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A Notations and Organization

A.1 Organization

A.1.1 Appendix B: Experiments

Appendix B provides brief emprical results in a standard control problem with a few classic perturba-
tion patterns, and compares to classical LQR control and the more advanced control of Gradu et al.
[2020].

A.1.2 Appendix C: Proof of EBCO-M regret guarantee

Appendix C proves regret guarantee (Theorem 3.6.B) for EBCO-M (Algorithm 1) under Assump-
tion 3.1, a relaxed 3.2, and 3.3:

• Section C.1: properties of self-concordant barriers used in the proof
• Section C.2: conditional bias guarantee for the proposed gradient estimator in Algorithm 1
• Section C.3: regret analysis for Algorithm 1

A.1.3 Appendix D: Proof of EBPC Regret Guarantee for Known Systems

Appendix D proves EBPC regret guarantee for known systems as stated in Theorem 4.1:

• Section D.1: construction of with-history loss functions based on cost functions
• Section D.2: establishes the following regularity conditions for with-history loss functions

– Construction of with-history functions and unary forms: Definition D.2.
– Norm bound on yt,ut: Lemma D.4
– Diameter bound B of ct and Ft: Lemma D.5
– Diameter bound D of M(H,R): Lemma D.5
– Lipschitz bound LF of Ft: Lemma D.6
– Conditional strong convexity parameter �f of ft: Lemma D.6
– Smoothness parameter �F of Ft: Lemma D.6

• Section D.3: EBPC regret analysis for known systems

A.1.4 Appendix E: Proof of EBPC Regret Guarantee for Unknown Systems

Appendix E proves EBPC regret guarantee for unknown systems as stated in Theorem 4.2:

• Section E.1: system estimation error guarantee
• Section E.2: construction of with-history loss functions and pseudo loss functions
• Section E.3: regret guarantee for Regularized Follow-the-Leader with Delay (RFTL-D) with

erroneous gradients
• Section E.4: regularity conditions for pseudo-loss and with-history loss functions:

– Construction of with-history functions, pseudo loss functions, and unary forms: Defini-
tion E.5, E.6

– Norm bound on ŷnat
t

,yt,ut: Lemma E.12
– Diameter bound B of ct and F̂t, F̊t: Lemma E.13
– Diameter bound D of M(H+, R+): Lemma E.13
– Lipschitz bound L

F̊
and L

F̂
for F̊t and F̂t: Lemma E.14

– Smoothness parameter �
F̊

and �
F̂

for F̊t and F̂t: Lemma E.14

– Conditional strong convexity parameter �
f̊

and �
f̂

for f̊t and f̂t: Lemma E.14

• Section E.5: EBPC regret analysis for unknown systems
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A.2 Complete List of Notations
• Asymptotic equivalence. We use .,&,⇣, or equivalently, O(·),⌦(·),⇥(·), to denote

asymptotic inequalities and equivalence. In particular, a . b (a = O(b)), a & b if 9
universal constant c such that a  cb, a � cb, respectively. a ⇣ b if a . b and a & b.

• Derivative. For f : Rm ! Rn, we use Df 2 Rm⇥n to denote its derivative.
• Spectral radius. For A 2 Rn⇥n, ⇢(A) measures A’s spectral radius, or maximum of the

absolute values of A’s eigenvalues.
• Norms.

Notation Meaning Domain⇤ Definition
k · kp `p-norm Rn v 7! (

P
n

i=1 v
p

i
)

1
p

k · kF Frobenius norm Rm⇥n⇥r M 7! (
P

m

i=1

P
n

j=1

P
r

k=1 M
2
ijk

)
1
2

k · kop operator norm Rm⇥n M 7! sup
v2Rn,kvk2=1 kMvk2

k · kM , M 2 Rn⇥n local norm induced by M Rn v 7! (v>Mv)
1
2

k · k`1,op `1-operator norm (Rm⇥n)N (Mi)i2I✓N 7!
P

i2I
kMikop

k · k⇤ dual norm of k · k same as k · k v 7! sup{hu, vi : kuk  1}
k · kt, k · kt,t+1 local norm at time t Rn see Definition C.4

⇤ : m,n, r are arbitrary dimensions that may be specifically defined throughout the paper.
• System, dynamics, and parameters.

dx, du, dy dimension of states, controls, observations
A,B,C system matrices for linear dynamical system
G Markov operator for linear dynamical system
Ĝ estimated Markov operator
xt 2 Rdx state at time t
ut 2 Rdu control at time t
wt 2 Rdx system perturbation (disturbance) at time t
et 2 Rdy state-observation projection noise at time t
yt 2 Rdy observation at time t
ynat
t
2 Rdy nature’s y, the would-be observation at time t assuming no controls are ever played

ŷnat
t
2 Rdy algorithm calculated nature’s y using the estimated Markov operator Ĝ

H, H̄,H+, H+ history length of a policy class, H̄ = H � 1, H+ = 3H , H+ = H+ � 1
R,R+ DRC policy class `1-operator norm bound, R+ = 2R
Rnat nature’s y `2-norm bound
RG `1-operator norm bound on G
M(H,R) DRC policy class with length H and `1-operator norm bound R

• Cost and loss functions.
Notation Meaning Domain
ct(·, ·) cost function for controlling linear dynamical system Rdy ⇥ Rdu

Ft(·), F̂t(·) with-history loss function with history length H KH for convex Euclidean set K
ft(·), f̂t(·) unary form induced by ft(x) = Ft(x, . . . , x) some convex Euclidean set K
F̊t(·), f̊t(·) pseudo-loss and induced unary form KH ,K for convex Euclidean set K
B bound on function diameter
D bound on constraint set diameter
Lc, LF , LF̊

, L
F̂

Lipschitz bound on function ct, Ft, F̊t, F̂t

�c,�F ,�F̊ ,�F̂ smoothness parameter of ct, Ft, F̊t, F̂t

�c strong convexity parameter of ct
�f ,�f̊ ,�f̂ conditional strong convexity parameter of ft, f̊t, f̂t
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B Experiments

To compare our controller against previous work, we test our control scheme empirically in the same
settings as Gradu et al. [2020]. Our experiments use the package Deluca developed by Gradu et al.
[2021]. We test control of a barely-stable LDS – a damped double-integrator system given by

A =


.9 .9
�0.01 .9

�
, B =


0
1

�

We attempt control under several different classes of noise. Relevant details are below:

• As the controller of Gradu et al. [2020] does not support partial observation, we test in the
full-observation case.

• Both controllers are given access to the optimal LQR controller K (that is, we run Algo-
rithm 2 as opposed to Algorithm 3 for simplicity of comparison).

• State is initialized randomly, and perturbations are stochastic (to facilitate direct comparison
with the experiments of Gradu et al., who did the same).

• We test both algorithms with H = 5, which was found to produce nearly-optimal results for
both algorithms (theoretical performance is increasing in H , but converges with exponential
falloff to a supremum).

• Noise magnitude is chosen arbitrarily across experiments. However, as the results are
linear in magnitude (since both the systems and the control algorithms are linear), direct
comparison to the experimental results of Gradu et al. [2020] is possible via scaling.

We also make two important nonstandard modifications to the experimental setup. Following the
example of Gradu et al. [2020], we searched to find optimal multipliers for learning rate. This was
found in their work to substantially enhance the performance of nonstochastic control algorithms
against stochastic inputs in practice (due to the fact that stochastic inputs are unlikely to cause
systematic learning errors early in the control run) and appears to be present in their experiments.
We also test Gradu et al. [2020] under a version of their implementation modified with controller-
magnitude bounding to ameliorate divergence issues (still visible in some spiking). We have not
been able to determine the source thereof, and we do not have access to the code used to generate
the plots visible in Gradu et al. [2020], so we are unable to determine the source of these spikes.
However, this modification strictly improves their performance on the benchmarks, thus maintaining
fair comparison.

Moving-average losses are graphed for EBPC, BPC, and LQR for the above problem with the three

perturbation types of Gradu et al. [2020]: Gaussian, c sin(rx)

1
1

�
(with period 40), and Gaussian

Random Walk. H = 5 was used for both memory algorithms.

We observe that while our method has higher initial error, it has long-term error substantially lower
than that of competing methods in aggregate (except in the sanity-check case of Gaussian noise,
where it quickly converges to the LQR error as desired). Critically, it is able to adapt effectively
to trends in perturbations more effectively than previous higher-error-rate algorithms, allowing for
constant or decreasing error in environments with constant-size or increasing perturbations.
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Figure 1: Loss (y-axis) of the three tested algorithms on Gaussian (left), sinusoidal (right), and
Gaussian-walk (bottom) perturbation over time(x-axis). Error bars indicate standard deviation across
twelve draws of perturbation and controller randomness.

C Proof of EBCO-M Regret Guarantee

We prove the more general claim of Theorem 3.6.B, where the function Ft is assumed to be condi-
tionally �-strongly convex. Denote F̄t(xt�H̄:t) = E[Ft(xt�H̄:t) | u1:t�H , fH:t�H ].

Note that in Algorithm 1, with the delayed updates and the initialization g1 = · · · = gH̄ = 0, we
have x1 = · · · = x2H̄+1 = argmin

x2K R(x) and so learning begins only at the 2H̄ + 1-th iteration.
We can therefore decompose the regret against any x 2 K as

Regret
T
(x) =

0

@
2H̄X

t=H

Ft(yt�H̄:t)� ft(x)

1

A

| {z }
(burn-in loss)

+

0

@
TX

t=2H̄+1

Ft(yt�H̄:t)� ft(x)

1

A

| {z }
(effective regret)

,

with burn-in loss crudely bounded by HB. We thus turn our attention in bounding the effective regret
term.

The proof of the effective regret bound for Algorithm 1 consists of two main parts. In Section C.2,
we show that the proposed gradient estimator gt has a bounded conditional bias. In Section C.3, we
perform the analysis of a variant of the Regularized Follow-the-Leader (RFTL) algorithm, adding
both a history component and a delayed update. Then, we show that together with the bounded
conditional bias of our proposed gradient estimator, this yields an optimal regret bound for the bandit
online convex optimization with memory algorithm outlined in Algorithm 1.

C.1 Self-concordant barriers

The use of self-concordant barriers for bandit optimization is due to Abernethy et al. [2008], where
the following properties are stated and used.
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Proposition C.1. ⌫-self-concordant barriers over K satisfy the following properties:

1. Sum of two self-concordant functions is self-concordant. Linear and quadratic functions are

self-concordant.

2. If x, y 2 K satisfies kx� ykr2R(x) < 1, then the following inequality holds:

(1� kx� ykr2R(x))
2r2R(x) � r2R(y) � 1

(1� kx� ykr2R(x))2
r2R(x).

3. The Dikin ellipsoid centered at any point in the interior of K w.r.t. a self-concordant barrier

R(·) over K is completely contained in K. Namely,

{y 2 Rn | ky � xkr2R(x)  1} ⇢ K, 8x 2 int(K).

where

kvkr2R(x)
def

=
q
v>r2R(x)v

4. 8x, y 2 int(K):

R(y)�R(x)  ⌫ log 1

1� ⇡x(y)
,

where ⇡x(y)
def

= inf{t � 0 : x+ t�1(y � x) 2 K}.

C.2 Gradient estimator

The goal of this section is to establish a bound on the conditional bias of the proposed gradient
estimator gt, formally given by the following proposition:

Proposition C.2. The gradient estimator gt = nFt(yt�H̄:t)
P

H̄

i=0 A
�1
t�i

ut�i satisfies the following

conditional bias bound in `2: 8t � 2H̄ + 1,

��E[gt | u1:t�H ,Gt�H ]�rf̄t(xt)
��
2


16
p
⌘�nBH3

p
�(t� 2H̄)

.

Lemma C.3. The gradient estimator gt is a conditionally unbiased estimator of the sum of the H
coordinate gradients of Ft : KH ! R, i.e. 8t > H ,

E[gt | u1:t�H ,Gt�H ] =
H̄X

i=0

riF̄t(xt�H̄:t),

where riF̄t(z1, . . . , zH) = @

@zi
F̄t(z1, . . . , zH).

Proof. Let q(x) = 1
2x

>Ax+ b>x+ c be a (possibly random) quadratic function from Rn ! R and
C be a (possibly random) symmetric, invertible matrix. Let x0 2 Rn be a (possibly random) point
of evaluation. Let F be a filtration such that {A,B,C, c, x0} 2 F . Let u 2 Rn be a random vector
that is drawn from a symmetric distribution such that E[uu>] = r

n
In⇥n for some r > 0, and u is

independent of F . Then,

E[C�1uq(x0 + Cu) | F ] =
1

2
C�1E[u(x0 + Cu)>A(x0 + Cu) | F ] + C�1E[ub>(x0 + Cu) | F ]

=
1

2
C�1E[uu>]C(A+A>)x0 + C�1E[uu>]Cb

= C�1E[uu>]C

✓
1

2
(A+A>)x0 + b

◆

=
r

n

✓
1

2
(A+A>)x0 + b

◆

=
r

n
rq(x0).
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Note that in Algorithm 1, ut’s are sampled uniformly at random from the unit sphere in Rn, so the
distribution is symmetric and E[utu>

t
] = 1

n
In⇥n, and thus E[ut�H̄:tu

>
t�H̄:t

] = 1
n
InH⇥nH . Moreover,

F̄t, xt�H̄:t, At�H̄:t 2 Ft�H and ut�H̄:t are independent of Ft�H . Let Ãt

def
= diag(At�H̄ , . . . , At) 2

RnH⇥nH (i.e. the block matrix with diagonal blocks equal to At�H̄ , . . . , At). Then we have

E[nF̄t(yt�H̄:t)Ã
�1
t

ut�H̄:t | Ft�H ] = rF̄t(xt�H̄:t).

Consider ḡt = nf̄t(yt�H̄:t)
P

H̄

i=0 A
�1
t�i

ut�i. Note that Ã�1
t

= diag(A�1
t�H̄

, . . . , A�1
t

) and by defini-
tion of ḡt, we have

E[ḡt | Ft�H ] =
H̄X

i=0

riF̄t(xt�H̄:t).

On the other hand, xt and At are completely determined by {u1:t�H} [ {fH:t�H}, and thusP
H̄

i=0 A
�1
t�i

ut�i, yt�H̄:t is determined by {u1:t} [ {fH:t�H}. Therefore,

E[gt | u1:t�H , FH:t�H ] = E

2

4nFt(yt�H̄:t)
H̄X

i=0

A�1
t�i

ut�i

���� u1:t�H ,Gt�H

3

5

= E

2

4E

2

4nFt(yt�H̄:t)
H̄X

i=0

A�1
t�i

ut�i

���� u1:t,Gt�H

3

5
���� u1:t�H ,Gt�H

3

5

= E

2

4nE[Ft(yt�H̄:t) | u1:t,Gt�H ]
H̄X

i=0

A�1
t�i

ut�i

���� u1:t�H ,Gt�H

3

5

= E

2

4nF̄t(yt�H̄:t)
H̄X

i=0

A�1
t�i

ut�i

���� u1:t�H ,Gt�H

3

5

= E[ḡt | u1:t�H ].

We conclude that

E[gt | u1:t�H , FH:t�H ] =
H̄X

i=0

riF̄t(xt�H̄:t).

Definition C.4 (Local norms). Denote the pair of dual norms k · kt, k · k⇤t on K as

kykt
def

= kyk
A

�2
t

=
q

y>(r2R(xt) + ⌘�tI)y =
q

y>A�2
t

y,

kyk⇤
t

def

= kykA2
t
=
q

y>(r2R(xt) + ⌘�tI)�1y =
q

y>A2
t
y.

By Taylor expansion, 8R and x, y 2 dom(R), 9z = tx+ (1� t)y for some t = t(x, y,R) 2 [0, 1]
such that DR(x, y) := R(x) � R(y) � R(y)>(x � y) = 1

2kx � yk2r2R(z). We call k · kr2R(z) the

induced norm by the Bregman divergence w.r.t. R between x and y. Denote as k · kt,t+1 the induced

norm by the Bregman divergence w.r.t. Rt(x)
def

= R(x) + ⌘�

2

P
t

s=H
kx� xs�H̄k22 between xt and

xt+1. Denote its dual norm as k · k⇤
t,t+1.

Lemma C.5. 8t � H , assuming 2⌘kgt�H̄k⇤t  1, then kxt � xt+1kt  2⌘kgt�H̄k⇤t .

Proof. From Lemma 14 in Hazan and Levy [2014], kx� argmin
x
h(x)kr2h(x)  2krh(x)k⇤r2h(x),

provided h is self-concordant and krh(x)k⇤r2h(x)  1. Define �t(x)
def
= ⌘

P
t

s=H
g>
s�H̄

x+ Rt(x),
where Rt(x) = R(x)+ ⌘�

2

P
t

s=H
kx�xs�H̄k22. �t(·) is self-concordant since it is the sum of a self-

concordant function and sum of quadratic functions. Note that xt+1 = argmin�t(x) by specification
of Algorithm 1 and r2�t = r2Rt. Moreover, �t(x) = �t�1(x) + ⌘g>

t�H̄
x + ⌘�

2 kx � xt�H̄k22.
Since xt 2 int(K) and minimizes �t�1, r�t(x) = ⌘gt�H̄ . Applying Lemma 14 from Hazan and
Levy [2014], kxt � xt+1kt  2⌘kgt�H̄k⇤t .
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Lemma C.6. If ⌘  1
8nH logHB

p
T

, and assume that H = poly(log T ) then the following inequali-

ties hold deterministically 8t � H: 8((t� H̄) _H)  s  t,

kgs�H̄k⇤t  2nBH logH, kgs�H̄k⇤t,t+1  4nBH logH.

Proof. We will show the joint hypothesis that: (1)
⇣⇣

1� 1p
T

⌘
^ t

t+1

⌘
At � At+1 � At⇣

1� 1p
T

⌘
^ t

t+1

;

(2) kgs�H̄k⇤t  2nBH logH , 8t� H̄  s  t; (3) kgs�H̄k⇤t,t+1  4nBH logH , 8t� H̄  s  t,
for all t by simultaneous induction on t. We divide our induction into two steps:

• (1), (2), (3) hold for t = H, . . . , 2H̄: note that x1 = · · · = xH = x = argmin
z2K

R(z) and

g1 = · · · = gH̄ = 0, thus xH+1 = · · · = x2H̄+1 = x. Thus 8t = H, . . . , 2H̄ , At+1 � At

holds trivially, to see the bound in the other direction, note that

At =

r
t+ 1

t

✓
t+ 1

t
r2R(x) + ⌘�(t+ 1)I

◆� 1
2

�
r

t+ 1

t
At+1.

gt = 0 for t = 1, . . . , H̄ , so (2), (3) follow.

• Given that (1), (2), (3) hold for all t < T0, show that (1), (2), (3) hold for t = T0:
We first prove (2) for s = t. The bound holds identically up to constant factor  2 for
s 2 [t � H̄, t) by induction hypothesis of At�H̄:t. Assume T0 > 2H̄ . Observe that⇣
1� 1p

T

⌘
^ t

t+1 = t

t+1 if and only if t 
p
T � 1. On the other hand, since by expression

of gt = nFt(yt�H̄:t)
P

H̄

i=0 A
�1
t�i

ut�i,

kgT0�H̄k⇤T0

2 = kgT0�H̄k2A2
T0

 (nB)2
H̄X

i,j=0

u>
T0�H̄�i

A�1
T0�H̄�i

A2
T0
A�1

T0�H̄�j
uT0�H̄�j .

Consider the induction hypothesis (1). For T0 
p
T , this implies that 8i 2 [0, H̄], there

holds kA�1
T0�H̄�i

AT0kop  T0

T0�H̄�i
, and thus

kgT0�H̄k⇤T0

2  (nB)2
H̄X

i,j=0

✓
T0

T0 � H̄ � i

◆✓
T0

T0 � H̄ � j

◆
= (nB)2

0

@
2H̄X

i=H̄

T0

T0 � i

1

A
2

,

which is a decreasing function in T0 and thus attains maximum at T0 = 2H̄ + 1, giving that

kgT0�H̄k⇤T0

2  (nB)2
 
(2H̄ + 1)

HX

i=1

1

i

!2

 4(nBH)2(log(H))2.

21



For T0 �
p
T + 2H̄ + 1, kA�1

T0�H̄�i
AT0kop 

⇣
1� 1p

T

⌘�(H̄+i)
, so

kgT0�H̄k⇤T0

2  (nB)2
H̄X

i,j=0

✓
1� 1p

T

◆�(2H̄+i+j)
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where the second inequality uses the inequality (1 + x)r � 1 + rx for x > �1, integer
r � 1, and the last inequality holds by assumption that H = poly(log T ).

For T0 2 (
p
T ,
p
T + 2H̄ + 1),
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Thus, letting �
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Then by Lemma C.5 and choice of ⌘, kxT0 � xT0+1kT0  2⌘kgT0�H̄k⇤T0
 1p

T
. RT0(x)

is self-concordant, and A�1
T0

=
�
r2RT0(xT0)
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2 , so by the local Hessian bound in Proposi-
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thus proving (1) for t = T0.
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To prove (4) for t = T0, observe that if z is a convex combination of xT0 and xT0+1, then

kz � xT0kr2RT0 (xT0 )
 kxT0+1 � xT0kr2RT0 (xT0 )

 1p
T
,

and thus again by Proposition C.1,

(r2R(z) + ⌘�tI)�1 �
✓
1� 1p

T

◆�2

(r2R(xt) + ⌘�tI)�1,

and thus since 9z convex combination of xT0 , xT0+1: kgT0�H̄k⇤T0,T0+1 =

kgT0�H̄kr�2RT0 (z)
and thus kgT0�H̄k⇤T0,T0+1 

⇣
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⌘�2
kgT0�H̄k⇤t 

4nBH logH .

Lemma C.7 (Iterate bound). 8t � H , the Euclidean distance between neighboring iterates is

bounded by

kxt � xt+1k2 
4
p
⌘

p
�(t� H̄)

kgt�H̄k⇤t,t+1 
16
p
⌘nBH logH
p
�(t� H̄)

.

Proof. The second inequality follows from the previous lemma, so we prove the first. Recall �t as
defined in Lemma 14. By Taylor expansion, optimality condition and linearity of �t(·)�Rt(·),

�t(xt) = �t(xt+1) + (xt � xt+1)
>r�t(xt+1) +D�t

(xt, xt+1) � �t(xt+1) +D
R̃t
(xt, xt+1),

which by decomposing �t implies
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. Since Rt(·) is ⌘�(t� H̄)-strongly convex,
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Corollary C.8. Define ft : K! R+ by ft(x)
def

= Ft(x, . . . , x). We have that 8t > 2H̄ ,

��E[gt | u1:t�H ,Gt�H ]�rf̄t(xt)
��
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.
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Proof. By the earlier bounds,
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Then taking the square root of each side yields the desired bound.

C.3 Regret analysis

The previous section established a conditional bias bound on the gradient estimator gt used in
Algorithm 1. In this section, we use this conditional bias bound together with an analysis on the
subroutine algorithm, Regularized Follow-the-Leader with Delay (RFTL-D), to establish a regret
guarantee for Algorithm 1.

Decomposition of effective regret. Letting w = argmin
x2K

P
T

t=H
ft(x), we divide the expected

regret into three parts, which we will bound separately:
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(3: RFTL-D effective regret)
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To bound the estimator movement cost, note that kA2
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To bound the history movement cost, note that by the iterate bound obtained in the analysis of
Corollary C.8,

(2) = E
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TX
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�
.

It remains to bound the last term in the regret decomposition. For this, we analyze RFTL with delay
(RFTL-D).

C.3.1 RFTL with delay (RFTL-D)

The subroutine algorithm we used in Algorithm 1 is Regularized-Follow-the-Leader with delay
(RFTL-D). We first analyze its regret bound in the full information setting. Consider a sequence of
convex loss functions {`t}Tt=H

and the following algorithm.

Algorithm 4 RFTL-D
1: Input: Bounded, convex, and closed set K, time horizon T , delayed length H , step size ⌘ > 0,

regularization function R(·).
2: Initialize xt = argmin

x2K R(x), 8t = 1, . . . , H .
3: Set `t = 0, 8t = 1, . . . , H̄ .
4: for t = H, . . . , T do
5: Play xt, observe and store cost function `t(xt).
6: Update xt+1 = argmin

x2K

nP
t

s=H
`s�H̄(x) + 1

⌘
R(x)

o
.

7: end for

Again, note that by design of Algorithm 4, the learning begins only after 2H̄+1-th iteration. Therefore,
it suffices to bound effective regret Effective-Regret

T

def
=
P

T

t=2H̄+1 `t(xt)�minx2K
P

T

t=2H̄+1 `t(x).
First, we want to establish a regret inequality which is analogous to the standard regret inequality
seen in the Regularized Follow-the-Leader algorithm without delay.
Theorem C.9 (RFTL-D effective regret bound). With convex loss functions bounded by B, Algorithm

4 guarantees the following regret bound for every x 2 K:
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where k · kt,t+1,�t
and k · k⇤

t,t+1,�t
denote the local norm and its dual induced by the Bregman

divergence w.r.t. the function �t(x)
def

= ⌘
P

t

s=H
`s�H̄(x) +R(x) between xt and xt+1.

Proof. The proof of Theorem C.9 follows from the following lemma.

Lemma C.10. Suppose the cost functions `t are bounded by B. Algorithm 4 guarantees the following

regret bound:
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Proof of Lemma C.10. Denote h2H̄(x)
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bound regret by
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where the last inequality follows from the inequality
P
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t=2H̄ ht(x) �
P

T

t=2H̄ ht(xt+1), 8x 2 K.

Consider the function �t(x)
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= ⌘

P
t

s=2H̄+1 `s�H̄(x) + R(x), t � 2H̄ + 1. By Taylor expansion
and optimality condition, we have that 8t � 2H̄ + 1,

�t(xt�H̄) = �t(xt+1) + (xt�H̄ � xt+1)
>r�t(xt+1) +D�t

(xt�H̄ , xt+1)

� �t(xt+1) +D�t
(xt�H̄ , xt+1),

which implies a bound on the Bregman divergence between xt�H̄ and xt+1 with respect to �t,

D�t
(xt�H̄ , xt+1)  �t(xt�H̄)� �t(xt+1)

 �t�H(xt�H̄)� �t�H(xt+1)| {z }
0

+⌘
tX

s=t�H̄

r>
s�H̄

(xt�H̄ � xt+1)

 ⌘

0

@

������

tX

s=t�H̄

rs�H̄

������

⇤

t,t+1,�t

1

A kxt�H̄ � xt+1kt,t+1,�t

= ⌘

0

@

������

tX

s=t�H̄

rs�H̄

������

⇤

t,t+1,�t

1

A
q

2D�t
(xt�H̄ , xt+1),

which gives the bound on both the Bregman divergence and the iterate distance in terms of Bregman
divergence induced norm between xt�H̄ and xt+1,
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Following the expression of the regret bound established in Lemma C.10, we bound
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Corollary C.11. In Algorithm 4, if the loss functions are assumed to be �-strongly smooth and

bounded by B, and the updates are given by
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then Algorithm 4 guarantees the following regret bound:
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with the local norms defined as in Definition C.4.

Proof. We make use of a lemma of Zinkevich [2003] and Hazan et al. [2007]:

Lemma C.12. The following inequality holds for two sequences of convex loss functions
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Note thatr˜̀t(xt) = r̀ t(xt). Let kxkt,t+1 = kxkt,t+1,Rt
, where Rt(x) = R(x) + ⌘�

2

P
t

s=H
kx�

xs�H̄k22 Then from Theorem C.9 and linearity of �t �Rt,
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Corollary C.11 implies that the above regret bound holds if we run RFTL-D with the true gradient of
{ft}Tt=H

in the full information setting. In the bandit setting, Algorithm 1 is run with the gradient
estimators gt in place of the actual gradient rft(xt). We introduce the following lemma that bounds
the regret of a first-order OCO algorithm A when using gradient estimators in place of the true
gradient:
Lemma C.13. Let `1, . . . , `T : K! R+ be a sequence of differentiable convex loss functions. Let

A be a first-order OCO algorithm over K with regret bound

Regret
A
T
 DA(r̀ 1(x1), . . . , r̀ T (xT )).

Define x1  A(;), xt  A(g1, . . . , gt�1) for t  T . Suppose 9B(t) such that the gradient

estimator gt satisfies kE [gt | Gt]� r̀ t(xt)k2  B(t), where Gt is any filtration such that `t, xt 2 Gt.
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E
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Proof. Define qt(x)
def
= `t(x)+ (gt�r̀ t(xt))>x. Thenrqt(xt) = gt. Since A is a first-order OCO

algorithm, A(q1, . . . , qt�1) = A(g1, . . . , gt�1), 8t. Moreover, 8x 2 K,
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By assumption, 8t, x,
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B(t).

With Corollary C.11 and Lemma C.13, we are ready to bound the last term in the regret decomposition.
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Lemma C.14. For any sequence of loss functions {Ft}Tt=H
satisfying assumptions in 3.1.1, the

sequence {xt}Tt=H
returned by Algorithm 1 satisfies 8x 2 K,
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4
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5  16⌘n2B2H3 log2 HT +
⌫ log T

⌘
+ 2HB +

16
p
⌘T�nBDH4

p
�

.

Proof. Recall the definition of the function ⇡w with respect to w 2 int(K) in Proposition C.1. For
a given w 2 int(K), ⇡w : K ! R+ is given by ⇡w(y) = inf{t � 0 : w + t�1(y � w) 2 K}. Note
that we can assume without loss of generality that ⇡x2H̄+1

(x)  1� T�1. Since Ft is L-Lipschitz,
if x violates this assumption, i.e. ⇡x2H̄+1

(x) > 1 � T�1, 9x0 2 K with kx � x0k2  O(T�1)
and ⇡xH

(x0)  1 � T�1, and if total loss playing x0 is at most O(1) away from playing x. With
this assumption, Proposition C.1 readily bounds the quantity R(w)�R(x2H̄+1), which is always
non-negative since x2H̄+1 = x1 = argmin

x2K R(x).

Let A be the RFTL-D algorithm with updates for �-strongly convex functions. Then, the effective
regret of bandit RFTL-D with respect to any x 2 K is bounded by
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1p
t� 2H̄

(Corollary C.8, Lemma C.13)
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⇤
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(Corollary C.11)

 16⌘n2B2H3 log2 HT +
R(x)�R(x2H̄+1)

⌘
+ 2HB +

16
p
⌘T�nBDH4

p
�

(Lemma C.6)

 16⌘n2B2H3 log2 HT +
⌫ log T

⌘
+ 2HB +

16
p
⌘T�nBDH4

p
�

(Proposition C.1) .

Lemma C.14 establishes the bound on the expected bandit RFTL-D regret. Combining the above
bounds, with H = poly(log T ) we have the following expected regret bound for Algorithm 1:

Effective-Regret
T
 �H log T

2⌘�| {z }
bound on (1)

+
16
p
⌘TnLBH2 logHp

�| {z }
bound on (2)

+ 16⌘n2B2H3 log2 T +
⌫ log T

⌘
+ 2HB +

16
p
⌘T�nBDH4

p
�| {z }

bound on (3)

 O
✓
�

�
npoly(H)

p
T

◆
= O

✓
�

�
npoly(log T )

p
T

◆
,

by taking ⌘ = O
⇣

1
nBH logH

p
T

⌘
, with O(·) hiding polynomials in D,L,B.
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D Proof of EBPC Regret Guarantee for Known Systems

This section proves the regret bound in Theorem 4.1 for the BCO-M based controller outlined in
Algorithm 2. We will reduce the regret analysis of our proposed bandit LQR/LQG controller to that
of BCO-M by designing with-history loss functions Ft : M(H,R)H ! R+ that well-approximates
ct(·, ·) for stable systems. In Section D.1, we provide the precise definitions of the with-history
loss functions and proceed to check their regularity conditions as required by Theorem 3.6.B in
Section D.2. In Section D.3, we analyze the regret of Algorithm 2 by bounding both the regret
with respect to the with-history loss functions and the approximation error of the with-history loss
functions to the true cost functions when evaluating on a single control policy parametrized by some
M 2M(H,R).

D.1 Construction of with-history loss functions

In the bandit control task using our proposed bandit controller outlined in Algorithm 2, there are two
independent sources of noise: the gradient estimator gt used in Algorithm 2 and the perturbation se-
quence {(wstoch

t
, estoch

t
)}T

t=1 injected to the partially observable linear dynamical system. Formally,
we define the following filtrations generated by these two sources of noises.

Definition D.1 (Noise filtrations). For all 1  t  T , let Ft

def

= �({"s}0st) be the filtration

generated by the noises sampled to create the gradient estimator in the algorithm up to time t.

Let Gt

def

= �({(wstoch
s

, estoch
s

)}0st) be the filtration generated by the stochastic part of the semi-

adversarial perturbation to the linear systems up till time t.

The main insight in the analysis of online nonstochastic control algorithms is the reduction of
the control problem to an online learning with memory problem. To this end, we construct the
with-history loss functions as follows:
Definition D.2 (With-history loss functions for known systems). Given a Markov operator G of a

partially observable linear dynamical system and an incidental cost function ct : Rdy ⇥ Rdu ! R+

at time t, its corresponding with-history loss function at time t is given a (random) function Ft :
M(H,R)H ! R of the form

Ft(N1, . . . , NH)
def

= ct

0

@ynat
t

+
H̄X

i=1

G[i]
H̄X

j=0

N [j]
H�i

ynat
t�i�j

+
tX

i=H

G[i]
H̄X

j=0

fM [j]
t�i

ynat
t�i�j

,
H̄X

j=0

N [j]
H
ynat
t�j

1

A .

Additionally, denote the unary form ft : M(H,R) ! R+ induced by Ft as ft(N)
def

=
Ft (N, . . . , N)| {z }

N in all H indices

.

We immediately note a connection of the with-history loss functions constructed in Definition D.2 to
the cost functions. Observe that by expression yt,ut resulted from running Algorithm 2 explicitly,

ct (yt,ut) = ct

0

@ynat
t

+
tX

i=1

G[i]
H̄X

j=0

fM [j]
t�i

ynat
t�i�j

,
H̄X

j=0

fM [j]
t
ynat
t�j

1

A = Ft(fMt�H̄:t).

Remark D.3. Note that ynat
t

is independent of FT . Therefore, by construction, Ft is a Ft�H [ Gt-

measurable random function that is independent of "t�H̄:t. In particular, Assumption 3.3 on the

adversary is satisfied.

It is left to check the regularity assumptions of Ft, which we defer to Section D.2.

D.2 Regularity condition of with-history loss functions

The goal of this section is to establish the other conditions to apply the result of Theorem 3.6.B. The
following table summarizes the results in this section.
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Parameter Definition Magnitude
Ry `2 bound on observations Rnat(1 +RRG)
Ru `2 bound on controls based on M(H,R) RnatR
B diameter bound on ct, Ft, ft LcR2

nat((1 +RRG)2 +R2)
D diameter bound on M(H,R) 2

p
du ^ dyR

�f conditional strong convexity parameter of ft �c
⇣
�2
e + �2

w
�min(C)
1+kAk2

op

⌘

�F smoothness parameter of Ft 4�cR2
natR

2
G
H

LF Lipschitz parameter of Ft 2Lc

p
(1 +RRG)2 +R2RGR2

nat

p
H

We start with bounding `2-norm on the observed signals yt and controls ut played by Algorithm 2.
Lemma D.4 (Observation and control norm bounds). Denote Ry := sup

t
kytk2 and Ru :=

sup
t
kutk2. Then, the following bounds hold deterministically:

Ry  Rnat(1 +RRG), Ru  RnatR.

Proof. By algorithm specification, yt,ut allow the following expansions:

kutk2 =

������

H̄X

j=0

fM [j]
t
ynat
t�j

������
2

 max
0jH̄

kynat
t�j
k2

������

H̄X

j=0

fM [j]
t

������
op

1 RnatR,

kytk2 =

�����y
nat
t

+
tX

i=1

G[i]ut�i

�����
2

 Rnat + max
1it

kut�ik2

�����

tX

i=1

G[i]

�����
op

 Rnat +RnatRRG,

where 1 follows from fMt 2M(H,R) for all t by Remark 3.6.

Lemma D.5 (Diameter bounds). Given a Markov operator G of a stable partially observable linear

dynamical system. Let U :=

⇢P
H̄

j=0 M
[j]⇣j : M 2 M(H,R), ⇣j 2 Rdy , k⇣jk2  Rnat

�
and

Y :=

⇢
⇣ +

P
T�1
i=1 G[i]⇠i : ⇣ 2 Rdy , k⇣k2  Rnat, ⇠i 2 U

�
. Denote B = sup

y2Y
sup
u2U

sup
1tT

ct(y,u).

Denote D = sup
M,M 02M(H,R)

kM �M 0kF . Then,

B  LcR
2
nat((1 +RRG)

2 +R2), D  2
p

du ^ dyR.

Proof. Recall the quadratic and Lipschitz assumption on ct. 8y 2 Y,u 2 U , 1  t  T ,

ct(y,u)  Lck(y,u)k22 = Lc(kyk22 + kuk22)  LcR
2
nat((1 +RRG)

2 +R2).

For any M,M 0 2M(H,R), we have

kM �M 0kF 
H̄X

j=0

kM [j] �M 0[j]kF 
p
du ^ dy

H̄X

j=0

kM [j] �M 0[j]kop  2
p
du ^ dyR.

In particular, Lemma D.5 implies the diameter bound for ct(yt,ut), 8t, and ct(yM

t
,uM

t
), 8t, 8M 2

M(H,R) as well as Ft on M(H,R)H and ft on M(H,R), 8t. We proceed to check other regularity
conditions for Ft and ft.
Lemma D.6 (Regularity conditions of Ft and ft). Let Ft and ft be given as in Definition D.2, and

G be the Markov operator of a partially observable linear dynamical system. Ft and ft satisfy the

following regularity conditions 8t:

• The function E[ft(·) | Ft�H[Gt�H ] defined on M(H,R) is �f -strongly convex with strong

convexity parameter �f = �c
⇣
�2
e + �2

w
�min(C)
1+kAk2

op

⌘
.
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• Ft is quadratic and �F -smooth with �F = 4�cR2
natR

2
G
H .

• Ft is LF -Lipschitz with LF = 2Lc

p
(1 +RRG)2 +R2RGR2

nat

p
H .

Proof. First, we show the conditional strong convexity. Recall that ct is quadratic, therefore
ct(yt,ut) = y>

t
Qtyt + u>

t
Rtut. Consider the following quantities:
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Note that SM ,CM are independent of Ft�H and F 2 Ft�H [ Gt�H . Thus,
E [ft(M) | Ft�H [ Gt�H ] = E [ct(SM + F,CM ) | Ft�H [ Gt�H ]

= E[S>
M
QtSM | Gt�H ] + F>(Qt +Q>

t
)E[SM | Gt�H ]

+ F>QtF+ E[C>
M
RtCM | Gt�H ]

= E[ct(SM ,CM ) | Gt�H ] + `(M),

where `(M)
def
= F>(Qt + Q>

t
)E[SM | Gt�H ] + F>QtF is affine in M . The strong convexity of

E[ct(SM ,CM ) | Gt�H ] is established by the following lemma from Simchowitz et al. [2020]:

Lemma D.7 (Lemma J.10 and Lemma J.15 in [Simchowitz et al., 2020]). 8M 2M(H,R),

E
h��(SM ,CM )� (ynat
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,0du)

��2
2
| Gt�H

i
�
✓
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◆
kMk2

F
.

The above lemma implies that E[ct(SM ,CM ) | Gt�H ] is �f -strongly convex for �f =

�c
⇣
�2
e + �2

w
�min(C)
1+kAk2

op

⌘
on M(H,R).

By assumption, ct(·, ·) is �c-smooth.
Ft(N1, . . . , NH) = (SN1:H + F)>Qt(SN1:H + F) +C>
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RtCNH

,
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are linear
in N1:H . Ft is quadratic by the above expression. Moreover, Ft is �F -smooth if and only if
ct(SN1:H ,CNH

) is �F -smooth as a function of N1:H . We proceed to bound �F . Consider the
linear operator v : M(H,R)H ! R2dy given by v(N1:H) = (SN1:H ,CNH
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Ft is �F
def
= 4�cR2

natR
2
G
H-smooth since ct(SN1:H ,CNH

) is 4�cR2
natR

2
G
H-smooth.

It is left to bound the gradient for Ft. Note that

krFt(N1, . . . , NH)k2 = k(rct)(v(N1:H))k2kDv(N1:H)k2
 2Lc

p
(1 +RRG)2 +R2RGR

2
nat

p
H

= LF .

D.3 Controller regret decomposition and analysis

Recall the definition of regret for the controller algorithm:

Regret
T
(controller) = JT (controller)� inf

M2M(H,R)
JT (⇡M )

=
TX

t=1

ct(yt,ut)� inf
M2M(H,R)

TX

t=1

ct(y
M

t
,uM

t
),

where ut is the control played by the controller algorithm at time t and yt is the observation attained
by the algorithm’s history of controls at time t. (yM

t
,uM

t
) is the observation-control pair that would

have been returned if the DRC policy M were executed from the beginning of the time. The above
regret can be decomposed in the following way.

Regret
T
(controller) =

0

@
2H̄X

t=1

ct(yt,ut)
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A

| {z }
(burn-in loss)

+

0
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TX
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Ft(fMt�H̄:t)� inf
M2M(H,R)

TX
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(effective BCO-M regret)

+
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ft(M)� inf
M2M(H,R)

TX

t=2H̄+1

ct(y
M

t
,uM

t
)

1

A

| {z }
(control truncation loss)

The first term is the loss incurred by the initialization stage of the algorithm. The second term
entails the regret guarantee with respect to the with-history loss functions defined in Section D.1,
which we bound by a combination of the result of Theorem 3.6.B and the regularity conditions
established in Section D.2. The third term is a truncation loss of the comparator used in the regret
analysis. In particular, ct(·, ·) has history of length t, but the constructed ft only has history of length
H . Therefore, each term in the summand of the first term in the control truncation loss measures
the counterfactual cost at time t had M been used in constructing the control since H steps back,
while each term in the summand of the second term in the control truncation loss measures the
counterfactual cost at time t had M been applied to construct the controls from the beginning of
the time. The control truncation loss is bounded by the decaying behavior of stable systems, where
effects of past controls decay exponentially over time.

We bound each term separately. First, the burn-in loss can be crudely bounded by the diameter bound
B of ct(·, ·), which is established by Lemma D.5 in Section D.2 by the Lipschitz assumption of
ct(·, ·). In particular, applying the diameter bound and under the assumption that H = poly(log T ),

(burn-in loss)  2HB  2HLcR
2
nat(R

2 + (1 +RRG)
2) = Õ(1),
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Then, we bound the control truncation loss. By the decaying behavior of stable systems,  G(H) 
O(T�1) for H taken to be poly(log T ).

(control truncation loss)  sup
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 2LcBT G(H)RRnat

 O(1).

It is left to bound the effective BCO-M regret. By construction of Ft in Section D.1 and algorithm
specification of our proposed bandit controller in Algorithm 2, we are essentially running the EBCO-M
algorithm with the sequence of loss functions {Ft}Tt=H

on the constraint set K = M(H,R). Note
that further by the analysis in Section D.2 and Remark D.3 and substituting the parameters � = �f ,
� = �F , L = LF , and diameter bounds B,D defined in Lemma D.5, Theorem 3.6.B immediately
implies that

E[(effective BCO-M regret)]  Õ
✓
�dudy
�c

p
T

◆
,

since all the parameters for Ft obtained in Section D.2 differ from the parameters of ct by factors of
at most logarithmic in T . Putting together, the regret of the bandit controller is bounded by

E[Regret
T
(controller)]  Õ

✓
�cdudy
�c

p
T

◆
.
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E Proof of EBPC Regret Guarantee for Unknown Systems

When the system is unknown, we run an estimation algorithm outlined in Algorithm 3, followed
by our proposed BCO-M based control algorithm with slightly modified parameters. In particular,
to compare with the single best policy in the DRC policy class parametrized by M(H,R), we
let K = M(H+, R+), where H+ = 3H and R+ = 2R and set history parameter to be H+.
Subsequently, we denote H+ def

= H+�1. This section will be organized as the following: Section E.1
introduces a previously known error guarantee for the estimation algorithm outlined in Algorithm 3;
Section E.2 defines the estimated with-history loss functions;

E.1 System estimation error guarantee

When the system is unknown, we would need to first run a system estimation algorithm to obtain an
estimator Ĝ for the Markov operator G, which we use as an input to our control algorithm outlined in
Algorithm 2. It is known that the estimation algorithm we outlined in Algorithm 3 has high probability
error guarantee in its estimated Markov operator, formally given by the following theorem.

Theorem E.1 (Theorem 7, Simchowitz et al. [2020]). With probability at least 1� � �N�(logN)2
,

Algorithm 3 guarantees that with "G(N, �) ⇣ 1p
N
H2Rnat

q
(dy _ du) + log

�
1
�

�
+ log(1 +Rnat),

the following inequalities hold:

1. kutk2  Ru,�
def

= 5
q

du + 2 log
�
3
�

�
, 8t 2 [N ].

2. kĜ�Gk`1,op  "G(N, �)  1
2max{RRG,Ru,�} .

Remark E.2. Denote E as the event where the two inequalities of Theorem E.1 hold. We are

interested in the expected regret of our proposed bandit controller, which is

E[Regret
T
(controller) | E]P(E) + E[Regret

T
(controller) | EC ]P(EC)

E[Regret
T
(controller) | E] + (� +N�(logN)2)B̂T,

where B̂ denotes the bound on the cost ct when performing controls assuming Ĝ is the true Markov

operator. We will show in Section E.4 that B̂ . B. Therefore, when �  1p
T

and N �
p
T , we have

(� +N�(logN)2)BT  O(
p
T ). Therefore, from now on we make the following assumption:

Assumption E.3 (Estimation error). The estimation sample size N and error parameter � are set to

be N = d
p
T e and � = 1p

T
. The estimated Markov operator Ĝ obtained from Algorithm 3 satisfies

the following two inequalities with "G ⇣ 1p
N
H2Rnat

q
(dy _ du) + log

�
1
�

�
+ log(1 +Rnat):

1. kutk2  Ru,� , 8t 2 [N ].

2. kĜ�Gk`1,op  "G  1
2max{RRG,Ru,�} .

Additionally, without loss of generality we assume that "G  RG.

E.2 Construction of estimated with-history loss functions

Once we obtain Ĝ from Algorithm 3 for N iterations, we invoke Algorithm 2 treating Ĝ as the input
Markov operator on K = M(H+, R+) with history parameter H+. In this case, the cost functions
ct(yt,ut) evaluated by the (yt,ut) resulted from playing Algorithm 2 allows the following two
equivalent expressions:

ct(yt,ut) = ct
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ŷnat
t�i�j

,
H+X

j=0

fM [j]
t
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where ŷnat
t

is the nature’s y calculated by the algorithm at time t using the estimated Markov operator
Ĝ. The last inequality follows from Ĝ[i] = 0 for i � H+. We construct the two estimated with-
history loss functions. First, we construct with-history loss functions analogous to the Ft constructed
in Section D.1 for the known system.
Remark E.4. By specification in the bandit controller outlined in Algorithm 2, ŷnat

t
is obtained by

the formula ŷnat
t
 yt �

P
t�1
i=1 Ĝ

[i]ut�1�i, and thus ŷnat
t
2 Ft�H [ Gt with the filtrations defined

in Definition D.1.

Definition E.5 (With-history losses for unknown system). Given an estimated Markov operator Ĝ of

a partially observable linear dynamical system and an incidental cost function ct : Rdy ⇥Rdu ! R+

at time t, define its with-history loss at time t to be F̂t : M(H+, R+)H
+ ! R+, given by

F̂t(N1:H+)
def

= ct
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H+ ŷ
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1

A .

Define f̂t : M(H,R)! R+ to be the unary form induced by F̂t, given by f̂t(N)
def

= F̂t (N, . . . , N)| {z }
N in all H indices

.

Note that F̂t(fMt�H+:t) = ct(yt,ut). Moreover, F̂t is a Ft�H [ Gt-measurable random function by
Remark E.4 that is independent of "

t�H+:t. In particular, Assumption 3.3 is satisfied. In addition to
the with-history losses, we introduce a new pseudo loss function F̊t : M(H+, R+)H

+ ! R+ as the
following.
Definition E.6 (With-history pseudo losses for unknown system). Given a partially observable linear

dynamical system with Markov operator G and an incidental cost function ct : Rdy ⇥ Rdu ! R+ at

time t. define its with-history pseudo loss at tiem t to be F̊t : M(H+, R+)H
+ ! R+, given by

F̊t(N1:H+)
def

= ct

0

@ynat
t

+
H+X

i=1

G[i]
H+X

j=0

N [j]
H+�i

ŷnat
t�i�j

,
H+X

j=0

N [j]
H+ ŷ

nat
t�j

1

A .

Define f̊t : M(H,R)! R+ to be the unary form induced by F̊t, given by f̊t(N)
def

= F̊t (N, . . . , N)| {z }
N in all H indices

.

While the learner has no access to F̊t, it is useful for regret analysis: we will show that the gradient
of f̊t is sufficiently close to the gradient of f̂t and therefore the running bandit-RFTL-D on the loss
functions {f̂t}Tt=N+H+ is nearly equivalent to running bandit RFTL-D with erroneous gradients on
the loss functions {f̊t}Tt=N+H+ .

We analyze how error in the computed gradient affects the final regret guarantee in Section E.3. In
Section E.4, we prove the regularity conditions needed for both Section E.3 and the downstream
regret analysis performed in Section E.5, which gives our desired final regret bound.

E.3 RFTL-D with erroneous gradients

We establish a regret guarantee for RFTL-with-delay (RFTL-D) with erroneous gradient against
loss functions that are conditionally strongly convex and satisfying other regularity conditions stated
below in Assumption E.7 and E.8. The proof follows similarly to that in Simchowitz et al. [2020],
where they proved a similar regret guarantee for Online Gradient Descent (OGD). In particular, we
establish that when run with conditionally strongly convex loss functions, (1) the error in gradient
propagates quadratically in the regret bound, and (2) the regret bound has a negative movement cost
term.

We begin with the working assumptions on the feasible set K ⇢ Rd and the sequence of loss functions
{ft}Tt=H

defined on K.
Assumption E.7 (Conditional strong convexity). Let {ft}Tt=H

be a sequence of loss functions

mapping from K! R. Letting Ht be the filtration generated by algorithm history up till time t for

all t � H , assume that ft;H(·) def

= E[ft(·) | Ht�H ] is �-strongly convex on K.
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Assumption E.8 (Diameter). Assume that diam(K) = sup
z,z02K kz� z0k2  D. Moreover, assume

that {ft}Tt=H
obeys the range diameter bound sup

z,z02K |ft(z)� ft(z0)|  B.

Assumption E.9 (Gradient error). Let {�t}Tt=H
denote the sequence of errors injected to the gradients.

{�t}Tt=H
satisfies that for r̃t

def

= rft(zt)+�t, where zt is the algorithm’s decision at time t, kr̃tk(t) 
L
f̃

for some norm k · k(t) with dual k · k(t),⇤ possibly varying with t.

We consider RFTL-D run with erroneous gradients, outlined by Algorithm 5.

Algorithm 5 RFTL-D with erroneous gradients
1: Input: feasible set K ⇢ Rd, time horizon T , history parameter H , strong convexity parameter �,

step size ⌘ > 0, regularization function R(·) : K! R.
2: Initialize: r̃1 = · · · = r̃H̄ = 0, z1 = · · · = zH 2 K.
3: for t = H, . . . , T do
4: Play zt, incur loss ft(zt), receive gradient with error r̃t = rft(zt) + �t.
5: Update zt+1 = argmin

z2K

⇣P
t

s=H

⇣
r̃>
s�H̄

z + �

4 kz � zs�H̄k22
⌘
+ 1

⌘
R(z)

⌘
.

6: end for

Lemma E.10 (Conditional regret inequality for RFTL-D). Under Assumption E.7, E.8, and E.9,

let �t

def

= rft(zt)�rft;H(zt) denote the difference between the true gradient and the conditional

gradient. Then we have that, 8z 2 K, {zt}Tt=H
output by Algorithm 5 satisfies the following regret

inequality:

TX

t=H

ft;H(zt)� ft;H(z)  L
f̃

TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤ + 2HB +
R(z)

⌘

� �

4

T�H̄X

t=H

kzt � zk22 �
T�H̄X

t=H

(�t +�t)
>(zt � z).

Proof. Define ht(z)
def
= r̃>

t�H̄
z+ �

4 kzt�H̄ � zk22 for t � 2H̄ +1 and 1
⌘
R(z) otherwise. By standard

FTL-BTL lemma,
P

T

t=2H̄ ht(z) �
P

T

t=2H̄ ht(zt+1), 8z 2 K. Then
T�H̄X

t=H

ft;H(zt)� ft;H(z) 
T�H̄X

t=H

rft;H(zt)
>(zt � z)� �

2

T�H̄X

t=H

kzt � zk22

=
T�H̄X

t=H

⇣
r̃>
t
(zt � z)� �

2
kzt � zk22

⌘
�

T�H̄X

t=H

(�t +�t)
>(zt � z)

=
TX

t=2H̄+1

ht(zt�H̄)� ht(z)

| {z }
(⇤)

�
T�H̄X

t=H

(�t +�t)
>(zt � z)� �

4

T�H̄X

t=H

kzt � zk22.

Applying the FTL-BTL lemma, the first part on the right hand side is bounded by

(⇤) 

0

@
TX

t=2H̄+1

ht(zt�H̄)� ht(zt+1)

1

A+

0

@
2H̄X

t=H̄

ht(zt+1)� ht(z)

1

A


TX

t=2H̄+1

rht(zt�H̄)>
| {z }

r̃
t�H̄

(zt�H̄ � zt+1) +HB +
R(z)

⌘

 L
f̃

TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤ +HB +
R(z)

⌘
.
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Combining,

TX

t=H

ft;H(zt)� ft;H(z)  L
f̃

TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤ + 2HB +
R(z)

⌘

� �

4

T�H̄X

t=H

kzt � zk22 �
T�H̄X

t=H

(�t +�t)
>(zt � z).

Lemma E.11 (Regret inequality for bandit RFTL-D). Suppose RFTL-D is run with gradient estima-

tors gt such that gt satisfies kE[gt | Gt]� E[r̃t | Gt]k2  B(t), where Gt is any filtration such that

zt 2 Gt, then 8z 2 K,

E

2

4
TX

t=2H̄+1

ft(zt)� ft(z)

3

5  LgE

2

4
TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤

3

5+ 3HB +
R(z)

⌘

� �

6
E

2

4
T�H̄X

t=H

kzt � zk22

3

5+
3

�
E

2

4
T�H̄X

t=H

k�tk22

3

5+ 2D
T�H̄X

t=H

B(t),

where Lg = sup
t
kgtk(t).

Proof. Define qt(z)
def
= ft(z) + (gt � r̃t)>z + �t, 8t � H , and note that rqt(zt) = gt by con-

struction. Then since RFTL-D is a first-order OCO algorithm, we have RFTL-D(qH , . . . , qt�1) =
RFTL-D(gH , . . . , gt�1), 8t. Moreover, by Lemma 6.3.1 in Hazan [2016], 8z 2 K, we have

TX

t=2H̄+1

qt(zt)� qt(z)  RegretRFTL-D
T

(gH , . . . , gT ) +
2H̄X

t=H

qt(z)� qt(zt)

 RegretRFTL-D
T

(gH , . . . , gT ) +
2H̄X

t=H

ft(z)� ft(zt)

 RegretRFTL-D
T

(gH , . . . , gT ) +HB,

where the second inequality follows from 8H  t  2H̄ , gt = r̃t = 0 and thus qt(z) = ft(z) + �t,
8z. Additionally, 8t � 2H̄ + 1, z 2 K,

E[qt(zt)� qt(z)] = E[ft(zt)� ft(z)]� E[(gt � r̃t)
>(zt � z)]

= E[ft(zt)� ft(z)]� E[E[(gt � r̃t)
>(zt � z) | Gt]]

= E[ft(zt)� ft(z)]� E[(E[gt | Gt]� E[r̃t | Gt])
>(zt � z)]

� E[ft(zt)� ft(z)]�DB(t).

Moreover, by Lemma E.10, 8z 2 K, since

E[�t
>(zt � z)] = E[E[�t

>(zt � z) | Ht�H ]] = E[E[�t | Ht�H ]>(zt � z)] = 0,

the expected regret is bounded by

E
⇥
RegretRFTL-D

T
(g1, . . . , gT )

⇤
 LgE

2

4
TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤

3

5+ 2HB +
R(z)

⌘

� �

4
E

2

4
T�H̄X

t=H

kzt � zk22

3

5� E

2

4
T�H̄X

t=H

(gt �rft(zt)))>(zt � z)

3

5

| {z }
(⇤)

,
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where we can further decouple (⇤) as

(⇤) = E

2

4
T�H̄X

t=H

(gt � r̃t)
>(zt � z)

3

5

| {z }
(1)

+E

2

4
T�H̄X

t=H

�>
t
(zt � z)

3

5

| {z }
(2)

,

(1) =
T�H̄X

t=H

(E[gt | Gt]� r̃t)
>(zt � z)  D

T�H̄X

t=H

B(t), (2)  E

2

4
T�H̄X

t=H

3

�
k�tk22 +

�

12
kzt � zk22

3

5 .

Combining, 8z 2 K,

E

2

4
TX

t=2H̄+1

ft(zt)� ft(z)

3

5  LgE

2

4
TX

t=2H̄+1

kzt�H̄ � zt+1k(t),⇤

3

5+ 3HB +
R(z)

⌘

� �

6
E

2

4
T�H̄X

t=H

kzt � zk22

3

5+
3

�
E

2

4
T�H̄X

t=H

k�tk22

3

5+ 2D
T�H̄X

t=H

B(t).

E.4 Regularity conditions for estimated with-history loss functions and iterates

This section is analogous to Section D.2, and establishes regularity conditions for F̂t, F̊t,K =
M(H+, R+).

The following table summarizes the results in this section.

Parameter Definition Magnitude
R̂nat `2 bound on the signals 2Rnat

Rŷ `2 bound on observations 2Rnat + 4RG max{Ru,�, RRnat}
Rû `2 bound on controls based on M(H+, R+) 2max{Ru,�, RRnat}
B̂ diameter bound on ct 4Lc((R2

nat + 3RG max{Ru,�, RRnat})2)
D̂ diameter bound on M(H,R) 2

p
du ^ dyR+

�
f̊

conditional strong convexity parameter of f̊t �c

4

⇣
�2
e + �2

w
�min(C)
1+kAk2

op

⌘

�
f̂

conditional strong convexity parameter of f̂t �c

4

⇣
�2
e + �2

w
�min(C)
1+kAk2

op

⌘

�
F̊

smoothness parameter of F̊t 16�cR2
G
R2

natH
+

�
F̂

smoothness parameter of F̂t 64�cR2
G
R2

natH
+

L
F̊

Lipschitz parameter of F̊t 4Lc

q
R2

ŷ +R2
ûRnatRG

p
H+

L
F̂

Lipschitz parameter of F̂t 8Lc

q
R2

ŷ +R2
ûRnatRG

p
H+

We start with proving `2 bounds on the observations and controls.

Lemma E.12 (Control, signal, and observation norm bounds for unknown systems). Under Assump-

tion E.3 on the obtained estimator Ĝ for the Markov operator and suppose the bandit controller

outlined in Algorithm 2 is run with Ĝ. Denote R̂nat := sup
t
kynat

t
k2, Rŷ := sup

t
kytk2 and

Rû := sup
t
kutk2, where (yt,ut) are the observation-control pair resulted by executing the bandit

controller, then the following bounds hold deterministically:

R̂nat  2Rnat, Rŷ  2Rnat + 4RG max{Ru,�, RRnat}, Rû  2max{Ru,�, RRnat},
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Proof. By Assumption E.3, kĜk`1,op  2RG and 8t,

max
st

kusk2  max

8
<

:Ru,�,max
st

������

H+X

i=0

fM [i]
s
ŷnat
s�i

������
2

9
=

;

 max

(
Ru,�, Rmax

st

max
0iH+

kŷnat
s�i
k2

)

 max

(
Ru,�, R

 
Rnat +max

st

max
0iH+

kŷnat
s�i
� ynat

s�i
k2

!)

 max

8
<

:Ru,�, R

0

@Rnat +max
st

max
0iH+

������

s�iX

j=1

(G[i] � Ĝ[i])us�i�j

������
2

1

A

9
=

;

 max

⇢
Ru,�, R

✓
Rnat + "G max

st�1
kusk2

◆�

 max{Ru,�, RRnat}+
maxst kusk2

2
,

where the last inequality follows from "G  1
2max{RRG,Ru,�} in Assumption E.3. The above

inequality implies Rû  2max{Ru,�, RRnat}. Immediately, 8t,

kŷnat
t
k2  Rnat + kŷnat

t
� ynat

t
k2 = Rnat +

������

tX

j=1

(G[i] � Ĝ[i])ut�j

������
2

 Rnat + "GRû  2Rnat,

kytk2 =

�����ŷ
nat
t

+
tX

i=1

Ĝ[i]ut�i

�����
2

 2Rnat + 2RGRû  2Rnat + 4RG max{Ru,�, RRnat}.

Lemma E.13 (Diameter bounds). Consider the following sets

Û def

=

8
<

:

H+X

j=0

M [j]⇣j : M 2M(H+, R+), ⇣j 2 Rdy , k⇣jk2  R̂nat

9
=

; ,

Ŷ def

=

(
⇣ +

T�1X

i=1

G[i]⇠i : ⇣ 2 Rdy , k⇣k2  R̂nat, ⇠i 2 Û
)
,

and B̂ := sup
t

sup
y2Ŷ,u2Û

ct(y,u). Let D̂ := sup
M,M 02M(H+,R+)

kM �M 0kF . Then,

B̂  4Lc((R
2
nat + 3RG max{Ru,�, RRnat})2), D̂  2

p
du ^ dyR

+.

Proof. First, we calculate the bound on D̂. 8M,M 0 2M(H+, R+),

kM �M 0kF 
H+X

j=0

kM [j] �M 0[j]kF 
p
du ^ dy

H+X

j=0

kM [j] �M 0[j]kop  2
p

du ^ dyR
+.

To see the bound on B̂, note that 8t, 8y 2 Ŷ,u 2 Û , by the quadratic and Lipschitz condition on ct,

ct(y,u)  Lc(kyk22 + kuk22)  4Lc((R
2
nat + 3RG max{Ru,�, RRnat})2).

Lemma E.14 (Regularity conditions for F̊t, f̊t and F̂t, f̂t). F̊t, f̊t and F̂t, f̂t follow the following

regularity conditions under the assumption that "G  1
4RGRû

p
H+

q
�f

�c

,
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• F̊t is L
F̊

-Lipschitz with L
F̊

= Lc

q
R2

ŷ +R2
û(4RnatRG

p
H+); F̂t is L

F̂
-Lipschitz with

L
F̂
= Lc

q
R2

ŷ +R2
û(8RnatRG

p
H+).

• F̊t is �
F̊

-smooth with �
F̊

= 16�cR2
G
R2

natH
+

; F̂t is �
F̂

-smooth with �
F̂

=
64�cR2

G
R2

natH
+

.

• f̊t, f̂t are �
f̊
,�

f̂
-conditionally strongly convex with �

f̊
= �

f̂
= �f

4 .

Proof. Consider the following quantities:

S̊N1:H+

def
= ynat

t
+

H+X

i=1

G[i]
H+X

j=0

N [j]
H+�i

ŷnat
t�i�j

, C̊N
H+ =

H+X

j=0

N [j]
H+ ŷ

nat
t�j

,

ŜN1:H+

def
= ŷnat

t
+

H+X

i=1

Ĝ[i]
H+X

j=0

N [j]
H+�i

ŷnat
t�i�j

, ĈN
H+ = C̊N

H+ .

Consider the linear operator v̊, v̂ : M(H+, R)H
+ ! Rdy ⇥ Rdu given by v̊(N1:H+) =

(S̊N1:H+ , C̊N
H+ ), v̂(N1:H+) = (ŜN1:H+ , ĈN

H+ ). Similar to the analysis in Section D.2,
8N1:H+ , N 0

1:H+ 2M(H+, R+)H
+

,

k̊v(N1:H+)� v̊(N 0
1:H+)k2 =

������

0
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H+X

i=1

G[i]
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�N 0[j]
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������
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������
2
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H+X
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H+)ŷ
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������
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H+X

i=1
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H+X
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�N 0[j]
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������
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+

������

H+X

j=0
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H+ �N 0[j]

H+)ŷ
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 RG max
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H+X
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i
�N 0[j]
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������

H+X
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 4RGRnat max
1iH+

kNi �N 0
i
k`1,op

 4RGRnat

p
H+kN1:H+ �N 0

1:H+kF ,

which bounds kDv̊(N1:H+)k2  4RGRnat

p
H+. Similarly, we can bound kDv̂(N1:H+)k2 

8RGRnat

p
H+, 8N1:H+ 2M(H+, R+)H

+

. The gradient bounds L
F̊
, L

F̂
are thus given by

krF̊t(N1, . . . , NH+)k2 = k(rct)(̊v(N1:H+))k2kDv̊(N1:H+)k2  Lc

q
R2

ŷ +R2
û(4RnatRG

p
H+),

krF̂t(N1, . . . , NH+)k2 = k(rct)(v̂(N1:H+))k2kDv̂(N1:H+)k2  Lc

q
R2

ŷ +R2
û(8RnatRG

p
H+).

The smoothness parameters �
F̊
,�

F̂
is given by

kr2ct(̊v(N1:H+))kop = kDv̊(N1:H+)(r2ct)(̊v(N1:H+))Dv̊(N1:H+)>kop  16�cR
2
G
R2

natH
+,

kr2ct(v̂(N1:H+))kop = kDv̂(N1:H+)(r2ct)(v̂(N1:H+))Dv̂(N1:H+)>kop  64�cR
2
G
R2

natH
+.
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To bound the conditional strong convexity parameters �
f̊
,�

f̂
, it suffices to show an analogue to

Lemma D.7 that 8M 2M(H+, R+),

E
h
k(S̊M , C̊M )� (ynat

t
,0du)k22 | Ft�H [ Gt�H

i

| {z }
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�
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and similarly (2) �
⇣

�f

2�c

� 4R2
G
"2
G
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⌘
� �f
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E.5 Unknown system regret analysis

Before the decomposition of regret, we introduce a result from Simchowitz et al. [2020]. Define ' :
M(H,R)! Rdy⇥du⇥H

+

such that '(M) = (M,0dy⇥du , . . . ,0dy⇥du). Note that '(M(H,R)) ⇢
M(H+, R+).

Proposition E.15 (Proposition F.8 in Simchowitz et al. [2020]). 9M0 2M(H,R) such that 8⌧ > 0,
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Let M0 2M(H,R) satisfy the inequality in Proposition E.15, and consider the decomposition of
regret into four parts, which we will proceed to bound each separately.
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The choice of M0 and Proposition E.15 directly allows us to bound the comparator estimation loss.
In particular, note that
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Therefore, combining terms and taking H = poly(log T ), we have that for some constants
C0

param, C
1
param depending on the natural parameters and universal constants C, 8⌧ > 0,
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where the last inequality comes from taking N = d
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as in Assumption E.3, and
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Then, we proceed to bound the burn-in loss and the algorithm estimation loss. The burn-in loss can
be crudely bounded by the diameter bound on ct established in Section E.4. Take N = d

p
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The algorithm estimation loss can be bounded as follows:
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It is left to bound the f̊t-BCO-M regret term, which is given by the following lemma:

Proposition E.16. The BCO-M regret against the estimated with-history unary functions f̂t has the

following bound in expectation:
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Proof. First, we decompose the regret with respect to F̂t into two parts:
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The movement cost is bounded similarly as in the analysis of Algorithm 1. In particular,
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Combining, we have a bound on the estimation and movement cost:
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To bound the second term, we first bound the gradient error krf̂t(Mt)�rf̊t(Mt)kF , which measures
the gradient error in using f̂t to approximate f̊t in the algorithm.

Lemma E.17 (Gradient error in estimating pseudo-losses). Let f̂t and f̊t be given as in Definition E.5

and E.6. Let Mt 2M(H+, R+) played by Algorithm 2. Then, 8t,
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Proof. Consider the function v̂(· | G) : M(H+, R+)! Rdy+du parametrized by G given by v̂(N |
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������

tX

i=H

(G[i] � Ĝ[i])
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Combining, we have established the bound on the gradient difference between the true and pseudo-loss
functions:
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With Lemma E.17, we are ready to establish the following corollary to Lemma E.11 that gives the
regret inequality with respect to f̊t:

Corollary E.18 (Pseudo-loss regret inequality). Let Lg = sup
t
kgtk⇤t,t+1, where gt is the gradient

estimator used in the bandit controller outlined in Algorithm 2. Then the following regret inequality

holds:
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Proof. By Proposition C.2, the gradient estimator gt constructed in Algorithm 2 satisfies the following
bias guarantee 8t � N + 2H+ + 1,
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In the setting of Section E.3, take �t = rf̂t(Mt) � rf̊t(Mt). The gradient estimator gt used
in Algorithm 2 obeys kE[gt | Ft�H [ Gt�H ] � E[rf̂t(Mt) | Ft�H [ Gt�H ]kF  B(t) with
B(t) =
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as given by E.1. Take k · k(t) = k · k⇤
t,t+1 and k · k(t),⇤ = k · kt,t+1,
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B = B̂, H = H+, � = �
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, Lemma E.11 and Lemma E.17 imply
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We proceed to establish a local norm bound for H-steps-apart iterates. Let � : M(H+, R+)H
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Lemma C.6 established that 8t � H+  s  t, kg
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Combining the bounds on burn-in loss, algorithm estimation loss, f̊t-BCO-M regret, and comparator
estimation loss and taking ⌧ =
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