits. As for the wrist pose b, we directly utilize the absolute
pose relative to the world frame. Regarding the object point cloud o, we sample 1024 points from the
object mesh.

Action Space: The action corresponds to the relative change applied to the 18 joints J. Each action
is clipped to the range of (-1, 1) and then scaled by a factor of 0.05.

A.2 Datasets

Grasp Example Dataset: The ShadowHand model used in IBS is equipped with 18 degrees of
freedom, including four under-actuated joints that are not directly controlled by the agent. However,
in the table-top dataset presented in [10], it is assumed that the ShadowHand model has direct control
over these four under-actuated joints. Consequently, the grasp examples from the dataset may not be
directly applicable to our ShadowHand model. To address this, we incorporate the grasp poses from
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the dataset into our simulation environment and reevaluate the grasp examples. We assess each grasp
example based on the successful lifting of the object, with each grasp pose being tested twice for
reliable evaluation.

To ensure a fair comparison, we select five of the most diverse grasp poses for each object from the
re-filtered dataset for both seen category unseen instances and unseen category instances.

Human Wrist Trajectory Pattern Dataset: HandoverSim![28] provides handover trajectories
collected from real humans, which can be utilized to generate human-like wrist trajectories during
grasping in our task. However, these trajectories in HandoverSim![28] are only available for a limited
set of objects and cannot be directly applied to all objects in our simulation environment. Therefore,
to generate human-like grasping wrist trajectories in our simulation environment, we first collect
wrist movement trajectories from the initial pose to the pose where the object is successfully grasped.
To capture the movement patterns, we normalize the trajectories based on the max and min values
of each axis (x,y,z). Additionally, for the rotation component, we collect the distribution of wrist
rotation change from the initial orientation to the final orientation of each axis (roll, pitch, yaw). We
generate human trajectories according to these patterns.

A.3 Evaluations

For baseline comparison and ablation study, we conducted evaluations using 5 random seeds. For
each seed, the evaluation of training instances was performed five times. The grasp pose for each
object is different in each iteration. Throughout the evaluations, we utilized the human wrist trajectory
patterns randomly sampled from their respective sets without introducing any additional noise. The
human trajectory remained consistent across all comparisons for the same random seed.

B Implementation Details

B.1 Primitive Policy

Training Objective: In practice, we adopt an extension of DSM [19] that estimates a time-dependent
score network sω(J|o∗,b∗, t) to denoise the perturbed data from different noise levels simultaneously:

L(ω) = Et∼U(ϵ,T )

{
E J̃∼qσ(t)(J̃|J),

(J∗,o∗,b∗)∼Dsuccess

λ(t)

[∥∥∥∥sω(J̃, |o∗,b∗, t)− 1

σ2(t)
(J− J̃)

∥∥∥∥2
2

]}
(8)

where T = 1, ϵ = 10−5, λ(t) = σ2(t), σ(t) = 1 − e−
1
2 t

2(βmax−βmin)−tβmin and βmax =
10, βmin = 0.1 are hyper-parameters. The optimal time-dependent score network holds
s∗ω(J|o∗,b∗, t) = ∇x log qσ(t)(J|o∗,b∗) where qσ(t)(J|o∗,b∗) is the perturbed data distribution:

qσ(t)(J|o∗,b∗) =

∫
qσ(t)(J̃|J)psuccess(J|o∗,b∗)dJ (9)

With the trained score network sω , we parameterize the primitive policy as:

πθ
p(·|J, o∗,b∗) = sω(J|o∗,b∗, 0.005) (10)

Network Architecture:

We utilize the Gradient Field backbone introduced in [21] along with the PoinetNet++ backbone from
[47] to build our chosen backbone for this study.

For training the primitive policy, we initially extracted a maximum of five distinct poses for each
object within the training instances to balance the training data, resulting in a total of 15,387 grasping
examples. It is important to note that we exclusively employ grasp examples for the training of the
primitive policy, without incorporating any trajectories. We use the Adam optimizer with a learning
rate of 2e-4 for training, The batch size is set to the total number of grasping examples divided by 5.
It takes 60 hours to train on a single A100 for primitive policy to converge.
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B.2 Residual Policy

To incorporate object geometry information into the residual policy, we employ PointNet[25]. We
begin by pretraining PointNet[25] using the same procedure as the primitive policy training with
PointNet++[24]. Subsequently, during training for the residual policy, we continue fine-tuning
PointNet[25].

Reward Function: Based on empirical observations, we found that the following intrinsic reward
function (Eq. 11) which encourages the agent to simply follow the direction of primitive policy will
lead to faster convergence.

rsim = λa ·
〈

ap

|ap|
,Jt − Jt−1

〉
(11)

Note that since the intrinsic reward rsim is the only dense reward in our method, we set its frequency to
5 to avoid overfitting to the primitive policy. Empirically, we set λs = 1.0, λa = 0.09, and λh = 0.5
for our approach.

RL Backbone: We implemented the Proximal Policy Optimization (PPO) algorithm [23] using
the PyTorch implementation provided in [2]. In our implementation, we incorporated the PointNet
backbone from [17] into the PPO backbone.

Hyper-parameters: We mainly kept the hyper-parameters of PPO the same as those in [2], with
the following exceptions: we set the number of update intervals (nsteps) to 50, the number of
optimization epochs (noptepochs) to 2, the mini-batch size mini_batch_size(mini_batch_size) to
64, and the discount factor (gamma) to 0.99.

We trained the residual policy for a total of 10 million agent steps, which took approximately 15
hours using a single A100 GPU.

C Baselines Implementations

IBS: In the IBS baseline [27], two buffers are maintained: a demonstration buffer for warm-up RL
training and an experiment buffer for storing the transition tuples. We set the size of both buffers
to 15,000, which is three times larger than in our method. To generate the demonstration buffer, we
follow a similar procedure in IBS [27]. Specifically, we randomly sample grasp poses from the same
data used to train the primitive policy. We then use linear interpolation to compute joint actions based
on the initial and target joint states. By applying these actions with the generated human trajectories,
we store the transition tuples in the demonstration buffer until it reaches the maximum size.

PPO: Since the PPO baseline does not have a primitive policy, we substitute the intrinsic reward with
the fingertip distance reward. It is important to note that we keep the rh and success reward the same
as in our approach. We use PointNet++ [24] for this baseline, as the PointNet may lead to training
collapse. All other training parameters remain the same as in our approach.

PPO(Goal): Similar to the PPO baseline, we use PointNet++ [24] and keep all training parameters
the same as in our approach. We introduce a goal pose matching reward that computes the distance
between the current joint position and the goal joint position, in addition to the rewards used in PPO.

ILAD: In the ILAD baseline [17], additional trajectories are required to train RL. We use the same
data used to train the primitive policy to generate these trajectories following the same process as
described in ILAD [17]. In total, we generate 125k transition tuples. We use PointNet [25] for this
baseline and keep all training parameters the same as in our approach. The reward remains the same
as PPO.

D Additional Results

D.1 Additional Ablations

The necessity of as module:

As shown in Figure 10, we visualise the grasp pose of the final state using different action modules
ap and ap ⊙ as, the results are generated without simulating the collision between hand and object in
the simulation environment. We can observe that ap will usually cause a collision between the hand
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and the object. When using the combination of as, the finger still moves towards the similar grasp
pose as with ap, while the as module will also try to avoid the collision with the object by slowing
down the movement of the ap.

Final 
state1

Final 
state2

𝒂𝒑

𝒂𝒑⨀𝒂𝒔

Final 
state3

Final 
state4

Final 
state5

Final 
state6

Figure 10: Qualitative result of final grasp pose using ap and ap ⊙ as action module
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Figure 11: Ablation Study on intrinsic reward rsim

The effectiveness of intrinsic reward rsim:

As the primitive policy provides good guidance
on "how to grasp", we introduce the rsim reward
to encourage the final output action ap⊙as+ar

to explore in direction of the primitive policy’s
action ap , this reward is the inner product of

ap

∥ap∥2 and Jt - Jt−1, where J signifies the state
of finger joints. A higher value of rsim indi-
cates a smaller angle between the gradient and
Jt - Jt−1, implying a greater similarity in the
movement of finger joints to the gradient.

As shown in Figure 11, when the intrinsic re-
ward rsim is not included, the success rate of
our method drops, and the training efficiency
is significantly lower compared to when rsim is
included. This indicates that rsim plays a crucial
role in guiding the agent to initially follow the
primitive policy and helps accelerate the learn-
ing of the residual policy. Furthermore, the in-
clusion of rsim encourages the residual policy to follow the primitive policy throughout the entire
training process, leading to better utilisation of the generalisation capabilities of the primitive policy.

Action of each policy during the grasping process:

The primitive policy’s actions solely depend on object-wrist relative orientation. Thus when the hand
is far away, the primitive policy will still close the fingers, as shown in Figure 12 (a) Stage1. As
the hand’s posture progressively approaches the target grasp pose, the mean value of the primitive
policy’s actions decreases, as shown in Figure 12 (a) Stage2.

To further understand the action of residual policy, we utilise a measure called rsim. A higher value
suggests the final action more closely follows the primitive policy. As shown in Figure 12 (b) Stage1,
when the hand is far from the object, the residual policy will restrict the finger’s early closure to
prevent the collision, as the hand approaches the object, residual policy start to follow primitive
policy, as shown in Figure 12 (b) Stage2. However, as shown in Figure 12 (b) Stage3, as the hand is
about to grasp the object, the rsim starts to decrease. At the last few steps, the residual policy will
further refine the pose to hold the object firmly, leading to the negative rsim value.

17



0 10 20 30 40 50

(a) Time step
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

m
ea

n 
of

 a
p

Stage1 Stage2

0 10 20 30 40 50

(b) Time step
0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

r si
m

Stage1 Stage2 Stage3

Figure 12: (a) Variation of the mean value of the primitive policy’s action over time steps. (b) Variation of the
rsim reward over time steps.

D.2 Real World Evaluation

During the real-world grasping procedure, once the human wrist was detected to lift, the hand would
automatically lift up, move towards a target box, and open the fingers to release the object, as
illustrated in Figure 13. A grasp was considered successful if the object was lifted and moved to the
box without falling before the fingers opened.

a) b) c) d)

Figure 13: Real-World evaluation process for assessing grasp pose success: a) Detection of human wrist lift. b)
Hand automatically lift up. c) Hand automatically move to the target box. d) Hand open to release the object.

D.3 Inference Speed for Each Module

We evaluate the inference speed on the GTX 1650, which is also used in our real-world experiment.
We set the batch size equal to 1 and ran the policy 50 times to obtain a reliable average time for the
inference speed of each module. As shown in Table 5, both modules take less than 0.004 seconds for
each inference. This indicates that our integrated system is capable of seamless human interaction.

Device Inference time for primitive policy Inference time for residual policy
GTX1650 0.002766s 0.003646s

Table 5: Results of inference speed of primitive policy and residual policy on GTX1650.

D.4 Robustness to Perception Noise

To demonstrate the robustness of our method, we inject two levels of noise to the wrist pose
observation following [48]. As indicated in Table 6, our approach yields comparable outcomes
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with a 2-degree/2-cm estimation error while exhibiting approximately 10% reduction in performance
under a 5-degree/5-cm error threshold, which indicates that our method can handle estimation error
to some degree.

standard deviation of noise 0◦, 0cm 2◦, 2cm 5◦, 5cm
success rate 56.69% 55.24% 44.35%

Table 6: Results of success rate under different levels of observation noise on unseen category instances using
seed 0. The Gaussian noise is determined by the standard deviation of the specified threshold and added to
observations of wrist position and orientation separately, any noise exceeding these bounds will be clipped. The
pose estimation method can achieve 80.99% accuracy under 2◦, 2cm, and achieve 95.80% accuracy under 5◦,
5cm.
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