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Abstract

Prevailing theories of perception hypothesize that the brain implements perception
via Bayesian inference in a generative model of the world. One prominent theory,
the Neural Sampling Code (NSC), posits that neuronal responses to a stimulus
represent samples from the posterior distribution over latent world state variables
that cause the stimulus. Although theoretically elegant, NSC does not specify the
exact form of the generative model or prescribe how to link the theory to recorded
neuronal activity. Previous works assume simple generative models and test their
qualitative agreement with neurophysiological data. Currently, there is no precise
alignment of the normative theory with neuronal recordings, especially in response
to natural stimuli, and a quantitative, experimental evaluation of models under NSC
has been lacking. Here, we propose a novel formalization of NSC, that (a) allows
us to directly fit NSC generative models to recorded neuronal activity in response
to natural images, (b) formulate richer and more flexible generative models, and
(c) employ standard metrics to quantitatively evaluate different generative models
under NSC. Furthermore, we derive a stimulus-conditioned predictive model of
neuronal responses from the trained generative model using our formalization that
we compare to neural system identification models. We demonstrate our approach
by fitting and comparing classical- and flexible deep learning-based generative
models on population recordings from the macaque primary visual cortex (V1) to
natural images, and show that the flexible models outperform classical models in
both their generative- and predictive-model performance. Overall, our work is an
important step towards a quantitative evaluation of NSC. It provides a framework
that lets us learn the generative model directly from neuronal population recordings,
paving the way for an experimentally-informed understanding of probabilistic
computational principles underlying perception and behavior.

1 Introduction

Our environment is riddled with sensory stimuli that are noisy, ambiguous, and often incomplete,
necessitating organisms to handle uncertainty in their sensory observations. Bayesian models of
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perception and behavior have thus grown in prominence, successfully accounting for an extensive
array of tasks across perception [1, 2], cognition [3], sensory-motor learning [4] and decision
making [5–8]. These models posit that the brain maintains a statistical generative model of the
world, where sensory observations x are generated from unknown, world-state variable z. Upon
encountering a stimulus x, perception in the brain is conceptualized as probabilistically inferring

the world-state variable z that caused x. In other words, to perceive x, the brain would invert the
generative model to compute the posterior distribution over z: p (z|x). One can express the posterior
via Bayes’ rule as: p (z|x) / p (x|z) p (z), where p (z) is the prior distribution of z and p (x|z) is
the conditional distribution characterizing how well a given z describes x. While this has been an
influential framework, the neuronal underpinnings of probabilistic inference remain challenging to
conceptualize and test experimentally. To this end, the Neural Sampling Code (NSC) [9–16] is a
prominent theory that offers a unique link between neuronal responses and probabilistic inference.
Specifically, NSC posits that neuronal responses, r, to a given stimulus, x, can be thought of as
samples drawn from the posterior distribution: r ⇠ p (z|x) (Figure 1).

Background and related work Prevailing literature on NSC uses simple and restrictive generative
models and performs qualitative comparisons of model predictions with neurophysiological data to
test the theory. Notably, existing NSC works use simple prior- and conditional distributions with
pre-specified parameters. For example, a popular choice for the conditional distribution of images
(stimuli) has been Gaussian with a likelihood function that linearly combines pre-specified filters.
Hoyer and Hyvärinen [9] learn these filters via independent component analysis on natural images,
whereas Haefner, Berkes, and Fiser [12] use oriented Gabor filters instead. Similarly, a popular
choice for the prior is the exponential distribution with a pre-specified rate parameter [9]. These
choices are inspired by (a) what is already known about sensory neurons, especially in the primary
visual cortex (V1), and (b) the fact that it renders posterior computation mathematically simpler. In
the examples above, the choice of filters reflects well-known findings that the receptive fields of V1
neurons resemble (Gabor-like) orientation filters [17–20], and the exponential prior is motivated
by the principle of sparse coding [9, 20]. Importantly, these parameters and distributions — and
thereby, the generative models — are not informed or learned explicitly from neurophysiological
data. Rather, these works typically sample from the posterior of the assumed generative model
in response to strongly parameterized stimuli (e.g., noisy oriented gratings). The models — and
thereby the theory — are then evaluated based on how well the samples qualitatively capture specific
neurophysiological phenomena such as the mean-variance relationship [9, 21, 22], task-induced noise
correlation structures [12], and contextual modulation in V1 neurons [16].

In contrast, recent advances in deep learning-based neural system identification models have set new
standards in providing expressive models that can faithfully predict neural population responses to
natural stimuli [23–39], and offer experimentally verifiable insights at the single-neuron level [31, 40–
42]. Additionally, advances in generative modeling, especially of images, have clearly demonstrated
the effectiveness of deep, highly nonlinear, generative models such as auto-regressive models [43,
44], variational autoencoders [45–47], normalizing flows [48–51], and diffusion models [52–54].
Given the complexity of high-dimensional natural stimuli and real-world tasks, it is paramount that
NSC be considered under a generative model that can match such complexity.

Our objective and contributions Here we ask: what exactly is the brain’s generative model? More
specifically, can we identify the brain’s generative model from NSC population responses to natural
stimuli? Although simple generative models and qualitative evaluations in the NSC literature have
offered us great insight into the potential generative models of the brain and engendered support for
the theory, there remains a conspicuous gap in the quantitative evaluation of NSC, particularly in
response to natural stimuli. In this work, we bridge this gap by proposing a formalization of NSC that
1 allows us to directly fit NSC generative models to recorded neuronal activity in response to natural

images, 2 formulate richer and more flexible generative models, and 3 employ standard metrics
such as log-likelihood and single trial correlation to quantitatively evaluate different generative
models under NSC. As opposed to specifying a generative model that ought to be maintained by the
brain, our framework allows us to learn the generative model directly from neurophysiological data.
Learning expressive generative models in a data-driven fashion additionally lets us take advantage
of population recordings of large and ever-increasing scale in the field [55–57]. Furthermore, our
formalization 4 lets us derive a stimulus-conditioned predictive model of neuronal responses from
the trained generative model, which can be directly compared to state-of-the-art system identification
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Figure 1: Conceptualizing NSC. A. Latent variable model of the world (stimulus): z is the world
state variable (intensity of oriented Gabor filter here; figure inspired from Orbán et al. [13]) and
x is the observed sensory stimulus (e.g., an image of a tiger). B. Responses r under NSC: As the
brain encounters a stimulus x, it inverts its generative model, combining the likelihood p (x|z) and
prior p (z), to obtain the posterior p (z|x), and r are samples from the posterior. C. Neural response
distribution under NSC: Each point corresponds to a single response pair of two NSC neurons under
three distinct stimuli depicted by distinct colors. The distribution of neurons matches the distribution
over the corresponding latent variables z.

models. The predictive model has the ability to provide experimentally-verifiable, neuron-specific
predictions from the normative theory.

We demonstrate our approach by fitting classical generative models from NSC literature and flexible
deep learning-based generative models on macaque primary visual cortex (V1) population responses
to natural images. We show that the flexible models outperform classical models in both their
generative- and predictive-model performance. Overall, this work presents an important step towards
a quantitative evaluation of NSC, paving the way for a data-driven approach in learning the generative
model of the brain.

2 Fitting the Neural Sampling Code

2.1 Theory

An explicit formalization of NSC We begin by formalizing NSC as a latent variable probabilistic
model z �! x �! r, where z represents the world state variable that underlies the observable
stimulus x (Figure 1A). Subsequently, the stimulus x gives rise to the neuronal responses r via the
posterior p (z|x) (Figure 1B). NSC posits that the neuronal responses r elicited by stimulus x can be
interpreted as stochastic samples from the posterior distribution p (z|x) (Figure 1B, C). However, the
exact relation between z and r is often left unspecified. For instance, it is not clear what aspect of the
neuronal response (e.g., firing rate, presence or absence of spikes, or membrane potential) should be
treated as a sample. In fact, most previous works do not make a distinction between r and z, and
simply equate an aspect of the neuronal response such as firing rate with the latent sample. Here, we
make this assumption explicit and treat the neural response r as a random variable that matches the
latent random variable z in stimulus-conditioned distributions:

zsample ⇠ p (z|x) (1)
r = zsample, (2)

Equation 2 is a slight abuse of notation to state the equivalence in the stimulus-conditioned distribu-
tions of r and z, more formally stated as:

p (r|x) d
= p (z|x) , (3)

where d
= denotes equality in distribution or density function. By marginalizing the stimulus, we find

that the marginal distribution of r must also match that of z:

p (r) =

Z
p (r|x) p (x) dx d

=

Z
p (z|x) p (x) dx = p (z) . (4)
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Explicitly formalizing NSC with distinct r and z has two advantages. Firstly, the resulting formulation
provides the crucial link between the generative model z ! x and observed responses r, serving
as the basis for learning the generative model from the responses. This also provides the basis for
a neuron-specific model comparison between different NSC models as well as the possibility to
make predictions for specific neurons that can be experimentally tested. Secondly, the explicit link
highlights the possibility to explore more flexible mappings between z and r. For instance, one could
assume that the latent variable z is encoded in the membrane potential, but what we observe are spike
counts, i.e. r = f(z) for some stochastic mapping f . This relation can, in turn, become part of the
model, which can then be fitted to real data and compared to alternative versions of the model. In this
work, we choose to learn the generative models from the data under the simplest mapping of r ⌘ z
(Section 3.2). Please see Section 4 for a discussion on alternative mappings between r and z.

In NSC, we note that the latent variables are what underlie the stimulus (such as the intensity of an
oriented filter in 1A) and are not necessarily any task-relevant experimenter-defined variables (such
as orientation in an orientation-discrimination task). This is in contrast to the alternative theory of
probabilistic population codes [58, 59], where typically, the latent variable is explicitly defined to be
the task-relevant experimenter-defined variables.

Learning the generative model under NSC One way to quantitatively test an NSC generative
model p (z,x) is testing how well the response distribution p(r|x) approximates the posterior p (z|x)
of the generative model, i.e., testing equation 3. However in reality p (z,x), and consequently p (z|x),
is unknown to us. However, our formalization allows us to learn the generative model p (z,x) via
learning the joint distribution p (r,x). The equivalence between p (z,x) and p (r,x) follows from
equations 2, 3 and 4:

p (z,x) = p (z|x) p (x) d
= p (r|x) p (x) = p (r,x) (5)

= p (x|z) p (z) d
= p (x|r) p (r) = p (r,x) (6)

The joint distribution can then simply be fitted to recorded stimulus-response pairs {x(i)
, r(i)}Ni=1 by

maximizing the likelihood:

✓
⇤ = argmax

✓

NX

i=1

log p
⇣
x(i)

, r(i); ✓
⌘

| {z }
Joint

= argmax
✓L,✓P

NX

i=1

log p
⇣
x(i)|r(i); ✓L

⌘

| {z }
Likelihood

+ log p
⇣
r(i); ✓P

⌘

| {z }
Prior

(7)

where ✓ are the parameters of the generative model, that we split into ✓L and ✓P for parameters
relevant to the likelihood and prior, respectively. Provided that ✓L and ✓P do not overlap, the
generative models can be learned by learning the likelihood and prior separately.

Evaluating NSC on data Fitting generative models under NSC on recorded data allows us to
compare the generative models quantitatively by evaluating their performances as log-likelihood on a
held-out test set. Furthermore, once we have learned the generative model p (r,x; ✓⇤), we can invert it
to arrive at the posterior p (r|x; ✓⇤). This provides a neuronal encoding model p (r|x) under specific
assumptions of the NSC model, allowing us to predict neural responses to arbitrary new stimuli.
The performance of this predictive model can serve as yet another metric for quantitative model
comparison under NSC. Additionally, the posterior allows us to compare the generative models to the
normative-theory-free system identification models. It is important to note that our quantification does
not make any assumption about the kind of stimuli x. Existing works on NSC use parametric stimuli
from classical neuroscience experiments and perform a qualitative comparison between model- and
real-neuronal responses to the same stimuli. Our formulation, on the other hand, allows us to compare
different NSC models on natural images, the type of stimuli the visual system has evolved to process.

2.2 Models

Following previous work in NSC [9–16], here we focus on vision and develop generative models
under NSC for natural image stimuli x and spike counts r recorded from the visual cortex (Figure 2A).
Developing generative models entails developing models for the prior p (r) and the likelihood p (x|r)
(Figure 2B). Additionally, we also fit an approximate posterior q (r|x). We summarize our fitting
methodology in an algorithm towards the end of the section (Algorithm 1).
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Figure 2: A. Overview of the experimental setup for neuronal recordings (see Section 3.2 for a
summary of the data description and Cadena et al. [29] for the complete details). B. Parameterized
generative model for NSC: ✓P : parameter of the prior p (r; ✓P ); ✓L: parameter of the likelihood
p (x|z; ✓L); �: parameters of the (approximate) posterior q (r|x;�). C. Flexible prior, likelihood,
and posterior models. The prior follows our dequantization framework consisting of 3 components:
(1) continuous prior p(⇣;!) (normalizing flow with Gaussian base distribution), (2) quantizer P (r|⇣)
(floor function), and (3) variational dequantizer q (⇣|r; ⌫) (a conditional normalizing flow, Appendix
B). The likelihood is an isotropic Gaussian distribution over x, where the parameters are functions
(MLP) of r. The posterior is a Gamma distribution over r whose parameters are functions of x,
modeled as a system identification-based convolutional neural-network model (Appendix C).

Prior Spike counts r are discrete. Hence, we can neither directly fit standard literature models,
such as an exponential [9] or a Laplace distribution [20] to the discrete variable r, nor can we
straightforwardly fit more common flexible density models such as normalizing flows [49, 60], as
they are all continuous density models. A common approach to remedy this is to employ uniform
dequantization, where the discrete quantity is converted into a continuous signal by adding uniform
random noise [43, 61, 62]. We adopt the more general approach of variational dequantization
where the noise distribution is learned instead of being fixed to be uniform [63–66]. In this method,
prior distribution over discrete r is captured by positing a generative model involving a continuous
latent variable ⇣ linked to the discrete response r via a deterministic quantizer function: P (r) =R
P (r|⇣)p(⇣)d⇣, where P (r|⇣) is the quantizer and p(⇣) is the continuous prior.

Since the integral is usually intractable, the whole model is fit by optimizing the evidence lower
bound (ELBO):

logP (r) � E⇣⇠q(⇣|r;⌫)

2

4log
Continuous priorz }| {
p (⇣;!)

3

5+H

0

@
Dequantizerz }| {
q (⇣|r; ⌫)

1

A (8)

where q (⇣|r; ⌫) is the approximate posterior distribution with parameters ⌫, p (⇣;!) is the continuous
prior with parameters !, and H (q (⇣|r; ⌫)) = �E⇣⇠q(⇣|r;⌫) [log q (⇣|r; ⌫)] is the conditional entropy
of the dequantizing distribution. Note that Equation (8) only provides a lower-bound to logP (r),
and a tighter bound via importance-weighted sampling [66–68] (Appendix A).

In our work, we only consider factorized prior distributions, i.e., we treat neurons to be a priori

independent logP (r) =
P

i logP (ri). This choice is informed by both the nature of the V1 neural
data that showed limited correlation across all stimuli and the simplicity of the fit it provides. The
same independence assumption was applied for the continuous prior distribution over the dequantized
responses ⇣. Given this dequantizer framework, we explore three different NSC priors by varying the
distribution over the continuous latent p (⇣; ⌫):

1. Exponential (Exp), 1
� exp �⇣

� H (⇣), as found in the original NSC model by Hoyer & Hyväri-
nen [9].

2. Half-normal (HN),
p
2

�
p
⇡
exp

⇣
� ⇣2

2�2

⌘
H (⇣), where H (⇣) is the heavyside function.

3. Normalizing flow (Flow): p(⇣;!) = pbase(T�1(⇣;!)) · |@ T�1(⇣;!)
@⇣ |, where we choose pbase to be

a standard normal, and T
�1 represents the following series of invertible mappings with learnable

parameters !: [affine, tanh, affine, tanh, affine, tanh, affine, softplus�1], where softplus�1(y) =
log(ey � 1), affine(y) = ay + b with learnable parameters a and b. softplus�1 ensures that the
support of ⇣ is non-negative, since we are ultimately interested in modeling the distribution of
(non-negative) spike counts (Figure 2C, “Prior” sub-panel).
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For the dequantizer distribution, q (⇣|r; ⌫), we utilize a conditional normalizing flow-based flexible
distribution, as in [66] (Appendix B).

Likelihood We model the likelihood as an isotropic Gaussian distribution:

p

⇣
x|r(i)

⌘
= N

⇣
x|µ(i)

,�2(i) · I
⌘
, (9)

where the parameters mean, µ(i) 2 R
|x| and variance, �(i) 2 R

|x|
>0 are functions of response, r(i),

and |x| is the number of dimensions of x. We consider (1) a linear function where µ = wµr(i) + bµ

and � = expw�r(i)+b� (Lin) and (2) a nonlinear function µ = wµMLP(r(i)) + bµ and � =

expw�MLP(r(i))+b� , where MLP(·) is a neural network (MLP) (Figure 2C “Likelihood” sub-panel).

Posterior In many cases, the posterior distribution for a desired generative model is not analytically
tractable and must be approximated, commonly using variational inference or Markov Chain Monte
Carlo sampling [69–71]. Here, since we learn the generative model p (x, r; ✓⇤), we can approximate
the true posterior p (r|x; ✓⇤) by fitting a model posterior q (r|x;�) to samples from p (x, r; ✓⇤)
directly via maximum log-likelihood:

�
⇤ = argmax

�

X

x0,r0

log q (r0|x0;�) , (10)

where x0
, r0 ⇠ p (x, r; ✓⇤), are samples from the trained generative model. We model the posterior

distribution of responses conditioned on images as a factorized Gamma distribution, following
state-of-the-art (SOTA) work in system identification [72]: p

�
r|x(i)

�
=

QS
j=1 p�

�
rj |↵(i)

,�(i)
�
,

where x(i) is the ith image, rj is the jth neuron out of |r| = S total neurons, and the parameters
concentration, ↵(i) and rate, �(i) are functions of the image, x(i). Since these functions map an
image to response distribution parameters, we model them using a convolutional neural network
model (Figure 2C “Posterior” sub-panel), following SOTA system identification work [25, 27, 73]
(Appendix C).

Prior Likelihood Name
Exponential (� = 1) Linear Exp1-Lin

Exponential Linear Exp-Lin
Half-Normal Linear HN-Lin

Normalizing Flow Linear Flow-Lin
Exponential MLP Exp-MLP
Half-Normal MLP HN-MLP

Normalizing Flow MLP Flow-MLP

Table 1: Generative models that we fit as be-
ing composed of priors and likelihoods.

Algorithm 1 Learning NSC models from data
Require: N pairs of stimuli and neuronal re-

sponses respectively, {x(i)
, r(i)}Ni

Learning generative model p (x, r; ✓P , ✓L)
1: ✓

⇤
P  argmax✓

PN
i=1 log p

�
r(i); ✓P

�

2: ✓
⇤
L  argmax✓

PN
i=1 log p

�
x(i)|r(i); ✓L

�

Learning approx posterior model q (r|x;�)
3: Sample {x0(i)

, r0(i)}Si ⇠ p (x, r; ✓⇤P , ✓
⇤
L)

4: �
⇤  argmax�

PS
i log q

�
r0(i)|x0(i);�

�

3 Experiments

3.1 Synthetic data

We simulated 10,000 pairs of images and neuronal responses from the following three classical NSC
models: 1 a Hoyer & Hyvärinen model (HNH) with an exponential prior [9], 2 an Olshausen
& Field (ONF) model where the prior is a Laplace distribution [20], and 3 a full Gaussian model
(Gauss) where the prior is an isotropic Gaussian with mean 0 and variance �

2
r . All the three models

share a common linear, isotropic Gaussian likelihood p (x|r) = N
�
x|Ar,�2I

�
, where A is the factor

loading matrix learned via standard independent component analysis model (ICA) with a complete
basis on natural image patches [9, 74]. Additionally, we sampled image-response pairs from 4 our
flexible model with Flow prior (described in Section 2.2) and MLP-based likelihood (Section 2.2),
where all parameters were randomly initialized. For any given generative model, we first sample
neuronal responses from the prior via r(i) ⇠ p (r), and then sample corresponding images via
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x(i) ⇠ p
�
x|r(i)

�
, where i 2 1, . . . , 10, 000. We hold out a set of 1,000 pairs as the test set. We fitted

all models on the datasets simulated from the classical as well as the flexible models via Equation (7)
and computed joint log-likelihoods of the trained models on the held-out test set as log p

�
x(i)

, r(i)
�
=

log p
�
x(i)|r(i)

�
+ log p

�
r(i)

�
. For the classical models, maximum likelihood estimates of the param-

eters were obtained analytically (Appendix F). We trained the flexible model using gradient descent.
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Figure 3: log p (x, r) of models on sim-
ulated data (trial averaged, in bits). Col-
umn denotes the model generating the
samples (data) and rows the trained NSC
model. Since the exponential prior in
HNH has a non-negative support and
does not match that of ONF and Gauss,
the scores for HNH under ONF and
Gauss data are unavailable.

We find that (1) the flexible model fits responses and
images simulated under other NSC models well, i.e.,
learns p (r) and p (x|r) and closely approximates the log-
likelihood of the true models. Importantly, it outperforms
the fit of other NSC models with mismatched generative
distributions, consistently being the best model after the
ground-truth model (first 3 columns in Figure 3). Further-
more, the flexible model is capable of generating complex
image and response distributions that could not be easily
captured by the classical generative models (column 4 in
Figure 3). This demonstrates that our framework allows
for NSC model fitting and that the flexible model has the
ability to flexibly capture the data distribution across a
wide range of generative models. Critically, a flexible
model could fit complex generative models that cannot be
modeled well by other classical models.

3.2 Neurophysiological data

Data description Next, we demonstrate applying our ap-
proach to real neuronal data. We used 32-channel laminar
NeuroNexus arrays (Figure 2A) to record population activity from the primary visual cortex (V1) of
two awake male rhesus macaque monkeys (Macaca mulatta) [29] as they fixated on grayscale natural
images sampled from the ImageNet dataset [75]. All the experiments concerned with the recordings
adhered to the National Institutes of Health, United States guidelines, and received approval from
the Institutional Animal Care and Use Committee. Each image was presented for 120 ms, and
spike counts between 40 ms and 160 ms after the image onset were computed and used as the
neuronal response r. The image stimulus x used for modeling is 41 ⇥ 41 px. For more details on the
experiments and data collection, refer to Cadena et al. [29]. We collected data across 12 recording
sessions, each having approximately 16,000 image-response pairs and at least 16 well-isolated single
units. We split the dataset into approximately 10,000 pairs for training, 3,000 pairs for validation,
and 3,000 for testing (for exact details on all sessions, see Appendix D). We do not aggregate data
across sessions and fit models separately for each session since the images can differ from session to
session, and not all neurons have seen every image.

Fitting the generative model Given a dataset of images and responses, {x, r}Ni=0, we fit the
likelihood p (x|r; ✓L) on the image-response pairs and the prior p (r; ✓P ) on the responses, r as in
Equation (7). We fit all of the generative models on each recording session as following procedure
described in Table 1. Below, we describe our results for the session with the largest number of
neurons (29 well-isolated single units) in detail and report summary results on all sessions.

For the prior models (Figure 4A), we report the test-set log-likelihood performance of all models
(Exp, HN, Flow) relative to the Exp1-model as the baseline. We find that our flexible normalizing flow
model (Flow) achieves the best performance, improving the score from the exponential distribution
(Exp) by 0.095 bits per neuron per trial, amounting to 2.755 bits across 29 neurons per trial. For the
likelihood models (Figure 4B), we find that using an MLP likelihood function, the model improved
by 0.052 bits per pixel per trial, amounting to 87.19 bits of improvement across all 41⇥41 pixels
per trial, relative to the model with linear likelihood function. For the joint distribution (Figure 4C),
we find that the flexible model (Flow-MLP) achieves the highest log-likelihood score, offering an
improvement of 1.8452e-3 bits per pixel per neuron per trial, amounting to 89.951 bits across all
41⇥41 pixels and 29 neurons per trial. We observed that in each of the cases, flexible models (Flow
prior, MLP likelihood) offer much higher log-likelihood performance, with the same trend found
across all sessions (Appendix D).
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standard error of mean across trials. A. Prior models, p (r): log-likelihood (lower bound) relative
to the baseline Exp1 prior model. The score is averaged across neurons and trials. Note that for the
prior models on discrete spike counts, r, we can only obtain a lower bound on p (r). Here we show
the importance-sampling bound (Equation (11)) with 1000 samples. B. Likelihood models p (x|r):
absolute log-likelihood of likelihood functions, averaged across image pixels and trials. C. Joint
models p (x, r): log-likelihoods relative to the baseline Exp1-Lin generative model. The score is
averaged across pixels, neurons and trials.
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C D

B Figure 5: Posterior performance of NSC
models, along with system identification
model (“Sysident”). Error bars represent
the standard error of mean over neuronal
responses. All metrics are averaged over
number of neurons and trials. A. The
lower bound of log-likelihood in bits, for
session with 29 neurons. We compute
the lower-bound since we are evaluating
the Gamma-posterior on (discrete) spike
counts, and full-likelihood is intractable
(Appendix G). B. Same as A but across
all 12 sessions (purple: average, gray:
single session). C. Single-trial correla-
tion, for session with 29 neurons. D.
Same as C across all 12 sessions

Learning the posterior distribution For each of the trained generative models, p (x, r; ✓⇤), we
approximated the model’s posterior distribution p (r|x; ✓⇤) using an approximate posterior q (r|x;�)
trained on samples drawn from the trained generative model (Equation (10), Algorithm 1). We
evaluated the posterior distribution for each generative model by computing their mean log-likelihood
on real neuronal responses conditioned on real images from the test set (Figure 5A, B). We also
computed a single-trial correlation between the mean of the learned posterior distributions and
neuronal responses (Figure 5C, D). Finally, we compared the posterior distribution to a deep system
identification model.

We find that, in general, a more flexible trained generative model tends to yield a higher posterior
predictive performance. Based on the log-likelihood evaluation, our flexible generative model (Flex-
MLP) gained as much as 1.39 bits per neuron per trial compared to the baseline Exp1-Lin model and
0.61 bits per neuron per trial compared to Exp-Lin model (the Hoyer & Hyvärinen model [9]). In
terms of single-trial correlation performance, our flexible generative model (Flex-MLP) achieved
10% higher correlation compared to the Exp1-Lin baseline and 8% higher correlation compared
to Exp-Lin. When averaged across all sessions, we find that Flow-Lin performs best, almost on
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par with the Flow-MLP, which achieves 0.019 bits per neuron per trial less. Furthermore, a system
identification model trained on the dataset of real neuronal responses performed better than the best
NSC generative model, gaining 0.17 bits per neuron per trial and 17% higher correlation per neuron
per trial compared to Flex-MLP.

All model training was performed using backpropagation and gradient descent and we provide
training, compute and infrastructure details in Appendix E.

4 Discussion

The main focus of this work was to develop a way to answer the question, “How well does NSC
explain neurophysiological data quantitatively?”. While NSC is a prominent normative theory for
probablistic computation in the brain, and the literature has provided much qualitative insight, our
work is the first to offer a quantitative paradigm for empirically testing it using brain responses to
ecological, natural stimuli. Our framework additionally lets us formulate more flexible generative
models — which can be better informed by the data — and employ standard metrics such as log-
likelihood to quantitatively evaluate alternative generative models under NSC. Furthermore, inverting
the learned generative model has allowed us to obtain the posterior distribution, which is equivalently
a neuronal response predictive model. Importantly, this let us compare NSC models to models outside
of NSC’s theoretical framework, such as system identification models, allowing us to benchmark the
predictive performance of NSC models. Our results demonstrated that the flexible generative models
outperformed classical models in terms of both generative and predictive model performance, yet
system identification models achieve superior response-predictive performance compared to even our
best generative models. We now discuss some limitations of our current study and discuss a number
of open questions and imminent future directions.

Limitations I: Assumption of strict 1:1 neuron-latent mapping: One limitation in our current
study is that we only use a 1:1 identity mapping between the activity of neurons and latent variables
in our formulation of NSC. Abiding by this restriction could limit the capacity of the NSC models,
especially considering some existing work in NSC that have qualitatively explored more flexible
mappings. For example, Orbán et al. [13] model membrane potential values (responses) as a nonlinear
function of posterior samples. Furthermore, Savin and Denève [76] map responses of N neurons to
D latent variables where N > D. Many more ways of how r and z relate are conceivable. However,
our formulation with a separate r and z allows us to, in principle, incorporate different mappings and
learn the corresponding generative models. Since the focus of this study was on the aspect of fitting
NSC models to data, we chose the simplest (original) interpretation of NSC where r ⌘ z.

Limitations II: Definition of a “sample” as total spike counts: We defined a “sample” as the total
spike count of neuronal activity within a specific time window following the stimulus, which is not
necessarily what literature works do. However, to our knowledge, there is no generally agreed upon or
rigorous definition of a “sample” in NSC. While NSC was originally motivated with firing rate/spike
counts over a 500ms window as the sample [9, 21], many alternative definitions such as membrane
potential over 10ms [13] have been employed. It is unclear on what generally applicable metric —
other than goodness of fit to data — such a definition could be evaluated. This in fact served to us
as another motivating factor for striving towards a data-driven evaluation of sampling models that
would allow one to compare such choices in an informed manner. In this work, we chose the total
spike count as the working definition.

Limitations III: Better generative models are needed: Advances in deep learning architectures,
latent variable models, and transfer learning have greatly enhanced the capabilities of generative
models in machine learning. We believe the models we chose, although more expressive than
classical models, are still limiting, especially considering that our likelihood p (x|r) uses linear or
MLP decoding from neurons to images, with a simple Gaussian noise model. To capture the rich
and complex nature of neuronal representations of natural images, we believe it is necessary to
consider more sophisticated generative models, that even incorporate a natural image prior, that
would eventually close the gap in predictive performance between system identification performance
and NSC generative models. Furthermore, an important avenue of research is identifying biological
mechanisms that underlie NSC (i.e. sampling from the posterior) [14, 77–82]. It is worth noting that
our deep learning-based generative models are not meant to be mechanistic models of NSC neurons.
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Rather, we believe that our approach lays the foundation for alternative biologically plausible models
to be quantitatively evaluated and compared.

Why do system identification models perform better than NSC generative models? System identi-
fication models are directly trained discriminatively, i.e., min✓ Ex [DKL (ptrue (r|x) || pmodel (r|x; ✓))],
to predict neuronal responses to natural images and deep-learning based ones are currently SOTA.
There is still much room to build better generative models that would better explain the data
(see Limitations III). However, for a given dataset of responses to stimuli from a fixed stimulus

distribution, we do not expect the posterior of even the ideal generative model to surpass the
performance of the ideal system identification model because the generative model training, i.e.,
min✓ {Ex [DKL (ptrue (r|x) || pmodel (r|x; ✓))] +DKL (ptrue (x) || pmodel (x; ✓))}, does not provide any
advantage over system identification in response prediction unless some specific inductive biases are
introduced in the generative model.

Why bother fitting NSC models if they fail to quantitatively compete with system identification?
If we change the stimulus distribution p (x) to pnew (x) with markedly different stimulus statistics
and let the sensory neurons adapt to pnew (x), we would expect the system identification model’s
performance to drop on pnew (x). The system identification model might have to be retrained on a
new dataset of responses under pnew (x). This is the case where we would expect the NSC’s learned
generative model to be beneficial. Specifically, change in p (x) to pnew (x) may entirely derive from
the change in prior p (z) to pnew (z), while p (x|z) remains fixed. Hypothetically, this is since p (x|z)
represents the invariant “physical” process by which the latents (e.g., the identity of an animal) give
rise to observations (e.g., the appearance of the animal). Consequently, if NSC accurately describes
a neural population, i.e, r ⇠ p (z|x) / p (x|z) p (z), the neuronal adaptation can be accounted for
by simply learning pnew (z), i.e., rnew ⇠ pnew (z|x) / p (x|z) pnew (z), keeping p (x|z) fixed. We
believe such out-of-context generalization is a theoretical strength of NSC, and is a consequence of
its normative nature (responses being “samples” from the posterior distribution). Such normative
hypotheses are neither present in the purely phenomenological system identification models and nor
is it straightforward to equip them with normative assumptions.

The above insight thus helps us identify potential future experiments to test NSC models utilizing our
framework since it lets us learn the generative model p (x|z) p (z) via p (x|r) p (r) (NSC assumption).
Namely, one could perform experiments in which we let the neural population adapt to different
sensory contexts with expected shifts in p (z). Using our NSC framework, we would expect to be
able to predict how neuronal responses should change (as reflected in updated rnew ⇠ pnew (z|x))
under new contexts.

Why have previous works not fit NSC models to data? We attribute the lack of such attempts to
(1) limitations in data availability, (2) complexities involved in training flexible machine learning and
inference algorithms on recorded data, and (3) the philosophical approach behind normative theories.
Normative theories describe how a biological system ought to function in order to tackle fundamental
tasks. They propose models with parameters that are optimized for those tasks, without relying
on actual experimental data [83, 84]. Typically normative theories are evaluated using qualitative
agreements between the proposed models and data. NSC is itself a normative theory. In contrast,
phenomenological approaches such as system identification propose models whose parameters
are directly learned from experimental data. Normative and phenomenological approaches have
historically been developed independently of each other. Similar to Młynarski et al. [83], who
interpolate between phenomenological and normative models via maximum entropy priors, our
approach allows us to get the best of both worlds: state-of-the-art deep learning-based system
identification models from phenomological approaches and the theoretical underpinnings of the
normative NSC. System identification provides us with expressive models that faithfully model and
predict the activity of thousands of neurons to rich natural stimuli. NSC, on the other hand, goes
beyond what experimental data alone could offer by letting us hypothesize how neurons encode
uncertainty about the stimulus, reflecting the posterior distribution over latent variables in a generative
model of the world, thus allowing us make novel predictions such as about generalizability across
stimulus contexts and design relevant experiments.
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