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Abstract

Classification is a fundamental problem in machine learning, and considerable
efforts have been recently devoted to the demanding long-tailed setting due to
its prevalence in nature. Departure from the Bayesian framework, this paper
rethinks classification from a matching perspective by studying the matching
probability between samples and labels with optimal transport (OT) formulation.
Specifically, we first propose a new variant of optimal transport, called Relative
Entropic Optimal Transport (RE-OT), which guides the coupling solution to a
known prior information matrix. We gives some theoretical results and their proof
for RE-OT and surprisingly find RE-OT can help to deblur for barycenter images.
Then we adopt inverse RE-OT for training long-tailed data and find that the loss
derived from RE-OT has a similar form to Softmax-based cross-entropy loss,
indicating a close connection between optimal transport and classification and
the potential for transferring concepts between these two academic fields, such
as barycentric projection in OT, which can map the labels back to the feature
space. We further derive an epoch-varying RE-OT loss, and do the experiments
on unbalanced image classification, molecule classification, instance segmentation
and representation learning. Experimental results show its effectiveness.

1 Introduction

Long-tailed label distribution or unbalanced classification in training given more balanced testing set
has been a challenge for existing neural models [42, 3, 62]. Various approaches have been developed,
such as Class Re-balancing [3, 25, 35, 8, 45, 52], Information Augmentation [36, 7], and Module
Improvement [65, 16, 62]. However, the problem is still far from being solved.

Most existing methods on (long-tailed) classification study the conditional probability function p(y|x)
or their joint distribution given the label y and sample x, almost taking it for granted. For instance,
[45] shows that in the long-tailed case, according to Bayes’ theorem, the vanilla Softmax classification
is affected by the label distribution shift, which makes the classifier more inclined to consider the
samples as belonging to the majority class. To address this issue, the work explicitly considers
the label distribution shift and re-derives the Softmax function. [22] argues that the conditional
distribution p(y|x) is not the same between training and testing data, which can result in target-shift.
To enhance class-unbalanced learning, the authors propose to relax the assumption that the source
and target domains share the same conditional distribution p(x|y). Despite the de-facto Bayesian
perspective for understanding classification, in this paper, we take a matching view and demonstrate
how new insights and approaches can be derived, especially for the challenging long-tail cases.
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From the matching perspective, the problem becomes matching samples to labels. During train-
ing, the goal is to learn the distances between the features of samples and labels. During testing,
matching results can be obtained by calculating the distances between the features of testing samples
and their labels. We formulate this matching using the theory of Optimal Transport (OT), where
training precisely involves learning the Inverse OT [12, 33, 51], and testing involves optimizing the
transportation results. In the commonly studied long-tailed setting [35], the labels of training samples
follow a long-tail distribution, while the labels are uniformly distributed for testing data. With our
OT formulation, we demonstrate that these two different priors (i.e. long-tailed and uniform) can
effectively reduce the difference between training and testing, thereby increasing the accuracy of the
matching probability.

To incorporate the prior information e.g. the aforementioned typical long-tailed setting, we introduce
the smoothing-guided prior matrix Q to vanilla entropic OT and call the resulting formulation relative
entropic OT (RE-OT). To this new variant of OT, we provide convergence analysis, its corresponding
static Schrödinger form, Sinkhorn algorithm for solving the problem as well as the dual formulation
of RE-OT, which are mostly similar to those for the vanilla entropic OT. We find our RE-OT can help
to deblur for barycenter images by setting specific smoothing prior Q.

Specifically, we develop the inverse RE-OT (as our relative entropy OT’s counterpart to inverse OT)
to learn the cost matrix or equivalently, the sample features for training data. And then we use the
RE-OT to optimize the transportation to get the matching results (i.e. predictions for testing data). It is
uncovered that many Softmax-based cross-entropy losses (e.g. Balanced Softmax, A-softmax and etc)
are special cases of our derived new loss under half constraints of OT by specifying different forms
of the cost matrix, supervision matrix in IOT and the smoothing-guided prior matrix Q. In other
words, we can generalize the cross-entropy loss by specifying different cost matrix, smoothing-guided
matrix, or other settings in the framework of inverse OT. We also find that when the regularization
coefficient ε→ 0, the loss of inverse RE-OT equals triplet loss in metric learning fields. Additionally,
our matching perspective reveals interesting connections between OT and classification tasks. For
example, we discover the equivalence between the coefficient of entropic regularization in OT and
the temperature in Softmax. We also find that the concept of barycentric projection in OT can be
used in classification to calculate the class barycenters in hidden feature space. We believe that the
connection between these two fields will inspire further algorithmic development for both sides. This
paper contributes in the following ways:

1) We propose a matching perspective to revisit and provide new understanding to the classification
problem with OT formulation. The matching perspective provide a clear interpretation to the challenge
of long-tailed classification, which lies in the inconsistency of the utilized prior information between
the matches learned from the training set and those from the testing set.

2) We propose a new variant of entropic optimal transport, called relative entropic OT (RE-OT), for
learning matching with a specified prior. We provide theoretical results on various aspects of RE-OT,
including its solution properties, Sinkhorn algorithm, barycenter calculation, and its dual form. As
a side product of our study, we find that RE-OT can help to deblur barycenter images by setting a
specific smoothing prior Q, which entropic OT alone cannot achieve.

3) We further develop Inverse RE-OT to link our results to classification, and show that Softmax and
its variants are special cases of our derived loss based on Inverse RE-OT. This finding inspires a simple
yet effective technique in practice for long-tailed classification: we let the smoothing-guided matrix
Q to be epoch-varying, which gradually provides prior information and improves the performance.

4) Our study has revealed a significant link between Optimal Transport (OT) and existing classification
tasks, such as the relationship between the regularization coefficient in OT and the temperature in
Softmax. This suggests that OT concepts can be applied to classification tasks, and vice versa. For
instance, the barycentric projection concept in OT can be utilized in classification tasks to calculate
the class barycenters in the hidden feature space. We anticipate that this connection between the two
fields will lead to further algorithmic development for both OT and classification.

5) Our method performs competitively and often outperforms baselines on various long-tailed bench-
marks ranging from image classification, to molecule property prediction, and instance segmentation.
Source code will be made publicly available.
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2 Preliminaries and Related Work

Optimal Transport. Known as Wasserstein distance or Earth Mover’s distance, Optimal transport
(OT) [26], has gained significant attention in various fields including domain adaption [11], generative
models [15, 34, 49], and image registration [14]. We begin by briefly introducing discrete Optimal
Transport (OT), which provides a framework for viewing the (long-tailed) classification problem
from a matching perspective. For a more detailed introduction to OT, readers are directed to [43].

Consider two histograms a ∈ Σn and b ∈ Σm, where the simplex Σd = {x ∈ Rd+|x>1d = 1}. We
can represent the transportation polytope U(a,b), which is the polyhedral set of n×m matrices:

U(a,b) = {P ∈ Rn×m+ |P1m = a,P>1n = b}, (1)

where 1n and 1m are n and m dimensional vectors of ones. U(a,b) contains all n×m nonnegative
probabilistic matrices with row and column sums a and b. Then the Kantorovich’s optimal transport
problem can be defined as [26]:

min
P∈U(a,b)

< C,P >=
∑
i,j

CijPij , (2)

where C ∈ Rn×m+ is the cost matrix for the distance between sample {xi}ni=1 and {yj}mj=1. The
above minimization is a linear program and the optimal solution P∗ can be obtained with the network
simplex [54] or other off-the-shelf techniques e.g. [40], which require significant time overhead. For
its cost-effectiveness, the entropic regularization [57] is more popular and it gets an approximation:

min
P∈U(a,b)

Lε =< C,P > −εH(P), (3)

where the regularizer is specified as H(P) =
∑
ij −Pij(log(Pij)− 1). It can be proved that [43]

when ε → 0, the unique solution of Eq. 3 converges to the optimal P∗ of original problem. And
when ε→ +∞, we can get

Pε
ε→+∞−→ a⊗ b, (4)

where a ⊗ b = a>b ∈ U(a,b). So we can find the entropic regularization H(P) exactly do a
smoothing to the solution towards a ⊗ b. Recently, Inverse Optimal Transport (IOT) start to be
studied [12, 33, 51, 50] which assumes that the cost C is unknown for learning, given the established
coupling. The inverse of entropic OT problem can be formulated as:

min
θ
KL(P̃|Pθ), where Pθ = arg min

P∈U(a,b)
< Cθ,P > −εH(P). (5)

Specifically, [51] proposes a principled approach to infer the unknown costs and [6] develops the
mathematical theory for IOT. [33] shows that by IOT, one can also modify and improve the raw
matching prediction by the cost, which is learned by the raw matching as noise supervision.

In this paper, we develop an IOT-based formulation to learn the cost between samples and their labels,
which further allows one to learn the feature extractor of the training samples. Then with the features
exacted from testing data, we match them with target labels and achieve the goal of classification.

Long-tailed recognition. Long-tailed recognition has been a standing problem with wide attention in
vision and learning [64, 19, 35]. One common approach [45, 41] is to re-balance the class distribution
in the training set. For example, some works employ re-sampling [25] or re-weighting [8] techniques
to let the model pay more attention to the minority classes in the training set. Data augmentation is
also adopted to synthesize more samples for the underrepresented classes [28]. While in [9], transfer
learning is used, which leverages knowledge learned from a source domain with sufficient data to
improve the performance on a target domain with imbalanced data. This line of research includes
techniques such as fine-tuning [63], domain adaptation [53], and meta-learning [56]. Recently, some
works have proposed to explicitly model the long-tailed distribution, such as by adjusting the loss or
designing specialized network architectures. Examples include focal loss [35], class-balanced loss [8],
balanced Softmax loss [45]. In this paper, we view classification from a matching perspective. Our
method does not predict the label or class directly but learns the features in training and calculates the
matching probability instead. With the aid of OT, we formulate it with relative entropic as proposed
in the next section, which adopts different prior for training and testing.
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Figure 1: Results of PεQ by varying ε given the features (trained with SimCLR [5]) of ten CIFAR-10
images and their augmentation. The cost matrix is set with the cosine distance between features.
When ε→ 0, PεQ becomes sharper for probability prediction and when ε→ +∞, PεQ is more close
to Q̃. Here we set Qij = 0.7 if sample i and j are in the same class and Qij = 0.3 otherwise.

3 Relative Entropy Regularization for Optimal Transport

Motivation of introducing prior into OT. As introduced in Eq. 3, entropic regularization (ER) is
an effective method [10] for approximating the Kantorovich OT solution. It pushes the original linear
programming solution away from the hard boundary and obtains a smoother solution by minimizing
a ε−strongly convex function. With the increase of the penalty coefficient, the solution progressively
approaches a more ‘smooth’ solution, ultimately converging to a>b as illustrated by Eq. 4. However,
a question is raised: is such a smoothing direction a>b appropriate for all practical situations, e.g.
the long-tailed problems? Can we freely choose a more suitable (smoothing) direction to achieve
more effective results tailored to the problem or dataset at hand? In this section, we will develop
relative entropic OT (RE-OT), a more general formulation than traditional entropic OT [57].

Formulation. Given a cost matrix C ∈ Rn×m+ and two margins a ∈ Σn and b ∈ Σm, where Σn
and Σm represent the probability simplex with n and m bins, respectively, we introduce the positive
smoothing-guidance matrix Q as a manually-specified constant prior to guide the smoothing. We
use the relative entropy regularizer HQ(P) in place of the traditional entropy in Eq. 3 to achieve this

ability, defined as HQ(P) = −
∑
ij Pij

(
log

Pij
Qij
− 1
)

. Then we have:

min
P∈U(a,b)

LεQ =< C,P > −εHQ(P). (6)

The relative entropy HQ(P) can increase the probability of transportation for the element Pij if
Qij is larger. Consequently, if the prior in the form of Q is available, the use of relative entropy
regularization can improve the efficiency of learning the transportation solution. Therefore, for
long-tailed tasks, we can assign a large Q element to the majority classes and a low element of Q to
the tailed classes to enhance training. We will discuss this in detail in the next section.

For Eq. 6, we further study its properties. Firstly, we show the relation between RE-OT and the
entropic OT by Eq. 3 as follows. The proof is given in Table A.

Proposition 1 (Solution Propriety.). Assume PεQ,P
ε and are the optimal solution of RE-OT and

entropic regularized OT, respectively. Then we can get:

(1) When ε→ +∞, the optimal RE-OT’s solution PεQ will converge to Q̃ where Q̃ takes the form
Q̃ = diag(u)Qdiag(v) with two uniquely defined non-negative vectors u and v.

(2) With the prior Q and its corresponding Q̃ as defined in (1), we have PεQ = Pε
Q̃

. And when

Q̃ = a⊗ b, we have the equality Pε = Pε
Q̃

.

Proposition 1 shows the relation between RE-OT and entropic OT, and we can find RE-OT is a
more general formulation. Note Q̃ is defined by Q and can be obtained by iteratively normalizing
row/column sums of Q. Fig. 1 shows the results of PεQ by varying ε. As ε increases, the optimal
coupling becomes more dense, but Pε becomes more uniform while PεQ converges to Q̃.

Besides, similar to the standard entropic regularized OT, our RE-OT in Eq. 6 can also be reformulated
to the “static Schrödinger problem” form [31], which exactly leans a projection under KL divergence.
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Proposition 2 (static Schrödinger form). Redefine a general KL divergence as

K̃L(P|K) =
∑
ij

Pij log
Pij
Kij
−Pij + Kij , (7)

The optimization in Eq. 6 is equivalent to the following minimization, where Kij = Qije
−Cij/ε :

PεQ = arg min
P∈U(a,b)

K̃L(P|K). (8)

The proof is in Appendix B. Prop. 2 shows the optimal solution PεQ is exactly the KL projection of
K onto U(a,b). In fact, K can be set as Kij = Q̃ije

−Cij/ε due to the equivalence between PεQ and
Pε

Q̃
. Expect for the different form of K, RE-OT and entropic OT share the same static Schrödinger

formulation, which means that many methods in entropic OT can be applied to RE-OT, such as
iterative Bregman projections [2].

The Sinkhorn algorithm and barycenters for RE-OT. The optimal solution for RE-OT can be
estimated using the Sinkhorn algorithm, as its counterpart has already been well-developed for
solving entropic OT [10]. The algorithm for RE-OT shares the same form as that for entropic OT,
given Kij = Q̃ije

−Cij/ε. Specifically, with two non-negative vectors u′ and v′ uniquely defined
up to a multiplicative factor, the optimal solution has the form PεQ = diag(u′)Kdiag(v′), which
can be efficiently computed by iterating u′,v′ ← a./Kv′,b./K>u′. The proof and algorithm are
presented in Appendix C. In addition, the barycenter between distributions is a natural extension of
OT [1, 2], and with the matrix K, [2] defined it with a weighted KL projection problem:

min
{Ps},a

∑
s

ε · λsK̃L(Ps|K) s.t. P>s 1n = bs,P11m = P21m = · · · = PS1m = a, (9)

where {λs}Ss=1 are the weights, bs are known histograms representing images, and a is the barycenter
histogram to be calculated. Though easier to calculate compared with the regularized formulation in
[1], a drawback of this entropic-based method is that it can lead to blurred barycenters, and methods
have been proposed to address this issue [23]. By calculating barycenters between noise and an
image (i.e. S = 2 here), we show that the blurred problem can be simply solved by setting λ where
λ1 = λ, λ2 = 1− λ and the prior matrix Q :

Q = (1− λ)(Pε)> + λPε, (10)

where Pε is the optimal solution of entropic OT from image b1 to b2 . Fig. 2 illustrates the effect
of different choices of Q when computing barycenters between noise and an image. Without using
Q, the resulting barycenters are very blurry. When we set Q to be Pε, the barycenters display the
shape of the leopard clearly, but fail to transition smoothly from noise to leopard image as λ changes.
To address this issue, we set Q as shown in Eq. 10, which can blur the image while transitioning
smoothly with the gradient.
Proposition 3 (Dual formulation). From the optimization in Eq. 6, we can get its dual formulation:

LεQ =< f ,a > + < g,b > −ε < ef/ε,Keg/ε > (11)
where f ∈ Rn and g ∈ Rm are the corresponding dual variables.

The proof is given in Appendix D. Exactly f , g are linked to u,v appearing in Sinkhorn algorithm by
u = exp (f/ε) and v = exp (g/ε), and thus Sinkhorn algorithm can be done in log-domain [47].

Setting Q with the Optimal Solution Iteratively. The intuition for the prior is to iteratively update
the solution P εQ as a new Q, i.e., Q(t) = Pε

Q(t−1) , where Q(t) represents the solution obtained after
the n-th iteration. The question then arises as to how Q(t) changes over time. We find that this
problem is equivalent to a proximal point algorithm:

Q(t) = arg min
Q

KL(Q|Q(t−1)) +
1

ε
F (Q). (12)

Here F (Q) =< C,Q > +lU(a,b)(Q), where lU(a,b)(Q) is defined such that lU(a,b)(Q) = 0 if
Q ∈ U(a,b), and lU(a,b)(Q) = +∞ otherwise. We find this problem is discussed by [29, 43],
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Figure 2: The barycenter results between noise and a leopard image. It is very blurry without the
use of Q. However, when we set Q = Pε, the resulting barycenters clearly display the shape of the
leopard, but fail to transition smoothly from noise to leopard image as λ changes. To address this, we
set Q as shown in Eq. 10, which blurs the image while transitioning with the increase of λ.

which aims to get the optimal solution of the non-regularized OT. As discussed in Sinkhorn of RE-OT,
we have the optimal solution form:

Q(t) = diag(u(t−1))Q(t−1) � e−C/ε diag(v(t−1))

= diag(u(t−1) � ...� u(0))Q(0) � e−
(t+1)C

ε diag(v(0) � ...v(t−1)).
(13)

When we set Q(0) = 1n×m, the optimization is equivalent to applying Sinkhorn’s algorithm itera-
tively with a kernel e−

(t+1)C
ε , i.e., with a decaying regularization coefficient ε

t+1 . This observation
further emphasizes the importance of selecting an appropriate Q for RE-OT.

4 RE-OT for Long-tailed Recognition

Figure 3: RE-OT for unbalanced classification.

We now discuss the application of inverse RE-
OT to address the long-tailed classification task
(including the contrastive learning setting). Un-
like previous works that study this problem us-
ing conditional probability, our approach aims
to learn features by matching samples with their
labels using Inverse OT. Specifically, given the
mini-batch pair set {(xi,yi)}ni=1 where xi is
training sample and yi is the m−dimensional
one-hot label of xi. We can set the the cost
Cθ
ij between sample xi and another one-hot la-

bel given the neural network fθ. Without loss
of generality, we can set Cθ

ij = c − lij where
lij = (fθ(xi))j is the j−th component of logits
fθ(xi) for sample xi. Then we can learn the matching between features and labels with inverse OT
via a bi-level optimization:

min
θ
KL(P̃|Pθ) s.t. Pθ = argmin

P∈U
< Cθ,P > −εHQ(P), (14)

where P̃ is the supervision given the label {yi}. For example, we can set P̃ij = yij when yij is the
j-th component of yi. Here U refer to the constraints for the coupling P. We can set U = U(a,b)
with the full matching constraints or its relaxation e.g. U = U(a) = {P|P1m = a}.
For our designed smoothing guidance Q, a simple idea is to set it with the long-tailed ratio i.e. the
training sample ratio of class labels which are readily available from the training set, which equals to
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Table 1: Previous works in the view of inverse RE-OT by setting different ground truth P̃ij , cost Cij ,
prior Qij and coefficient ε under the constraints U(a).

Methods
Formulation

Ground Truth P̃ij Cost Cij Prior Qij penalty coefficient ε

Vanilla Softmax P̃ij = yij Cij = c− lij Qij = 1 ε = τ

Focal Loss [35] P̃ij = yij ∗ (1−Pij)
γ

Cij = c− lij Qij = 1 ε = τ

A-softmax [37] P̃ij = yij Cij = c− ||li||ψ(θyi,i) Qij = 1 ε = τ

Triplet [48] P̃ij = yij Cij = ||f(xi)− f(xj)||2 Qij = 1 ε→ 0+

Class-Balanced Loss [8] P̃ij = (1− β)/
(

1− βnyi,:
)

Cij = c− lij Qij = 1 ε = τ

LDAM Loss [3] P̃ij = yij Cij = c− lij Qij = e−1{i=y}·C/n
γ
j ε = τ

Balanced-Softmax [45] P̃ij = yij Cij = c− lij Qij = nj ε = τ

Our Setting P̃ij = yij Cij = c− lij Q = (1− λ(t)) Uniform +λ(t)r ε = τ

the Balanced Softmax method proposed in [45]. In this paper, motivated by Eq. 10 having a good
efficiency in OT and other works [60] which adopt two stages for learning, we let it vary over epochs:

Q = (1− λ(t))Uniform+λ(t)r, (15)

where t is the training epoch and r is the prior probability matrix e.g. the balanced ratio in [45],
teacher-based prior predictions or the sample-class-wise setting discussed in Appendix E. λ(t) is
an epoch varying weight. When t is small, λ(t) is close to 0, and Q is more likely to be a uniform
distribution, which gives the model less prior information. As t approaches the final training epoch
number T , λ(t)→ 1 and Q→ r, which means the model is given the full prior information. This
gradual process of introducing prior information can be helpful for training the inverse OT. We
provide a specific setting for λ(t) and r in Appendix E. During the inference process, the problem
reduces to the inner optimization in Eq. 6, which takes the form of traditional unsupervised OT.
We use this optimization to obtain the matching between the sample features and labels, which
corresponds to classification for the testing data. We do not adopt the long-tailed setting of Q during
inference because the testing data is assumed to be uniform.

4.1 Generalization to a Family of Losses in Form of Softmax-based Cross-Entropy
We find our new formulation with inverse OT is a more general form if we set U = U(a) where
ai = 1/n and many Softmax-based cross-entropy losses can be our special case by varying the form
of P̃,Cθ and Q. Specifically, with U = U(a), Eq.14 equals to

min
θ
L =

∑
i,j

P̃ij log
Qije

−Cθij/ε

n
∑m
k=1 Qike−C

θ
ik/ε

. (16)

The proof is given in Appendix F. We can find the form in Eq. 16 is similar with the Softmax
cross-entropy loss. In particular, if we set P̃, Cθ, Q and ε in different forms as shown in Tab. 1, many
classification loss can be the special cases of our formulation, as discussed in detail as follows.

Special cases by varying Cθ. For a matching problem, it is quite important to define a distance
among samples. We first set Cθ

ij = c−lij where c is a large enough value. In this case, Eq. 16 reduces
to a normal softmax-based cross-entropy loss when Q is in the uniformly distributed. Alternatively,
we can set Cθ differently to suit specific tasks. For example, in learning in the hypersphere space,
the Vanilla Softmax will be converted to A-softmax [37] to enforce angular margin constraints for
improved face recognition performance.

Deriving more losses by varying Q. By varying the setting of Q, we can derive many Softmax-
based losses as special cases of the RE-OT-based loss. For example, the Balanced Softmax can be
obtained by setting Qij = nj , where nj is the frequency of label j in the training set. This choice of
Q encourages the model to assign equal weights to each class during training, which helps to mitigate
the impact of class imbalance.

Discussion on P̃. Re-weighting the example is a common way to improve the Long-tailed learning,
including the empirical Re-weighting methods (e.g. focal loss [35]) and automatic Re-weighting
ways (e.g. L2RW [46]). In the view of IOT, the supervision of the coupling P̃ is self adapting and
may depend on Pθ, which may be helpful in IOT application fields such as deep graph matching.
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Figure 4: t-SNE for training and testing sample features and class barycenters. The class barycenters
are calculated by Eq. 18 with features of training data. It can be observed that in the training data, the
class barycenters are mainly on the feature centers of corresponding category samples, which proves
the effectiveness of the barycentric projection map defined in Eq. 18. At the same time, we also find
that barycenters calculated by features of training samples may not necessarily be centered in the test
data. Additionally, the head class occupies a significantly larger space than the tail class in the 2D
feature space, which may be one of the reasons for the poor accuracy of the tail class.

Triplet loss for ε → 0+. Though Eq. 16 has a very different form compared to triplet loss, the
equivalence can also be established when the temperature ε→ 0+. Note that the idea of the relation
between triplet loss and our loss is motivated by the work [55] which gives the proof of the equivalence
between triplet loss and InfoNCE. We give the proof in Appendix G.

Representation Learning with our Formulation Our matching perspective can be applied not only
to unbalanced classification but also to unbalanced representation learning, in which we only need to
modify the original one-hot label to the augmentation’s features. In Sec. 5, we conducted experiments
on long-tailed contrastive learning and verified that by selecting an appropriate Q, we can improve
the effectiveness of representation learning on long-tailed datasets.

4.2 Bridging Regularized OT to Classification

We have shown the classification can be viewed as a matching problem and if we formulate the
matching with optimal transport, we can get the equivalence between Softmax (as well as its variants)
and RE-OT under the setting of U(a). We can observe that there are some interconnected concepts
between OT and classification, which can shed lights on a deeper understanding of OT and in turn
the classification problem with different forms. One notable example is the entropy regularization
coefficient ε in OT and the temperature coefficient τ in Softmax. There have been numerous
works [24, 61] exploring the role of the temperature hyperparameter in Softmax. We can understand
it easier from the view of OT, where ε serves as a relaxation hyperparameter for couplings yielding
smoother predictions. In fact, there are other concepts, such as barycentric projection in OT [13],
which may help us understand more about classification. We give its definition here:
Definition 1 (Barycentric Projection). Consider the setting of Eq. 6 in which we use entropic
regularization to approximate OT between discrete measures. One can define the so-called barycentric
projection map with the coupling P

T : xi ∈ X →
1

ai

∑
j
Pijyj ∈ Y, (17)

where {xi} ⊂ X is the set of locations corresponding to simplex a and {yj} is the set of locations in
the Y space croponding to simplex b.

From the classification view, exactly T (xi) is probability confidences of samples xi which can be
understand as the feature in the one-hot label space. Besides, motivated by this barycentric projection
in OT, we can exactly define the mapping for the feature of one-hot label in hidden feature space:

T ′ : yj ∈ Y →
1∑
iPij

∑
i
Pijfi ∈ F , (18)

where fi is the feature of xi extracting from the neural networks and F is the feature space. Eq. 18
maps the (one-hot) label to the feature space, which means no need to learn the centroid features
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as done in oneline clustering methods [4, 32] but calculate it statically with Eq. 18 if the coupling
is known. As shown in Fig. 4, we first train the models using vanilla softmax, focal loss, and our
loss on the Cifar10-LT dataset. We consider the logits as the sample features and save the logits
from the three head and three tailed classes, along with the corresponding predicted couplings, as
matrices. Then, we calculate the barycenters of the labels using Eq. 18, which effectively computes
the weighted average of the features. We concat the logits and barycenters as a new matrix and use
it to calculate t-SNE results for training data, as shown in the first row of Fig. 4. For testing data,
we concat the testing logits with the barycenters calculated from the training data and use t-SNE
dimensional reduction, as shown in the second row in Fig. 4. By comparing the first row and the
second row of Fig. 4, we can observe the differences in the positions of the barycenters, which are
actually caused by shift in the feature distributions.

Further Discussions between OT and classification. Note that many theoretical aspects and varia-
tions of OT can be incorporated into the field of classification. Here are a few advantages unique
to the OT perspective that can be achieved but are not possible in the traditional Bayesian view:
1) Variable constraints instead of {P : P1 = a}, such as (modified) Optimal Partial Transport
(OPT) with {P : P1 ≤ a,1>P1 = s} where s is the number requiring to predict. This allows for
distributions that are not just one-vs-all and enables rejection of classification if the model determines
that a sample cannot be classified into any of the candidate labels; 2) Generalization of softmax.
The current softmax formulation is essentially based on Entropic Regularization of OT. However, OT
regularization goes beyond just the entropic regularization and includes other regularizations such as
L2, Tsallis entropies, or divergence-based ones. This opens up possibilities for generalizing softmax;
3) Classification cross-representation models. From the OT perspective, classification between
the features of samples and labels, based on Gromov-Wasserstein Distance, can be performed in
different feature spaces. For example, the sample features may be in 100 dimensions while the label
features are in 20 dimensions. This can be helpful for preserving privacy as Gromov-Wasserstein
Distance [44] only requires similarity between samples and labels. Due to the various variants and
theories within OT, considering classification as OT naturally allows us to incorporate existing OT
knowledge into the field of classification, which is the ongoing work we are conducting.

5 Experiments

We evaluate our proposed approach for both image and molecule datasets. As the primary focus of
this paper is the impact of loss functions on model learning, we do not adopt additional specialized
techniques to improve performance, such as transfer learning or resampling. This is to control
variables and thus all the baselines used in this study represent only the loss functions proposed by
them. Additional experimental settings and details can be found in Appendix H.

Experiments on long-tailed image classification. The long-tailed image classification datasets
analyzed in this study include CIFAR10-LT, CIFAR100-LT [30], and Imagenet-LT [38]. To evaluate
the performance of the models, we use the corresponding balanced test dataset and report top-1
accuracy. Specifically, for CIFAR-10, we report accuracy on two sets of classes: Many-shot (more
than 100 images) and Few-shot (less than 100 images). For CIFAR-100 and Imagenet, we report
accuracy on three sets: Many-shot (more than 100 images), Medium-shot (20 ∼ 100 images),
and Few-shot (less than 20 images). The experiments for unbalanced image classification are all
conducted with an imbalanced factor of less than 200, which is defined as the ratio of the number of
training instances in the largest class to the smallest [45]. The results for long-tailed classification are
presented in Table 3. Note that in our approach, the teacher-based method involves setting the prior
matrix r in Eq. 15 using a vanilla softmax trained teacher model. On the other hand, the ratio-based
method refers to setting r as the long-tailed ratio. From a comprehensive perspective, at least one of
our approaches achieves the best average accuracy across the entire dataset.

Experiments on unbalanced molecule classification. We further examine the application of our
proposed method in the context of molecular representation learning task, which holds significant
implications for healthcare [59] and drug discovery [17, 58]. Specifically, we perform the experiments
on two unbalanced molecule classification datasets, i.e. OGBG-MOLBBBP and OGBG-MOLBACE,
from the Open Graph Benchmark (OGB) [21]. We use the default train/val/test split with ratio 8:1:1.
Given the presence of class imbalance within the two datasets, we have chosen to adhere to the
precedent set by prior studies, also employing the ROC-AUC as the metric for performance evaluation.
As the experimental results are easily influenced by initialization, we conducted five repetitions of
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Table 3: Top-1 accuracy (%) for long-tailed image classification with 200 imbalanced factor.

Method CIFAR10-LT CIFAR100-LT ImageNet-LT

Many Few All Many Medium Few All Many Medium Few All

Vanilla Softmax 77.4 68.9 74.9 75.8 48.2 11.0 42.0 57.3 26.2 3.1 35.0

Focal Loss [35] 79.6 58.4 73.3 76.1 46.9 11.1 41.7 57.3 27.6 4.4 35.9

LDAM [3] 80.5 65.2 75.9 75.7 50.6 11.5 42.9 57.3 27.6 4.4 35.9

LogitAdjust [39] 80.0 35.3 66.6 75.7 39.2 4.1 36.5 54.2 14.0 0.4 27.6

CB-CE [8] 76.6 70.7 74.8 53.2 48.8 13.3 36.3 35.3 32.1 21.2 31.9

CB-FC [8] 76.6 70.7 74.8 53.2 48.8 13.3 36.3 35.3 32.1 21.2 31.9

Balanced Softmax [45] 82.2 71.6 79.0 70.3 50.4 26.5 47.0 52.5 38.6 17.8 41.1

Ours(teacher-based) 84.4 63.7 78.2 69.7 55.6 24.9 47.9 41.5 37.6 31.1 38.2

Ours(ratio-based) 81.5 74.6 79.4 70.4 53.0 26.6 47.9 53.5 39.0 17.4 41.6

the experiment and reported the mean accuracy and its standard deviation in the Tab. 2, which show
the effectiveness of our method.

Table 2: Test on instance segmentation and molecule classification.

Method LVIS (instance seg.) OGBG-MOLBBBP OGBG-MOLBACE

APm APr APc APf ROC-AUC ROC-AUC

Vanilla 20.62 9.66 19.11 27.11 69.21 ± 0.34 79.40 ± 1.20

Focal Loss [35] 19.69 8.75 17.74 26.68 68.15 ± 1.29 80.65 ± 1.50

LDAM [3] 15.53 7.14 13.23 20.89 65.99 ± 0.94 79.20 ± 2.00

LogitAdjust [39] 22.41 11.70 21.18 28.48 69.05 ± 1.59 81.25 ± 0.33

CB-CE [8] 20.38 9.58 18.72 26.98 69.19 ± 1.18 79.39 ± 1.16

CB-FC [8] 21.41 15.67 20.34 25.25 69.51 ± 1.18 80.24 ± 1.45

Balanced Softmax 22.60 12.88 21.20 28.44 68.13 ± 0.87 80.26 ± 2.28

Ours(ratio-based) 22.64 13.15 21.26 28.34 70.48 ± 0.73 82.48 ± 1.59

Experiments on Long-
Tailed Instance Segmen-
tation. We do experi-
ments on long-tailed in-
stance segmentation with
LVIS v1.0 datasets [18],
as one of the most chal-
lenging datasets in vision
with a much higher imbal-
ance factor compared to
the rest. We use the offi-
cial splits and evaluation
is conducted on validation
set. The setting mainly follows the experiments in [45], whose details are given in Appendix H.
APm, APr, APc, APf are reported in Tab. 2. APm denotes Average Precision of masks, APr, APc,
APf denote Average Precision of masks on rare classes, common classes and frequent classes. As
shown in Tab. 2, we can find that our method achieves the best APm on the entire set and perform
competitively for other evaluations.

More Experiments. We also perform experiments on Long-Tailed contrastive representation learning
on CIFAR10-LT, CIFAR100-LT with 100 imbalanced factor. We compare our methods with the
methods in [5, 27]. The settings and results are given in Appendix H.5. Besides, to further demonstrate
the usefulness of viewing classification as OT, a new inference method is proposed for testing. we
replaced the softmax (i.e. constraints within U(a)) with Sinkhorn algorithm (i.e. constraints within
U(a,b)), where b represents the assumed ratio in the testing data (e.g., long-tailed, uniform, or
reverse long-tailed distribution). Details are given in Appendix H.6.

6 Conclusion
We have provided a matching perspective to provide new understanding to classification. Under
our matching-based framework, we show that the inherent challenge of long-tailed classification
lies in the inconsistency of the prior information used for training and testing under the matching
formulation. We then develop inverse relative entropic OT approach to revisit the classification
problem, and especially for the long-tailed case, we develop a simple yet effective technique based
on our theoretical insights. Experimental results verify the effectiveness of our methods.

Broader impacts. Our work establishes a theoretical framework for understanding and solving
(self-)supervised problems using OT theory. This not only broadens the range of applications for
OT in generative models, such as WGAN and its variants, but also provides a new perspective for
redefining, understanding, and solving (self-)supervised problems. Furthermore, the theory and
concepts of OT can facilitate the discovery of interesting relationships and insights for supervised
problems, such as the connection between open set recognition and unbalanced OT. Limitations. It
assumes known prior label distribution testing data, which is often unknown in real-world scenarios.
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