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1 Climate Simulations

Climate models divide the Earth’s atmosphere, land surface, and ocean into a 3D grid, creating a
discretized representation of the planet. Somewhat like a virtual Lego construction of Earth, with
each brick representing a small region (grid cell). Earth system models are made up of independent
component models for the atmosphere, land surface, rivers, ocean, sea ice, and glaciers. Each of
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these component models is developed independently and can run by itself when provided with the
appropriate input data. When running as a fully coupled system the “component coupler” handles the
flow of data between the components.

Within each grid cell of the component models, a series of complex calculations are performed to
account for various physical processes, such as phase changes of water, radiative heat transfer, and
dynamic transport (referred to as “advection”). Each component model uses the discretized values of
many quantities (such as temperature, humidity, and wind speed) as inputs to parameterizations and
fluid solvers to output those same values for a future point in time.

The atmosphere and ocean components are the most expensive pieces of an Earth system model,
which is largely due to the computation and inter-process communication associated with their
fluid dynamics solvers. Furthermore, a significant portion of the overall cost is attributed to the
atmospheric physics calculations that are performed locally within each grid column. It is important
to note that atmospheric physics serves as a major source of uncertainty in climate projections,
primarily stemming from the challenges associated with accurately representing cloud and aerosol
processes.

1.1 Model Description

The data that comprise ClimSim are from simulations with the Energy Exascale Earth System
Model-Multiscale Modeling Framework version 2.1.0 (E3SM-MMF v2) [1]. Traditionally, global
atmospheric models parameterize clouds and turbulence using crude, low-order models that attempt
to represent the aggregate effects of these processes on larger scales. However, the complexity
and nonlinearity of cloud and rainfall processes make them particularly challenging to represent
accurately with parameterizations. The MMF approach replaces these conventional parameterizations
with a cloud resolving model (CRM) in each cell of the global grid, so that cloud and turbulence
can be explicitly represented. Each of these independent CRMs is spatially fixed and exchange
coupling tendencies with a parent global grid column. This novel approach to representing clouds
and turbulence can improve various aspects of the simulated climate, such as rainfall patterns [2].

The configuration of E3SM-MMF used here shares some details with E3SMv2. The dynamical code
of E3SM uses a spectral element approach on a cubed-sphere geometry. Physics calculations are
performed on an unstructured, finite-volume grid that is slightly coarser than the dynamics grid,
following Hannah et al. (2021) [3], which is better aligned with the effective resolution of the
dynamics grid. Cases with realistic topography include an active land model component that responds
to atmospheric conditions with the appropriate fluxes of heat and momentum.

The embedded CRM in E3SM-MMF is adapted from the System for Atmospheric Modeling (SAM)
described by Khairoutdinov and Randall (2003) [4]. While the CRM does explicitly represent clouds
and turbulence, it still cannot represent the smallest scales of turbulence and microphysics, and,
therefore, these processes still need to be parameterized within each CRM grid cell. Microphysical
processes are parameterized with a single-moment scheme, and sub-grid scale turbulent fluxes are
parameterized using a diagnostic Smagorinsky-type closure. Convective momentum transport in the
nested CRM is handled using the scalar momentum tracer approach of Tulich (2015) [5]. The CRM
uses an internal timestep of 10 seconds, while the global calculations use a timestep of 20 minutes.

Despite recent efforts to accelerate E3SM-MMF with GPUs and algorithmic techniques [6], the CRM
domain size strongly affects the computational throughput and limits the type of experiments that
can be conducted. However, the MMF approach is quite flexible in how the CRM size is specified.
E3SM-MMF is typically run with a 2D CRM that neglects one of the horizontal dimensions, and
employs relatively coarse grid spacing that cannot represent small clouds. Increasing the size of this
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2D domain by adding further columns (more CRM cells) generally improves the realism of the model
solution. Reducing the model grid spacing can also improve the model to a certain degree, although
the number of columns often needs to be increased to avoid the degradation associated with a small
CRM. Ideally, the CRM would always be used in a 3D configuration to fully capture the complex,
chaotic turbulence that dictates the life cycle of each individual cloud, but this approach is generally
limited to special experiments that can justify the extra computational cost. The simulations for
ClimSim utilize a 2D CRM with 64 columns and 2 km horizontal grid spacing within each grid cell.

The atmospheric component of E3SM uses a hybrid vertical grid that is “terrain-following” near
the surface, and transitions to be equivalent to pressure levels near the top (e.g., https://www2.
cesm.ucar.edu/models/atm-cam/docs/usersguide/node25.html). The vertical levels are
specified to be thin near the surface to help capture turbulent boundary layer processes, and are
gradually stretched to be very coarse in the stratosphere. E3SM-MMF uses 60 levels for the global
dynamics with a top level around 65 km. The CRM used for atmospheric physics uses 50 levels,
ignoring the upper 10 levels, to avoid problems that arise from using the anelastic approximation with
very low densities. This does not create any issues, because cloud processes are generally confined to
the troposphere where the anelastic approach is valid. The hybrid grid can be converted to pressure
levels using Equation 1, where P0 = 100, 000 Pa is a reference pressure, and Ps(x, t) is the surface
pressure which varies in location x and time t:

Pk = AkP0 +BkPs (1)

Ak and Bk—where the subscript k denotes the index of vertical coordinate—are the fixed, prescribed
coefficients that define how the “terrain-following” and “pure pressure” coordinates are blended to
define the hybrid coordinate at each vertical level. Ak and Bk are provided as a part of the dataset with
variable names of hyam and hyai or hybm and hybi, depending on whether mid-level or interface
values are needed. The third character of the variable names (“a” and “b”) in Equation 1 denotes Ak

and Bk coefficients, respectively. Note that the indexing of the vertical coordinate starts from the top
of the atmosphere due to the construct of Ak and Bk coefficients, e.g., k = 0 for the top and k = 59
for the surface in E3SM-MMF.

In the E3SM-MMF framework, the sequencing of atmospheric processes can be conceptualized
as follows. It starts with a surface coupling step that receives fluxes from the surface component
models (i.e., land, ocean, and sea ice). This is followed by a set of relatively inexpensive physics
parameterizations that handle processes such as airplane emissions, boundary layer mixing, and
unresolved gravity waves. The global dynamics then takes over to evolve the winds and advect tracers
on the global grid. Finally, there is another set of physics calculations to handle clouds, chemistry,
and radiation, which are relatively expensive. This final physics section is where the embedded CRM
of E3SM-MMF is used, and is the ideal target for surrogate model emulation due to its outsized
computational expense. Accordingly, this step represents the target of ClimSim.

One area where E3SM-MMF significantly differs from E3SMv2 is in the treatment of aerosols and
chemistry. The embedded CRM in E3SM-MMF predicts the mass of water species (i.e., cloud and
rain droplet mass mixing ratios) but does not predict the number concentration (i.e., number of
drops per mass of air). One consequence of this limitation is that E3SM-MMF cannot represent
complex cloud aerosol interactions that can impact droplet number concentrations and cloud radiative
feedbacks. Therefore, E3SM-MMF cannot use the more sophisticated aerosol and chemistry package
used by E3SMv2, and instead uses prescribed aerosol and ozone amounts to account for the direct
radiative impact of these tracers. Current efforts are addressing this limitation for future versions of
E3SM-MMF.
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1.2 Model Configurations

The simulations used for ClimSim were performed on the NERSC Perlmutter machine. E3SM-
MMF is unique among climate models in that it can leverage hybrid CPU/GPU architectures on
machines such as NERSC Perlmutter (https://www.nersc.gov/systems/perlmutter), which
has 4 NVIDIA A100 GPUs per node. All simulations were configured to run with 4 MPI ranks
and 16 OpenMP threads per node. The low-resolution (real geography and aquaplanet) cases used
2 nodes, and the high-resolution (real geography) case used 32 nodes. The throughput of these
configurations was roughly 11.5 simulated years per day (sypd) for low-resolution cases and 3.3 sypd
for the high-resolution case, averaged over multiple batch submissions. The total simulation length in
all cases was 10 model years and 2 model months.

Boundary conditions over maritime regions are constrained by prescribed sea surface temperatures and
sea ice amount. Various input data are needed for the cases with realistic topography, such as ozone
concentrations and sea surface temperatures, which have been generated to reflect a climatological
average of the 2005-2014 period. The aquaplanet configuration does not have a land component, but
otherwise has similar input requirements using idealized data to produce a climate that is symmetric
along lines of constant latitude.

2 Dataset and Code Access

2.1 Code Access

Following NeurIPS Dataset and Benchmark Track guidelines, we have uploaded our datasets to
Hugging Face:

• E3SM-MMF High-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_high-res

• E3SM-MMF Low-Resolution Real Geography dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res

• E3SM-MMF Low-Resolution Aquaplanet dataset:
https://huggingface.co/datasets/LEAP/ClimSim_low-res_aqua-planet

We have documented all code (including the code to preprocess the data, create, train, and evaluate
the baseline models, and visualize data and metrics) in an openly-available GitHub repository:
https://leap-stc.github.io/ClimSim.

2.2 Variable List

All variables included in our dataset are listed in Table 1.

2.3 Dataset Statistics

Here, we present some distribution statistics to aid in understanding the dataset. Detailed distribu-
tions for all variables are provided in https://github.com/leap-stc/ClimSim/tree/main/

dataset_statistics. These statistics are calculated for each vertical level individually for the
vertically-resolved variables (e.g., state_t and state_q0001). For each variable (additionally, at
each level for the vertically-resolved variables), a histogram is provided to visualize the distribution
using 100 bins. Additionally, a text file accompanies each histogram, containing key statistical mea-
sures such as the mean, standard deviation, skewness, kurtosis, median, deciles, quartiles, minimum,
maximum, and mode. The text file also includes the bin edges and the corresponding frequency
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In Out Variable Dimensions Units Description

⇥ pbuf_SOLIN ncol W/m2 Solar insolation

⇥ pbuf_COSZRS ncol Cosine of solar zenith angle

⇥ pbuf_LHFLX ncol W/m2 Surface latent heat flux

⇥ pbuf_SHFLX ncol W/m2 Surface sensible heat flux

⇥ pbuf_TAUX ncol W/m2 Zonal surface stress

⇥ pbuf_TAUY ncol W/m2 Meridional surface stress

⇥ pbuf_ozone lev, ncol mol/mol Ozone volume mixing ratio

⇥ pbuf_N2O lev, ncol mol/mol Nitrous oxide volume mixing ratio

⇥ pbuf_CH4 lev, ncol mol/mol Methane volume mixing ratio

⇥ state_ps ncol Pa Surface pressure

⇥ ⇥ state_q0001 lev, ncol kg/kg Specific humidity

⇥ ⇥ state_q0002 lev, ncol kg/kg Cloud liquid mixing ratio

⇥ ⇥ state_q0003 lev, ncol kg/kg Cloud ice mixing ratio

⇥ ⇥ state_t lev, ncol K Air temperature

⇥ ⇥ state_u lev, ncol m/s Zonal wind speed

⇥ ⇥ state_v lev, ncol m/s Meridional wind speed

⇥ state_pmid lev, ncol Pa Mid-level pressure

⇥ cam_in_ASDIR ncol Albedo for direct shortwave radiation

⇥ cam_in_ASDIF ncol Albedo for diffuse shortwave radiation

⇥ cam_in_ALDIR ncol Albedo for direct longwave radiation

⇥ cam_in_ALDIF ncol Albedo for diffuse longwave radiation

⇥ cam_in_LWUP ncol W/m2 Upward longwave flux

⇥ cam_in_SNOWHLAND ncol m Snow depth over land (liquid water equivalent)

⇥ cam_in_SNOWHICE ncol m Snow depth over ice

⇥ cam_in_LANDFRAC ncol Land area fraction

⇥ cam_in_ICEFRAC ncol Sea-ice area fraction

⇥ cam_out_NETSW ncol W/m2 Net shortwave flux at surface

⇥ cam_out_FLWDS ncol W/m2 Downward longwave flux at surface

⇥ cam_out_PRECSC ncol m/s Snow rate (liquid water equivalent)

⇥ cam_out_PRECC ncol m/s Rain rate

⇥ cam_out_SOLS ncol W/m2 Downward visible direct solar flux to surface

⇥ cam_out_SOLL ncol W/m2 Downward near-IR direct solar flux to surface

⇥ cam_out_SOLSD ncol W/m2 Downward visible diffuse solar flux to surface

⇥ cam_out_SOLLD ncol W/m2 Downward near-IR diffuse solar flux to surface

Table 1: Overview of input variables (first column) and output variables (second column) of the
E3SM-MMF physics calculations (including the CRM) that are stored in ClimSim. The other
columns indicate the variable name, dimensions, units, and a brief description. IR is short for
infrared, which is also often referred to as “longwave” radiation among atmospheric scientists.
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values used to generate the histogram figures. This comprehensive approach allows for a detailed
analysis of the dataset’s distributions.

2.4 Dataset Applications

Our data can benefit a broader audience beyond climate modelers wishing to explore ML for sub-grid
parameterization. For climate studies, while high-frequency timestep-level outputs from simulations
are rarely archived, they offer insights into convective extremes and diurnal variability. Such data
opens the path to explore multi-scale interactions between rapid dynamics and broader weather and
climate fluctuations. This includes a detailed examination of variables needed to constrain vertically
resolved energy and water budgets and understand their variability. For the machine learning
community, this dataset addresses the scarcity of large-scale regression benchmarks, common in the
sciences. Such benchmarks are less common compared to prevalent industrial datasets that emphasize
classification, computer vision, and NLP tasks.

2.5 Target Audiences

In essence, this benchmark aims to democratize and expand access to advanced climate modeling.
High-potential architectures will undergo testing in the superparameterized version of the DOE’s
primary climate model, E3SM. Successful integration would substantially reduce computational
costs for the DOE when contemplating the deployment of MMF technology in climate prediction.
E3SM’s external user community, typically deterred by the extensive computational demands of
superparameterized simulators, also stands to benefit. Currently, only a minority with substantial
computing resources can engage with such models. A successful recipe for ClimSim could thus
democratize the use of explicit convection for a broader user base. If performant architectures also
prove effective in the NCAR Community Earth System Model (CESM) - the world’s most widely
used open source climate simulator - the user base could expand significantly. Given its software
similarities to E3SM, it is logical to expect that ClimSim’s learnt parameterizations will be readily
adaptable to CESM. Moreover, we anticipate that a successful hybrid machine learning climate
simulator will bring benefits to a diverse range of industry sectors, including those vulnerable to
climate risks (such as agriculture, energy, and tourism), as well as the climate risk industry itself
(such as insurance and risk assessment).

3 Baseline Models

This section offers a detailed depiction of six baseline models. Every facet of model designs,
excluding the dimensions of the input and output layers, differs among the models. We recognize that
while this approach maximizes the differentiation among baseline models, such extensive degrees
of freedom complicate the complete isolation of the effects arising from optimization parameter
choices and those originating from the model architecture itself. In future ClimSim releases, baseline
models will share more constraints (including optimization parameters) to highlight the performance
difference due to model architectures.

3.1 Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) is a basic, densely connected artificial neural network. We used
KerasTuner [7] with a random search algorithm for hyperparameter optimization. The following
hyperparameters were optimized: the number of hidden layers (N layers), the number of nodes per
layer (Nnodes), activation function, and batch size. The search domains were:

• N layers: [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
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• Nnodes: [128, 256, 384, 512, 640, 768, 896, 1024]

• Activation function: [ReLU, LeakyReLU (↵ = 0.15), eLU (↵ = 1.0)]

• Batch size: [48, 96, 192, 384, 768, 1152, 1536, 2304, 3072]

• Optimizer: [Adam, RAdam, RMSprop, SGD]

Note that Nnodes was selected independently for each hidden layer. For example, for N layers = k,
Nnodes was drawn from the search domain k times. The width of the last hidden layer was fixed at
128. The output layer utilized the linear activation function for the first 120 outputs (corresponding
to the heating and moistening tendencies), and ReLU for the remaining 8 variables (corresponding
positive-definite surface variables). The loss function was taken as the mean squared error (MSE),
and the learning rate was defined using a cyclic scheduler, with an initial learning rate of 2.5 ⇥ 10-4,
maximum of 2.5 ⇥ 10-3, and step size of 4 epochs.

Following Yu et al. (2023) [8], we conducted the hyperparameter search in two stages. In the first
stage, a total of 8,257 randomly-drawn hyperparameter configurations were trained and evaluated
with a tiny subset of the full training set, sub-sampled in the time dimension with a stride of 37. In
the second stage, the top 0.2% candidates (160 hyperparameter configurations) were re-trained with a
larger fraction of the full training set (sub-sampled with a stride of 7), and then evaluated for our MLP
baseline. After this two-step search process, the best hyperparameter configuration was identified as:
N layers = 5, Nnodes = [768, 640, 512, 640, 640], LeakyReLU activation, a batch size of 3,072, and
RAdam optimizer. The MLP baseline has approximately 1.75 million parameters and executes 3.50
MFlops on one data point, the architecture of which is summarized in Figure 1.

To provide some context on the amount of variance in model performance that can be attributed to
random effects of optimization, the top 160 models were selected from our pool of 8,257 trials and
scored on the validation set; the 5th to 95th percentile range of this ensemble is shown by the error
bars in Figures 2a and SI3, and by the grey shading in Figures 2b-e, SI4, and SI5.

MLP with expanded features and targets: We built MLP with an expanded set of input and output
variables, as elaborated in Section 4.2 of the main text. For the sake of clarity, we designate an
MLP model employing the subset of available variables (outlined in Section 4 of the main text) as
"MLPv1," while an MLP model utilizing the expanded variables is referred to as "MLPv2." The
hyperparameter optimization for MLPv2 followed a similar process as MLPv1, with the exception
that the search domain of batch size was defined as [2700, 5400, 10800, 21600, 43200, 64800, 86400,
129600, 172800]. After 11,851 search trials, the best hyperparameter configuration was identified as:
N layers = 3, Nnodes = [384, 1024, 640], ReLU activation, a batch size of 2,304, and Adam optimizer.
The MLPv2 baseline has approximately 1.59 million parameters and executes 3.17 MFlops on one
data point.

MLP with the high-resolution dataset: In conjunction with the MLP featuring expanded features
and targets, we also constructed MLP models using the high-resolution dataset for both MLPv1
and MLPv2. To differentiate these models from those constructed with the low-resolution dataset,
we add the suffix "-ne30" to their names. The hyperparameters for MLPv1-ne30 and MLPv2-ne30
were optimized using the same methodology as was applied to their low-resolution counterparts.
For MLPv1-ne30, after 10,296 search trials, the best hyperparameter configuration was identified
as: N layers = 4, Nnodes = [1024, 128, 128, 768], leaky ReLU activation, a batch size of 5,400, and
Adam optimizer. The MLPv1-ne30 baseline has approximately 0.49 million parameters and executes
0.98 MFlops on one data point. For MLPv2-ne30, after 10,440 search trials, the best hyperparameter
configuration was identified as: N layers = 3, Nnodes = [640, 128, 1024], ReLU activation, a batch size
of 2,700, and Adam optimizer. The MLPv2-ne30 baseline has approximately 1.00 million parameters
and executes 2.00 MFlops on one data point.
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Figure 1: The architecture of the MLP baseline model.

The model performance comparison between MLPv1, MLPv2, MLPv1-ne30, and MLPv2-ne30 is
presented in SI Section 8.1.

3.2 Randomized Prior Network (RPN)

A randomized prior network (RPN) is an ensemble model [9]. Each member of the RPN is built as
the sum of a trainable and a non-trainable (so-called “prior”) surrogate model; we used MLP for
simplicity. Multiple replicas of the networks are constructed by independent and random sampling of
both trainable and non-trainable parameters [10, 11]. RPNs also resort to data bootstrapping in order
to mitigate the uncertainty collapse of the ensemble method when tested beyond the training data
points [11]. Data bootstrapping consists of sub-sampling and randomization of the data each network
in the ensemble sees during training. Hyperparameters of individual MLPs (i.e., N layers, Nnodes, batch
size) did not need to be tuned from scratch, and were instead chosen based on the hyperparameter
search mentioned in Section 3.1. RPN ensembles of 128 networks were considered justified [10].
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In particular, individual MLPs forming the RPN were considered as fully connected neural networks
with N layers = 5, Nnodes = [768, 640, 512, 640, 640], and a batch size of 3,072, as in Section 3.1. We
utilized ReLU activation (with a negative slope of 0.15) for all layers except for the output layer,
where the linear activation function was used.

The MLPs were trained for a total of 13,140 stochastic gradient descent (SGD) steps using the Adam
optimizer. The learning rate was initialized at 5 ⇥ 10-4 with an exponential decay at a rate of 0.99 for
every 1,000 steps. The RPN baseline has approximately 222.3 million parameters (⇠1.74 million per
MLP) and executes 0.89 GFlops on one data point.

3.3 Convolutional Neural Network (CNN)

The convolutional neural network (CNN) used is a modified version of a residual network (ResNet).
Each ResNet block is composed of two, 1D convolutions (Conv1D) with a 3 ⇥ 3 kernel using “same”
padding, and an output feature map size of 406. Each Conv1D is followed by ReLU activation and
dropout (with rate = 0.175). Residuals were also 1D convolved using a 1 ⇥ 1 kernel, and added back
to the output of the main ResNet block.

The CNN composes 12 such ResNet blocks, followed by “flattening” of the feature map via a 1 ⇥
1 convolution and eLU activation. Two separate Dense layers (and their corresponding activations)
map the output feature map to their respective co-domains: one to (�1,1) assuming that vertically-
resolved variables have no defined range, and another to [0,1) for all globally-resolved variables.
These were concatenated as the output of the network.

A hyperparameter search was conducted on depth, width, kernel size, activation functions, loss
functions, and normalization types using the Hyperband [12] strategy with the KerasTuner [7]
framework. The search domains were:

• Model depth/number of ResNet blocks: [2, 15]

• Model width: [32, 512]

• Kernel width: [3, 5, 7, 9]

• Activation function: [GeLU, eLU, ReLU, Swish]

• Layer normalization: [True, False]

• Dropout: [0.0, 0.5]

• Optimizer: [SGD, Adam]

The CNN was trained for 10 epochs with an Adam optimizer with standard hyperparameters (�1 =
0.9, �2 = 0.999, ✏ = 1 ⇥ 10�7). The learning rate was defined using a cyclic scheduler, with an
initial learning rate of 1 ⇥ 10-4, a maximum of 1 ⇥ 10-3, and a step size of 2 ⇥b 10,091,520

12 c. A scaling
function of 1

2.0x�1 was applied to the scheduler per step x.

The hyperparameter search was conducted for 12 hours on 8 NVIDIA Tesla V100 32GB cards, with
one model executing on each card. A weighted mean absolute error (MAE) was used as the loss
function for optimization. We down-weighted the standard MAE loss to de-emphasize repeated scalar
values provided to the network as input. The weighted MAE function is defined below:

def mae_adjusted(y_true , y_pred):
abs_error = K.abs(y_pred - y_true)
vertical_weights = K.mean(abs_error[:,:,0:2])*(120/128)
scalar_weights = K.mean(abs_error[:,:,2:10])*(8/128)
return vertical_weights + scalar_weights
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The CNN baseline has approximately 13.2 million parameters and executes 1.59 GFlops on one data
point. The architecture is visualized below in Figure 2.

Figure 2: The ResNet-style CNN baseline is comprised of multiple ResNet blocks (i.e., DoubleConv),
and applies different activation to the outputs for vertically-resolved and global variables. The

channel dimensions are [in_channels, hidden_ch, out_ch, vert_ch, scalar_ch] = [6, 406, 10, 8, 2].

3.4 Heteroskedastic Regression (HSR)

We quantified the inherent stochasticity in the data D = {(x1,y1), . . . , (xn,yn)}, and the uncertainty
in our prediction by providing a distributional prediction instead of a point estimate. In hetereoskedas-
tic regression (HSR), this predictive distribution is modeled explicitly; here as independent Gaussians
with unique mean µk and precision (inverse variance) ⌧k for each variable. We assumed

yi |xi ⇠ N (µ(xi),Diag(⌧(xi)
�1)),

and parameterized both µ and ⌧ as over-parameterized feed-forward neural networks (i.e., MLPs)
µ̂✓(x) and ⌧̂�(x), respectively. This yielded the corresponding predictive distribution

ŷi |xi ⇠ N (µ̂✓(xi),Diag(⌧̂✓(xi)
�1)),

which was fitted with maximum likelihood estimation (MLE) by minimizing the objective

L(✓,�) = 1

2n

nX

i=1

h
k⌧̂�(xi) (yi � µ̂✓(xi))k22 � 1T log (µ̂✓(xi))

i
.

Note that, due to the flexibility of the neural networks, this formulation is ill-posed. It may lead
to cases of extreme overfitting where ⌧̂�(xi) ⇡ yi, ⌧̂�(xi) ⇡ 0, thus making L(✓,�) completely
unstable. Hence, we instead minimized a modified objective that included L2-regularization via

L⇢,�(✓,�) := ⇢L(✓,�) + (1� ⇢)
h
� k✓k22 + (1� �) k�k22

i
,

where ⇢, � 2 (0, 1) determines the trade-off between MLE estimation, mean regularization, and
precision regularization. We follow [13] and set ⇢ = 1 � � to reduce the hyperparameter search
domain.

Specifically, we used two MLPs with layer normalization and ReLU activation, and trained them
with gradient-based stochastic optimization. To improve stability, the first third of training was

11



spent on exclusively training µ̂✓(xi) with an MSE loss. To optimize hyperparameters, we selected a
configuration from 300 trials with a random number of N layers = [2, 3, 4], Nnodes = [256, 512, 1,024,
2,048], � (log-uniform in [0.001, 0.1]), optimizer = [SGD, Adam] with hyperparameters (�1 = 0.9,
�2 = 0.999), learning rate � (log-uniform in [10-6, 10-3]), and batch size = [1024, 2048, 4096, 8192,
16384]. Each run was trained for 12 epochs total on one NVIDIA GeForce RTX 4080 16GB. We
chose the run with the lowest CRPS on the validation data, yielding N layers = 4, Nnodes = 1,024,
� = 2.2⇥ 10�2, � = 7⇥ 10�6, and a batch size of 16,384, trained with Adam. The HSR baseline
has approximately 6.63 million parameters and executes 6.85 MFlops per data point.

3.5 Conditional Variational Autoencoder (cVAE)

A conditional generative latent variable model first samples—from a prior p(z)—a point z in a
low-dimensional latent space, which then informs a conditional distribution p✓(y|z,x) over the
target domain. This allows for a complex and flexible predictive distribution. In our case, we used
feed-forward neural networks (i.e., MLPs) µ✓(z,x) and �✓(z,x) with combined parameters ✓ and
model:

z ⇠ N (0, I)
y|z,x ⇠ N

�
µ✓(z,x),Diag(�✓(x)

2)
� (2)

To fit the model to data D = {(x1,y1), . . . , (xn,yn)}, we minimized the negative evidence lower
bound (NELBO) L✓(q) that bounds the intractable negative marginal likelihood from above via

L✓(q) := �Ezi⇠q


log

p✓(yi, zi|xi)

q(zi|xi)

�
= � log p✓(yi|xi) + KL

�
q k p✓(zi|yi,xi)

�
| {z }

�0

,

using an approximation q to the posterior p✓(zi|yi,xi). The conditional variational autoencoder
(cVAE) [14] uses amortized variational inference to optimize ✓ and q jointly by approximating the
latter with e.g., q (zi) = N

�
g (xi),Diag(h (xi)2)

�
, where we again chose g (xi) and h (xi) to

be MLPs. This allowed us to optimize for ✓ and  by minimizing

L✓(q)
�=1
= Ezi⇠q 

"
1

2

����
yi � µ✓(zi,xi)

�✓(zi,xi)

����
2

2

+ 1T log (�✓(zi,xi))

#
+ �KL(q (zi) k p(zi)) + const

with a Monte Carlo approximation by first sampling zi (once) from the variational encoder q (zi).
After which, we decoded the predictive mean and standard deviation with the variational decoder
µ✓(z,x) and �✓(z,x). We then computed NELBO as a sum of a reconstruction term and a KL
term that regularizes the latent space, averaged over all samples, and back-propagated the gradients.
By letting � be a hyperparameter, we manually determined the trade-off between reconstruction
quality and latent space structure. Finally, at inference time, we used Equation 2 to sample from the
predictive distribution

p✓(ŷ|x) =
Z

p✓(ŷ|x, z)p(z) dz.

For both the variational encoder and decoder, we used an MLP with layer normalization, ReLU
activation, dropout with p = 0.05, and two branching final layers that produced the mean and
standard deviation, respectively. We trained both MLPs jointly—with gradient-based stochastic
optimization—on the objective described above.

To optimize hyperparameters, we ran 300 trials with a random number of hidden layers N layers = [2, 3,
4], Nnodes = [256, 512, 1024, 2048], size of the latent space = [4, 8, 16, 32], � (log-uniform in [0.01,
10]), optimizer = [SGD, Adam] with (�1 = 0.9, �2 = 0.0999), learning rate � (log-uniform in [10-6,
10-3]), L2 regularization ↵ (log-uniform in [10-6, 10-3]), and batch size = [1024, 2048, 4096, 8192,
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16384]. Each run was trained for 5 epochs total on one NVIDIA GeForce RTX 4080 16GB. The run
with the lowest CRPS on the validation data yielded N layers = 3, Nnodes = 1,024, and a batch size of
4,096, trained with Adam. In a second step, we fixed these hyperparameters and further fine-tuned �,
�, and ↵ by training for 20 epochs every time, for 10 trials. We found the best model with � = 0.5,
� = 5⇥10�5, ↵ = 10�3. The cVAE baseline has approximately 4.9 million parameters and executes
4.88 MFlops per data point.

3.6 Encoder-Decoder (ED)

The Encoder-Decoder (ED) is an adjusted version of the ED presented in Behrens et al. (2022) [15].
We keep all tuneable hyperparameters except for the learning rate and the node sizes of input and
output layer of ED fixed to the original values that were optimized with a detailed hyperparameter
search for the superparameterization of the Community Atmosphere Model version 3 in an aquaplanet
setup [15]. The Encoder consists of 6 hidden fully-connected layers. The Encoder decreases
progressively the dimensionality of the input variables down to 5 nodes in the latent space of the
network. These 5 latent nodes are the only input to the decoding part of ED. The Decoder maps the
information from the latent space back to 128 nodes in the output layer through 6 progressively wider
fully-connected hidden layers [15]. We train ED over 40 epochs with a learning rate step after each
7th epoch, which reduces the learning rate by factor 5 [15]. The adjusted initial learning rate has a
value of 1 ⇥ 10�4. The batch size has a value of 714 samples. As activation functions of all hidden
layers we use ReLU and the output layer of the Decoder is ELU-activated [15]. As an optimizer
during training we use Adam. As a loss function of ED we use a MSE loss and as additional metric
the MAE during training. The following list summarizes the key hyperparameters of ED:

• Learning rate: 1 ⇥ 10�4, learning rate decrease after every 7th epoch

• Batch size: 714

• Latent space width: 5 Nodes

• Encoder node size: [124, 463, 463, 232, 116, 58, 29, 5]

• Decoder node size: [5, 29, 58, 116, 232, 463, 463, 128]

• Encoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU]

• Decoder activation functions: [Input, ReLU, ReLU, ReLU, ReLU, ReLU, ReLU, ELU]

• Optimizer: Adam

To prevent overfitting we shuffle the training data set before each epoch. ED baseline has approxi-
mately 832,000 parameters, with 415,000 parameters in the Encoder and 417,000 parameters in the
Decoder. In total, ED executes 1.66 MFlops per data point, with 829 kFLops per data point for the
Encoder and 832 kFlops per data point for the Decoder.

3.7 Inference Cost

CNN ED HSR MLP RPN cVAE

Number of Parameters 13,200,000 832,000 6,630,000 1,750,000 222,300,000 4,900,000
MFlops Per Data Point 1590 1.66 6.85 3.50 890 4.88

Table 2: The number of learnable parameters and Megaflops (MFlops) per data point for each of the
six baseline models.
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4 Baseline Model Evaluations

4.1 Metrics

4.1.1 Deterministic Metrics

Mean Absolute Error (MAE):

MAE =
1

n

nX

i=1

|Xi � y| (3)

Root Mean Squared Error (RMSE):

RMSE =

vuut 1

n

nX

i=1

(Xi � y)2 (4)

Coefficient of Determination (R2):

R2 = 1�
Pn

i=1(Xi � y)2Pn
i=1(Xi � X̄)2

(5)

In Equations 3–5, Xi and y represent the true and predicted values, respectively. The mean of the
true values of the dependent variable is denoted by X̄ .

4.1.2 Stochastic Metric (CRPS)

The continuous ranked probability score (CRPS) is a generalization of the MAE for distributional
predictions. CRPS penalizes over-confidence in addition to inaccuracy in ensemble predictions—a
lower CRPS is better. For each variable, it compares the ground truth target y with the cumulative
distribution function (CDF) F of the prediction via

CRPS(F, y) :=

Z �
F (x)� 1{x�y}

�2
dx

= E[|X � y|]� 1

2
E[|X �X 0|],

where X,X 0 ⇠ F are independent and identically distributed (iid) samples from the distributional
prediction. We use the non-parametric “fair estimate to the CRPS” [16], estimating F with the
empirical CDF of n = 32 iid samples Xi ⇠ F :

ˆCRPS(X, y) :=
1

n

nX

i=1

|Xi � y|� 1

2n(n� 1)

nX

i=1

nX

j=1

|Xi �Xj | (6)

The first term in Equation 6 is the MAE between the target and samples of the predictive distribution,
while the second term is small for small predictive variances, vanishing completely for point estimates.
Note that this definition extends to ensemble models, where we take the prediction of each ensemble
member as a sample of an implicit predictive distribution.

4.2 Results

MAE and R2 of the baseline models are presented in the main text (e.g., Table 1 and Figure 2 in the
main text). Here, we show RMSE and CRPS in Table 3 and Figures 3, 4, and 5.

We also present the spatial structure of the metrics. Figure 6 shows the latitude-height structure of R2.
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Variable RMSE [W/m2] CRPS [W/m2]
CNN ED HSR MLP RPN cVAE CNN ED HSR MLP RPN cVAE

dT/dt 4.369 4.696 4.825 4.421 4.482 4.721 – – 2.158 – 2.305 2.708
dq/dt 7.284 7.643 7.896 7.322 7.518 7.780 – – 3.645 – 4.100 4.565
NETSW 36.91 28.537 37.77 26.71 33.60 38.36 – – 14.62 – 14.82 20.53
FLWDS 10.86 9.070 8.220 6.969 7.914 8.530 – – 4.561 – 4.430 6.732
PRECSC 6.001 5.078 6.095 4.734 5.511 6.182 – – 2.905 – 2.729 3.513
PRECC 85.31 76.682 90.64 72.88 76.58 88.71 – – 34.30 – 30.08 40.17
SOLS 22.92 17.999 23.61 17.40 20.61 23.27 – – 8.369 – 8.309 11.91
SOLL 27.25 22.540 27.78 21.95 25.22 27.81 – – 10.14 – 10.49 14.42
SOLSD 12.13 9.917 12.40 9.420 11.00 12.64 – – 4.773 – 4.649 5.945
SOLLD 12.10 10.417 12.47 10.12 11.25 12.63 – – 4.599 – 4.682 5.925

Table 3: Globally-averaged RMSE and CRPS. Each metric is calculated at each grid point, then
horizontally-averaged and (for dT/dt and dq/dt) vertically-averaged. The units of non-energy flux

variables are converted to a common energy unit, W/m2, following Section 5.2. Best model
performance for each variable is highlighted in bold.

Figure 3: Averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS. Each metric is calculated at each
grid point, then horizontally-averaged and (for dT/dt and dq/dt) vertically-averaged. For MAE,
RMSE, and CRPS, the units of non-energy flux variables are converted to a common energy unit,

W/m2, following Section 5.2. Negative values are not shown for R2. Error bars show the 5- to
95-percentile range of MLP.
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Figure 4: Vertical structures of horizontally-averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS of
dT/dt. For MAE, RMSE, and CRPS, the units of non-energy flux variables are converted to a

common energy unit, W/m2, following Section 5.2. Negative values are not shown for R2. Grey
shadings show the 5- to 95-percentile range of MLP.

Figure 5: The vertical structures of horizontally-averaged (a) MAE, (b) RMSE, (c) R2, and (d) CRPS
of dq/dt. For MAE, RMSE, and CRPS, the units of non-energy flux variables are converted to a
common energy unit, W/m2, following Section 5.2. Negative values are not shown for R2. Grey

shadings show the 5- to 95-percentile range of MLP.
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Figure 6: R2 of daily-mean, zonal-mean (a) heating tendency and (b) moistening tendency. Yellow
contours surround regions of > .9R2 while orange contours surround regions of > .7R2. Negative
values are not plotted (white). Sin(latitude) is used for x-axis to account for the curvature of Earth.

The pressure levels on Y-axis are approximated values.

4.3 Fit Quality

Scatter plots of truth versus prediction are shown in this section (Figures SI9 to SI16 in SI Section 8).
While many variables exhibit consistent fit quality, some show notable variability between baselines,
as seen with snow precipitation rate predictions. The performance of our optimized deterministic
baseline (MLP) suggests these issues are avoidable. However, note that our prediction problem has a
multi-variate and multi-dimensional nature.

5 Guidance

5.1 Physical Constraints

Mass and energy conservation are important criteria for Earth system modeling. If these terms are not
conserved, errors in estimating sea level rise or temperature change over time may become as large as
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the signals we hope to measure. Enforcing conservation on emulated results helps constrain results to
be physically plausible and reduce the potential for errors accumulating over long time scales.

In the atmospheric component of the E3SM climate model, mass is composed of “dry air” (i.e.,
well-mixed gases such as molecular nitrogen and oxygen) and water vapor. During the physics
parameterizations we seek to emulate, there is no lateral exchange of mass across columns of the
host model, and the model assumes that the total mass in each column and level remains unchanged.
Thus, while surface pressure (state_ps) is part of the state structure we seek to emulate, that surface
pressure component must be held fixed. The water mass, however, is not held fixed, requiring fictitious
sources and sinks of dry air, which are corrected later in the model—outside of the “emulated” part
of the code—and is not addressed within the emulator.

Changes in column water mass should balance the sources and sinks of water into and out of the
column through surface fluxes. The surface source of water is an input to the emulator via the cam_in
structure. The surface sink of water is generated by the model, and hence emulated in our case. The
net surface water flux (source minus sink) should be equal to the tendency of water mass within
the column (7). The mass of water is held in five separate terms within the state structure: water
vapor (qv), cloud liquid condensate (ql), cloud ice (qi), rain (qr), and snow (qs). These terms are
held as ratios of their mass to the sum of dry air plus water vapor (referred to as specific humidity).
The “�” refers to the difference (after minus before computation) in each quantity owing to the CRM
physics. The layer mass (sum of dry air and water vapor) of level k is equal to the pressure thickness
of that layer �pi (the difference between top and bottom interface pressure for level i) divided by the
gravitational acceleration g (assumed constant). The timestep length is �t. In addition to conserving
water mass, we required each individual water constituent to remain greater than or equal to zero in
every layer within the column. In Equation 7, E is the surface source of water (evapotranspiration)
and P is the surface sink of water (precipitation):

X

i

(�qv + �ql + �qi + �qr + �qs)
�pi
g�t

= E � P (7)

For the portion of the code that we try to emulate, the water source E is not applied such that
the only surface flux to account for when constraining water conservation is the precipitation flux
(P , cam_out_PRECC). Unfortunately, only the input and output state variables for water vapor
(state_q0001), cloud liquid (state_q0002), and cloud ice (state_q0003) are available. Addi-
tional storage terms related to precipitating water that have not exited the column over the course of a
model timestep are unavailable in the current output. Therefore, we are unable to exactly enforce
water conservation. Estimates show relative errors of a couple percent resulting from the lack of these
precipitation mixing ratios. We can still require that the relative error be small. To accomplish this,
we compared the “expected” total water, based on the combination of the input and surface fluxes,
to the predicted total water. In the equations below, superscript o denotes output and superscript i
denotes input:

Total Water (Actual) =
X

i

(�qov + �qol + �qoi )
�pi
g

Total Water (Expected) =
X

i

�
�qiv + �qil + �qii

� �pi
g

� P �t

Relative Error =
Total Water (Expected)� Total Water (Actual)

Total Water (Actual)
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We required the model to keep the relative error small (e.g., below 5%). Anything further is beyond
the limit of the current data.

Like mass conservation, energy conservation can generally be enforced by requiring that the total
change within the column is exactly balanced by the fluxes into and out of that column. Because the
emulator does not predict upwelling radiative fluxes at the model top (a sink term for energy), we
do not have the boundary conditions necessary to constrain column energy tendencies. However,
we still required certain criteria be met for physical consistency. First, the downwelling surface
shortwave radiative flux cannot exceed the downwelling shortwave flux at the model top (prescribed
input pbuf_SOLIN). Likewise, the net surface shortwave flux should also be bounded between zero
(100% reflection) and the surface downwelling shortwave flux (100% absorption). Additionally,
the downwelling longwave flux should not exceed the blackbody radiative flux from the warmest
temperature in the column.

5.2 Unit Conversion and Weighting for Interpretable Evaluation

To facilitate the objective evaluation of the model’s prediction, we provided a weight tensor of shape
(do, Nx) to convert raw outputs to area-weighted outputs with consistent energy flux units [W/m2].
More details are given below.

To ensure that our evaluation takes the Earth’s spherical geometry into account, we designed an area
weighting factor a that depends on the horizontal position x:

a (x) = Acol (x) / hAcolix

where Acol is the area of an atmospheric column and hAcolix the horizontal average of all atmospheric
columns’ areas. This formula gives more weight to outputs if their grid cell has a larger horizontal
area. To ensure that our evaluation is physically-consistent, we convert all predicted variables to
energy flux units

⇥
W/m2

⇤
(power per unit area). This has to be done for each variable separately.

• For heating tendencies Ṫ [K/s], which depends on the horizontal position x and vertical
level lev, this was be done using the specific heat capacity constant at constant pressure
cp [J/ (K⇥ kg)], where �pi [Pa] is the layer’s pressure thickness, calculated as the differ-
ence between the pressure at the layer’s top and bottom interfaces:

Ṫ
⇥
W/m2

⇤
=

cp
g

⇥ a (x)⇥�pi (lev)⇥ Ṫ [K/s]

• For water concentration tendencies q̇
⇥
s�1

⇤
, which also depends on x and lev, this was be

done using the latent heat of vaporization of water vapor at constant pressure Lv [J/kg]:

q̇
⇥
W/m2

⇤
=

Lv

g
⇥ a (x)⇥�pi (lev)⇥ q̇

⇥
s�1

⇤

Note that there is some level of arbitrariness, as the exact latent heat depends on which water
phase is assumed to calculate the energy transfer. Here, we chose to weigh all phases using
Lv to give them comparable weights in the evaluation metrics.

• For momentum tendencies u̇
⇥
m/s2

⇤
, which also depend on x and lev, we used a charac-

teristic wind magnitude |U | [m/s] to convert these tendencies into turbulent kinetic energy
fluxes, in units W/m2, making them comparable to Ṫ

⇥
W/m2

⇤
and q̇

⇥
W/m2

⇤
:

u̇
⇥
W/m2

⇤
=

|U |
g

⇥ a (x)⇥�pi (lev)⇥ u̇
h
m/s2

i
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Note that there is some level of arbitrariness in the choice of |U | [m/s], which could e.g., be
chosen so that the variances of u̇

⇥
W/m2

⇤
and Ṫ

⇥
W/m2

⇤
are comparable.

• Precipitation rate variables P [m/s] were also be converted to energy fluxes using Lv and
the density of liquid water ⇢w

⇥
kg/m3

⇤
(or the density of snow/ice for solid precipitation),

though they do not require vertical integration:

P
⇥
W/m2

⇤
= Lv ⇥ ⇢w ⇥ a (x)⇥ P [m/s]

• Finally, surface energy fluxes F
⇥
W/m2

⇤
were simply multiplied by a (x) to account for

area-weighting.

Note that while these choices ensured unit consistency, facilitating the physical interpretation of our
evaluation metrics, we recommend tailoring the exact choice of physical constants to the application
of interest.

5.3 Additional Guidance

Stochasticity and Memory: The results of the embedded convection calculations regulating do come
from a chaotic dynamical system and thus could be worthy of architectures and metrics beyond the
deterministic baselines in this paper. These solutions are likewise sensitive to sub-grid initial state
variables from an interior nested spatial dimension that have not been included in our data.

Temporal Locality: Incorporating the previous timesteps’ target or feature in the input vector
inflation could be beneficial as it captures some information about this convective memory and
utilizes temporal autocorrelations present in atmospheric data.

Causal Pruning: A systematic and quantitative pruning of the input vector based on objectively
assessed causal relationships to subsets of the target vector has been proposed as an attractive
preprocessing strategy, as it helps remove spurious correlations due to confounding variables and
optimize the machine learning (ML) algorithm [17].

Normalization: Normalization that goes beyond removing vertical structure could be strategic,
such as removing the geographical mean (e.g., latitudinal, land/sea structure) or composite seasonal
variances (e.g., local smoothed annual cycle) present in the data. For variables exhibiting exponential
variation and approaching zero at the highest level (e.g., metrics of moisture), log-normalization
might be beneficial.

6 Other Related Work

Several benchmark datasets have been developed to facilitate AI tasks in weather and climate.
ClimateNet [18] and Extremeweather [19] were both designed for AI-based feature detection of
extreme weather events in forecasts of Earth’s future climate made using conventional climate models.
WeatherBench [20] provides data specifically designed for data-driven weather forecasting, focusing
on periods ranging from 3 to 5 days into the future. PDEBench [21] provides data from numerical
simulations of several partial differential equations (PDEs) for benchmarking AI PDE emulators.
ClimateBench [22] was designed for emulators that produce annual mean global predictions of
temperature and precipitation given greenhouse gas concentrations and emissions. ClimART [23]
was designed for the development of radiative energy transfer parameterization emulators for use in
weather and climate modeling. These benchmark datasets play a vital role in advancing AI and ML
research within the weather and climate domains.

ClimSim, a dataset for parameterization emulators trained on high-resolution data from small-scale
embedded models, is unique compared to other benchmark datasets designed for emulators in
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climate simulation (ClimateBench, ClimART, and PDEBench). While PDEBench provides data
for developing AI emulators of the same PDEs commonly used in climate simulation, ClimSim is
uniquely tailored to address the challenging task of replacing a sophisticated parameterization for the
combined effects of clouds, rain, radiation, and storms. Specifically, models trained using ClimSim
will learn to emulate the nonlinear effect of clouds, rain, and storms resolved on the 1 km (20 s)
space (time) scale, which is a collection of hundreds of equations rather than one, to represent their
upscale impacts on the 100 km (30 min) scale. Hybrid simulation is also the goal of ClimART, which
is designed specifically for the narrower and less computationally costly task of radiative energy
transfer parameterization, rather than cloud and rain emulators. ClimateBench, on the other hand,
is not an attempt at hybrid simulation, but rather for “whole-model” emulators that reproduce the
annual mean global predictions of climate that a conventional climate model would simulate given
unseen greenhouse gas concentrations and emissions. This does not attempt to sidestep Moore’s Law
or admit previously unattainable resolution, i.e., any error or bias related to the parameterizations
used to create the training data are part of what is learned by the emulator.

In contrast, the goal of ClimSim is to develop an emulator for the explicitly resolved effect of clouds
and storms on climate, so that, down the road, the emulator can be used to replace parameterizations
in a climate model, enabling more realistic climate simulation without the typical computational
overhead. ClimSim builds off work by a few climate scientists who have been exploring since 2017
to apply ML for hybrid multi-scale climate modeling. [24] first demonstrated that using simple
ML models, and a simple atmosphere test-bed, certain atmospheric patterns of convective heating
and moistening could be effectively predicted, particularly in the tropics and mid-latitude storm
tracks. However, when these models were integrated into broader climate simulations, except for
lucky fits that demonstrated the exciting potential for success [25], issues related to stability arose, a
common problem when constructing hybrid climate models. Various methods were tried to improve
the stability, such as coupling multiple models together and searching for better model architectures
[26, 27]. These efforts led to improved error rates in the predictions. More recently, researchers have
expanded this work into real-world settings, using more advanced ML architectures [28–30]. Wang
et al. (2022) [31] even managed to create a deep-learning model that showed hybrid stability over a
decade under real-world conditions. While this hybrid model had a few biases, it was successful in
capturing some aspects of climate variability. Additionally, work has been done to compress input
data to avoid causal confounders while maintaining accuracy [17], use latent representations that
account for stochasticity [15], and enforce physical constraints within these models [32], all of which
could potentially improve their reliability.
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7 Datasheet

7.1 Motivation

1. For what purpose was the dataset created? Our benchmark dataset was created to serve
as a foundation for developing robust frameworks that emulate parameterizations for cloud
and extreme rainfall physics and their interaction with other sub-resolution processes.

2. Who created the dataset and on behalf of which entity? The dataset was developed by a
consortium of climate scientists and ML researchers listed in the author list.

3. Who funded the creation of the dataset? The main funding body is the National Science
Foundation (NSF) Science and Technology Center (STC) Learning the Earth with Artificial
Intelligence and Physics (LEAP). Other funding sources of individual authors are listed in
the acknowledgment section of the main text.

7.2 Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? Yes, the dataset is
open to the public.

2. How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? The
dataset will be distributed through Hugging Face and the code used for developing baseline
models through GitHub.

3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

7.3 Maintenance

1. Who will be supporting/hosting/maintaining the dataset? NSF-STC LEAP will support,
host, and maintain the dataset.

2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
The owner/curator/manager(s) of the dataset can be contacted through following emails:
Sungduk Yu (sungduk@uci.edu), Michael S. Pritchard (mspritch@uci.edu) and LEAP
(leap@columbia.edu).

3. Is there an erratum? No. If errors are found in the future, we will release errata on the
main web page for the dataset (https://leap-stc.github.io/ClimSim).

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)? Yes, the datasets will be updated whenever necessary to ensure accuracy, and
announcements will be made accordingly. These updates will be posted on the main web
page for the dataset (https://leap-stc.github.io/ClimSim).

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?) N/A

6. Will older version of the dataset continue to be supported/hosted/maintained? Yes,
older versions of the dataset will continue to be maintained and hosted.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nisms for them to do so? No.
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7.4 Composition

1. What do the instance that comprise the dataset represent (e.g., documents, photos,
people, countries?) Each instance includes both input and output vector pairs. These
inputs and outputs are instantaneous snapshots of atmospheric states surrounding detailed
numerical calculations to be emulated.

2. How many instances are there in total (of each type, if appropriate)? The high-resolution
dataset (ClimSim_high-res) includes 5,676,480,000 instances, and each low-resolution
dataset (ClimSim_low-res and ClimSim_low-res_aqua-planet) includes 100,915,200 in-
stances.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The datasets contain 80% of all possible instances. The rest 20% are reserved as
the holdout test set, which will be released once enough models using ClimSim are developed
by independent groups.

4. Is there a label or target associated with each instance? Yes, each instance includes both
input and target (prediction) variables.

5. Is any information missing from individual instances? No.

6. Are there recommended data splits (e.g., training, development/validation, testing)? We
have a hard split between the training/validation set and the test set. The first 8 simulation
years-worth dataset is reserved for the training/validation set, and the last 2 simulation years-
worth dataset is reserved for the test set. However, we do not have specific recommendations
on the split within the training/validation set.

7. Are there any errors, sources of noise, or redundancies in the dataset? There is one
redundancy. Input variable “state_pmid” is redundant since it is a linear function of

“state_ps”.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The dataset is self-contained.

9. Does the dataset contain data that might be considered confidential? No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

7.5 Collection Process

1. How was the data associated with each instance acquired? The data associated with
each instance is acquired from a series of simulations of a global climate model called
E3SM-MMF. References for E3SM-MMF are provided in Section 3 of the main text.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)? We used many
NVIDIA A100 GPU nodes in a high-performance computing cluster called Perlmutter
(operated by the U.S. Department of Energy) to run the E3SM-MMF simulations.

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Regular employees (e.g., scientists and postdocs) at UC Irvine, LLNL, and SNL were in-
volved in the data collection process. No crowdworkers were involved during the data
collection process.

4. Does the dataset relate to people? No.
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5. Did you collect the data from the individuals in questions directly, or obtain it via
third parties or other sources (e.g., websites)? We obtained the dataset from computer
simulations of Earth’s climate.

7.6 Uses

1. Has the dataset been used for any tasks already? No, this dataset has not been used for
any tasks yet.

2. What (other) tasks could be the dataset be used for? Please refer to Section 5 in the main
manuscript for other applications.

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? The current composition of
the datasets are self-sufficient to build a climate emulator. However, it misses some extra
variables, which are not essential for such climate emulators but necessary to strictly enforce
physical constraints (see Section 4.5 of the main text). We plan to include these extra vari-
ables in the next release. Any changes in the next release and update to user guidelines will
be documented and shared through the dataset webpage (https://leap-stc.github.io/ClimSim).

4. Are there tasks for which the dataset should not be used? No.
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8 Extra Figures and Tables

8.1 MLP with Expanded Target Variables

(Variables) MLPv1 MLPv2 MLPv1-ne30 MLPv2-ne30

MAE

dT/dt 2.688 2.305 2.799 2.886
dq/dt 4.503 4.030 4.231 4.068
dql/dt N/A 0.689 N/A 0.697
dqi/dt N/A 0.384 N/A 0.330
du/dt N/A 1.34E-04 N/A 2.68E-04
dv/dt N/A 1.09E-04 N/A 2.66E-04
NETSW 13.47 8.339 15.47 11.04
FLWDS 5.118 4.134 5.318 4.891
PRECSC 2.645 1.539 3.115 3.009
PRECC 33.89 23.74 42.49 29.62
SOLS 7.942 5.774 8.484 6.866
SOLL 10.30 8.190 10.582 8.993
SOLSD 4.587 3.230 5.056 4.360
SOLLD 4.834 3.977 4.963 4.553

R2

dT/dt 0.590 0.663 0.626 0.536
dq/dt - - - -
dql/dt N/A - N/A -
dqi/dt N/A - N/A -
du/dt N/A - N/A -
dv/dt N/A - N/A -
NETSW 0.982 0.993 0.977 0.988
FLWDS 0.927 0.945 0.914 0.924
PRECSC - - -0.117 -0.117
PRECC -1.494 0.833 -0.115 -0.115
SOLS 0.962 0.978 0.963 0.976
SOLL 0.948 0.964 0.953 0.965
SOLSD 0.955 0.976 0.950 0.965
SOLLD 0.866 0.905 0.874 0.899

RMSE

dT/dt 4.437 3.756 5.199 4.958
dq/dt 7.337 6.521 7.550 7.135
dql/dt 1.192 1.489
dqi/dt 0.812 0.940
du/dt 2.80E-04 6.45E-04
dv/dt 2.25E-04 6.72E-04
NETSW 26.95 17.24 30.48 21.18
FLWDS 6.803 5.532 7.136 6.540
PRECSC 4.656 2.955 7.791 7.509
PRECC 73.16 53.47 119.8 83.22
SOLS 17.39 12.84 18.51 14.74
SOLL 21.96 17.89 22.71 19.27
SOLSD 9.474 6.837 10.42 8.724
SOLLD 10.14 8.486 10.62 9.526

Table 4: Similar to Table 2 in the main text but for comparing MAR, R2, and RMSE of different
MLP models: MLP v1 (subset emulation) and the MLP v2 (full vector emulation) built with the

low-resolution (ne4) and the high-resolution datasets (ne30). dql/dt, dqi/dt, du/dt, and dv/dt
correspond to the tendencies of state_q0002, state_q0003, state_u, and state_v, respectively, in Table

SI1.
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Figure 7: Equivalent to Figure S3, but for comparing the MLPv1 (subset emulation) and the MLPv2
(full vector emulation). In addition, MLP models trained with the high-resolution dataset (ne30) are
shown here: MLPv1-ne30 and MLPv2-ne30. Bars show the median of the performance of top-20
models selected from the hyperparamter search (>8,000 trials), and magenta error bars show the

range of the top-20 model performance.
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Figure 8: Equivalent to Figure 2, but for comparing the MLP v1 (subset emulation) and the MLP v2
(full vector emulation). In addition, MLP models trained with the high-resolution dataset (ne30) are
shown here: MLPv1-ne30 and MLPv2-ne30. Out of the top model pools, MLP models shown in this

figure are randomly chosen for visualizatoin.
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8.2 Scatter Plots

Figure 9: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 10: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 11: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 12: Hexagonally-binned representation of 2D target variables comparing the climate model
simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis). The color of each

hexagonal bin corresponds to the number of data points enclosed.
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Figure 13: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 14: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 15: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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Figure 16: Hexagonally-binned representation of 3D (vertically-resolved) target variables comparing
the climate model simulation (“true"; x-axis) with the ML model prediction (“predicted"; y-axis) at

four different vertical levels. The color of each hexagonal bin corresponds to the number of data
points enclosed.
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8.3 Global Maps of R2

Figure 17: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.

36



Figure 18: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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Figure 19: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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Figure 20: Global maps of R2 of baseline models (built on the low-res, real-geography dataset). Grey
shading shows locations with negative R2 values.
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