
Boosting Learning for LDPC Codes
to Improve the Error-Floor Performance

Hee-Youl Kwak
University of Ulsan

ghy1228@gmail.com

Dae-Young Yun
Seoul National University
bigbowl204@snu.ac.kr

Yongjune Kim∗

POSTECH
yongjune@postech.ac.kr

Sang-Hyo Kim∗

Sungkyunkwan University
iamshkim@skku.edu

Jong-Seon No
Seoul National University

jsno@snu.ac.kr

Abstract

Low-density parity-check (LDPC) codes have been successfully commercialized in
communication systems due to their strong error correction capabilities and simple
decoding process. However, the error-floor phenomenon of LDPC codes, in which
the error rate stops decreasing rapidly at a certain level, presents challenges for
achieving extremely low error rates and deploying LDPC codes in scenarios de-
manding ultra-high reliability. In this work, we propose training methods for neural
min-sum (NMS) decoders to eliminate the error-floor effect. First, by leveraging
the boosting learning technique of ensemble networks, we divide the decoding
network into two neural decoders and train the post decoder to be specialized for
uncorrected words that the first decoder fails to correct. Secondly, to address the
vanishing gradient issue in training, we introduce a block-wise training schedule
that locally trains a block of weights while retraining the preceding block. Lastly,
we show that assigning different weights to unsatisfied check nodes effectively low-
ers the error-floor with a minimal number of weights. By applying these training
methods to standard LDPC codes, we achieve the best error-floor performance com-
pared to other decoding methods. The proposed NMS decoder, optimized solely
through novel training methods without additional modules, can be integrated into
existing LDPC decoders without incurring extra hardware costs. The source code
is available at https://github.com/ghy1228/LDPC_Error_Floor.

1 Introduction

The field of learning-based decoding for error-correcting codes began with research on training neural
networks to produce the information vector when given a distorted codeword [1, 2, 3, 4]. These
works assume an arbitrary neural network with no prior knowledge of decoding algorithms, and
accordingly, face the challenge of learning a decoding algorithm. In contrast, model-based neural
decoders are designed by mapping a well-known graph-based iterative decoding algorithm, such as
belief propagation (BP) and min-sum (MS) decoding algorithms, to a neural network and then training
its weights [5]. Compared to the arbitrary network approaches or the error correction transformer
[6], model-based neural decoders offer the advantages of guaranteeing the performance of existing
iterative algorithms and using hardware architectures [7] that are already well optimized for iterative
decoding algorithms.

∗Corresponding authors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ghy1228/LDPC_Error_Floor


LDPC codes have been incorporated into WiMAX and 5G communication systems [8, 9], owing
to their strong error-correcting capabilities and low decoding complexity [10, 11]. However, more
advanced LDPC coding technology needs to be developed for diverse communication environments
lying in the scope of future 6G systems. In particular, for environments that require extremely low
frame error rate (FER) such as the next generation ultra-reliable and low-latency communications
(xURLLC) [12], it is crucial to mitigate the error-floor in the decoding of LDPC codes. The error-floor
phenomenon refers to an abnormal phenomenon where the FER does not decrease as rapidly as in
the waterfall region [11, 13]. The error-floor phenomenon also should be addressed for systems
demanding very high reliability, such as solid-state drive (SSD) storage [14], DNA storage [15], and
cryptosystems [16]. However, enhancing other features of LDPC codes often inadvertently reinforces
the error-floor phenomenon as a side effect. For instance, the error-floor tends to be intensified when
optimizing LDPC codes for superior waterfall performance or decoding by low complexity decoders
such as quantized MS decoders [17]. Therefore, research focused on alleviating the error-floor,
especially when decoding LDPC codes optimized for performance with low decoding complexity,
has become significant. Such advancements will broaden the applications of LDPC codes.

1.1 Main contributions

With this need in mind, we focus on how to train a low-complexity neural MS (NMS) decoder
to prevent the error-floor in well designed LDPC codes. The main contributions of the paper are
threefold as follows.

Boosting learning using uncorrected words: We first leverage the boosting learning technique [18, 19]
that employs a sequential training approach for multiple classifiers, wherein subsequent classifiers
concentrate on the data samples that preceding classifiers incorrectly classify. Inspired by this method,
we divide the neural decoder into two cascaded neural decoders and train the first decoder to be
focused on the waterfall performance, while training the second decoder to be specialized in handling
the uncorrected words that are not corrected by the first decoder due to the error-floor phenomenon.
Uncorrected words in the error-floor region mostly contain small-error patterns related to trapping
sets or absorbing sets [11], which can be effectively corrected by weighting decoding messages. As
a result, a significant performance improvement in the error-floor region is achieved by boosting
learning.

Block-wise training schedule with retraining: To mitigate the error-floor, iterative decoding typically
requires a large number of decoding iterations, often exceeding 50 [17, 20, 21, 22]. However, NMS
decoders encompassing many iterations can undergo the vanishing gradient problem in training
[23]. To address this problem, we propose a new training schedule inspired by block-wise training
methods [24, 25]. The proposed block-wise training schedule divides the entire decoding iterations
into sub-blocks and trains these sub-blocks in a sequential manner. Additionally, rather than fixing
the weights trained from previous blocks, we retrain them to escape from local minima. As a result,
the proposed schedule enables to train numerous weights for all 50 iterations successfully while
outperforming both the multi-loss method [5] and the iter-by-iter schedule [26].

Weight sharing technique with dynamic weight allocation: The weight sharing technique is a way
to reduce the number of trainable weights by grouping specific weights to share a common value.
The waterfall performance does not severely degrade even if we bundle all weights for each iteration
[27, 26]. However, our observations indicate that this does not hold true in the error-floor region,
implying that a higher degree of weight diversity is necessary to correct error patterns causing the
error-floor. To obtain sufficient diversity with a minimal number of weights, we dynamically assign
different weights to unsatisfied check nodes (UCNs) and satisfied check nodes (SCNs) in the decoding
process. By utilizing only two weight values for SCNs and UCNs each iteration, we achieve the
performance of the NMS decoder using different weights for every edge. This method reduces the
number of weights to be trained to only 2.6% of the original number of weights.

We employ these training methods on a range of representative LDPC codes adopted for standards
such as WiMAX [8], IEEE 802.11n [28], and 5G new radio [9]. The FER point at the onset of
the error-floor diminishes by over two orders of magnitude for all codes compared to conventional
weighted MS (WMS) decoding [29]. Compared to existing NMS decoding approaches [27, 26], our
proposed scheme exhibits a notably enhanced capability to suppress the error-floor. This scheme also
achieves a similar performance as the state-of-the-art post-processing method in [22], with only a
third of the iterations.

2



Table 1: Comparison between model-based neural decoders
Reference Codes Target region Decoders Training sample Training schedule Weight sharing

This work Standard LDPC Waterfall,
Error-floor MS Uncorrected words Block-wise

with retraining
Spatial with
UCN weights

[5] BCH Waterfall BP, MS Received words One-shot Temporal
[27] Standard LDPC Waterfall BP, MS Received words Iter-by-Iter Spatial
[30] Short LDPC Waterfall BP Absorbing set One-shot Temporal

[31] Regular LDPC Waterfall,
Error-floor FAID Received words One-shot Temporal

[32] Short LDPC Waterfall,
Error-floor FAID Trapping set One-shot Temporal

[33] Standard LDPC Waterfall Layered Received words Iter-by-Iter UCN weights

1.2 Related works

We compare the proposed training scheme with the existing schemes for NMS decoders in Table 1.
First, all works except [31, 32] aim to improve the waterfall performance. Although the scope of the
works in [31, 32] includes the error-floor performance, they assumed specific conditions of binary
symmetric channels (BSC) and FAID, while we deal with the more general situation of additive white
Gaussian noise (AWGN) channels and MS decoding. Regarding the training sample selection, the
training samples can be received words randomly taken from the AWGN channel [5, 27, 31, 33], or
codewords with erroneous trapping sets (or absorbing sets) [30, 32]. However, to use the method in
[30, 32], trapping sets should be enumerated, which is only applicable to short LDPC codes and not
feasible for medium to large length standard LDPC codes. In contrast, the proposed boosting method,
which generates training samples through decoding with linear complexity, can be applied even to
codes of several thousand lengths.

For scheduling of training, it is common to train all weights at once (One-shot training) [5] and some
works sequentially train the weights corresponding to a single iteration locally [27, 33], while we
train a block of iterations with retraining. In terms of the weight sharing techniques, we confirm that
the proposed sharing technique using UCN weights is superior to the spatial or temporal sharing
technique used in [5, 27, 30, 31, 32]. Meanwhile, a method of assigning different weights to UCNs
has been introduced in [33], but they applied the same UCN weight to all CNs belonging to a proto
CN when at least one CN is unsatisfied, whereas we pinpoint specific UCNs and apply weights
individually.

There have been studies adding hypernetworks to the Vanilla NMS decoder [34, 35, 36] or using
a transformer architecture [6] to improve the waterfall performance at the expense of increased
training and decoding costs. While the proposed training techniques are broadly applicable to these
augmented neural decoders, this work primarily aims to improve the error-floor performance of the
Vanilla NMS decoder under practical conditions.

2 Preliminaries

2.1 LDPC codes

In this paper, we consider quasi-cyclic (QC) LDPC codes, which have been adopted in various
applications due to their implementation advantages [13, 37]. The Tanner graph of a QC-LDPC code,
consisting of n = Nz VNs and m = Mz CNs, can be obtained by lifting the protograph, composed
of M proto CNs and N proto VNs, with a lifting factor z [37, 38]. Let E be the total number of edges
in the protograph. As a running example, we use the WiMAX QC-LDPC code of length n = 576
and code-rate 3/4 with N = 24,M = 6, E = 88, and z = 24 [8] .

2.2 Neural min-sum decoding

For iteration ℓ, let m(ℓ)
c→v represent the message from CN c to VN v and let m(ℓ)

v→c represent the
message from VN v to CN c. The neighboring nodes of x are represented by N (x). The initial
conditions are m

(0)
v→c = mch

v , m(0)
c→v = 0 for the channel LLR mch

v of VN v. For ℓ = 1, . . . , ℓ, the

3



13

𝑐1

𝑐2

𝑣1

𝑣2

𝑣3

𝑣1
𝑒2

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣2

𝑣3

ഥ𝑤1
(1)

𝑒1

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣2

𝑣3

𝑣1

𝑣2

𝑣3

ഥ𝑤1
(1)

ഥ𝑤2
(1)

ഥ𝑤3
(1)

𝑤1→1
(1)

𝑤2→1
(1)

ഥ𝑤1
(2)

ഥ𝑤1
(2)

ഥ𝑤2
(2)

ഥ𝑤3
(2)

𝑤1→1
(2)

𝑤2→1
(2)

𝑤1→2
(2)

𝑣𝑖 : Input nodes (← 𝑚𝑣𝑖
ch) 𝑣𝑖 : output nodes (→ 𝑚𝑣𝑖

o )

1st hidden 

layer

𝑤2→3
(2)

2nd hidden 

layer

3rd hidden 

layer

4th hidden 

layer

(a)

13

𝑐1

𝑐2

𝑣1

𝑣2

𝑣3

𝑣1
𝑒2

𝑣2

𝑣3

𝑒1

𝑒2

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣2

𝑣3

ഥ𝑤1
(1)

𝑒1

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑒1

𝑒2

𝑒3

𝑒4

𝑣1

𝑣2

𝑣3

𝑣1

𝑣2

𝑣3

ഥ𝑤1
(1)

ഥ𝑤2
(1)

ഥ𝑤3
(1)

𝑤1→1
(1)

𝑤2→1
(1)

ഥ𝑤1
(2)

ഥ𝑤1
(2)

ഥ𝑤2
(2)

ഥ𝑤3
(2)

𝑤1→1
(2)

𝑤2→1
(2)

𝑤1→2
(2)

𝑣𝑖 : Input nodes (← 𝑚𝑣𝑖
ch) 𝑣𝑖 : output nodes (→ 𝑚𝑣𝑖

o )

1st hidden 

layer

𝑤2→3
(2)

2nd hidden 

layer

3rd hidden 

layer

4th hidden 

layer

(b)

Figure 1: (a) The Tanner graph of an LDPC code and (b) the neural network corresponding to NMS
decoding with a maximum iteration of ℓ = 2.

NMS decoding algorithm [5] updates the messages as follows

m(ℓ)
v→c = w(ℓ)

v mch
v +

∑
c′∈N (v)\c

m
(ℓ−1)
c′→v (1)

m(ℓ)
c→v = w(ℓ)

c→v

 ∏
v′∈N (c)\v

sgn
(
m

(ℓ)
v′→c

) min
v′∈N (c)\v

|m(ℓ)
v′→c|, (2)

where w
(ℓ)
v and w

(ℓ)
c→v are called the VN weight and CN weight, respectively. At the last iteration ℓ,

output LLRs mo
v are computed as mo

v = mch
v +

∑
c′∈N (v) m

(ℓ)
c′→v .

By quantizing m
(ℓ)
v→c, m(ℓ)

c→v, and mch
v , the quantized NMS decoding algorithm is obtained. The

quantized decoders are widely used in practical applications due to its low complexity and commonly
employed in existing error-floor researches [17, 20, 21, 22]. Therefore, we use it to ensure a fair
comparison. Specifically, we use 5-bit uniform quantization with a maximum magnitude of 7.5 and a
step size of 0.5 for the quantized NMS decoder as in [20, 21, 22].

2.3 Training weights for the NMS decoder

If all the weights in (1) and (2) are set to 1, NMS decoding is equivalent to MS decoding [39], or if
VN weights w(ℓ)

v are 1 and CN weights w(ℓ)
c→v have the same value, the decoder operates as the WMS

decoder [40]. The NMS decoder gains performance improvement over the WMS or MS decoder by
greatly increasing the diversity of weights. However, the full diversity weights increase the training
complexity and require a large amount of memory to store the weights. Therefore, previous studies
used weight sharing techniques by assigning the same value to weights with the same attributes. First,
since this paper deals with QC-LDPC codes, we use the protograph weight sharing technique [26] by
default, assigning the same weight value to the VNs (or CNs) belonging to a proto VN (or CN). Then,
the weights to be trained are represented by {w(ℓ)

vp , w
(ℓ)
cp→vp} for a proto VN vp and a proto CN cp.

The total number of weights is then (N +E)ℓ. If we employ spatial weight sharing in [27], only one
VN weight and one CN weight remain for each iteration, and the weights are {w(ℓ), w(ℓ)}ℓℓ=1, with a
total number of 2ℓ. On the other hand, by using temporal weight sharing [5] to eliminate differences
between iterations, the weights are {wvp , wcp→vp}, and the number is (N + E).

The neural network in Fig. 1(b) corresponds to NMS decoding of the Tanner graph in Fig. 1(a) with
ℓ = 2. The input to this neural network is the channel LLR vector (mch

1 , . . . ,mch
n ), and the output is

the output LLR vector (mo
1, . . . ,m

o
n). For each iteration, two hidden layers are arranged, and each

hidden layer has a number of nodes equal to the number of edges in the Tanner graph. In the odd
hidden layers, the VN to CN message operation in (1) is performed, while in the even hidden layers,
the CN to VN message operation in (2) is performed. The input layer is also connected to the odd
hidden layers, which corresponds to the addition of the channel LLR in (1). The messages from the
2ℓ-th hidden layer to the (2ℓ+ 1)-th hidden layer are weighted by w

(ℓ)
c→v , and the messages from the

4



input nodes to the (2ℓ+ 1)-th hidden layer are weighted by w
(ℓ)
v . As our goal is to reduce the FER in

the error-floor region, we use the FER loss, 1
2

[
1− sgn

(
min1≤v≤Nmo

v

)]
[32].

3 Proposed training method
1

Algorithm 1 Training method

Input: ℓ = ℓ1 + ℓ2,R1,R2

1: Base decoder training: Train the weights wB =
{w(ℓ), w(ℓ)}ℓ1ℓ=1 with the received words sampled at R1

2: Collecting the uncorrected words: Run the base decoder
with the received words sampled at R2 and collect the
received words when the decoder fails

3: Post decoder training: Train the weights wP =
{w(ℓ), w(ℓ), ŵ(ℓ)}ℓℓ=ℓ1+1 with the uncorrected words and
the block-wise training schedule.

Output: Trained weights wB ,wP

(a)

5

Received words

sampled at ℛ1

Train 𝐰B
Decoding 

with 𝐰B

Received words

sampled at ℛ2

Collect 

uncorrected 

words

Uncorrected 

words

Train 𝐰𝐏

Uncorrected 

words

Base decoder
Training

Post decoder
Training

Collecting the 
uncorrected words

Fail

(b)

Figure 2: The proposed training method represented by (a) an algorithm and (b) a block diagram.

In this section, we introduce the proposed training methods through three subsections. The organized
training algorithm is shown in Fig. 2.

3.1 Boosting learning using uncorrected words

For the boosting learning approach, we first divide the entire decoding process into two stages: the
base decoding stage {1, . . . , ℓ1} and the post decoding stage {ℓ1 + 1, . . . , ℓ1 + ℓ2 = ℓ}. Training of
base decoder follows the conventional training method: the received words sampled from Eb/N0 re-
gion R1 are used as training samples. Specifically, we set ℓ1 = 20 and R1 = {2.0, 2.5, 3.0, 3.5, 4.0},
which corresponds the waterfall region of WMS decoding. We use the spatial sharing technique (i.e.,
wB = {w(ℓ), w(ℓ)}ℓ1ℓ=1) since this achieves comparable performance to the full diversity weights in
the waterfall region.

In Fig. 3(a), the base NMS decoder is compared with the MS decoder and the WMS decoder with
a single weight of 0.75 for ℓ = 20. The WMS decoding performance has a severe error-floor even
though its waterfall performance is better than the MS decoding performance. Compared to the MS
and WMS decoders, the NMS decoder for ℓ = 20 performs better over the training range R1. On the
other hand, the NMS decoder performs worse than the MS decoder in the error-floor region (e.g., 4.5
dB), which is outside R1. To improve the performance in the error-floor region, a straightforward
approach is extending the training range R1 to include the error-floor region. However, the FER of
the base decoder for received words from the error-floor region is very low, resulting in an almost
negligible FER loss. Consequently, integrating the error-floor region into the training range does not
impact the weight update process.

Before training the post decoder, we first collect uncorrected words that the trained base decoder
fails to correct among the received words sampled from region R2. Then, the uncorrected words
serve as training samples for the post decoder, which is distinct from the conventional training
methods. The post decoder trains the weights {w(ℓ)

vp , w
(ℓ)
cp→vp}ℓℓ=ℓ1+1 with the aim of correcting the

uncorrected words. After completing the training, the trained weights are used for the NMS decoding
algorithm in (1)–(2). From the perspective of the NMS decoder, it performs continuous decoding
up to iteration ℓ using the trained weights, but for the sake of discussion, we assume as if there are
two cascaded decoders (base and post) in the perspective of training. Note that we employ the full
diversity weights for the post decoder to confirm the best performance but we will introduce the
shared weights wP (used in Fig. 2) in the next subsection. We also set l2 = 10, ℓ = 30 for this
experiment, and subsequently extend the maximum number of iterations in the following subsection.

To analyze the effectiveness of the proposed boosting learning, we compare the following three cases.

5



2 2.5 3 3.5 4 4.5 5 5.5 6
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

(a)

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800

(b)

Figure 3: (a) Decoding performances of the MS, WMS, NMS decoders and (b) Error distributions
after base and post decoding for Case 1 and Case 2.

Case 1 Uncorrected words sampled at 4.5 dB in the error-floor region (i.e., R2 = 4.5).
Case 2 Uncorrected words sampled at 3.5 dB in the waterfall region (i.e., R2 = 3.5).
Case 3 Received words sampled at 4.5 dB without filtering.

Regarding Case 1 and Case 2, we collect a total of 60,000 uncorrected words, allocating 50,000 for
training, 5,000 for validation, and remaining 5,000 for test. Training is conducted for 100 epochs.
Fig. 3(b) shows the distribution of the number of errors after base decoding and post decoding for the
test samples used in Case 1 and Case 2. For Case 1, the uncorrected words collected in the error-floor
region mainly have a small number of errors since most of decoding errors are trapped in small
trapping sets, so the distribution is concentrated on small numbers (see Case 1 after base decoding).
For ease of use, we refer to codewords with fewer than 11 remaining errors as small-error words. The
post decoder, which is mainly trained on these small-error words, corrects a significant number of
small-error words (see Case 1 after post decoding). Out of the total 5,000 test samples, 68.5% of
samples are corrected by the post decoder, resulting that the test FER for the test samples is 0.315.
This means that, when decoding for received words of the AWGN channel, the resulting FER at
Eb/N0 = 4.5 dB after post decoding is 0.315 times of the FER after base decoding as shown in Fig
3(a). In other words, the post decoder is successfully trained to correct small-error words inducing
the error-floor.

On the other hand, Case 2, where the samples are collected from the waterfall region, has a distribution
that is widespread across all areas (see Case 2 after base decoding). In addition, the distribution
remains almost the same after post decoding (see Case 2 after post decoding), which means that the
post decoder fails to reduce the FER sufficiently. For the test samples, the test FER at Eb/N0 = 3.5
dB after post decoding is 0.77 times of the FER after base decoding whose difference is not noticeable
as shown in Fig 3(a). Comparing the results of the two cases, we conclude that composing mainly with
small-error words facilitates the post decoder to learn to correct small-error words more effectively.
As a result, Fig. 3(a) shows that Case 1 mitigates the error-floor more than Case 2. Meanwhile,
for Case 3, where all received words are used as training samples without filtering, almost all of
them are corrected during base decoding. Since the post stage training is mainly performed on
codewords without errors, the loss function becomes almost 0. Then, the weights of the post decoder
are unchanged from the initial value 1, and accordingly, the performance approaches the MS decoding
performance, as shown in Fig. 3(a).

3.2 Block-wise training schedule

In the previous subsection, the number of iterations for the post decoder is set to ℓ2 = 10. To lower
the error-floor further, a large number of iterations is required, so we set ℓ2 = 30, ℓ = 50. However,
deep neural decoders with a large iteration number are prone to suffer from the vanishing gradient
problem. In order to tackle this issue, we propose a block-wise training schedule which is shown in
Fig. 4(a). The proposed training schedule locally trains the weights corresponding to a block of ∆1

iterations at each training stage. In the first stage, the weights belonging to the first block are trained,

6



17

Δ1
Fixed weights

Training with 

all one initial values

Re-training with 

given initial values

Δ2

Stage 1

Iteration

Stage 2

Stage 3

Δ1

Δ2 Δ1

(a)

20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

(b)

Figure 4: (a): Block-wise training schedule and (b): Evolution of the test FER across iterations.

Test FER Number of weights
Full diversity 0.112 (N + E)ℓ2 = 3360
Spatial sharing 0.168 2ℓ2 = 60
Temporal sharing 0.186 (N + E) = 112
Proposed sharing 0.111 3ℓ2 = 90

18

: Error VN

: Unsatisfied CN

: Satisfied CN

: Correct VN

: Edges weighted by 𝑤(ℓ) : Edges weighted by ෝ𝑤(ℓ)

Test FER Number of weights

Full diversity 0.112 𝑁 + 𝐸 ℓ2 = 3360

Spatial sharing 0.168 2ℓ2 = 60

Temporal sharing 0.186 𝑁 + 𝐸 = 112

Proposed sharing 0.111 3ℓ2 = 90

Figure 5: Illustration of the proposed weight sharing technique and comparison with other sharing
techniques.

and in the next stage, the weights of the subsequent ∆1 iterations are trained. At this point, the weight
values of previous ∆2 iterations, which are already trained in the first stage, are further trained by
taking the result of the first stage training as its initial state. This retraining, which is not used in the
iter-by-iter training schedule [26], assists in preventing the learning process from falling into a local
minimum. Note that the method of one-shot training [5] corresponds to the case of ∆1 = ℓ2,∆2 = 0,
and the iter-by-iter training schedule [26] is equivalent to the case of ∆1 = 1,∆2 = 0.

We employ a greedy approach to determine the optimal values for ∆1 and ∆2, resulting that ∆1 =
5,∆2 = 10 offers superior performance in terms of the test FER. Fig. 4(b) shows the evolution of
test FER as a function of the iteration number. In the case of one-shot training [5], the vanishing
gradient problem hinders training the weights of earlier iterations, so the test FER stays roughly
the same until iteration 40 and starts to fall thereafter. The same behavior is observed for ℓ = 40.
Thus, the test FERs of ℓ = 40 and ℓ = 50 are almost the same. Next, since the iter-by-iter training
schedule [26] finds the optimal weight for each individual iteration, the test FER falls even at the
first iteration of the post decoder (i.e., ℓ = 21) without encountering the vanishing gradient problem.
However, this local optimization leads to a degraded local minimum, and consequently, the test FER
gradually and slowly decreases with each iteration. Likewise, the multi-loss method [5] shows a
similar result. In contrast, the block-wise training schedule with ∆1 = 5,∆2 = 0 shows a superior
test FER at iteration 25 compared to the other training schedules because it results in a better solution
by training the weights of multiple iterations simultaneously. Moreover, the schedule with retraining
(i.e., ∆1 = 5,∆2 = 10) outperforms the schedule without retraining (i.e., ∆1 = 5,∆2 = 0) at
iteration 30 though it shows a worse result at iteration 25. This implies that through retraining, the
weights of intermediate iterations have been adjusted to preprocess error patterns thereby leading to
stronger correction capabilities in the final iteration. As a result, at the maximum of 50 iterations, the
proposed training schedule with ∆1 = 5,∆2 = 10 provides the better test FER value compared to
the other training schedules as shown in Fig. 4(b): 0.11 for the block-wise, 0.16 for the multi-loss,
0.18 for the one-shot, 0.37 for the iter-by-iter, .

3.3 Weight sharing technique using UCN weights

Assuming the techniques proposed thus far (in detail, uncorrected words at Eb/N0 = 4.5 dB and
training schedule with ∆1 = 5,∆2 = 10) are used, we compare the weight sharing techniques

7



in Fig. 5. Compared to the full diversity weights, the spatial and temporal sharing techniques
significantly reduce the number of distinct weights, but cause performance degradation. In contrast,
the proposed sharing technique that introduces a new weight type called UCN weight shows almost
identical performance while using only about 2.6% of the weights compared to the full diversity
weights. The proposed sharing technique assigns different weights to UCNs and SCNs as shown in
Fig. 5. This is feasible because the decoder knows whether a CN satisfies the check equation or not.
Using the spatial sharing technique and distinguishing between SCN weight w(ℓ) and UCN weight
ŵ(ℓ), the proposed sharing technique can be represented as {w(ℓ), w(ℓ), ŵ(ℓ)}ℓ for iteration ℓ and the
total number of distinct weights becomes 3ℓ2.

Techniques using different weights for UCNs and SCNs have also been proposed in [33, 41]. However,
the work [41] uses only one suppression factor ρ to represent the UCN weight (i.e., ŵ(ℓ) = (1 +
ρ)w(ℓ)), making the UCN weight dependent on the CN weight. As a result, due to the limited degree
of freedom for the UCN weight, it is difficult to obtain the decoding diversity for effectively removing
various types of error patterns. Moreover, in [33], if at least one of the CNs belonging to a single
proto CN is unsatisfied, all z CNs from the proto CN are weighted by the UCN weight. This approach,
which applies the same weight to a large number of CNs tied together at the proto level, is not suitable
for correcting words with a small number of UCNs, because it does not separately handle individual
CNs like the proposed method.

4 Performance evaluation

2 3 4 5 6 7

10-6

10-4

10-2

100

(a)

2.5 3 3.5 4 4.5 5 5.5 6 6.5

10-6

10-4

10-2

100

(b)

1 2 3 4 5

10-6

10-4

10-2

100

(c)

Figure 6: FER performances of (a): WiMAX LDPC (length 576, rate 3/4), (b): IEEE802.11n LDPC
(length 648, rate 5/6), (c): 5G LDPC (length 552, rate 1/2) codes.

In this section, we compare the proposed and other conventional decoding schemes in terms of
the decoding performance. All simulations are performed by NVIDIA GeForce RTX 3090 GPU
and AMD Ryzen 9 5950X 16-Core Processor CPU. For training, the weights are trained by the
Adam optimizer [42] with a learning rate of 0.001. We evaluate the decoding performance using
Monte Carlo methods with at least 500 uncorrected words for each FER point. Fig. 6(a) shows the
FER performances of the proposed scheme for the WiMAX LDPC code. The proposed scheme
incorporates the i) boosting learning with uncorrected words, ii) block-wise training schedule with
retraining, and iii) spatial weight sharing with UCN weights. The performance is compared with
MS decoding, WMS decoding, and existing NMS decoding schemes in [5, 26]. Among the neural
decoder studies listed in Table 1, we exclude comparison with the studies that use FAID and layered
decoding, or that require enumerating trapping sets and absorbing sets. In addition, we choose not
to compare with augmented neural networks [6, 34] since our approach does not increase model
complexity to deal with the low-error-rate region of long codes. A comparative analysis for short
codes in the waterfall region can be found in the appendix.

For the NMS decoding schemes in [5, 26], the base decoder is used for iterations from 1 to 20 like the
proposed scheme, and the training methods introduced in [5, 26] are employed for the post stage. The
full diversity weights are used for the schemes in [5, 26] to observe their best performance. For the
scheme in [5], received words in the waterfall region (Eb/N0 2-4 dB) are used as training samples,
and the weights for the post stage are trained all at once without a training schedule. For the scheme

8



Table 2: Complexity comparison for the WiMAX LDPC of (N,M,E, z, α) = (24, 6, 88, 24, 15.6),
where α is the comparison count for each CN (i.e., α = dc + ⌈logdc⌉− 2 for the CN degree dc [13]).

Complexity per iteration Total complexity Memory
Addition A Comparison C Multiplication M (A+ 2C +M)ℓ for weights

MS, ℓ = 50
2Ez

= 4224
αMz
= 2256

Ez = 2112 542400 0
NMS [5, 26], ℓ = 50 (2E +N)z

= 4800
676800

3760
Proposed NMS, ℓ = 50 130

Post processing [22]
ℓ = 150

Ez = 2112 1627200 0

in [26], received words from the Eb/N0 points where the MS decoder achieves bit error rate of
10−3 are used as training samples, and the iter-by-iter training schedule is employed. The remaining
hyper-parameters are set in the same way as in the proposed scheme. As shown in Fig. 6(a), the
conventional NMS decoders in [5, 26] show good performance in the waterfall region (Eb/N0 2-4
dB), but the error-floor occurs from 4 dB. This is because the training samples are composed of
received words without filtering. In contrast, the proposed scheme shows excellent performance in
both the waterfall and error-floor regions, and the error-floor phenomenon is barely noticeable down
to FER of 10−7. In particular, comparing the results of ℓ = 20 and ℓ = 50, it is confirmed that the
post decoder successfully removes the error-floor.

In addition, we compare the proposed scheme with the state-of-the-art post processing scheme in
[22]. We directly reference the simulation results from [22]. As shown in Fig. 6(a), the scheme
in [22] shows a similar or worse performance to the proposed scheme, but it has disadvantages of
having very high decoding complexity and latency since it consumes a large number of iterations
ℓ = 150. Table 2 compares the schemes in terms of the decoding complexity. The NMS decoder has
more multiplications than the MS decoder by (E +N)z due to the weighting operation. The number
of other operations is the same as in the MS decoder. Total complexity is evaluated with assumption
that the comparison C is as twice as complex than the addition A and multiplication M [43]. The
additional memory for storing the weights of the proposed scheme is 3ℓ which is much lower than
those of [5, 26] which exploit full weight diversity. Since the scheme in [22] does not use weighting,
the complexity per iteration is lower than the proposed NMS scheme, but the total complexity is more
than twice as high as the proposed NMS scheme due to the higher number of iterations. Moreover,
additional complexity is required for the error path detector [22]. In Fig. 6(b), (c), similar results are
observed for the IEEE802.11n LDPC and 5G LDPC codes, where the proposed scheme outperforms
the other schemes and achieves an FER of 10−7 without a severe error-floor.

5 Conclusions

This paper proposed training methods for the NMS decoder of LDPC codes to enhance the error-floor
performance. Using uncorrected words from the base decoder, we trained the post decoder to be
specialized for error patterns causing the error-floor, promoting decoding diversity in the cascaded
base and post decoders. We also proposed a training schedule to circumvent the vanishing gradient
and local minimum problems, and a weight sharing technique that significantly reduces the number
of distinct weights without sacrificing performance. The proposed NMS decoder using the trained
weights showed the excellent waterfall and error-floor performances for several standard LDPC codes.
Along with the performance improvement, the proposed training scheme has the advantage of being
flexibly applicable regardless of the types of channel, code, and decoding algorithm. This scheme can
also be implemented directly on hardware architectures without additional costs, and can be directly
utilized with no prior analysis of the target code and decoding algorithm.

6 Acknowledgments

This work was supported by Samsung Electronics Co., Ltd (IO230411-05859-01), by Electronics
and Telecommunications Research Institute (ETRI) grant funded by the Korean government [2021-
0-00746, Development of Tbps wireless communication technology], by the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00212103),

9



and by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. RS-2023-00247197).

References
[1] Jehoshua Bruck and Mario Blaum. Neural networks, error-correcting codes, and polynomials

over the binary n-cube. IEEE Transactions on Information Theory, 35(5):976–987, 1989.

[2] William R Caid and Robert W Means. Neural network error correcting decoders for block and
convolutional codes. In [Proceedings] GLOBECOM’90: IEEE Global Telecommunications
Conference and Exhibition, pages 1028–1031. IEEE, 1990.

[3] LG Tallini and P Cull. Neural nets for decoding error-correcting codes. In IEEE Technical
Applications Conference and Workshops. Northcon/95. Conference record, page 89. IEEE,
1995.

[4] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. On deep learning-
based channel decoding. In 2017 51st Annual Conference on Information Sciences and Systems
(CISS), pages 1–6. IEEE, 2017.

[5] Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David Burshtein, and Yair
Be’ery. Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected
Topics in Signal Processing, 12(1):119–131, 2018.

[6] Yoni Choukroun and Lior Wolf. Error correction code transformer. In Advances in Neural
Information Processing Systems.

[7] Shuai Shao, Peter Hailes, Tsang-Yi Wang, Jwo-Yuh Wu, Robert G Maunder, Bashir M Al-
Hashimi, and Lajos Hanzo. Survey of turbo, LDPC, and polar decoder ASIC implementations.
IEEE Communications Surveys & Tutorials, 21(3):2309–2333, 2019.

[8] IEEE standard for local and metropolitan area networks-part 16: Air interface for fixed and
mobile broadband wireless access systems amendment 2: Physical and medium access con-
trol layers for combined fixed and mobile operation in licensed bands and corrigendum 1.
IEEEStandard 802.16e, 2020.

[9] Technical specification group radio access network; NR; multiplexing and channel coding
(release 17), document ts 38.212 v17.5.0. 3rd Generation Partnership Project, 2023.

[10] Tom Richardson and Shrinivas Kudekar. Design of low-density parity check codes for 5G new
radio. IEEE Communications Magazine, 56(3):28–34, 2018.

[11] Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cambridge University Press,
2008.

[12] Een-Kee Hong, Inkyu Lee, Byonghyo Shim, Young-Chai Ko, Sang-Hyo Kim, Sangheon Pack,
Kyunghan Lee, Sunwoo Kim, Jae-Hyun Kim, Yoan Shin, et al. 6G R&D vision: Requirements
and candidate technologies. Journal of Communications and Networks, 24(2):232–245, 2022.

[13] William Ryan and Shu Lin. Channel Codes: Classical and Modern. Cambridge University
Press, 2009.

[14] Guiqiang Dong, Ningde Xie, and Tong Zhang. On the use of soft-decision error-correction
codes in NAND flash memory. IEEE Transactions on Circuits and Systems I: Regular Papers,
58(2):429–439, 2010.

[15] Shubham Chandak, Kedar Tatwawadi, Billy Lau, Jay Mardia, Matthew Kubit, Joachim Neu, Pe-
ter Griffin, Mary Wootters, Tsachy Weissman, and Hanlee Ji. Improved read/write cost tradeoff
in DNA-based data storage using LDPC codes. In 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 147–156. IEEE, 2019.

10



[16] Marco Baldi, Marco Bodrato, and Franco Chiaraluce. A new analysis of the McEliece cryptosys-
tem based on QC-LDPC codes. In Security and Cryptography for Networks: 6th International
Conference, SCN 2008, Amalfi, Italy, September 10-12, 2008. Proceedings 6, pages 246–262.
Springer, 2008.

[17] Xiaojie Zhang and Paul H Siegel. Quantized iterative message passing decoders with low error
floor for LDPC codes. IEEE Transactions on Communications, 62(1):1–14, 2013.

[18] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[19] Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

[20] Jingyu Kang, Qin Huang, Shu Lin, and Khaled Abdel-Ghaffar. An iterative decoding al-
gorithm with backtracking to lower the error-floors of LDPC codes. IEEE Transactions on
Communications, 59(1):64–73, 2010.

[21] Soonyoung Kang, Jaekyun Moon, Jeongseok Ha, and Jinwoo Shin. Breaking the trapping
sets in LDPC codes: Check node removal and collaborative decoding. IEEE Transactions on
Communications, 64(1):15–26, 2015.

[22] Seokju Han, Jieun Oh, Kyungmok Oh, and Jeongseok Ha. Deep-learning for breaking the
trapping sets in low-density parity-check codes. IEEE Transactions on Communications,
70(5):2909–2923, 2022.

[23] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[24] Arild Nøkland and Lars Hiller Eidnes. Training neural networks with local error signals. In
International Conference on Machine Learning, pages 4839–4850. PMLR, 2019.

[25] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can
scale to imagenet. In International Conference on Machine Learning, pages 583–593. PMLR,
2019.

[26] Jincheng Dai, Kailin Tan, Zhongwei Si, Kai Niu, Mingzhe Chen, H Vincent Poor, and Shuguang
Cui. Learning to decode protograph LDPC codes. IEEE Journal on Selected Areas in Commu-
nications, 39(7):1983–1999, 2021.

[27] Mengke Lian, Fabrizio Carpi, Christian Häger, and Henry D Pfister. Learned belief-propagation
decoding with simple scaling and SNR adaptation. In 2019 IEEE International Symposium on
Information Theory (ISIT), pages 161–165. IEEE, 2019.

[28] IEEE standard for information technology—telecommunications and information exchange
between systems local and metropolitan area networks—specific requirements—part 11: Wire-
less lan medium access control (MAC) and physical layer (PHY) specificatio. IEEE Standard
802.11, 2016.

[29] Jinghu Chen, Ajay Dholakia, Evangelos Eleftheriou, Marc PC Fossorier, and Xiao-Yu Hu.
Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications,
53(8):1288–1299, 2005.

[30] Joachim Rosseel, Valérian Mannoni, Inbar Fijalkow, and Valentin Savin. Decoding short LDPC
codes via BP-RNN diversity and reliability-based post-processing. IEEE Transactions on
Communications, 70(12):7830–7842, 2022.

[31] Xin Xiao, Bane Vasić, Ravi Tandon, and Shu Lin. Designing finite alphabet iterative decoders of
LDPC codes via recurrent quantized neural networks. IEEE Transactions on Communications,
68(7):3963–3974, 2020.

11



[32] Xin Xiao, Nithin Raveendran, Bane Vasić, Shu Lin, and Ravi Tandon. FAID diversity via neural
networks. In 2021 11th International Symposium on Topics in Coding (ISTC), pages 1–5. IEEE,
2021.

[33] Nemin Shah and Yash Vasavada. Neural layered decoding of 5G LDPC codes. IEEE Communi-
cations Letters, 25(11):3590–3593, 2021.

[34] Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. Advances in
Neural Information Processing Systems, 32, 2019.

[35] Sebastian Cammerer, Jakob Hoydis, Fayçal Aït Aoudia, and Alexander Keller. Graph neural
networks for channel decoding. In 2022 IEEE Globecom Workshops (GC Wkshps), pages
486–491. IEEE, 2022.

[36] Eliya Nachmani and Lior Wolf. Autoregressive belief propagation for decoding block codes.
arXiv preprint arXiv:2103.11780, 2021.

[37] Marc PC Fossorier. Quasicyclic low-density parity-check codes from circulant permutation
matrices. IEEE transactions on information theory, 50(8):1788–1793, 2004.

[38] Jeremy Thorpe. Low-density parity-check (LDPC) codes constructed from protographs. IPN
progress report, 42(154):42–154, 2003.

[39] Marc PC Fossorier, Miodrag Mihaljevic, and Hideki Imai. Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation. IEEE Transactions on
Communications, 47(5):673–680, 1999.

[40] Jinghu Chen, Ajay Dholakia, Evangelos Eleftheriou, Marc PC Fossorier, and Xiao-Yu Hu.
Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications,
53(8):1288–1299, 2005.

[41] Xiaofu Wu, Yue Song, Ming Jiang, and Chunming Zhao. Adaptive-normalized/offset min-sum
algorithm. IEEE Communications Letters, 14(7):667–669, 2010.

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[43] Heshani Gamage, Nandana Rajatheva, and Matti Latva-Aho. Channel coding for enhanced
mobile broadband communication in 5G systems. In 2017 European Conference on Networks
and Communications (EuCNC), pages 1–6. IEEE, 2017.

[44] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the finite blocklength
regime. IEEE Transactions on Information Theory, 56(5):2307–2359, 2010.

[45] Shaohua Yang, Yang Han, Xuebin Wu, Roger Wood, and Rick Galbraith. A soft decodable
concatenated LDPC code. IEEE Transactions on Magnetics, 51(11):1–4, 2015.

[46] Jieun Oh, Jeongseok Ha, Hyegyeong Park, and Jaekyun Moon. RS-LDPC concatenated coding
for the modern tape storage channel. IEEE Transactions on Communications, 64(1):59–69,
2015.

[47] Hyegyeong Park and Jaekyun Moon. Improving SSD read latency via coding. IEEE Transactions
on Computers, 69(12):1809–1822, 2020.

12



7 Appendix

7.1 A better trade-off between the waterfall and error-floor performances

2 3 4 5 6 7

10-6

10-4

10-2

100

(a)

2 2.5 3 3.5 4 4.5 5 5.5 6

10-6

10-4

10-2

100

(b)

Figure 7: (a): Decoding performance with optimized/non-optimized codes and floating/quanztized
decoders (b): Comparison between the two networks and single large network.

Typically, LDPC code design assumes the availability of a floating-point decoder and optimizes
the code to maximize waterfall performance. In Fig. 7(a), it’s evident that the optimized WiMAX
LDPC code outperforms the non-optimized regular LDPC code in terms of the waterfall performance
when the floating-point MS decoder is employed. Additionally, the WMS decoder enhances the
performance by assigning weights. As shown in Fig. 7(a), WMS decoding of the WiMAX LDPC
code exhibits the best waterfall performance when floating-point operations are available. However,
for practical hardware implementation, quantization of decoding messages is essential, but it leads
to performance degradation. Notably, WMS decoding suffers substantial performance degradation
with an early onset of the error-floor. A side-by-side comparison of the quantized WMS decoding
performances between the non-optimized and WiMAX LDPC codes reveals that the performance
loss due to quantization is more pronounced in optimized LDPC codes. Consequently, there’s a need
for a method that ensures high performance in both the waterfall and error-floor regions with low
complexity. This work accomplishes this goal by leveraging machine learning techniques. In Fig.
7(a), the proposed quantized NMS decoder achieves the floating WMS decoding performance for the
WiMAX LDPC code in both waterfall and error-floor regions.

7.2 Boosting learning of two networks v.s. conventional learning of a single large network

In Fig. 7(b), we compare the proposed method with the method that uses a single decoder, which is
trained by a large single network at once. For the proposed method, the boosting learning is employed
with two networks. Both have the same model size. Fig. 7(b) shows that simply increasing the model
size doesn’t significantly mitigate the error-floor. In contrast, the two-stage network using boosting
learning achieves greater decoding diversity and demonstrates superior efficiency in alleviating the
error-floor.

7.3 Optimization of parameters of the block-wise training schedule

Table 3: Test FER values of the block-wise training with various ∆1 and ∆2.

∆1 \ ∆2 0 5 10 15 30
1 0.376 0.144 0.123 0.122 0.150
5 0.193 0.134 0.112 0.127 0.137
10 0.142 0.142 0.13 0.128 0.13
30 0.179

To fine-tune the parameters ∆1 and ∆2 used in the block-wise training schedule, we compare the
test FER values across a range of ∆1 and ∆2. The comparison is done for the post decoder training

13



with ℓ2 = 30 and is summarized in Table 3. For the case where ∆2 = 0 (i.e., without retraining),
the performance improves as ∆1 increases from 1 to 10. This can be attributed to the training of
more weights simultaneously, aiding in escaping from local minima. However, if ∆1 becomes too
large, the weights in front are not adequately trained due to the vanishing gradient problem, causing
performance degradation. In addition, as the retraining iteration number ∆2 grows for a given
∆1 value, a similar trend is noted: performance enhances up to a certain point and then plateaus.
According to Table 3, the best performance is achieved with ∆1 = 5 and ∆2 = 10.

7.4 Discussion on the trained weights

Table 4: Trained weights
ℓ Weights

VW w(ℓ)

1 ∼ 10 0.74 0.98 0.96 1.10 1.20 1.15 1.22 1.19 1.17 1.09
11 ∼ 20 1.15 1.09 1.07 1.04 1.05 1.07 1.00 0.98 0.90 0.81
21 ∼ 30 1.14 0.97 0.93 0.69 0.66 0.58 0.57 0.51 0.49 0.45
31 ∼ 40 0.48 0.41 0.37 0.38 0.38 0.39 0.32 0.33 0.32 0.34
41 ∼ 50 0.39 0.37 0.31 0.31 0.34 0.45 0.39 0.37 0.42 0.42

CW w(ℓ)

1 ∼ 10 0.74 0.71 0.66 0.69 0.67 0.70 0.75 0.71 0.73 0.76
11 ∼ 20 0.73 0.70 0.77 0.79 0.84 0.84 0.86 0.82 0.81 0.97
21 ∼ 30 0.19 0.30 0.54 0.58 0.62 0.59 0.73 0.73 0.74 0.78
31 ∼ 40 0.72 0.78 0.79 0.81 0.88 0.82 0.88 0.85 0.97 0.79
41 ∼ 50 0.81 0.82 0.85 0.91 1.19 0.86 0.96 1.10 1.18 1.62

UCW ŵ(ℓ)

1 ∼ 10 0.74 0.71 0.66 0.69 0.67 0.70 0.75 0.71 0.73 0.76
11 ∼ 20 0.73 0.70 0.77 0.79 0.84 0.84 0.86 0.82 0.81 0.97
21 ∼ 30 0.58 0.80 0.83 0.73 0.81 0.86 0.72 0.78 0.73 0.73
31 ∼ 40 0.59 0.71 0.64 0.67 0.67 0.72 0.65 0.65 0.66 0.70
41 ∼ 50 0.77 0.70 0.72 0.81 0.92 0.58 0.71 0.76 0.87 1.57

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Phase1 Phase2

(a)

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000
Phase1 Phase2

(b)

Figure 8: Evolution of the weights and the number of samples as a function of iteration.

Table 4 shows the resulting weights trained using the proposed training methods. Owing to the weight
sharing technique, only three types of weights, VW w(ℓ), CW w(ℓ), and UCW ŵ(ℓ), exist for each
iteration. Thus, weight variations across iterations can be depicted in two dimensions, as shown
in Fig. 8(a), enabling analysis of the trained results. Without the weight sharing technique, there
would be (N +E) weights per iteration, making a 2D graphical representation unfeasible. Fig. 8(a)
shows that the weights for the base decoding stage, where the CW and VW are roughly 0.75 and 1,
are similar to the weights of conventional WMS decoding. As a result, the waterfall performance
of WMS decoding and NMS decoding are nearly indistinguishable. The NMS decoding technique
offers minimal advantage in the waterfall region.

On the other hand, for the post decoding stage, the weights undergo significant changes. At iteration
21, the VW increases while the CW decreases substantially. This means that the channel LLR values
are given more weight when performing the sum operation at each VN, while the messages coming
from CNs are attenuated. As a result, the decoding process reverts to the initial decoding state (with

14



a high error rate). This leads to an increase in the number of samples having more than 6 errors
(denoted by e > 6), as shown in Fig. 8(b), and a decrease in the number of samples with e ≤ 6. This
intentional regression aims to break free from trapped error patterns. From iteration 22 onward, the
CW gradually increases, the VW decreases, and the count of e ≤ 6 samples starts to increase again.
After iteration 27, the CW and VW show less variations. We term the period from iteration 21 to 26
as Phase 1 and the period following iterations as Phase2. At iteration 20, the numbers of samples
with e ≤ 6 and e > 6 are roughly equal, but through Phase 1, samples with e > 6 transform into
samples with e ≤ 6. Consequently, by the end of Phase 1, there are more samples with e ≤ 6 than
samples with e > 6. The small-sized error samples diminished steadily in Phase 2.

The result without Phase 1 is also shown in Fig. 8(b). Without Phase 1, the process of transforming
into small-sized error samples is omitted. Consequently, the decoding proceeds in a situation where
the number of samples with e ≤ 6 and e > 6 is similar. Although Phase 2 effectively correct most of
the e ≤ 6 samples, the e > 6 samples remain in significant numbers as they are initially abundant.
This indicates the need for the pre-processing of Phase 1.

7.5 Multiple stage decoders

2 3 4 5 6 7

10-6

10-4

10-2

100

(a)

4 5 6 7 8 9 10 11 12
10-6

10-4

10-2

100

(b)

Figure 9: (a): FER performance of the triple decoder with the theoretical limit for the WiMAX LDPC
code (b): FER performance over the Rayleigh channel for the WiMAX LDPC code.

Extending the proposed method to include more than two decoders is feasible and can be applied in a
similar manner. For instance, in the case of the WiMax LDPC code (shown in Fig. 6(a)), uncorrected
words from the error-floor region of the base + post decoder (i.e., Eb/N0 4.5 dB) are collected to
train a third decoder. Fig. 9(a) shows that the aid of this third decoder (labeled as "Base+Post+Third)
reduces the error-floor further. It is worth mentioning that introducing this third decoder might lead
to increased decoding latency. Moreover, the process of collecting uncorrected words would be
time-consuming, especially in the very low FER region. Addressing these challenges could be a
promising direction for subsequent research. In addition, we add a graph showing the finite length
performance limit [44].

We want to note that the concept of multi-stage decoding has been employed in the previous works
[45, 46, 47], particularly in the field of coding theory. Our study has similarities with theses previous
approaches, as we also carries out a two-stage decoding. However, unlike physically divided
decoders in [45, 46, 47], our method utilizes a single LDPC decoder. While the proposed decoder is
conceptually divided into two stages (base/post) based on iterations, in practice, we employ only a
single decoder with distinct weight parameter sets. Moreover, our approach has a novelty in that the
post decoder is ‘trained’ dependent on the results of the base decoder.

7.6 Application to a different channel

The concept of training using uncorrected words can be consistently applied regardless of the channel
type. In Fig. 9(b), we include the results for the Rayleigh channel with the scale parameter α = 1,
showing the effectiveness of our proposed method holds across different channel types.

15



7.7 Application to long length codes

3 4 5 6 7 8
10-6

10-4

10-2

100

Figure 10: FER performance for the long 5G LDPC code of length 1248.

We show the results for the (1248, 1056) 5G LDPC code in Fig. 10. This result demonstrates
the proposed method is also effective for long codes. There is little improvement in waterfall
performance with the NMS technique at such long lengths. However, the performance improvement
in the error-floor region using our proposed method is clearly evident.

7.8 Comparison with the augmented neural decoders

Table 5: Comparison with [5], [34], [6] in terms of the waterfall performance of short codes. The
results are measured by the negative natural logarithm of BER. Higher is better.

Architecture Vanilla NBP NBP+HyperNet. Transformer
Method BP Orig. NBP [5] Proposed Hyper [34] ECCT [6]
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

Polar (64,48) 4.74 5.94 7.42 4.70 5.93 7.55 4.93 6.64 8.77 4.92 6.44 8.39 6.36 8.46 11.09
BCH (63,51) 4.58 5.82 7.42 4.64 6.21 8.21 4.72 6.42 8.96 4.80 6.44 8.58 5.66 7.89 11.01

MacKay (96,48) 8.15 11.29 14.29 8.66 11.52 14.32 8.26 11.83 15.85 8.90 11.97 14.94 8.39 12.24 16.41

In Table 5, we compare the waterfall performance of various neural decoders for short length codes.
To ensure a fair comparison with other works, we employ the NBP decoder and utilize the soft-BER
loss function for BER performance optimization while making use of full diversity weights. Out of a
total of 50 iterations, 20 iterations are allocated for base decoding and 30 iterations for post decoding.

The result reveals a notable performance improvement over the original NBP [5], which employs the
same vanilla NBP architecture. The improvement is particularly pronounced at high SNR. We achieve
even better performance at high SNR than the work [34], which adds hyper-networks to the vanilla
NBP architecture. In comparison to the ECCT [6] using the transformer architecture, our method
shows inferior performance for high density codes (Polar, BCH), yet it achieves fairly comparable
performance for LDPC codes. Owing to its intricate transformer structure, the ECCT requires higher
training and decoding complexity than NMS decoders [6], implying its current limited practicality.
Nevertheless, it is worth emphasizing that our proposed training method can be adaptable across
any architecture. In other words, there’s promising potential in future research that integrates the
proposed training methods with the architecture with hyper-networks or the transformer architecture.

7.9 Ablation study

Table 6: Ablation analysis.
O: Boosting O: Block-wise O: Proposed sharing

X: Conv. X: One-shot X: Full diversity FER (at Eb/N0 5.0dB)
X X X 3.14× 10−6

O X X 2.77× 10−7

O O X 1.84× 10−7

O O O 1.85× 10−7

16



In Table 6, we provide the ablation study for the WiMAX LDPC code. The result shows that the
boosting learning is the core technique to reduce the FER performance and the block-wise training also
contributes the FER reduction, while the proposed sharing technique does not involve performance
degradation.

17


	Introduction
	Main contributions
	Related works

	Preliminaries
	LDPC codes
	Neural min-sum decoding
	Training weights for the NMS decoder

	Proposed training method
	Boosting learning using uncorrected words
	Block-wise training schedule
	Weight sharing technique using UCN weights

	Performance evaluation
	Conclusions
	Acknowledgments
	Appendix
	A better trade-off between the waterfall and error-floor performances
	Boosting learning of two networks v.s. conventional learning of a single large network
	Optimization of parameters of the block-wise training schedule
	Discussion on the trained weights
	Multiple stage decoders
	Application to a different channel
	Application to long length codes
	Comparison with the augmented neural decoders
	Ablation study


