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A. Omitted Proofs

Proof of Lemma 4.4. Fix any t. Note that since the space of possible weights is ∆m, it
is most natural to think of ∇R as a function from ∆m to Rm/T (1m), i.e. Rm modulo
translation by the all-ones vector (which is orthogonal to ∆m in Rm). That is, ∇R(w) =
−((w1)

α−1, . . . , (wm)
α−1), where this vector may be thought of as modulo translation by the

all-ones vector. Nevertheless, we find it convenient to define ∂iR(w) := −(wi)
α−1. We define

∂iL
t(w) similarly (see Section 4.4).
Define h ∈ Rm to have coordinates hi := ∂iR(wt)− ηt∂iL

t(wt). Per the update rule, we
have that hi ≡ R(wt+1) mod T (1m). We have

−(wt
i)

α−1 − ηtζ = ∂iR(wt)− ηtζ ≤ hi ≤ ∂iR(wt) +
ηtζ

wt
i

= −(wt
i)

α−1 +
ηtζ

wt
i

(1)

Applying the first and last claims of Lemma A.1 (below) with a = α − 1, v = wt, κ = ηtζ,
and g = −h, we have that there exists a unique c ∈ R such that

m∑
i=1

(−hi + c)1/(α−1) = 1,

and in fact that −ηtζ ≤ c ≤ mηtζ. (Equation 1 is relevant here because it is equivalent
to the vai − κ

wt
i
≤ gi ≤ vai + κ conditions in Lemma A.1. This is also where we use that

ηtζ ≤ (1− α)2(wt
i)

α, which is equivalent to κ ≤ a2va+1
i .) The significance of this fact is that

(−hi + c)1/(α−1) is precisely wt+1
i , since (in Rm) we have that (∂iR(wt+1), . . . , ∂iR(wt+1)) =

h− c · 1 for some c, and in particular this c must be such that
∑

i w
t+1
i = 1. In particular,

this means that for all i, we have

(wt+1
i )α−1 = −hi + c ≤ (wt

i)
α−1 + ηtζ +

1

mink wk

ηtζ = (wt
i)

α−1 +

(
1

mink wk

+ 1

)
ηtζ.

Here, the inequality comes from the left inequality of Equation 1 and the fact that c ≤
1

mink wk
ηtζ. If we also have that ηtζ ≤ (1− α)2(wt

i)
α, then the last claim of Lemma A.1 gives
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us that

(wt+1
i )α−1 = −hi + c ≤ (wt

i)
α−1 + ηtζ +mηtζ = (wt

i)
α−1 + (m+ 1)ηtζ.

Similarly, we have

(wt+1
i )α−1 = −hi + c ≥ (wt

i)
α−1 − ηtζ

wt
i

− ηtζ = (wt
i)

α−1 −
(

1

wt
i

+ 1

)
ηtζ.

Lemma A.1. Let −1 < a < 0 and g ∈ Rm. There is a unique c ∈ R such that
∑

i(gi+c)1/a =
1. Furthermore, let v ∈ ∆m and κ ≥ 0. Then:

� If gi ≤ vai + κ for all i, then c ≥ −κ.

� If gi ≥ vai − κ
vi

for all i, then c ≤ κ
mini vi

.

– And if, furthermore, κ ≤ a2va+1
i for all i, then c ≤ mκ.

Proof. Observe that
∑

i(gi + c)1/a is a continuous, monotone decreasing function on c ∈
(−mini gi,∞); the range of the function on this interval is (0,∞). Therefore, there is a
unique c ∈ (−mini gi,∞) such that the sum equals 1.

We now prove the first bullet. Since x1/a decreases in x and gi ≤ vai + κ, we have that

1 =
∑
i

(gi + c)1/a ≥
∑
i

(vai + κ+ c)1/a.

Suppose for contradiction that c < −κ. Then vai + κ+ c < vai for all i, so∑
i

(vai + κ+ c)1/a >
∑
i

(vai )
1/a =

∑
i

vi = 1.

This is a contradiction, so in fact c ≥ −κ.
The first claim of the second bullet is analogous. Since x1/a decreases in x and gi ≥

vai − κvi, we have that

1 =
∑
i

(gi + c)1/a ≤
∑
i

(
vai −

κ

vi
+ c

)1/a

. (2)

Suppose for contradiction that c > κ
vi

for every i. Then vai − κ
vi
+ c > vai for all i, so

∑
i

(
vai −

κ

vi
+ c

)1/a

<
∑
i

(vai )
1/a =

∑
i

vi = 1.

This is a contradiction, so in fact c ≤ κ
mini vi

.
We now prove the second claim of the second bullet. To do so, we note the following

technical lemma (proof below).
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Lemma A.2. For −1 < a < 0 and κ, c ≥ 0, the function f(x) =
(
xa − κ

x
+ c
)1/a

is defined
and concave at any value of x > 0 such that a2xa+1 ≥ κ.

Since for a general concave function f it holds that 1
m

∑m
i=1 f(xi) ≤ f

(
1
m

∑m
i=1 xi

)
, the

following inequality follows from Lemma A.2:

∑
i

(
vai −

κ

vi
+ c

)1/a

≤ m

((
1

m

)a

− κm+ c

)1/a

.

(Here we are using the fact that
∑

i vi = 1.) Now, combining this fact with Equation 2, we
have that

m

((
1

m

)a

− κm+ c

)1/a

≥ 1(
1

m

)a

− κm+ c ≤
(

1

m

)a

so c ≤ mκ, as desired.

Proof of Lemma A.2. To show that f is defined for any x such that a2xa+1 ≥ κ, we need to
show that xa − κ

x
+ c > 0 for such values of x. This is indeed the case:

xa − κ

x
+ c ≥ xa − a2xa + c = (1− a2)xa + c > c ≥ 0.

Now we show concavity. We have

f ′′(x) =
1

−a

((
1 +

1

−a

)(
xa − κ

x
+ c
)1/a−2 (

axa−1 +
κ

x2

)2
−
(
xa − κ

x
+ c
)1/a−1

(
a(a− 1)xa−2 − 2κ

x3

))
so we wish to show that(
1 +

1

−a

)(
xa − κ

x
+ c
)1/a−2 (

axa−1 +
κ

x2

)2
≤
(
xa − κ

x
+ c
)1/a−1

(
a(a− 1)xa−2 − 2κ

x3

)
for every x such that a2xa+1 ≥ κ. Fix any such x, and let d = κ

xa+1 (so 0 ≤ d ≤ a2). We have

d ≤ a2

(1 + a)(a2 − d)d ≥ 0

(1− a)(a+ d)2 ≤ −a(1− d)(a(a− 1)− 2d) (rearrange terms)(
1− 1

a

)
(a+ d)2xa ≤ ((1− d)xa)(a(a− 1)− 2d) (multiply by

xa

−a
)(

1− 1

a

)
(a+ d)2xa ≤ ((1− d)xa + c)(a(a− 1)− 2d) (c(a(a− 1)− 2d) ≥ 0)(

1− 1

a

)
((a+ d)xa−1)2 ≤ ((1− d)xa + c)(a(a− 1)− 2d)xa−2 (multiply by xa−2)(

1− 1

a

)(
axa−1 +

κ

x2

)2
≤
(
xa − κ

x
+ c
)(

a(a− 1)xa−2 − 2κ

x3

)
(substitute d = κx−a−1).
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Note that the fifth line is justified by the fact that c ≥ 0 and a(a − 1) ≥ 2d (because

a2 ≥ d and −a > a2 ≥ d). Now, multiplying both sides by
(
xa − κ

x
+ c
)1/a−2

completes the
proof.

Proof of Corollary 4.5. Note that ηγ = 1√
Tm(1+α)/2 and also that ηt ≤ η for all t; we will be

using these facts.
To prove (#1), we proceed by induction on t. In the case of t = 1, all weights are 1/m,

so the claim holds for sufficiently large T . Now assume that the claim holds for a generic
t < T ; we show it for t+ 1.

By the small gradient assumption, we may use Lemma 4.4 with ζ = γ. By the inductive
hypothesis (and the fact that ηt ≤ η), we may apply the second part of Lemma 4.4:

(wt+1
i )α−1 ≤ (wt

i)
α−1 + (m+ 1)ηγ ≤ · · · ≤ (1/m)α−1 + t(m+ 1)ηγ.

≤ (1/m)α−1 +
(T − 1)(m+ 1)

m(1+α)/2
√
T

≤ 3m(1−α)/2
√
T .

Since −1
2

< α− 1 < 0, this means that wt
i ≥ 1

10
√
m
T 1/(2(α−1)).

We also have that

(wt+1
i )α ≥ 1

(10
√
m)α

Tα/(2(α−1)) ≥ 4

m(1+α)/2
T−1/2 = 4ηγ

for T sufficiently large, since α
2(α−1)

> −1
2
. This completes the inductive step, and thus the

proof of (#1).

To prove (#2), we use the following technical lemma (see below for the proof).

Lemma A.3. Fix x > 0 and −1 < a < 0. Let f(y) = (xa + y)1/a. Then for all y > −xa, we
have

x− f(y) ≤ −1

a
x1−ay (3)

and for all −1 < c ≤ 0, for all cxa ≤ y ≤ 0, we have

f(y)− x ≤ 1

a
(1 + c)1/a−1x1−ay. (4)

We apply Equation 3 to x = wt
i , y = (m+ 1)ηγ, and a = α− 1. This tells us that

wt
i − wt+1

i ≤ wt
i − ((wt

i)
α−1 + (m+ 1)ηγ)1/(α−1) ≤ 2(wt

i)
2−α(m+ 1)ηγ.

The first step follows by the second part of Lemma 4.4 and the fact that ηt ≤ η. The second
step follows from Equation 3 and uses the fact that 1

1−α
> 2.

For the other side of (#2), we observe that since by (#1) we have (wt
i)

α ≥ 4ηγ, it

follows that 1
2
(wt

i)
α ≥ (wt

i + 1)ηγ, and so
(

1
wt

i
+ 1
)
ηγ ≤ 1

2
(wt

i)
α−1. Therefore, we can apply

Equation 4 to x = wt
i , y = −

(
1
wt

i
+ 1
)
ηγ, a = α− 1, and c = −1

2
. This tells us that

wt+1
i − wt

i ≤
(
(wt

i)
α−1 −

(
1

wt
i

+ 1

)
ηγ

)1/(α−1)

− wt
i ≤ 16(wt

i)
2−α

(
1

wt
i

+ 1

)
ηγ
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≤ 32(wt
i)

1−αηγ.

This completes the proof.

Proof of Lemma A.3. For all y > −xa, we have

f ′(y) =
1

a
(xa + y)1/a−1

and

f ′′(y) =
1

a

(
1

a
− 1

)
(xa + y)1/a−2 > 0,

so f ′ is increasing. Thus, for positive values of y we have

f ′(0) ≤ f(y)− f(0)

y
=

f(y)− x

y
≤ f ′(y)

and for negative values of y we have

f ′(y) ≤ f(y)− f(0)

y
=

f(y)− x

y
≤ f ′(0).

Regardless of whether y is positive or negative, this means that x − f(y) ≤ −yf ′(0) =
−1
a
x1−ay.
Now, let −1 < c ≤ 0 and suppose that cxa ≤ y ≤ 0. Since f ′ is increasing, we have that

f ′(y) ≥ f ′(cxa) =
1

a
((1 + c)xa)1/a−1 =

1

a
(1 + c)1/a−1x1−a,

so

f(y)− x ≤ yf ′(y) ≤ 1

a
(1 + c)1/a−1x1−ay.

Proof of Lemma 4.8. We first derive an expression for ∂iL(w) given expert reports p1, . . . ,pm,
where L(w) is the log loss of the logarithmic pool p∗(w) of p1, . . . ,pm with weights w, and
j is the realized outcome. We have1

∂iL(w) = −∂i ln

∏m
k=1(p

k
j )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
= ∂i ln

(
n∑

ℓ=1

m∏
k=1

(pkℓ )
wk

)
− ∂i ln

(
m∏
k=1

(pkj )
wk

)

=

∑n
ℓ=1 ln p

i
ℓ ·
∏m

k=1(p
k
ℓ )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
− ln pij =

n∑
ℓ=1

p∗ℓ(w) ln piℓ − ln pij. (5)

1It should be noted that ∇L(w) is most naturally thought of as living in Rm/T (1m), i.e. m-dimensional
space modulo translation by the all-ones vector, since w lives in a place that is orthogonal to the all-ones
vector. As an arbitrary but convenient convention, we define ∂iL(w) to be the specific value derived below,
and define the small gradient assumption accordingly.
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Equation (2) now follows fairly straightforwardly. Equation 5 tells us that ∂iL(w) ≤
− ln piJ , where J is the random variable corresponding to the realized outcome. Therefore,
we have

P [∂iL(w) ≥ ζ] ≤ P
[
− ln piJ ≥ ζ

]
= P

[
piJ ≤ e−ζ

]
=

n∑
j=1

P
[
J = j & pij ≤ e−ζ

]
=

n∑
j=1

P
[
pij ≤ e−ζ

]
P
[
J = j | pij ≤ e−ζ

]
≤

n∑
j=1

P
[
J = j | pij ≤ e−ζ

]
≤ ne−ζ ,

where the last step follows by the calibration property. This proves Equation (2).
We now prove Equation (3). The proof has a similar idea, but is somewhat more technical.

We begin by proving the following lemma; we again use the calibration property in the proof.

Lemma A.4. For all q, we have

P
[
∀j∃i : pij ≤ q

]
≤ mnq.

Proof. Let J be the random variable corresponding to the index of the outcome that ends
up happening. We have

P
[
∀j∃i : pij ≤ q

]
≤ P

[
∃i : piJ ≤ q

]
=
∑
j∈[n]

P
[
J = j & ∃i : pij ≤ q

]
≤
∑
j∈[n]

∑
i∈[m]

P
[
J = j & pij ≤ q

]
=
∑
j∈[n]

∑
i∈[m]

P
[
pij ≤ q

]
P
[
J = j | pij ≤ q

]
≤
∑
j∈[n]

∑
i∈[m]

1 · q = mnq,

where the fact that P
[
J = j | pij ≤ q

]
≤ q follows by the calibration property.

Corollary A.5. For any reports p1, . . . ,pm, weight vector w, i ∈ [m], and j ∈ [n], we have

P
[
p∗j(w) ≥

(pij)
wi

q

]
≤ mnq.

Proof. We have

p∗j(w) =

∏m
k=1(p

k
j )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
≤

(pij)
wi∑n

ℓ=1

∏m
k=1(p

k
ℓ )

wk
.

Now, assuming that there is an ℓ such that for every k we have pkℓ > q, the denominator is

greater than q, in which case we have p∗j(w) <
(pij)

wi

q
. Therefore, if p∗j(w) ≥ (pij)

wi

q
, it follows

that for every ℓ there is a k such that pkℓ ≤ q. By Lemma A.4, this happens with probability
at most mnq.

We now use Corollary A.5 to prove Equation (3). Note that the equation is trivial for

ζ < n, so we assume that ζ ≥ n. By setting q := e
−ζ
n , we may restate Equation (3) as

follows: for any q ≤ 1
e
, any i ∈ [m], and any weight vector w,

P
[
∂iL(w) ≤ −n ln 1/q

wi

]
≤ mn2q.
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(Note that the condition q ≤ 1
e
is equivalent to ζ ≥ n.) We prove this result.

From Equation 5, we have

∂iL(w) =
n∑

j=1

p∗j(w) ln pij − ln pij ≥
n∑

j=1

pj(w) ln pij.

Now, it suffices to show that for each j ∈ [n], the probability that pj(w) ln pij ≤ − ln 1/q
wi

= ln q
wi

is at most mnq; the desired result will then follow by the union bound. By Corollary A.5,
for each j we have that

P
[
pj(w) ln pij ≤

(pij)
wi

q
ln pij

]
≤ mnq.

Additionally, we know for a fact that pj(w) ln pij ≥ ln pij (since pj(w) ≤ 1), so in fact

P
[
pj(w) ln pij ≤ max

(
(pij)

wi

q
ln pij, ln p

i
j

)]
≤ mnq.

It remains only to show that max
(

(pij)
wi

q
ln pij, ln p

i
j

)
≥ ln q

wi
. If pij ≥ q1/wi then this is clearly

true, since in that case ln pij ≥ ln q
wi

. Now suppose that pij < q1/wi . Observe that xwi

q
lnx

decreases on (0, e−1/wi), and that (since q ≤ 1
e
) we have q1/wi ≤ e−1/wi . Therefore,

(pij)
wi

q
ln pij ≤

(q1/wi)wi

q
ln q1/wi =

ln q

wi

.

This completes the proof of Equation (3), and thus of Lemma 4.8.

The following lemma lower bounds the regret of Algorithm 1 as a function of ζ.

Lemma A.6. Consider a run of Algorithm 1. Let ζ be such that − ζ
wt

i
≤ ∂iL

t(wt) ≤ ζ for

all i, t. The total regret is at most

O
(
ζ2(2−α)/(1−α)T (5−α)/(1−α)

)
.

Proof of Lemma A.6. We first bound wt
i for all i, t. From Lemma 4.4, we have that

(wt+1
i )α−1 ≤ (wt

i)
α−1 +

(
1

mini wt
i

+ 1

)
ηtζ ≤ (wt

i)
α−1 + 2ζ.

Here we use that 1
mini wi

+ 1 ≤ 2
mini wi

and that ηt ≤ mini wi. Therefore, we have that

(wt
i)

α−1 ≤ (wt−1
i )α−1 + 2ζ ≤ · · · ≤ m1−α + 2ζ(t− 1) ≤ m1−α + 2ζT.

Thus, wt
i ≥ (m1−α + 2ζT )1/(α−1) ≥ Ω((ζT )1/(α−1)) for all i, t.

We now use the standard regret bound for online mirror descent, see e.g. (Orabona, 2021,
Theorem 6.8):
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Regret ≤ max
t

BR(u;w
t)

ηT
+

1

2λ

T∑
t=1

ηt
∥∥∇Lt(wt)

∥∥2
∗ (6)

where BR(·; ·) is the Bregman divergence of with respect to R, u is the optimal (overall
loss-minimizing) point, λ is a constant such that R is λ-strongly convex with respect to a
norm of our choice over ∆m, and ∥·∥∗ is the dual norm of the aforementioned norm.

Note that for any x ∈ ∆m, we have

max
v∈∆m

BR(v;x) = max
v∈∆m

R(v)−R(x)−∇R(x) · (v − x) ≤ m1−α

α
+ (min

i
xi)

α−1.

In the last step, we use the fact that −∇R(x) = (xα−1
1 , . . . , xα−1

m ) (all of these coordinates
are positive), so −∇R(x) · (v − x) ≤ (xα−1

1 , . . . , xα−1
m ) · v, and that all coordinates of v are

non-negative and add to 1.
Therefore, given our bound on wt

i , we have that this first component of our regret bound
(6) is at most

1

ηT

(
m1−α

α
+m1−α + 2ζT

)
≤ O

(
ζT

ηT

)
≤ O

(
ζT

(ζT )1/(α−1)

)
= O

(
(ζT )(2−α)/(1−α)

)
.

To bound the second term, we choose to work with the ℓ1 norm. To show that R is λ-
convex it suffices to show that for all x,y ∈ ∆m we have (∇2R(x)y) ·y ≥ λ ∥y∥2, where ∇2R
is the Hessian of R (Shalev-Shwartz, 2007, Lemma 14) (see also (Orabona, 2021, Theorem
4.3)). Equivalently, we wish to find a λ such that

(1− α)
∑
i

xα−2
i y2i ≥ λ.

Since xα−2
i ≥ 1 for all i, the left-hand side is at least (1−α)

∑
i y

2
i ≥ 1−α

m
, so λ = 1−α

m
suffices.

Now, given θ ∈ Rm, we have ∥θ∥∗ = maxx:∥x∥≤1 θ · x. In the case of the ℓ1 primal norm,
the dual norm is the largest absolute component of θ. Thus, we have∥∥∇Lt(xt)

∥∥
∗ ≤

ζ

wt
i

≤ O
(
ζ(ζT )1/(1−α)

)
= O

(
ζ(2−α)/(1−α)T 1/(1−α)

)
.

Since ηt ≤ O(T−1/2), we have that the second component of our regret bound (6) is at most

O
(
T · T−1/2 · ζ2(2−α)/(1−α)T 2/(1−α)

)
≤ O

(
ζ2(2−α)/(1−α)T (5−α)/(1−α)

)
.

This component dominates our bound on the regret of the first component, in both ζ and
T . This concludes the proof.

Corollary A.7. The expected total regret of our algorithm conditional on the small gradient
assumption not holding, times the probability of this event, is at most Õ(T (5−α)/(1−α)−10).
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Proof. Let Z be the minimum value of ζ such that − ζ
wt

i
≤ ∂iL

t(wt) ≤ ζ for all i, t. Note

that by Lemma 4.8, we have that

P [Z ≥ x] ≤
m∑
i=1

T∑
t=1

(mn2e−
x
n + ne−x) ≤ 2m2n2Te−

x
n .

Let µ be the constant hidden in the big-O of Lemma A.6, i.e. a constant (dependent on m,
n, and α) such that

Regret ≤ µZ2(2−α)/(1−α)T (5−α)/(1−α).

Let r(Z, T ) be the expression on the right-hand side. The small gradient assumption not
holding is equivalent to Z > 12n lnT , or equivalently, r(Z, T ) > r(12n lnT, T ). The expected
regret of our algorithm conditional on the small gradient assumption not holding, times the
probability of this event, is therefore at most the expected value of r(Z, T ) conditional on
the value being greater than r(12n lnT, T ), times this probability. This is equal to

r(12n lnT, T ) · P [Z > 12n lnT ] +

∫ ∞

x=r(12n lnT,T )

P [r(Z, T ) ≥ x] dx

≤
∞∑

k=11

r((k + 1)n lnT, T ) · P [Z ≥ kn lnT ]

≤
∞∑

k=11

µ · ((k + 1)n lnT )2(2−α)/(1−α)T (5−α)/(1−α) · 2m2n2T · T−k

≤
∞∑

k=11

Õ(T 1+(5−α)/(1−α)−k) = Õ(T (5−α)/(1−α)−10),

as desired. (The first inequality follows by matching the first term with the k = 11 sum-
mand and upper-bounding the integral with subsequent summands, noting that r((k +
1)n lnT, T ) ≥ 1.)

Note that 5−α
1−α

− 10 ≤ 5−1/2
1−1/2

− 10 = −1. Therefore, the contribution to expected regret

from the case that the small gradient assumption does not hold is Õ(T−1), which is negligible.
Together with Corollary 4.7 (which bounds regret under the small gradient assumption), this
proves Theorem 3.2.

We now extend Theorem 3.2 by showing that the theorem holds even if experts are only
approximately calibrated.

Definition A.8. For τ ≥ 1, we say that expert i is τ -calibrated if for all p ∈ ∆n and j ∈ [n],
we have that P [J = j | pj = p] ≤ τpj. We say that P satisfies the τ -approximate calibration
property if every expert is τ -calibrated.

Corollary A.9. For any τ , Theorem 3.2 holds even if the calibration property is replaced
with the τ -approximate calibration property.

(Note that the τ is subsumed by the big-O notation in Theorem 3.2; Corollary A.9 does
not allow experts to be arbitrarily miscalibrated.)
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Technically, Corollary A.9 is a corollary of the proof of Theorem 3.2, rather than a
corollary of the theorem itself.2

Proof. We only used the calibration property in the proofs of Equations (2) and (3). In the
proof of Equation (2), we used the fact that P

[
J = j | pij ≤ e−ζ

]
≤ e−ζ ; the right-hand side

now becomes τe−ζ , and so the right-hand side of Equation (2) changes to τne−ζ . Similarly,
in the proof of Equation (3), we use the calibration property in the proof of Lemma A.4; the
right-hand side of the lemma changes to τmnq, and correspondingly Equation (3) changes
to τmn2e−ζ/n.

Lemma 4.8 is only used in the proof of Corollary A.7, where 2m2n2T is replaced by
2τm2n2T . Since τ is a constant, Corollary A.7 holds verbatim.

B. Ω(
√
T ) Lower bound

We show that no OMD algorithm with a constant step size3 substantially outperforms Al-
gorithm 1.

Theorem B.1. For every strictly convex function R : ∆m → R that is continuously twice
differentiable at its minimum, and η ≥ 0, online mirror descent with regularizer R and
constant step size η incurs Ω(

√
T ) expected regret.

Proof. Our examples will have m = n = 2. The space of weights is one-dimensional; let
us call w the weight of the first expert. We may treat R as a (convex) function of w, and
similarly for the losses at each time step. We assume that R′(0.5) = 0; this allows us to
assume that w1 = 0.5 and does not affect the proof idea.

It is straightforward to check that if Experts 1 and 2 assign probabilities p and 1
2
, respec-

tively, to the correct outcome, then

L′(w) =
(1− p)w

pw + (1− p)w
ln

1− p

p
.

If roles are reversed (they say 1
2
and p respectively) then

L′(w) = − (1− p)1−w

p1−w + (1− p)1−w
ln

1− p

p
.

We first prove the regret bound if η is small (η ≤ T−1/2). Consider the following setting:
Expert 1 always reports (50%, 50%); Expert 2 always reports (90%, 10%); and Outcome 1
happens with probability 90% at each time step. It is a matter of simple computation that:

� L′(w) ≤ 2 no matter the outcome or the value of w.

� If w ≥ 0.4, then p∗1(w) ≤ 0.8.

2Fun fact: the technical term for a corollary to a proof is a porism.
3While Algorithm 1 does not always have a constant step size, it does so with high probability. The

examples that prove Theorem B.1 cause Ω(
√
T ) regret in the typical case, rather than causing unusually

large regret in an atypical case. This makes our comparison of Algorithm 1 to this class fair.
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The first point implies that R′(wt) ≥ −2ηt for all t. It follows from the second point that
the algorithm will output weights that will result in an aggregate probability of less than
80% for values of t such that −2ηt ≥ R′(0.4), i.e. for t ≤ −R′(0.4)

2η
. Each of these time steps

accumulates constant regret compared to the optimal weight vector in hindsight (which with
high probability will be near 1). Therefore, the expected total regret accumulated during
these time steps is Ω(1/η) = Ω(

√
T ).

Now we consider the case in which η is large (η ≥
√
T ). In this case our example is the

same as before, except we change which expert is “ignorant” (reports (50%, 50%) and which
is “informed” (reports (90%, 10%)). Specifically the informed expert will be the one with a
lower weight (breaking ties arbitrarily).

We will show that our algorithm incurs Ω(η) regret compared to always choosing weight
0.5. Suppose without loss of generality that at a given time step t, Expert 1 is informed (so
wt ≤ 0.5). Observe that

L(wt)− L(0.5) = −(0.5− wt)L′(0.5) +O((0.5− w)2)

= −(0.5− wt)

√
1− p

√
p+

√
1− p

ln
1− p

p
+O((0.5− w)2),

where p is the probability that Expert 1 assigns to the event that happens (so p = 0.9 with
probability 0.9 and p = 0.1 with probability 0.1). This expression is (up to lower order
terms) equal to c(0.5 − wt) if p = 0.9 and −3c(0.5 − wt) if p = 0.1, where c ≈ 0.55. This
means that an expected regret (relative to w = 0.5) of 0.6c(0.5 − wt) (up to lower order
terms) is incurred.

Let D be such that R′′(w) ≤ D for all w such that |w − 0.5| ≤
√
T

4D
. (Such a D exists

because R is continuously twice differentiable at 0.5.) If |wt − 0.5| ≥
√
T

4D
, we just showed

that an expected regret (relative to w = 0.5) of Ω
(√

T
4D

)
is incurred. On the other hand,

suppose that |wt − 0.5| ≤
√
T

4D
. We show that |wt+1 − 0.5| ≥

√
T

4D
.

To see this, note that |L′(wt)| ≥ 0.5, we have that |R′(wt+1)−R′(wt)| ≥ 0.5η. We
also have that D |wt+1 − wt| ≥ |R′(wt+1)−R′(wt)|, so D |wt+1 − wt| ≥ 0.5η. Therefore,

|wt+1 − wt| ≥ η
2D

≥
√
T

2D
, which means that |wt+1 − 0.5| ≥

√
T

4D
.

This means that an expected regret (relative to w = 0.5) of Ω
(√

T
4D

)
is incurred on at

least half of time steps. Since D is a constant, it follows that a total regret of at least Ω(
√
T )

is incurred, as desired.
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