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Abstract

The capability of generalizing to out-of-distribution data is crucial for the deploy-
ment of machine learning models in the real world. Existing domain generalization
(DG) mainly embarks on offline and discrete scenarios, where multiple source
domains are simultaneously accessible and the distribution shift among domains is
abrupt and violent. Nevertheless, such setting may not be universally applicable to
all real-world applications, as there are cases where the data distribution gradually
changes over time due to various factors, e.g., the process of aging. Additionally, as
the domain constantly evolves, new domains will continually emerge. Re-training
and updating models with both new and previous domains using existing DG meth-
ods can be resource-intensive and inefficient. Therefore, in this paper, we present a
problem formulation for Continual Domain Generalization over Temporal Drift
(CDGTD). CDGTD addresses the challenge of gradually shifting data distributions
over time, where domains arrive sequentially and models can only access the
data of the current domain. The goal is to generalize to unseen domains that are
not too far into the future. To this end, we propose an Evolving Standardization
(EvoS) method, which characterizes the evolving pattern of feature distribution and
mitigates the distribution shift by standardizing features with generated statistics
of corresponding domain. Specifically, inspired by the powerful ability of trans-
formers to model sequence relations, we design a multi-scale attention module
(MSAM) to learn the evolving pattern under sliding time windows of different
lengths. MSAM can generate statistics of current domain based on the statistics
of previous domains and the learned evolving pattern. Experiments on multiple
real-world datasets including images and texts validate the efficacy of our EvoS.

1 Introduction

In real-world applications, the assumption that training and testing data conform to the same distribu-
tion, a prerequisite for the success of contemporary deep learning methods, is seldom valid. A prime
example of this can be found in autonomous driving, where a vehicle may traverse environments
that switch from daylight to nightfall or from urban to rural. As environmental conditions change,
the issue of distribution shift [5, 4, 51, 62] arises. Moreover, directly utilizing a model trained on
in-distribution (ID) data in an out-of-distribution (OOD) context often results in catastrophic perfor-
mance deterioration. Consequently, ensuring that models perform well on OOD data has emerged as
a crucial challenge for the widespread deployment of machine learning models in the real world.

To cope with the distribution shift, two dominant paradigms have been systematically explored
depending on the availability of target (test) domain. One is domain adaptation (DA), which aims to
assist the model learning on an unlabeled or label-scarce target domain by transferring the knowledge
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from a related and label-rich source domain [15, 34, 29, 35]. Yet, target data are not always known
or available in advance. The other is domain generalization (DG), the goal of which is to learn a
model capable of generalizing to any unseen domain by using date from multiple related but distinct
source domains [62, 36, 27, 63, 26]. Though the second paradigm DG has attained some encouraging
outcomes, its configuration is limited to offline and discrete scenarios where multiple source domains
can be accessed simultaneously, and the distribution shift among domains is sudden and severe. For
instance, the prevalent benchmark PACS [25] in current DG methods comprises four distinct domain
styles - “Art”, “Cartoon”, “Photo” and “Sketch”. Nevertheless, this type of configuration may not be
suitable for all real-world applications. There are also some cases that the data distribution gradually
evolves over time, the distribution shift arising from which is referred to as temporal drift [56].

On one hand, the real-world scenarios often exhibit underlying evolutionary patterns [59, 44].
For example, annual or monthly weather data can be utilized for weather forecasting [12]. The
evolutionary patterns can be exploited to enhance generalization capabilities towards future unseen
domains that are not too distant. However, current DG methods often fail to consider these patterns,
leading to suboptimal performance. On the other hand, since data distribution is constantly evolving,
new domains will continue to emerge. Consequently, it is imperative to efficiently utilize these new
domains to further enhance the model’s performance for practical applications. For instance, in
the context of advertisement recommendation, user browsing data for various products continually
surfaces. How can we leverage these newly collected data to enable more accurate advertisement
recommendations tailored to each user’s preferences in the days to come? One simple approach is to
store data from previous domains and retrain the model using both the new and previous domains
with the existing DG techniques. However, such way may consume huge training resources due to the
accumulation of data and is of low efficiency, especially for scenarios with rapid data accumulation.

In this paper, we formulate the aforementioned problems as Continual Domain Generalization over
Temporal Drifts (CDGTD), where the data distribution gradually drifts with the passage of time and
the domain arrives sequentially. And the goal of CDGTD is to generalize well on future unseen
domains that are not too far under the circumstance that only current domain is available at current
times point while data from previous domains are inaccessible. Although some temporal / evolving
DG methods [44, 59, 3, 41] have been proposed to handle the temporal drift, most of them [59, 44, 41]
works in non-incremental setting, i.e., multiple domains can be accessed simultaneously. Instead, we
design an Evolving Standardization (EvoS) approach specialized for CDGTD.

For CDGTD, there are two main challenges: how to characterize the evolving pattern in the incremen-
tal setting and how to achieve generalization using the learned evolving pattern. For the former, we
draw inspiration from the sequence modeling capability of transformers [31] and design a multi-scale
attention module (MSAM) to learn the evolving pattern underlying the feature distribution of domains.
Specifically, we store the statistics (i.e., mean and variance of features) of previous domains and use
sliding time windows of different lengths over the statistic tokens to obtain multi-scale information.
Then multi-scale statistic tokens are fed into MSAM to generate statistics of current domain. MSAM
is trained over the whole sequence of domains to learn the evolving pattern. Here, we integrate multi-
scale information, with the consideration that some evolving patterns may be better characterized at
different time intervals, e.g., seasonal climate and daily weather. For the latter challenge, in order
to mitigate the temporal drift, each domain is transformed into a common normal distribution by
conducting feature standardization with the generated statistics of corresponding domain. Besides,
considering that the feature encoder may suffer from catastrophic forgetting and overfitting to current
domain, we constrain it to learn a shared feature space among domains via the adversarial learning.

Contributions: 1) We formulate a promising but challenging problem of continual domain general-
ization over temporal drift (CDGTD), which has seldom been explored, compared with traditional
DG. 2) An evolving standardization (EvoS) approach is specially proposed for CDGTD, which
can characterize the evolving pattern and further achieve generalization by conducting the feature
standardization. 3) Experiments on multiple real-world datasets with different models verify the
effectiveness of EvoS and the flexibility to be applied on different models.

2 Related Work

Domain Generalization (DG) aims to learn a model that can generalize well to any unseen target
domains by leveraging data from multiple source domains. In recent years, a wide range of DG
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methods have been proposed [6, 39, 27, 26, 63, 19, 37]. According to the strategies of improving gen-
eralization, existing DG methods roughly fall into the three categories. Representation learning based
methods [7, 39, 50, 27, 27, 2, 17, 42] aim to learn domain-invariant or domain-shared representations
to enable models to generalize to unseen target domains. Data augmentation/generation based meth-
ods [53, 61, 63, 57, 32] focus on manipulating inputs to facilitate learning general representations.
Differently, other DG methods instead employ general learning strategies like meta-learning [26]
and ensemble learning [21] to improve generalization ability. With full access to all source domains,
these DG methods have achieved promising performance on unseen domains with abrupt and violent
distribution shifts. Unfortunately, without the consideration of the evolutionary pattern of domains
over time, existing DG methods are usually less efficient under the scenario of temporal drift.

Continual Learning (CL) is a machine learning paradigm, where models learn continuously from
a stream of tasks over time and meanwhile try to retain performances on all seen tasks [22, 1,
24, 9, 46, 47]. Existing CL methods can be roughly categorized into replay-based [46, 10, 52],
regularization-based [22, 60, 30] and structure-based [45, 14] methods. In addition, the combination
of CL and DA has attracted lots of attention [23, 17, 33, 43, 55]. Yet, combining CL and DG remains
underdeveloped. In this work, we propose CDGTD which continually trains the model on sequential
domains, but the goal is to generalize well on novel domains in the near future. This distinct objective
from CL yields different challenges: the modeling of underlying evolutionary patterns of temporal
domains and how to utilize these patterns to mitigate the distribution shifts in forthcoming domains.

Test Time Adaptation (TTA) focuses on adapting the source-pretrained model during testing phase
with test data [40, 49, 20, 54, 58]. For example, [49] corrects the activation statistics of batch
normalization using test data. T3A [20] uses a back-propagation-free manner to adjust only the
weights of the linear classifier during test time. By contrast, CDGTD optimizes the model during
training phase with sequential domains and emphasizes on generalization without using test data.

Evolving / Temporal Domain Generalization has emerged in recent years, aiming to tackle the
problem of generalizing on temporally drifted domains, where the environment evolves dynamically
over time [41, 3, 44, 59]. GI [41] proposes a time-sensitive model architecture to capture the
time-varying data distribution and the model is supervised with the first-order Taylor expansion of the
learned function to advance the generalization in the near feature. DRAIN [3] launches a Bayesian
framework to model the concept drift and utilizes a recurrent neural network to dynamically generate
network parameters to adapt the evolving pattern of domains. LSSAE [44] incorporates variational
inference to explore the evolving patterns of covariate shift and label shift in the latent space. The
goal of learning evolutionary patterns from source domains and generalizing to domains in the near
future is similar to our EvoS. The main difference is that the model in our EvoS is incrementally
trained on sequentially arriving domains, considering the low efficiency of “offline” training with
accumulated domains. By contrast, the aforementioned methods [41, 44] require multiple source
domains to be simultaneously available. Besides, the Taylor expansion in [41], variational inference
in [44] and network parameters generation in [3] make them hard to expand on large models.

3 Evolving Standardization for Continual Domain Generalization over
Temporal Drift

3.1 Problem Formulation of CDGTD

Here, we take the C-class classification problem as an example, where X and Y denote the data and
label space, respectively. Suppose that T source (training) domains {D1,D2, · · · ,DT } sequentially
arrive, which are sampled from distributions at T different times points t1 < t2 < · · · < tT . At time
point tt, t ∈ {1, 2, · · · , T}, only the domain Dt = {xt

i, y
t
i}N

t

i=1 is accessible, where xt
i ∈ X , yti ∈ Y

and N t is the number of training samples in Dt. Previous and future domains are unavailable. In
addition, as previous temporal/evolving DG methods [44, 41, 3], we further assume that the data
distribution P (X,Y ) of domains evolves temporally, i.e., the distribution of domains changes along
the time following certain patterns. The goal of CDGTD is to enable the model, composed of a
feature encoder E : x → f ∈ Rdf (df is the dimension of features) and a classifier C : f →
y ∈ {0, 1, · · · , C − 1}, to generalize well on K unseen target (test) domains in the near future:
{DT+k}Kk=1. To this end, two main challenges need to be addressed. One is to characterize the
evolving pattern of domains, which we address by designing a multi-scale attention module (MSAM)
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Figure 1: Overview of EvoS. Memory poolM stores previously generated domain statistics (i.e., µi

(mean) and ai (logarithm of standard deviation) of features, 1 ≤ i ≤ t− 1). With the t-th domain
Dt available, loss Lt

stan is minimized to train the multi-scale attention module (MSAM) to generate
statistics µ̂t and ât that approach the real ones via leveraging historical statistics inM. Besides, we
sample features from historical feature distributions as the proxy of previous domains to conduct
adversarial training with current domain, encouraging to learn a shared feature space.

inspired from the sequence modeling ability of transformers. The other is the generalization, which is
realized by transforming domains into a common normal distribution via the feature standardization.

3.2 EvoS: Evolving Standardization

Single-scale Attention. Inspired by the capability of the transformer to model the relationships
among sequences [31], we introduce its attention mechanism to model the evolving pattern among
sequential domains. Before presenting our multi-scale attention module (MSAM), we first introduce
how single-scale attention works. Without loss of much generality, we assume that the feature
distribution of domain Dt follows the normal distribution, which is characterized by the mean vector
µt ∈ Rdf and the standard deviation vector σt ∈ Rdf . Now, our goal turns out to be learning the
evolving pattern of the feature statistics (i.e., µt and σt). In practice, to ensure that σt is non-negative,
we choose to learn at (the logarithm of σt). In this way, σt = exp(at) is always non-negative.
Besides, considering the unavailability of previous domains, we store the learned statistics at time
point tt into a memory pool M for future uses once the training procedure finishes on domain
Dt. Having the feature statistics of previous t − 1 domains ready, we then utilize the multi-head
self-attention module A to generate the statistics of domain Dt at time point tt.

Concretely, given statistic tokens {si}t−1i=1 of previous t− 1 domains, where si = [µi,ai] ∈ R2df is
the token of concatenated statistics from domain Di, the output of A is expressed as

Ŝ
t

= A(St−1) = [SA1(St−1),SA2(St−1), · · · ,SAnh
(St−1)]Wfc, Wfc ∈ R(nh·dh)×2df ,

= [ŝ1; ŝ2; · · · ; ŝt−1],

St−1 = [s1; s2; · · · ; st−1], St−1 ∈ R(t−1)×2df (1)

where ŝi is the i-th output statistic token of A, nh and dh are the number and feature dimension of
heads in the multi-head self-attention module and Wfc is the learnable parameters of A to convert
feature dimensions. SAi(·) is the self-attention of the i-th head, which operates as follows:

[St−1
i,q ,S

t−1
i,k ,S

t−1
i,v ] = St−1Wi

qkv, Wi
qkv ∈ R2df×3dh

SAi(S
t−1) = softmax(St−1

i,q S
t−1
i,k

>
/
√
dh)St−1

i,v , (2)
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where Wi
qkv is the learnable parameters of the i-th head and St−1

i,q ,S
t−1
i,k ,S

t−1
i,v are the query, key

and value embeddings of St−1. Finally, we use the average of all output statistics tokens of the
attention module A as the generated statistic token ŝt for time points tt:

[µ̂t, ât] = ŝt = avg(Ŝ
t
) =

1

t− 1

t−1∑
i=1

ŝi. (3)

By continuously generating new statistics from historical ones throughout the whole sequence of
domains, the attention module A is expected to learn the evolving pattern of feature distributions.
Note that we directly introduce learnable statistic vectors µ̂1, â1 and µ̂2, â2 for time points t1 and
t2, respectively, since the tokens of historical statistics are not enough for the attention module A to
work. That is, the attention module A is only used at time points tt, t ≥ 3.

Multi-scale Attention Module (MSAM). The above details how to model the evolving pattern using
single-scale attention. However, it is limited to learn the pattern using a sliding time window of length
1 over the statistic tokens. Sometimes, the evolutionary pattern may be better captured by considering
longer time intervals. For instance, the data of a season in each time window would be more suitable
for capturing the evolving pattern of seasonal climate, rather than data of a single day in each time
window. Considering this, we introduce multi-scale attention in Fig. 1, which leverages information
from observation windows of different lengths to better model the evolving pattern.

Specifically, for the multi-head self-attention module Aw responsible for the time window of length
w, we slide the time window with stride 1 over historical t− 1 statistics tokens and concatenate the
statistic tokens in each window to obtain the input S̈

t−1
w for the attention module Aw at time point tt:

s̈iw = [si, si+1 · · · , si+w−1], s̈iw ∈ Rw·2df , (1 ≤ i ≤ t− w) ∧ (t ≥ w + 2)

S̈
t−1
w = [s̈1w; s̈2w; · · · ; s̈t−ww ], S̈

t−1
w ∈ R(t−w)×(w·2df ). (4)

And similarly, we use the average output s̆t−w+1
w of the attention module Aw as the generated

statistics for the sliding time window at the next time point, the formulation of which is expressed as

S̆
t

w = Aw(S̈
t−1
w ) = [s̆1w; s̆2w; · · · ; s̆t−ww ], S̆

t

w ∈ R(t−w)×(w·2df )

s̆t−w+1
w = avg(S̆

t

w) =
1

t− w

t−w∑
i=1

s̆iw, s̆t−w+1
w ∈ Rw·2df . (5)

Note that in MSAM, the attention module Aw is to predict the statistics in the next sliding time
window of length w, instead of one statistic token as in the single-scale attention. This may encourage
the attention module to also capture the domain relationships within the window.

Then, we split s̆t−w+1
w into w parts: [ŝt−w+1

w , · · · , ŝt−1w , ŝtw] = s̆t−w+1
w , where ŝjw ∈ R2df can

be regarded as the predicted statistic token for time point tj using the attention module Aw, j =

t − w + 1, · · · , t − 1, t. Finally, the generated statistic token ŝt for time point tt using MSAM is
denoted as the average of predicted statistic tokens for time point tt at different time window lengths:

[µ̂t, ât] = ŝt =
1

W

W∑
w=1

ŝtw, (6)

where W is the maximum length of the sliding time window. Generally, MSAM integrates evolving
patterns learned at different scales, contributing better estimation of future feature distributions.

Feature Standardization. For CDGTD, the second main challenge is generalization. To this end,
we leverage the generated feature statistics by MSAM to transform the distribution of corresponding
domain into a standard normal distribution, by which the temporal drift is mitigated. Concretely, for
feature f t

i = E(xt
i), its standardized feature zti via the feature standardization is formulated as

zti =
f t
i − µ̂

t

σ̂t =
f t
i − µ̂

t

exp(ât)
. (7)

Another benefit of feature standardization is that it allows classifier to be trained on a common feature
distribution, thus avoiding the problem of overfitting to current domain and catastrophic forgetting.
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3.3 Model Training

This section outlines the four losses Lt
ce, Lt

stan, Lt
con and Lt

adv involved in the training stage at time
point tt. The first one is the essential loss to supervise the model learning for specific tasks, e.g., the
following cross-entropy loss Lt

ce for classification tasks in this paper.

min
E,C
Lt
ce =

1

N t

Nt∑
i=1

CE(pti, y
t
i), pti = softmax

(
C
(
f t
i − sg(µ̂t)

exp(sg(ât))

))
, (8)

where CE(·, ·) is the cross-entropy. Here, stopping gradient sg(·) is adopted to stabilize training.

Losses Lt
stan and Lt,w

con are responsible for the training of the attention module Aw at time point tt,
w = 1, 2, · · · ,W . The former loss Lt

stan in Eq. 10 is minimized to ensure that the standardized
feature zti follows a standard normal distribution. Specifically, we first calculate the mean vector and
variance vector of the standardized features as

mean : µ́t =
1

N t

Nt∑
i=1

sg(f t
i)− µ̂

t

exp(ât)
, variance : v́t =

1

N t − 1

Nt∑
i=1

(
sg(f t

i)− µ̂
t

exp(ât)
− µ́t

)2

. (9)

Then the loss Lt
stan at time point tt is expressed as

min
µ̂t,ât

Lt
stan = ‖µ́t − 0‖2 + ‖v́t − 1‖2, 1 ≤ t ≤ 2

min
Aw

Lt
stan = ‖µ́t − 0‖2 + ‖v́t − 1‖2, t ≥ w + 2

, (10)

where df is the dimension of features and w is the length of the sliding time window. Here, we just
want the learnable/generated µ̂t, ât to approach the statistics of true feature distribution, so stopping
gradient operation sg(·) is conducted on f t

i to prevent the gradient of Lt
stan flowing to the feature

encoder E . Otherwise, the gradient of Lt
stan may distort the feature distribution. Ideally, if Lt

stan is
minimized, the generated statistics µ̂t and exp(ât) by our MSAM would be equal to the mean vector
and standard deviation vector of the true feature distribution of Dt. This means that our MSAM can
predict future feature distributions based on historical feature statistics.

And the loss Lt
con is to ensure the consistency between generated statistic tokens in the next sliding

time window and real statistic tokens. Specifically, we calculate Lt,w
con for attention module Aw as

min
Aw

Lt,w
con =

1

w − 1

w−1∑
k=1

‖ŝt−w+k
w − st−w+k‖2, (t ≥ w + 2) ∧ w ≥ 2, (11)

where ŝjw and sjw, j = t − w + 1, · · · , t − 1 are respectively the predicted statistic token for time
point tj using the attention module Aw and the real statistic token from memory poolM. This loss
is expected to also capture the evolutionary pattern within the time window.

The fourth loss Lt
adv is introduced with this consideration that the feature extractor E may overfit to

current domain and lacks generalizability. To avoid this, we additionally conduct adversarial training
between the feature encoder E and a discriminator D. Nevertheless, historical data are unavailable.
So we instead resort to the learned/generated statistics at previous time points. Concretely, we
randomly sample a batch ofB samples {f ′m1 , · · · ,f

′m
B } from each distributionN (µm, (exp(am))

2
),

m = 1, 2, · · · , t− 1, via Eq. 12 at each iteration, and use them as the proxy of historical domains.

f ′
m
i = µm + ε · exp(am), ε ∼ N (0, 1) ∧ −α ≤ ε ≤ α, (12)

where α is a truncation hyper-parameter to control the sampling area. Then discriminator D is trained
to distinguish {f t

i}N
t

i=1 from {f ′m1 , · · · ,f
′m
B }t−1m=1 and the feature extractor tries to confuse D. Such

adversarial process is achieved by the following loss Lt
adv:

max
E

min
D
Lt

adv =
1

2

( 1

B × (t− 1)

t−1∑
m=1

B∑
j=1

−log(D(f ′
m
j )) +

1

N t

Nt∑
j=1

−log(1−D(f t
j))
)
, t ≥ 2. (13)

In practice, the gradient reverse layer (GRL) [15] is used to achieve the adversarial training. To sum
up, at time point tt, the model is trained to minimize the following total loss Lt

total:

Lt
total = Lt

ce + Lt
stan +

W∑
w=1

Lt,w
con + λLt

adv, (14)
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Table 1: Accuracy (%) on Yearbook, RMNIST and fMoW. The best and second-best results in
CDGTD setup are bolded and underlined. (Yearbook: K = 5, RMNIST: K = 3, fMoW: K = 3)

Method Conference Incremental
training

Access
multiple
domains

Yearbook
Accuracy (%) ↑

RMNIST
Accuracy (%) ↑

fMoW
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst

Offline - 7 3 89.30 88.46 86.81 98.15 92.14 83.89 72.43 59.76 49.85
IRM [2] arXiv’19 7 3 97.09 94.52 92.58 95.10 85.05 72.52 64.77 54.92 46.51

CORAL [50] ECCV Workshops’16 7 3 95.94 91.79 88.84 93.04 79.10 62.96 62.14 51.42 42.19
Mixup [61] ICLR’18 7 3 94.98 91.12 88.35 97.11 89.66 79.63 70.27 57.73 48.04
LISA [57] ICML’22 7 3 95.51 92.97 91.29 96.21 87.04 75.15 70.05 55.52 44.61
CDOT [43] arXiv’19 7 3 95.17 92.90 91.46 97.96 90.19 79.67 - - -
CIDA [55] ICML’20 7 3 92.36 90.67 88.45 97.43 89.19 78.32 - - -

GI [41] NeurIPS’21 7 3 97.42 96.37 95.73 97.78 91.00 82.46 61.62 50.83 42.78
LSSAE [44] ICML’22 7 3 93.93 92.12 88.75 96.73 90.36 82.13 59.15 48.66 41.38
IncFinetune - 3 7 96.61 94.72 93.48 98.62 92.80 84.61 65.52 53.99 45.23
Mixup [61] ICLR’18 3 7 90.21 89.83 88.43 98.43 92.38 83.45 64.84 52.00 42.54

SimCLR [11] ICML’20 3 7 95.94 93.07 89.65 98.23 90.98 81.05 64.97 53.20 44.71
SwAV [8] NeurIPS’20 3 7 97.37 94.27 91.44 98.08 90.85 80.96 66.47 54.51 45.29
EWC [22] arXiv’16 3 7 97.18 95.12 93.64 98.56 92.02 82.80 66.23 54.55 45.80

SI [60] ICML’17 3 7 97.09 94.67 93.48 98.61 93.27 85.65 66.61 54.89 46.46
A-GEM [10] ICLR’19 3 7 94.36 90.96 88.88 95.99 86.95 75.45 54.54 47.61 41.13

SGP [47] AAAI’23 3 7 95.65 92.92 91.39 97.12 88.97 78.05 - - -
DRAIN [3] ICLR’23 3 7 96.23 94.71 93.73 98.52 93.09 85.75 67.22 55.05 46.24

EvoS - 3 7 97.37 95.53 94.78 98.64 93.84 87.04 67.18 54.64 45.86
For fMoW, backbone DenseNet-121 is too big to apply full GI and DRAIN. So we apply DRAIN only to the classifier and apply GI without the fine-tuning stage.

where λ is a hyper-parameter to balance the loss tradeoff. Once the training procedure at time point
tt is finished, we store the learned/generated statistics of current domain Dt into memory poolM by

µt,at ← µ̂t, ât. (15)

In the inference stage, we use MSAM to generate future statistics ŝT+k based on the statistics
{st}T+k−1

t=1 in memory poolM and store it intoM as Eq. 15 for the generation at next time point.
Due to space limitation, the training and testing procedures are provided in the appendix.

4 Experiments

4.1 Experimental Setup

Thanks to the work in [56], several real-world datasets with distribution shifts over time have been
available. And we evaluate EvoS on three image classification datasets (Yearbook and fMoW from
[56] and RMNIST) and two text classification datasets (Huffpost and Arxiv from [56]). Yearbook
collects data from 1930 to 2013, where we treat every four years as a domain and use the first 16
domains for training (T = 16), the last 5 domains for testing (K = 5). fMoW includes data of 16
years and we set T = 13,K = 3. RMNIST contains 9 domains with T = 6,K = 3. Huffpost
includes data of 7 years with T = 4,K = 3. Arxiv collects data of 172 categories for 16 years,
with T = 9,K = 7. For each training domain of all datasets, we randomly select 90% data as
training split and 10% data as validation split. Following the backbones in [56], we use a 4-layer
convolutional network [56] for Yearbook, DenseNet-121 [18] pretrained on ImageNet for fMoW,
pretrained DistilBERT base model [48] for Huffpost and Arxiv, and the ConvNet in [44] for RMNIST.
For each attention moduleAw in MSAM, its dimension of head dh is set to 8 and its number of heads
is set to w · nh. Specifically, nh is set to 16 for Yearbook, 32 for RMNIST, 64 for fMoW and 128 for
Huffpost and Arxiv. For optimization, we use the Adam optimizer with lr = 1e− 3 for Yearbook
and RMNIST, lr = 2e− 4 for fMoW and lr = 2e− 5 for Huffpost and Arxiv. The batch size is set
to 64 for all datasets. As for hyper-parameters, we select them via grid search using the validation
splits of training domains and finally use α = 2.0 for RMNIST, α = 1.0 for others, λ = 1.0,W = 3
for all datasets. For all tasks, we report the mean of 3 random trials. Due to space limitations, please
refer to appendix for more details. Code is available at https://github.com/BIT-DA/EvoS.

4.2 Main Results

In addition to the incremental training scenario, we also provide results in non-incremental scenario
with all source domains simultaneously available, which serves as upper bounds. Among compared
baselines, “Offline” denotes merging all source domains into one domain and training the model with
the merged domain, while “IncFinetune” represents incrementally training the model in a domain-
by-domain fashion. For each dataset, we report the accuracy on the nearest target domain (DT+1),
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Table 2: Accuracy (%) on Huffpost and Arxiv. The best and second-best results in CDGTD setup are
bolded and underlined. (Huffpost: K = 3, Axriv: K = 7)

Method Conference Incremental
training

Access
multiple
domains

Huffpost
Accuracy (%) ↑

Arxiv
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst

Offline - 7 3 72.74 71.50 69.63 57.49 52.38 49.28
IRM [2] arXiv’19 7 3 71.04 70.31 68.97 51.11 45.89 42.86

CORAL [50] ECCV Workshops’16 7 3 71.34 70.08 68.68 50.98 45.77 42.71
Mixup [61] ICLR’18 7 3 73.34 71.16 69.29 57.58 52.77 49.62
LISA [57] ICML’22 7 3 72.19 70.24 68.60 56.53 52.41 49.67

GI [41] NeurIPS’21 7 3 68.06 66.32 64.64 53.43 49.19 46.13
IncFinetune - 3 7 73.57 71.98 69.80 56.22 52.43 49.37
Mixup [61] ICLR’18 3 7 73.07 71.52 69.44 56.64 52.95 49.97
EWC [22] arXiv’16 3 7 73.64 71.53 68.99 56.60 52.78 49.73

SI [60] ICML’17 3 7 72.58 71.50 69.61 49.98 47.27 44.77
A-GEM [10] ICLR’19 3 7 72.23 71.16 69.10 52.02 48.91 46.03
DRAIN [3] ICLR’23 3 7 73.42 71.75 69.69 56.04 52.07 48.97

EvoS - 3 7 73.42 72.36 70.19 56.60 53.15 50.19
For Huffpost and Arxiv, backbone DistilBERT-base is too big to apply the full GI and DRAIN. So we apply DRAIN only to the classifier and apply
GI without the fine-tuning stage.

the average and worst accuracy of future K domains (“OOD avg.”: 1
K

∑K
k=1Acc(DT+k), “OOD

worst": mink∈{1,2,··· ,K}Acc(DT+k)).

Results on image classification tasks are provided in Table 5, where we can observe that EvoS
consistently achieves superior performance across three reported metrics on Yearbook and RMNIST
datasets, compared with the methods in incremental training scenario. Especially, EvoS outperforms
DRAIN by over 1% according the metric “OOD worst” on Yearbook and RMNIST, which means
that our EvoS learns more robust evolving patterns. In addition, we notice that conventional DG
methods IRM [2] and CORAL [50] perform worse than temporal DG method GI [41] on Yearbook
and RMNIST, showing the importance of leveraging evolutionary patterns for generalization over
temporal drifts. Though being effective for the small networks used in Yearbook and RMNIST,
the advantage of GI disappears on fMoW dataset with backbone DenseNet-121, where its first-
order Taylor expansion requires extremely huge computing resources (over 80G). And our available
resources cannot afford it. When ablating the Taylor expansion, the performance of GI on fMoW is
not the best. So GI is hard to expand on larger models and the similar issue also exists in DRAIN and
LSSAE. Finally, we find that for dataset fMoW, not only our method performs unsatisfactorily but
also other methods, except for the “offline” method (i.e., merging all source domain into one domain
to train the model). We infer this may be due to the temporal drift is not well presented in this dataset.

Results on text classification tasks are shown in Table 6, where EvoS consistently achieves the
best performances according to the average and worst accuracy of future K domains under the
CDGTD setting. This can be owed to the more robust evolving patterns captured by our multi-scale
attention module (MSAM). Similarly, IRM and CORAL show obvious performance drop compared
with DRAIN, once again demonstrating the necessity to learn evolving patterns for the problem of
CDGTD. And the large performance gap between continual learning methods (i.e., SI and A-GEM)
and our method EvoS on dataset Arxiv verifies that our method EvoS fully utilizes the historical
knowledge to learn evolutionary patterns, while SI and A-GEM do not consider this.

4.3 Analytical Experiments

Ablation Study. Firstly, we study the influence of the stopping gradient sg(·) in the losses Lt
ce

and Lt
stan. The results of variant A and B in Table 3 almost degenerate to random predictions,

Table 3: Ablation study of EvoS on dataset Yearbook.
Method Scale Loss Using sg(·)? Using

truncation α?
OOD
avg.single multi Lt

adv Lt,w
con Lt

ce Lt
stan

Variant A - X X X No No Yes 51.28
Variant B - X X X Yes No Yes 55.37
Variant C - X X X No Yes Yes 93.97
Variant D - X - - Yes Yes Yes 93.25
Variant E - X X - Yes Yes Yes 94.75
Variant F - X - X Yes Yes Yes 94.27
Variant G - X X X Yes Yes No 94.46

EvoS - X X X Yes Yes Yes 95.53
Variant H X - X X Yes Yes Yes 94.09

compared with variant C. This suggests
that using sg(·) in loss Lt

stan is essential.
Otherwise, the gradient of Lt

stan would
largely distort the learning of feature en-
coder, causing training collapse. Mean-
while, the inferior performance of variant
C to EvoS also indicates that the gradi-
ent of Lt

ce should not interfere with the
learning of MSAM. Secondly, we ablate
the losses Lt

adv and Lt,w
con to testify their

necessity. We can see that the results of

8



Table 4: Results of using historical domain distributions in different ways during adversarial training.

Method Used historical domain
distribution in Lt

adv

Yearbook
Accuracy (%) ↑

RMNIST
Accuracy (%) ↑

fMoW
Accuracy (%) ↑

Huffpost
Accuracy (%) ↑

Arxiv
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst

EvoS† random one 96.56 95.40 94.46 98.05 93.04 85.46 66.62 53.81 44.76 72.99 71.57 69.14 55.89 52.45 49.52
EvoS all historical 97.37 95.53 94.78 98.64 93.84 87.04 67.18 54.64 45.86 73.42 72.36 70.19 56.60 53.15 50.19
EvoS† denotes that we randomly select a domain distribution from the memory poolM to sample a batch of B features for participating in the adversarial training.
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(a) Discrepancy between real and generated statistics.
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(b) Effect of the number of heads and scale.

Figure 2: (a): The l-2 norm of the difference ∆ between the statistics calculated on each test
domain and the statistics generated by MSAM on Yearbook. “Ours” refers to the way in Eq. 10 and
“Compared” refers to minimizing the l-2 norm of ∆ between statistics calculated in each batch and
that generated by MSAM. (b): Effects of using different numbers of heads and scales on Yearbook.

variant D, E and F are all inferior to EvoS. Such results verify two points. One is that the adversarial
training conduces to better generalization and mitigating the problem of overfitting. And the other is
that the consistency between generated statistic tokens in the window and real statistic tokens in the
memory pool imposes stronger constraint to attention module Aw, helping to model the evolving
pattern more accurately. Thirdly, we testify the influence of truncation when sampling features from
normal distributions. The worse result of variant G than EvoS may be due to the sampled outliers
hinder the learning of a shared feature space. Finally, the results of variant H and EvoS compare
single-scale and multi-scale attention. The better result of EvoS shows the superiority of MSAM.

Last but not least, in Table 4, we investigate the effect of randomly selecting a historical domain
distribution vs using all historical domain distributions in the adversarial training. From the results, we
see that randomly selecting one historical domain distribution performs worse. This may be because
the feature space to be aligned frequently changes if using this manner, making the optimization
challenging. By contrast, it is more stable to simultaneously leverage all the preserved domain
distributions in the memory poolM in each iteration for the adversarial training.

Choices of Lt
stan. In addition to training Aw via loss Lt

stan in Eq. 10, we also try another way.
Concretely, we directly minimize the l-2 norm of the difference between statistics calculated in each
batch and that generated by MSAM, i.e., Lt

stan = ‖ 1
B

∑B
i=1 sg(f t

i)− µ̂
t‖2 +‖ 1

B−1
∑B

i=1(sg(f t
i)−

1
B

∑B
j=1 sg(f t

j))
2 − (σ̂t)

2‖2. Fig. 2(a) plots the discrepancy between generated and real statistics
on each test domain of Yearbook when using the two ways to train the attention module. We see that
the way used in Sec. 3.3 yields a smaller discrepancy between generated and real statistics, implying
that the learned evolving pattern is more accurate. So we choose to use it throughout the experiments.

Effect of Number of Heads and Scale. We further investigate the effect of number of heads and
scale of MSAM in Fig. 2(b). Varying the number of heads, the performance exhibits an inverted
V-shaped trend, because too few heads would hamper the learning capability of the attention module
while too many heads could lead to overfitting. As for difference scales (i.e., the maximum length of
sliding time window), we find that multi-scales (W ≥ 1) yields better performance than single-scale
(W = 1), showing the superiority of MSAM. Yet, more scales do not always produce better results.
One possible explanation is that an excessively large scale relative to the domain sequence length
leads to an inadequate number of sliding windows, hampering the learning of attention module.

Visualization of Decision Boundary. In this qualitative experiment, we visualize the change of
decison boundary on the inter-twinning moons 2D problem in a gradual manner. Concretely, the
2-Moons dataset in [41] is used, where 10 domains (0 to 9) are obtained by rotating data points
counter-clockwise in units of 18◦. In Figure 3, the model is sequentially trained using EvoS until the
t-th domain is finished, and then we visualize the decision boundary on current domain Dt and the
next future domain Dt+1. From the results, we can observe that the decision boundary successfully
adapts to future domains, showing that EvoS can truly capture the underlying temporal drift of data.
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(a) t = 5 (b) t = 6 (c) t = 7 (d) t = 8

t, y = 1 t, y = + 1 t + 1, y = 1 t + 1, y = + 1

Figure 3: Visualization of decision boundaries for the model at current time point tt on inter-twinning
moons 2D problem. Blue line and points are the decision boundary and samples in current domain
Dt, and red line and points are the decision boundary and samples in the next future domain Dt+1.

(a) t-SNE visualization of test domains. (b) Effect of pool length L.
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(c) Sensitivity of α, λ.

Figure 4: (a): Visualization of standardized features from each test domain on Yearbook and
RMNIST. Different colors denote different domains. (b): Effect of the memory pool length L on
dataset Yearbook. (c):Hyper-parameter sensitivity of α and λ on Yearbook

Effect of Memory Pool Length. In the main experiments, we do not restrict the size of the memory
poolM, since the datasets used in our paper has a moderate number of domains and the memory
cost is small. Nevertheless, a fixed memory pool size is more practical when considering a lifelong
process, i.e., T →∞. Thus, we additionally conduct the experiment where the memory poolM is
implemented as a FIFO queue with different fixed length L. That is, only the statistics for up to the L
most recent historical domains can be stored. The results on Yearbook in Fig. 4(b) demonstrate that
our method generally performs well and a relatively large memory pool length is better.

t-SNE Visualization of Standardized Features. To verify our method appropriate for generalization,
we visualize the standardized features of all target domains via t-SNE [38] on RMNIST and Yearbook
in Fig. 4(a). It can be observed that the standardized features of target domains are well aligned,
suggesting that MASM can capture evolving patterns effectively and feature standardization helps
address temporal drift appropriately. These enable EvoS to achieve generalization on future domains.

Hyper-parameter Sensitivity. α and λ control the truncation range and the tradeoff the adversarial
loss Ladv, respectively. Fig. 4(c) shows the sensitivity of EvoS to them on Yearbook, where α ∈
{0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} and λ ∈ {0.1, 0.5, 1.0, 1.5, 2.0, 5.0, 10.0, 15.0, 20.0}. We see that
EvoS is more sensitive to λ than α, and large λ values significantly worsen performance. In practice,
we suggest selecting λ from a range ≤1. For α, its effect is modest and α = 1 generally works well.

5 Conclusion

This paper considers a more challenging problem of continual domain generalization over temporal
drift (CDGTD) than conventional DG, where the model is incrementally trained with sequential
domains and is required to generalize to unseen domains that are not too far into the future. To
this end, we propose an Evolving Standardization (EvoS) method to learn the evolving pattern of
sequential domains over the temporal drift and hope to achieve the generalization by transforming the
domain distribution into a common normal distribution via feature standardization. Experiments on
real-world datasets including images and texts verify the efficacy of EvoS. Since existing DG works
focus on conventional setting, we hope this work can encourage more research works on CDGTD.
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A Broader Impacts & Limitations

Our work focus on the problem of continual domain generalization over temporal drift (CDGTD),
which aims to generalize the model to unseen future domains by leveraging underlying evolutionary
patterns. The effectiveness of our method on several real-world datasets means that it may potentially
benefit relevant applications and communities that deal with temporal drifts, e.g., advertisement
recommendation, autonomous driving, popularity forecast of media content, etc. Nevertheless, we
should also be cautious about possible failures of our method when encountering sudden distribution
shifts. In the future, we may explore the automatic identification of domains with severe distribution
shifts, allowing us to proactively reject them and mitigate the risk of severe accidents.

B Ethics Statement & Licenses

All the datasets used in the paper are publicly available and are only intended to compare the
performances of different algorithms on classification tasks, adhering to the following licenses of
these datasets:

• Yearbook: MIT licensed
• MNIST: CC BY-SA 3.0
• fMoW: The Functional Map of the World Challenge Public License
• Huffpost: CC0: Public Domain
• arXiv: CC0: Public Domain

C Algorithm of EvoS

The training and inference procedure for EvoS is provided in Algorithm 1 and 2, respectively.

D Experimental Setup Details

D.1 Dataset Description

Yearbook used in our paper is from [56]. It is based on the Portraits [16] dataset (MIT license),
containing the 32× 32 grayscale images of yearbook portraits from 128 American high schools in 27
states. The data spanning from 1930 to 2013 reflects the evolving fashion styles and shifting social
norms throughout the decades. The task is the binary classification of genders. Note that it is only
used for comparing the generalization performances of different algorithms on classification tasks.
For this dataset, we treat every four years as a domain, resulting in 16 domains. Table 11 provides the
number of samples in each domain. The first 16 domains are used for training (T = 16), the last 5
domains for testing (K = 5).

RMNIST is a variant of the MNIST [13] dataset, which comprises 9 domains generated by applying
the rotations with degree of 0◦, 10◦, · · · , 80◦ in order to MNIST to simulate the temporal drift. The
task is to classify a 28× 28 grayscale digit image from 0 to 9. We use the first 6 domains for training
(T = 6) and the last 3 for testing (K = 3).
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Algorithm 1: Training procedure for EvoS

Input: sequential labeled training domains {D1,D2, · · · ,DT }, hyper-parameters α, λ,W ,
feature encoder E , classifier C, learnable statistic vectors µ̂1, â1, µ̂2, â2, multi-head self
attention modules {Aw}Ww=1, memory poolM, batch size B, training steps E.

1 for t = 1 to T do
2 /* - - - - - - - - - - train on t-th domain - - - - - - - - - - */
3 for e = 1 to E do
4 Randomly sample a batch of data {xt

i, y
t
i}Bi=1 from domain Dt.

5 Obtain features {f t
i}Bi=1 by feeding {xt

i}Bi=1 into the feature encoder E .
6 Lt

total = 0.
7 /* - - - - - - - - - - multi-scale attention module - - - - - - - - - - */
8 for w = 1 to W do
9 if t ≥ w + 2 then

10 Prepare the input S̈
t−1
w = [s̈1w; s̈2w; · · · ; s̈t−ww ] for Aw by using a sliding time

window with length w on the memory poolM, as described in Eq. 4.
11 Obtain the output S̆

t

w = Aw(S̈
t−1
w ) = [s̆1w; s̆2w; · · · ; s̆t−ww ].

12 Compute the average of output tokens: s̆t−w+1
w = avg(S̆

t

w) = 1
t−w

∑t−w
i=1 s̆

i
w.

13 Split s̆t−w+1
w into w parts: [ŝt−w+1

w , · · · , ŝt−1w , ŝtw] = s̆t−w+1
w .

14 Calculate loss Lt,w
con by Eq. 11 and Lt

total+ = Lt,w
con.

15 /* - - - - - - - - - - calculate losses - - - - - - - - - - */
16 if t >= 3 then
17 Generate the statistics for current domain as [µ̂t, ât] = ŝt = 1

W

∑W
w=1 ŝ

t
w.

18 Calculate loss Lt
ce by Eq. 8 and Lt

stan by Eq. 10 and Lt
total+ = (Lt

ce + Lt
stan).

19 if t ≥ 2 then
20 Sample features {f ′m1 , · · · ,f

′m
B }t−1m=1 by Eq. 12 as the proxy of historical domains.

21 Calculate loss Lt
adv by Eq. 13 and Lt

total+ = λLt
adv .

22 Optimize corresponding modules by minimizing loss Lt
total.

23 /* - - - - - - - - - - store statistics into the memory poolM - - - - - - - - - - */
24 if t >= 3 then
25 Generate statistics µ̂t, ât by repeating step 8 to 17.

26 Store the learned/generated statistics into the memory poolM by µt,at ← µ̂t, ât.

27 return Final E , C, {Aw}Ww=1,M.

fMoW used in our paper is from [56]. It collects the 224× 224 RGB satellite images from 2002 to
2017 over 200 countries, where the visual features present in satellite data undergo changes over time
due to both human and environmental activities. The task to classify the functional purpose of the
buildings or the land in the images into one of 62 categories. For this dataset, we treat every year as a
domain and Table 12 provides the number of samples in each domain. The first 13 domains are used
for training (T = 13) and the last 3 domains are used for testing (K = 3).

Huffpost in [56] comprises news headlines from the Huffington Post from 2012 to 2018, the task of
which is to classify the news headline into one of 11 news categories (“Black Voices”, “Business”,
“Comedy”, “Crime”, “Entertainment”, “Impact”, “Queer Voices”, “Science”, “Sports”, “Tech”,
“Travel”). The data spanning for 2012 to 2018 presents changes in the content or style of news along
the time dimension. For this dataset, we use the first 4 years for training (T = 4) and the last 3 years
for testing (K = 3). The number of samples in each domain is provided in Table 13.

Arxiv in [56] contains paper titles and their corresponding primary categories spanning from 2007 to
2022. The content of Arxiv preprints evolves over time, reflecting the dynamic nature of research
fields. And the task is to classify a research paper into one of 172 categories based on its title. We use
the data from the first 9 domains for training (T = 9) and the data from the last 7 years for testing
(K = 7). The number of samples in each domain is presented in Table 14.
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Algorithm 2: Inference procedure for EvoS

Input: sequential target domains {DT+1,DT+2, · · · ,DT+K}, feature encoder E , classifier C,
multi-head self attention modules {Aw}Ww=1, memory poolM.

1 for t = T + 1 to T +K do
2 /* - - - - - - - - - generate statistics via multi-scale attention module - - - - - - - - - */
3 for w = 1 to W do
4 Prepare the input S̈

t−1
w = [s̈1w; s̈2w; · · · ; s̈t−ww ] for Aw by using a sliding time window

with length w on the memory poolM, as described in Eq. 4.
5 Obtain the output S̆

t

w = Aw(S̈
t−1
w ) = [s̆1w; s̆2w; · · · ; s̆t−ww ].

6 Compute the average of output tokens: s̆t−w+1
w = avg(S̆

t

w) = 1
t−w

∑t−w
i=1 s̆

i
w.

7 Split s̆t−w+1
w into w parts: [ŝt−w+1

w , · · · , ŝt−1w , ŝtw] = s̆t−w+1
w .

8 Generate the statistics for current domain as [µ̂t, ât] = ŝt = 1
W

∑W
w=1 ŝ

t
w.

9 /* - - - - - - - - - - inference on t-th domain - - - - - - - - - - */
10 for xt ∈ Dt do
11 Obtain features f t by feeding xt into the feature encoder E .
12 Conduct feature standardization by zt = ft−µ̂t

σ̂t = ft−µ̂t

exp(ât)
.

13 Generate the prediction ŷt by feeding zt into the classifier C.
14 /* - - - - - - - - - - store statistics into the memory poolM - - - - - - - - - - */
15 Store the generated statistics into the memory poolM by µt,at ← µ̂t, ât.

For each training domain of all datasets, we randomly select 90% of data as training split and 10% of
data as validation split. The evaluation of generalization performance is based on the whole data of
each test domain.

D.2 Implementation Details

All experiments are implemented via PyTorch and the backbones we use mainly adhere to [56].
Yearbook uses a 4-layer convolutional network from [56] as the backbone. For multi-scale attention
module (MSAM), we set the dimension of head as dh = 8 for each attention module Aw and the
number of heads for Aw as w · nh, with nh = 16, w = 1, · · · ,W . And the Adam optimizer with
lr = 1e− 3 is used to optimize the model, where the batch size B is set to 64 and the training epochs
of each domain are set to 50. As for the hyper-parameters, we use α = 1.0, λ = 1.0,W = 3.

RMNIST adopts the ConvNet in [44] as the backbone, and we set the dimension of head as dh = 8 for
each attention module Aw and the number of heads for Aw as w · nh, with nh = 32, w = 1, · · · ,W .
The Adam optimizer with lr = 1e− 3 is adopted for model optimization. The batch size and training
epochs of each domain are set to 64 and 50, respectively. And α = 2.0, λ = 1.0,W = 3 is used.

fMoW employ the DenseNet-121 [18] pretrained on ImageNet as the backbone. Besides, we
use a bottleneck layer [28] to reduce the feature dimensions into 256, and set the dimension of
head as dh = 8 for each attention module Aw and the number of heads for Aw as w · nh, with
nh = 64, w = 1, · · · ,W . Similarly, the Adam optimizer is used, where the learning rate is set to
lr = 2e− 4. The batch size is set to B = 64 and each training domain is trained for 25 epochs. As
for the hyper-parameters, we set α = 1.0, λ = 1.0,W = 3 for fMoW dataset.

Huffpost and Arxiv use the pretrained DistilBERT base model [48] as the backbone. For MSAM,
we set the dimension of head as dh = 8 for each attention module Aw and the number of heads for
Aw as w · nh, with nh = 128, w = 1, · · · ,W . Also the Adam optimizer is used with the learning
rate lr = 2e− 5 and batch size B = 64. And α = 1.0, λ = 1.0,W = 3 is used for the two dataset.
For the Huffpost dataset, each training is trained for 50 epochs, while the training epochs of each
domain are set to 5 for the Arxiv dataset.

We run each task on a single NVIDIA GeForce RTX 3090 GPU for three random trials. For baselines,
we also select their hyper-parameters via the grid search using the validation splits of training domains.
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Table 5: Accuracy (%) on Yearbook, RMNIST and fMoW. The best and second-best results in
CDGTD setup are bolded and underlined. (Yearbook: K = 5, RMNIST: K = 3, fMoW: K = 3)

Method Incremental
training

Access
multiple
domains

Yearbook
Accuracy (%) ↑

RMNIST
Accuracy (%) ↑

fMoW
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst DT+1 OOD

avg.
OOD
worst

Offline 7 3 89.30 (3.15) 88.46 (2.72) 86.81 (3.06) 98.15 (0.41) 92.14 (0.91) 83.89 (1.38) 72.43 (1.31) 59.76 (1.91) 49.85 (3.04)
IRM [2] 7 3 97.09 (0.38) 94.52 (0.41) 92.58 (0.52) 95.10 (1.98) 85.05 (3.17) 72.52 (3.81) 64.77 (1.57) 54.92 (2.16) 46.51 (3.47)

CORAL [50] 7 3 95.94 (1.43) 91.79 (3.04) 88.84 (6.71) 93.04 (0.35) 79.10 (1.09) 62.96 (1.70) 62.14 (1.32) 51.42 (2.13) 42.19 (3.07)
Mixup [61] 7 3 94.98 (1.84) 91.12 (1.92) 88.35 (3.45) 97.11 (0.41) 89.66 (0.99) 79.63 (1.47) 70.27 (0.91) 57.73 (1.15) 48.04 (1.43)
LISA [57] 7 3 95.51 (0.78) 92.97 (0.57) 91.29 (0.42) 96.21 (0.51) 87.04 (1.94) 75.15 (2.43) 70.05 (0.64) 55.52 (0.96) 44.61 (1.02)
CDOT [43] 7 3 95.17 (1.98) 92.90 (1.81) 91.46 (2.04) 97.96 (1.00) 90.19 (0.93) 79.67 (1.27) - - -
CIDA [55] 7 3 92.36 (1.22) 90.67 (1.45) 88.45 (1.69) 97.43 (1.08) 89.19 (0.89) 78.32 (1.46) - - -

GI [41] 7 3 97.42 (0.32) 96.37 (0.33) 95.73 (0.52) 97.78 (0.04) 91.00 (0.70) 82.46 (2.01) 61.62 (1.27) 50.83 (2.19) 42.78 (2.57)
LSSAE [44] 7 3 93.93 (1.91) 92.12 (2.06) 88.75 (4.11) 96.73 (0.31) 90.36 (0.46) 82.13 (0.71) 59.15 (1.25) 48.66 (1.90) 41.38 (2.49)
IncFinetune 3 7 96.61 (0.17) 94.72 (0.11) 93.48 (0.54) 98.62 (0.22) 92.80 (0.65) 84.61 (1.15) 65.52 (0.34) 53.99 (0.46) 45.23 (0.83)
Mixup [61] 3 7 90.21 (1.92) 89.83 (1.58) 88.43 (1.67) 98.43 (0.12) 92.38 (0.29) 83.45 (0.34) 64.84 (0.23) 52.00 (0.37) 42.54 (0.47)

SimCLR [11] 3 7 95.94 (0.55) 93.07 (0.67) 89.65 (1.70) 98.23 (0.24) 90.98 (0.61) 81.05 (1.12) 64.97 (0.36) 53.20 (0.59) 44.71 (0.63)
SwAV [8] 3 7 97.37 (0.12) 94.27 (0.07) 91.44 (2.31) 98.08 (0.09) 90.85 (0.38) 80.96 (0.85) 66.47 (0.10) 54.51 (0.18) 45.29 (0.21)
EWC [22] 3 7 97.18 (0.12) 95.12 (0.07) 93.64 (0.37) 98.56 (0.08) 92.02 (0.31) 82.80 (0.67) 66.23 (0.12) 54.55 (0.16) 45.80 (0.18)

SI [60] 3 7 97.09 (0.09) 94.67 (0.11) 93.48 (0.21) 98.61 (0.04) 93.27 (0.15) 85.65 (1.21) 66.61 (0.05) 54.89 (0.11) 46.46 (0.15)
A-GEM [10] 3 7 94.36 (0.69) 90.96 (0.51) 88.88 (0.29) 95.99 (0.66) 86.95 (1.63) 75.45 (2.59) 54.54 (1.98) 47.61 (2.46) 41.13 (3.57)

SGP [47] 3 7 95.65 (0.58) 92.92 (0.45) 91.39 (0.22) 97.12 (0.37) 88.97 (0.50) 78.05 (0.95) - - -
DRAIN [3] 3 7 96.23 (0.33) 94.71 (0.45) 93.73 (0.64) 98.52 (0.07) 93.09 (0.14) 85.75 (0.24) 67.22 (0.04) 55.05 (0.09) 46.24 (0.12)

EvoS 3 7 97.37 (0.03) 95.53 (0.36) 94.78 (0.46) 98.64 (0.02) 93.84 (0.16) 87.04 (0.36) 67.18 (0.05) 54.64 (0.11) 45.86 (0.21)
For fMoW, backbone DenseNet-121 is too big to apply full GI and DRAIN. So we apply DRAIN only to the classifier and apply GI without the fine-tuning stage.

Table 6: Accuracy (%) on Huffpost and Arxiv. The best and second-best results in CDGTD setup are
bolded and underlined. (Huffpost: K = 3, Axriv: K = 7)

Method Incremental
training

Access
multiple
domains

Huffpost
Accuracy (%) ↑

Arxiv
Accuracy (%) ↑

DT+1 OOD
avg.

OOD
worst DT+1 OOD

avg.
OOD
worst

Offline 7 3 72.74 (0.14) 71.50 (0.56) 69.63 (0.81) 57.49 (0.15) 52.38 (0.43) 49.28 (0.67)
IRM [2] 7 3 71.04 (0.45) 70.31 (0.67) 68.97 (0.87) 51.11 (1.04) 45.89 (2.77) 42.86 (3.98)

CORAL [50] 7 3 71.34 (0.51) 70.08 (0.69) 68.68 (0.94) 50.98 (1.34) 45.77 (2.92) 42.71 (4.15)
Mixup [61] 7 3 73.34 (0.02) 71.16 (0.07) 69.29 (0.12) 57.58 (0.03) 52.77 (0.19) 49.62 (0.24)
LISA [57] 7 3 72.19 (0.06) 70.24 (0.56) 68.60 (0.91) 56.53 (0.02) 52.41 (0.11) 49.67 (0.23)

GI [41] 7 3 68.06 (1.51) 66.32 (2.78) 64.64 (3.67) 53.43 (1.65) 49.19 (2.49) 46.13 (3.06)
IncFinetune 3 7 73.57 (0.02) 71.98 (0.06) 69.80 (0.11) 56.22 (0.02) 52.43 (0.14) 49.37 (0.21)
Mixup [61] 3 7 73.07 (0.08) 71.52 (0.21) 69.44 (0.29) 56.64 (0.02) 52.95 (0.06) 49.97 (0.11)
EWC [22] 3 7 73.64 (0.02) 71.53 (0.29) 68.99 (0.46) 56.60 (0.04) 52.78 (0.07) 49.73 (0.12)

SI [60] 3 7 72.58 (0.07) 71.50 (0.15) 69.61 (0.34) 49.98 (1.09) 47.27 (2.46) 44.77 (3.11)
A-GEM [10] 3 7 72.23 (0.06) 71.16 (0.14) 69.10 (0.28) 52.02 (0.99) 48.91 (2.67) 46.03 (2.09)
DRAIN [3] 3 7 73.42 (0.02) 71.75 (0.16) 69.69 (0.20) 56.04 (0.06) 52.07 (0.18) 48.97 (0.34)

EvoS 3 7 73.42 (0.02) 72.36 (0.05) 70.19 (0.08) 56.60 (0.02) 53.15 (0.04) 50.19 (0.10)
For Huffpost and Arxiv, backbone DistilBERT-base is too big to apply the full GI and DRAIN. So we apply DRAIN only to the classifier and apply GI without
the fine-tuning stage.

E Experimental Results with Error Bars

In this section, we report the mean and standard derivation (denoted as mean (std) ) for each task,
when running with 3 random trials. The results with error bars on Yearbook, RMNIST and fMoW
are provided in Table 5, and the error bars on Huffpost and Arxiv are given in Table 6.

F Complexity Analysis

Time Complexity of MSAM. Taking one of the multi-head self-attention module Aw in MSAM as
an example, we denote df as the feature dimension of its input tokens, and dh, nh and ni denote the
feature dimension of its heads, the number of its heads and the number of its input tokens, respectively.
Then the time complexity of Aw is O((n2i + ni · df ) · (dh · nh)). Since ni will be no larger than the
number of training domains T and dh · nh is usually set to df in transformers, the time complexity
of MSAM can be roughly approximated as O(W · (T 2df + T · d2f )), where W is the number of
multi-head self-attention modules in MSAM. It is roughly equivalent to the time complexity of a
single multi-head self-attention layer in conventional transformers multiplied by W .

Memory Complexity ofM. Assuming that there are T historical domains and the dimension of
statistic vectors is df , then the memory complexity of the memory poolM is O(T · df ). In practice,
after being processed by deep neural networks, the dimension of pooled features is usually much
smaller than that of original inputs. Moreover, only two vectors need to be stored per domain.
Hence, the memory cost ofM is relatively small, compared with sample replay-based CL methods.
Concretely, Table 7 provides the memory cost ofM and the increment of GPU memory cost for
EvoS on Yearbook, RMNIST and fMoW datasets with batch size 64.
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Table 7: Memory cost on Yearbook, RMNIST and fMoW datasets.
GPU memory cost (GB) of different methods

Method

Dataset
Yearbook RMNIST fMoW

Backbone
4-layer CNN [56] ConvNet [44] DenseNet-121 [18]

IncFinetune 1.72 1.84 10.69
EvoS 1.94 2.09 11.04

Increment ∆ (GB) 0.22 0.25 0.35
Memory cost (MB) of the memory poolM

EvoS 5.25 9.00 32.00

Table 8: Model parameters (MB) of different methods on Yearbook, RMNIST and fMoW.

Method

Dataset
Yearbook RMNIST fMoW

Backbone
4-layer CNN [56] ConvNet [44] DenseNet-121 [18]

LSSAE [44] 4.70 23.25 90.92
DRAIN [3] 7.51 184.29 1113.85

EvoS 1.94 15.81 56.11

Model Complexity. Here, we measure the model complexity by the number of parameters. Specifi-
cally, Table 8 presents the model complexity of our method EvoS and other two temporal DG methods
LSSAE [44] and DRAIN [3] on Yearbook, RMNIST and fMoW datasets. LSSAE [44] introduces
sequential autoencoder to explore the underlying continuous structure in the latent space of deep
neural networks, where the complicated VAE and LSTM networks require lots of parameters. And
DRAIN [3] needs to encode and decode the entire network parameters, which also requires a great
number of parameters for large backbone networks. By contrast, our EvoS is overall less complex
than these temporal DG methods, and is more friendly to the relatively large backbone network.

G Additional Results

Results under Eval-Stream Manner. In this part, we additionally provide the results when adopting
the evaluation manner of Eval-Stream in [56]. Specifically, Eval-Stream denotes the evaluation
with domain stream, i.e., the model is evaluated at each timestamp using the average and worst
performance on the next K timestamps. Formally, given a sequence of domains with total length
T , the average performance Avgstream and worst performance Worststream under the strategy
of Eval-Stream are defined as Avgstream = 1

T −K
∑T −K

i=1
1
K

∑i+K
j=i+1Acci(Dj), Worststream =

1
T −K

∑T −K
i=1 minj∈{i+1,··· ,i+K}Acci(Dj), where Acci(Dj) is the accuracy on domain Dj when

using the model at the i-th timestamp. And Table 9 shows the results on Yearbook and Huffpost
datasets when using the Eval-Stream evaluation manner. According to the results, we see that EvoS
still outperforms other baselines, showing that our method is better at handling the problem of
continual domain generalization over temporal drift.

Table 9: Accuracy (%) on Yearbook and Huffpost under the evaluation manner of Eval-Stream.
(Yearbook: T = 21,K = 5, Huffpost: T = 7,K = 3)

Method Conference

Yearbook
Accuracy (%) ↑

Huffpost
Accuracy (%) ↑

Avgstream Worststream Avgstream Worststream
IncFinetune - 89.67 83.56 67.97 64.11
Mixup [61] ICLR’18 84.79 78.69 67.33 63.48

SimCLR [11] ICML’20 89.50 83.16 - -
SwAV [8] NeurIPS’20 90.05 84.08 - -
EWC [22] arXiv’16 90.15 83.75 68.31 64.58

SI [60] ICML’17 90.14 84.07 67.93 64.05
A-GEM [10] ICLR’19 84.40 77.59 65.83 62.20
DRAIN [3] ICLR’23 87.26 81.95 68.04 64.14

EvoS - 90.43 84.48 68.66 64.97
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Table 10: Misclassification error (%) on 2-Moons, ONP and Elec2. (K = 1)

Method Conference Misclassification error (in %) ↓
2-Moons ONP Elec2

Offline - 22.4±4.6 33.8±0.6 23.0±3.1
LastDomain - 14.9±0.9 36.0±0.2 25.8±0.6
IncFinetune - 16.7±3.4 34.0±0.3 27.3±4.2
CDOT [43] arXiv’19 9.3±1.0 34.1±0.0 17.8±0.6
CIDA [55] ICML’20 10.8±1.6 34.7±0.6 14.1±0.2

GI [41] NeurIPS’21 3.5±1.4 36.4±0.8 16.9±0.7
DRAIN [3] ICLR’23 3.2±1.2 38.3±1.2 12.7±0.8

EvoS - 2.5±1.0 33.1±0.6 11.6±0.7

Results on More Datasets. In addition to the datasets provided in [56], we also run our method
on the 2-Moons, ONP and Elec2 datasets used in [3]. Specifically, 2-Moons is a variant of the
2-entangled moons dataset by rotating data counter-clockwise in units of 18◦ to construct 10 domains,
where the rotation angle is used to simulate the temporal shift. For 2-Moons, we use Adam optimizer
and a MLP with two hidden layers of hidden size 64 and 128, and B = 64, lr = 1e−3, α = 1.0, λ =
1.0,W = 3, dh = 8, nh = 32, T = 9,K = 1. Online News Popularity (ONP) summarizes a
heterogeneous set of features about articles published by Mashable in a period of two years. The
dataset is split into 6 domains by time and the goal is to predict the number of shares in social
networks (popularity). For ONP, we use Adam optimizer and a MLP with one hidden layer of hidden
size 128, and B = 64, lr = 1e − 4, α = 1.0, λ = 1.0,W = 3, dh = 8, nh = 32, T = 5,K = 1.
Electrical Demand (Elec2) contains information about the demand of electricity in a particular
province. Following [3, 41], the first 30 domains in Elec2 are used (two weeks as one time domain)
and the task is to predict whether the demand of electricity in each period (of 30 mins) is higher or
lower than the average demand over the last day. For Elec2, we use Adam optimizer and a MLP with
two hidden layers of hidden size 128 and 128, and B = 64, lr = 1e − 4, α = 1.0, λ = 1.0,W =
3, dh = 8, nh = 32, T = 29,K = 1. For these datasets, as in [3, 41], we use the last domain for
testing and the rest for training. Please refer to [3] for more dataset details. The experimental results
are given in Table 10, where the misclassification errors of compared baselines are all reported from
DRAIN [3]. From Table 10, we can observe that our method EvoS still surpasses the most recent
method DRAIN, affirming its effectiveness in temporal domain generalization.

Table 11: Data Subset Size for the Yearbook Dataset.

Domain Interval Training Split Validation Split All
1 1930 - 1933 758 87 845
2 1934 - 1937 1149 130 1279
3 1938 - 1941 949 108 1057
4 1942 - 1945 2353 263 2616
5 1946 - 1949 1229 138 1367
6 1950 - 1953 1082 122 1204
7 1954 - 1957 1646 185 1831
8 1958 - 1961 1295 146 1441
9 1962 - 1965 1468 166 1634
10 1966 - 1969 2227 249 2476
11 1970 - 1973 1634 183 1817
12 1974 - 1977 2238 250 2488
13 1978 - 1981 1553 175 1728
14 1982 - 1985 2331 261 2592
15 1986 - 1989 1792 201 1993
16 1990 - 1993 1729 195 1924
17 1994 - 1997 1882 211 2093
18 1998 - 2001 2136 239 2375
19 2002 - 2005 1868 210 2078
20 2006 - 2009 1010 114 1124
21 2010 - 2013 1102 125 1227

total 1930 - 2013 33431 3758 37189
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Table 12: Data Subset Size for the fMoW Dataset.

Domain Year Training Split Validation Split All
1 2002 1676 227 1903
2 2003 2279 276 2555
3 2004 1755 240 1995
4 2005 2512 324 2836
5 2006 3155 406 3561
6 2007 1497 190 1687
7 2008 2261 298 2559
8 2009 7439 935 8374
9 2010 18957 2456 21413
10 2011 22111 2837 24948
11 2012 24704 3138 27842
12 2013 3465 385 3850
13 2014 5572 620 6192
14 2015 8885 988 9873
15 2016 14363 1596 15959
16 2017 5534 615 6149

total 2002-2017 126165 15531 141696

Table 13: Data Subset Size for the Huffpost Dataset.

Domain Year Training Split Validation Split All
1 2012 6701 744 7446
2 2013 7492 832 8325
3 2014 9539 1059 10599
4 2015 11826 1313 13140
5 2016 10548 1172 11721
6 2017 7907 878 8786
7 2018 3501 388 3890

total 2012-2018 57514 6386 63907

Table 14: Data Subset Size for the Arxiv Dataset.

Domain Year Training Split Validation Split All
1 2007 131550 14616 146167
2 2008 62460 6939 69400
3 2009 206244 22916 229161
4 2010 50665 5629 56295
5 2011 55741 6193 61935
6 2012 51678 5741 57420
7 2013 64951 7216 72168
8 2014 79498 8833 88332
9 2015 193979 21553 215533

10 2016 120682 13409 134092
11 2017 111024 12336 123361
12 2018 123891 13765 137657
13 2019 142767 15862 158630
14 2020 166014 18445 184460
15 2021 201241 22360 223602
16 2022 89765 9973 99739

total 2007-2022 1852150 205786 2057952
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