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Abstract

For each of T time steps, m experts report probability distributions over n out-
comes; we wish to learn to aggregate these forecasts in a way that attains a no-regret
guarantee. We focus on the fundamental and practical aggregation method known
as logarithmic pooling — a weighted average of log odds — which is in a certain
sense the optimal choice of pooling method if one is interested in minimizing log
loss (as we take to be our loss function). We consider the problem of learning
the best set of parameters (i.e. expert weights) in an online adversarial setting.
We assume (by necessity) that the adversarial choices of outcomes and forecasts
are consistent, in the sense that experts report calibrated forecasts. Imposing this
constraint creates a (to our knowledge) novel semi-adversarial setting in which the
adversary retains a large amount of flexibility. In this setting, we present an algo-
rithm based on online mirror descent that learns expert weights in a way that attains
O(
√
T log T ) expected regret as compared with the best weights in hindsight.

1 Introduction

1.1 Logarithmic pooling

Suppose that m experts report probability distributions p1, . . . ,pm ∈ ∆n over n disjoint, exhaustive
outcomes. We are interested in aggregating these distributions into a single distribution p∗, a task
known as probabilistic opinion pooling. Perhaps the most straightforward way to do this is to take
the arithmetic mean, also called the linear pool: p∗ = 1

m

∑m
i=1 p

i.

While commonly studied and frequently used, the linear pool is by no means the definitive opinion
pooling method. The choice of pooling method ought to depend on context, and in particular on the
loss function with respect to which forecasts are assessed. Neyman and Roughgarden (2023) showed
a correspondence between proper loss functions and opinion pooling methods, which they termed
quasi-arithmetic (QA) pooling with respect to a loss function. Specifically, the QA pool with respect
to a loss is the forecast that guarantees the largest possible overperformance (as judged by the loss
function) compared with the strategy of choosing a random expert to trust.1

In this work we will be using log loss function. The QA pooling technique with respect to the log
loss is known as logarithmic pooling. Instead of averaging the experts’ forecasts, logarithmic pooling
averages the experts’ log odds (i.e. logits). Put otherwise, the logarithmic pool is defined by

p∗j = c

m∏
i=1

(pij)
1/m

1More formally, the QA pool maximizes the minimum (over possible outcomes) improvement in the loss.
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for all events j ∈ [n], where c is a normalizing constant to ensure that the probabilities add to 1.
While the linear pool is an arithmetic mean, the logarithmic pool behaves much more like a geometric
mean. For instance, the logarithmic pool of (0.001, 0.999) and (0.5, 0.5) with equal weights is
approximately (0.03, 0.97).

The logarithmic pool has been studied extensively because of its naturalness (Genest, 1984; Genest
and Zidek, 1986; Givens and Roback, 1999; Poole and Raftery, 2000; Kascha and Ravazzolo, 2008;
Rufo et al., 2012; Allard et al., 2012). Logarithmic pooling can be interpreted as averaging experts’
Bayesian evidence (Neyman and Roughgarden, 2023, §A). It is also the most natural pooling method
that satisfies external Bayesianality, meaning roughly that it does not matter whether a Bayesian
update is applied to each expert’s forecast before aggregation, or if instead the Bayesian update is
applied to the pooled forecast (Genest, 1984). Logarithmic pooling can also be characterized as the
pooling method that minimizes the average KL divergence to the experts’ reports (Abbas, 2009).
Finally, empirical work has found logarithmic pooling performs very well on real-world data (Satopää
et al., 2014; Sevilla, 2021).

1.2 Logarithmic pooling with weighted experts

Forecast aggregators often assign different weights to different experts, e.g. based on each expert’s
level of knowledge or track record (Tetlock and Gardner, 2015). There is a principled way to include
weights w1, . . . , wi (summing to 1) in the logarithmic pool, namely:

p∗j (w) = c(w)

m∏
i=1

(pij)
wi ,

where c(w) is again a normalizing constant that now depends on the weights.2 This more general
notion continues to have all of the aforementioned natural properties.

The obvious question is: how does one know what these weights should be? Perhaps the most natural
answer is to weight experts according to their past performance. Finding appropriate weights for
experts is thus an online learning problem. This learning problem is the focus of our work.

1.3 Choosing the right benchmark

Our goal is to develop an algorithm for learning weights for logarithmic pooling in a way that achieves
vanishing regret as judged by the log loss function (i.e. the loss function most closely associated with
this pooling method). Within the field of online prediction with expert advice, this is a particularly
challenging setting. In part, this is because the losses are potentially unbounded. However, that is not
the whole story: finding weights for linear pooling, by contrast, is a well-studied problem that has
been solved even in the context of log loss. On the other hand, because logarithmic pooling behaves
more as a geometric than an arithmetic mean, if some expert assigns a very low probability to the
eventual outcome (and the other experts do not) then the logarithmic pool will also assign a low
probability, incurring a large loss. This makes the combination of logarithmic pooling with log loss
particularly difficult.

We require that our algorithm not have access to the experts’ forecasts when choosing weights: an
algorithm that chooses weights in a way that depends on forecasts can output an essentially arbitrary
function of the forecasts, and thus may do something other than learn optimal weights for logarithmic
pooling. For example, suppose that m = n = 2 and an aggregator wishes to subvert our intentions
and take an equally weighted linear pool of the experts’ forecasts. Without knowing the experts’
forecasts, this is impossible; on the other hand, if the aggregator knew that e.g. p1 = (90%, 10%) and
p2 = (50%, 50%), they could assign weights for logarithmic pooling so as to produce the post-hoc
desired result, i.e. (70%, 30%). We wish to disallow this.

One might suggest the following setup: at each time step, the algorithm selects weights for each
expert. Subsequently, an adversary chooses each expert’s forecast and the outcome, after which the
algorithm and each expert incur a log loss. Unfortunately — due to the unboundedness of log loss
and the behavior of logarithmic pooling — vanishing regret guarantees in this setting are impossible.

2Were it not for the normalizing constant, the log loss incurred by the logarithmic pool p∗j (w) would be a
linear function of the weights. However, the c(w) term significantly complicates this picture.
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Example 1.1. Consider the case of m = n = 2. Without loss of generality, suppose that the
algorithm assigns Expert 1 a weight w ≥ 0.5 in the first time step. The adversary chooses reports
(e−T , 1− e−T ) for Expert 1 and

(
1
2 ,

1
2

)
for Expert 2, and for Outcome 1 to happen. The logarithmic

pool of the forecasts turns out to be approximately (e−wT , 1− e−wT ), so the algorithm incurs a log
loss of approximately wT ≥ 0.5T , compared to O(1) loss for Expert 2. On subsequent time steps,
Expert 2 is perfect (assigns probability 1 to the correct outcome), so the algorithm cannot catch up.

What goes wrong in Example 1.1 is that the adversary has full control over experts’ forecast and
the realized outcome, and is not required to couple the two in any way. This unreasonable amount
of adversarial power motivates assuming that the experts are calibrated: for example, if an expert
assigns a 10% chance to an outcome, there really is a 10% chance of that outcome (conditional on
the expert’s information).

We propose the following setting: an adversary chooses a joint probability distribution over the
experts’ beliefs and the outcome — subject to the constraint that each expert is calibrated. The
adversary retains full control over correlations between forecasts and outcomes, subject to the
calibration property. Subsequently, nature randomly samples each expert’s belief and the eventual
outcome from the distribution. In this setting, we seek to prove upper bounds on the expected value
of our algorithm’s regret.

Why impose this constraint, instead of a different one? Our reasons are twofold: theoretical and
empirical. From a theoretical standpoint, the assumption that experts are calibrated is natural because
experts who form Bayesian rational beliefs based on evidence will be calibrated, regardless of how
much or how little evidence they have. The assumption is also motivated if we model experts as
learners rather than Bayesian agents: even if a forecaster starts out completely uninformed, they
can quickly become calibrated in a domain simply by observing the frequency of events (Foster and
Vohra, 1997).

Second, recent work has shown that modern deep neural networks are calibrated when trained on a
proper loss function such as log loss. This is true for a variety of tasks, including image classification
(Minderer et al., 2021; Hendrycks et al., 2020) and language modeling (Kadavath et al., 2022; Desai
and Durrett, 2020; OpenAI, 2023); see (Blasiok et al., 2023) for a review of the literature. We may
wish to use an ensemble of off-the-shelf neural networks for some prediction or classification task. If
we trust these networks to be calibrated (as suggested by recent work), then we may wish to learn to
ensemble these experts (models) in a way that has strong worst-case theoretical guarantees under the
calibration assumption.

Logarithmic pooling is particularly sensible in the context of calibrated experts because it takes
confident forecasts “more seriously" as compared with linear pooling (simple averaging). If Expert 1
reports probability distribution (0.1%, 99.9%) over two outcomes and Expert 2 reports (50%, 50%),
then the logarithmic pool (with equal weights) is approximately (3%, 97%), as compared with a linear
pool of roughly (25%, 75%). If Expert 1 is calibrated (as we are assuming), then the (0.1%, 99.9%)
forecast entails very strong evidence in favor of Outcome 2 over Outcome 1. Meanwhile, Expert 2’s
forecast gives no evidence either way. Thus, it is sensible for the aggregate to point to Outcome 2
over Outcome 1 with a fair amount of confidence.

As another example, suppose that Expert 1 reports (0.04%, 49.98%, 49.98%) and Expert 2 reports
(49.98%, 0.04%, 49.98%) (a natural interpretation: Expert 1 found strong evidence against Outcome
1 and Expert 2 found strong evidence against Outcome 2). If both experts are calibrated, a sensible
aggregate should arguably assign nearly all probability to Outcome 3. Logarithmic pooling returns
roughly (2.7%, 2.7%, 94.6%), which (unlike linear pooling) accomplishes this.

Since we are allowing our algorithm to learn the optimal logarithmic pool, perhaps there is hope to
compete not just with the best expert in hindsight, but the optimally weighted logarithmic pool of
experts in hindsight. We will aim to compete with this stronger benchmark.

This paper demonstrates that the “calibrated experts" condition allows us to prove regret bounds
when no such bounds are possible for an unrestricted adversary. While that is our primary motivation,
the relaxation may also be of independent interest. For example, even in settings where vanishing
regret is attainable in the presence of an unrestricted adversary, even stronger regret bounds might be
achievable if calibration is assumed.
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1.4 Our main result

Is vanishing regret possible in our setting? Our main result is that the answer is yes. We exhibit
an algorithm that attains expected regret that scales as O(

√
T log T ) with the number of time

steps T . Our algorithm uses online mirror descent (OMD) with the Tsallis entropy regularizer
R(w) = −1

α (wα
1 + · · ·+ wα

m) and step size η ≈ 1√
T lnT

, where any choice of α ∈ (0, 1/2) attains
the regret bound.

Our proof has two key ideas. One is to use the calibration property to show that the gradient of loss
with respect to the weight vector is likely to be small (Section 4.4). This is how we leverage the
calibration property to turn an intractable setting into one where — despite the unboundedness of log
loss and the behavior of logarithmic pooling — there is hope for vanishing regret.

The other key idea (Section 4.3) involves keeping track of a function that, roughly speaking, reflects
how much “regret potential" the algorithm has. We show that if the aforementioned gradient updates
are indeed small, then this potential function decreases in value at each time step. This allows us to
upper bound the algorithm’s regret by the initial value of the potential function.

This potential argument is an important component of the proof. A naïve analysis might seek to
use our bounds on the gradient steps to myopically bound the contribution to regret at each time
step. Such an analysis, however, does not achieve our O(

√
T log T ) regret bound. In particular, an

adversary can force a large accumulation of regret if some experts’ weights are very small (specifically
by making the experts with small weights more informed than those with large weights) — but by
doing so, the small weights increase and the adversary “spends down" its potential. Tracking this
potential allows us to take this nuance into consideration, improving our bound.

We extend our main result by showing that the result holds even if experts are only approximately
calibrated: so long as no expert understates the probability of an outcome by more than a constant
factor, we still attain the same regret bound (see Corollary A.8). We also show in Appendix B that no
OMD algorithm with a constant step size can attain expected regret better than Ω(

√
T ).

2 Related work

2.1 Probabilistic opinion pooling

There has been substantial mathematical work on probabilistic opinion pooling (i.e. forecast aggrega-
tion) since the 1980s. One line of work is axiomatic in nature: motivating opinion pooling methods by
describing axioms that they satisfy. For example, logarithmic pooling satisfies unanimity preservation
and external Bayesianality (Genest, 1984). There has also been work on Bayesian approaches to
pooling, e.g. under the assumption that experts’ signals are drawn from some parameterized class of
distributions (Winkler, 1981; Lichtendahl et al., 2017).

Neyman and Roughgarden (2023) show that every proper loss function has an associated pooling
method (the QA pool with respect to the loss function), which is the forecast that guarantees the
largest possible overperformance (as judged by the loss function) compared with the strategy of
choosing a random expert to trust. This mapping is a bijection: a pooling method is QA pooling with
respect to some proper loss function if and only if it satisfies certain natural axioms.

2.2 Online prediction with expert advice

In the subfield of prediction with expert advice, for T time steps, experts report “predictions" from a
decision space D (often, as in our case, the space of probability distributions over a set of outcomes).
A forecaster must then output their own prediction from D. Then, predictions are assessed according
to a loss function. See Cesa-Bianchi and Lugosi (2006) for an survey of this field.

We are particularly interested in mixture forecasters: forecasters who, instead of choosing an expert
to trust at each time step, aggregate the expert’ reports. Linear mixtures, i.e. convex combinations of
predictions, have been especially well-studied, generally with the goal of learning weights for the
convex combination to compete with the best weights in hindsight. Standard convex optimization
algorithms achieve O(

√
T ) regret for bounded, convex losses, but it is sometimes possible to do
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better. For example, if the loss function is bounded and exp-concave, then logarithmic regret in T is
attainable (Cesa-Bianchi and Lugosi, 2006, §3.3).

Portfolio theory studies optimal stock selection for maximizing return on investment, often in a
no-regret setting. Cover (1991) introduced the “universal portfolio" algorithm, which, for each of
T time steps, selects a portfolio (convex combination of stocks). Our setting translates naturally to
Cover’s: experts play the role of stocks, and the return of a stock corresponds to the probability that
and expert assigns to the eventual outcome. The universal portfolio algorithm achieves logarithmic
regret compared with the best portfolio in hindsight (Cover and Ordentlich, 1996); in our terms, this
means that logarithmic regret (for log loss) is attainable for the linear pooling of experts. We refer the
reader to (Li and Hoi, 2014) for a survey of this area.

To our knowledge, learning weights for logarithmic pooling has not been previously studied. As
shown in Example 1.1, it is not possible to achieve vanishing regret if the setting is fully adversarial.
We relax our setting by insisting that the experts be calibrated (see Section 3.1). To our knowledge,
online prediction with expert advice has also not previously been studied under this condition.

3 Preliminaries

3.1 Calibration property

We define calibration as follows. Note that the definition is in the context of our setting, i.e. m experts
reporting probability distributions p1, . . . ,pm over n outcomes. We will use J to denote the random
variable corresponding to the outcome, i.e. J takes values in [n].
Definition 3.1. Consider a joint probability distribution P over experts’ reports and the outcome.3
We say that expert i is calibrated if for all p ∈ ∆n and j ∈ [n], we have that

P
[
J = j | pi = p

]
= pj .

That is, expert i is calibrated if the probability distribution of J conditional on their report pi is
precisely pi. We say that P satisfies the calibration property if every expert is calibrated.

The key intuition behind the usefulness of calibration is that if an expert claims that an outcome is
very unlikely, this is strong evidence that the outcome is in fact unlikely. In Section 4.4 we will use
the calibration property to show that the gradient of the loss with respect to the weight vector is likely
to be relatively small at each time step.

3.2 Our online learning setting

The setting for our online learning problem is as follows. For each time step t ∈ [T ]:

(1) Our algorithm reports a weight vector wt ∈ ∆m.
(2) An adversary (with knowledge of wt) constructs a probability distribution P, over reports

and the outcome, that satisfies the calibration property.
(3) Reports pt,1, . . . ,pt,m and an outcome j are sampled from P.
(4) The loss of a weight vector w is defined as Lt(w) := − ln(p∗j (w)), the log loss of the

logarithmic pool of pt,1, . . . ,pt,m with weights w. Our algorithm incurs loss Lt(wt).

We define the regret of our algorithm as

Regret =
T∑

t=1

Lt(wt)− min
w∈∆m

T∑
t=1

Lt(w).

That is, the benchmark for regret is the best weight vector in hindsight. Since our setting involves
randomness, our goal is to provide an algorithm with vanishing expected regret against any adversarial
strategy, where the expectation is taken over the sampling in Step (3).

3An equivalent, more mechanistic formulation views P instead as a joint probability distribution over signals
received by each expert (i.e. the expert’s private knowledge) and the outcome. Such a probability distribution is
known as an information structure, see e.g. (Bergemann and Morris, 2019). Each expert computes their belief
from their signal.
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Even subject to the calibration property, the adversary has a large amount of flexibility, because the
adversary retains control over the correlation between different experts’ forecasts. An unrestricted
adversary has exponentially many degrees of freedom (as a function of the number of experts),
whereas the calibration property imposes a mere linear number of constraints.4

3.3 Our algorithm

We use Algorithm 1 to accomplish this goal. The algorithm is online mirror descent (OMD) on the
weight vector. Fix any α ∈ (0, 1/2). We use the regularizer

R(w) :=
−1
α

(wα
1 + · · ·+ wα

m).

This is known as the Tsallis entropy regularizer; see e.g. (Zimmert and Seldin, 2021) for previous use
in the online learning literature. We obtain the same result (up to a multiplicative factor that depends
on α) regardless of the choice of α. Because no choice of α stands out, we prove our result for all
α ∈ (0, 1/2) simultaneously.

We will generally use a step size η = 1√
T lnT

· 1
12m(1+α)/2n

. However, in the (unlikely, as we show)
event that some expert’s weight becomes unusually small, we will reduce the step size.

ALGORITHM 1: OMD algorithm for learning weights for logarithmic pooling

R(w) := −1
α (wα

1 + · · ·+ wα
m) ; /* Any α ∈ (0, 1/2) will work */

η ← 1√
T lnT

· 1
12m(1+α)/2n

;
w1 ← (1/m, . . . , 1/m);
for t = 1 to T do

if η ≤ mini((w
t
i)

α) then
ηt ← min(ηt−1, η);

else
ηt ← min(ηt−1,mini w

t
i) ; /* Edge case; happens with low probability */

end
Observe loss function Lt ; /* Lt is chosen as described in Section 3.2 */

Define wt+1 such that∇R(wt+1) = ∇R(wt)− ηt∇Lt(wt);
end

In Appendix A, we prove that Algorithm 1 is efficient, taking O(mn) time per time step.

Theorem 3.2 formally states our no-regret guarantee.

Theorem 3.2. For any adversarial strategy, the expected regret5 of Algorithm 1 is at most

O
(
m(3−α)/2n

√
T log T

)
.

4 Proof of no-regret guarantee

In this section, we prove Theorem 3.2.

4.1 Outline of proof

We use the following fact, which follows from a more general statement about how losses relate to
their associated quasi-arithmetic pools.

4This follows from the perspective of the adversary choosing an information structure from which experts’
signals are drawn, as also alluded to in the previous footnote. The information structure specifies the probability
of every possible combination of signals received by the experts, and thus has dimension that is exponential in
the number of experts. The calibration property imposes linearly many constraints on this space.

5The given asymptotics assume that T ≫ m,n, i.e. ignore terms that are lower-order in T .
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Proposition 4.1 (Follows from (Neyman and Roughgarden, 2023, Theorem 5.1)). Let p1, . . . ,pm

be forecasts over n outcomes, j ∈ [n] be an outcome, and w ∈ ∆m be a weight vector. Let p∗(w)
be the logarithmic pool of the forecasts with weight vector w and let L(w) := − ln(p∗j (w)) be the
log loss of p∗(w) if Outcome j is realized. Then L is a convex function.

In particular, all of our loss functions Lt are convex, which means that standard regret bounds apply.
In particular, to bound the expected regret of Algorithm 1, we will use a well-known regret bound for
follow the regularized leader (FTRL) with linearized losses (Hazan, 2021, Lemma 5.3), which in our
case is equivalent to OMD.6

Lemma 4.2 (Follows from (Hazan, 2021, Lemma 5.3)). If ηt = η for all t, the regret of Algorithm 1
is at most

1

η

(
max
w∈∆m

R(w)− min
w∈∆m

R(w)

)
+

T∑
t=1

∇Lt(wt) · (wt −wt+1).

Informally, this bound means that if the vectors ∇Lt(wt) are small in magnitude, our regret is also
small. Conversely, if some ∇Lt(wt) is large, this may be bad for our regret bound. We expect the
gradient of the loss to be large if some expert is very wrong (assigns a very low probability to the
correct outcome), since the loss would then be steeply increasing as a function of that expert’s weight.
Fortunately, the calibration property guarantees this to be unlikely. Specifically, we define the small
gradient assumption as follows.

Definition 4.3. Define γ := 12n lnT . The small gradient assumption holds for a particular run of
Algorithm 1 if for every t ∈ [T ] and i ∈ [m], we have

− γ

wt
i

≤ ∂iL
t(wt) ≤ γ,

where ∂i denotes the partial derivative with respect to the i-th weight.7

In Section 4.4, we prove that the small gradient assumption is very likely to hold. This is a key
conceptual step in our proof, as it is where we leverage the calibration property to prove bounds that
ultimately let us bound our algorithm’s regret. We then use the low likelihood of the small gradient
assumption failing in order to bound the contribution to the expected regret from the case where the
assumption fails to hold.

In Sections 4.2 and 4.3, we bound regret under the condition that the small gradient assumption
holds. We show that under the assumption, for all i, t we have (wt

i)
α ≥ η. Consequently, η =

1√
T lnT

· 1
12m(1+α)/2n

at all time steps, so we can apply Lemma 4.2. The first term in the bound is

O(1/η) = O(
√
T log T ). As for the summation term, we upper bound it by keeping track of the

following quantity:

φ(t) :=

t∑
s=1

∇Ls(ws) · (ws −ws+1) + 19m2γ2η(T − t)− 4γ

m∑
i=1

lnwt+1
i .

The first term is exactly the summation in Lemma 4.2 up through step t. The 19m2γ2η is something
akin to an upper bound on the value of Lt(wt) · (wt − wt+1) at a given time step (times T − t
remaining time steps). This upper bound is not strict: in particular, large summands are possible when
some weights are small (because of the fact that the lower bound in the small gradient assumption
is inversely proportional to wt

i). However, attaining a large summand requires these small weights
to increase, thus “spending potential" for future large summands. The last term keeps track of this
potential.

We show that under the small gradient assumption, φ(t) necessarily decreases with t. This argument,
which we give in Section 4.3, is another key conceptual step, and is arguably the heart of the proof.
Since φ(T ) is equal to the summation term in Lemma 4.2 (plus a positive number), and φ(0) ≥ φ(T ),
the summation term is less than or equal to φ(0), which is at most O(m(3−α)/2

√
T log T ). This

completes the proof.

6This equivalence is due to our choice of regularizer, as we never need to project wt.
7See Equation 8 for an expression of this quantity in terms of the experts’ reports and weights.
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4.2 Bounds on wt under the small gradient assumption

In this section, we state bounds on expert weights and how quickly they change from one time step to
the next, conditional on the small gradient assumption. We use the following lemma, whose proof we
defer to Appendix A.

Lemma 4.4. Consider a particular run of Algorithm 1. Let ζ be a constant such that − ζ
wt

i
≤

∂iL
t(wt) ≤ ζ for all i, t. Then for every i, t, we have

(wt
i)

α−1 −
(

1

wt
i

+ 1

)
ηtζ ≤ (wt+1

i )α−1 ≤ (wt
i)

α−1 +

(
1

mink wk
+ 1

)
ηtζ.

Furthermore, if ηtζ ≤ (1− α)2(wt
i)

α for all i, then for every i we have

(wt+1
i )α−1 ≤ (wt

i)
α−1 + (m+ 1)ηtζ.

Intuitively, this result states that when the gradient update is small, wt+1
i is not too different from

wt
i . Note that the lower bound − ζ

wt
i

that we place on the gradient is not a simple Lipschitz bound
but instead depends on wt

i ; this makes the bounds in Lemma 4.4 less straightforward to prove. In
particular, we bound each component wt

i individually, using bounds on the gradient of the loss for all
other components and convexity arguments.

Lemma 4.4 can be translated into bounds on each wt
i and on the change between wt

i and wt+1
i :

Corollary 4.5. Under the small gradient assumption, for sufficiently large T we have for all
i ∈ [m], t ∈ [T ] that:

(#1) (wt
i)

α ≥ 4ηγ and wt
i ≥ 1

10
√
m
T 1/(2(α−1)).

(#2) −32(wt
i)

1−αηγ ≤ wt
i − wt+1

i ≤ 2(wt
i)

2−α(m+ 1)ηγ.

We defer the proof of Corollary 4.5 to Appendix A. The key idea for (#1) is to proceed by induction
on t on the two sub-statements in parallel: so long as (wt

i)
α ≥ 4ηγ, we may use the second part of

Lemma 4.4 with ζ = γ to bound (wt+1
i )α−1 in terms of (wt

i)
α−1, which we can leverage to prove

both sub-statements for t+ 1. (#2) then follows from (#1) by routine (though nontrivial) algebra.

Armed with the bounds of Corollary 4.5, we are now able to show that under the small gradient
assumption, Algorithm 1 attains vanishing regret.

4.3 Bounding regret under the small gradient assumption

Assume the small gradient assumption. Note that since 4γ ≥ 1, by Corollary 4.5 (#1) we have that
ηt = η for all t. This means that we may apply the bound in Lemma 4.2, and in particular we have

1

η

(
max
w∈∆m

R(w)− min
w∈∆m

R(w)

)
=

1

η
· m
α

(
1

m

)α

=
m1−α

αη
=

12

α
m(3−α)/2n

√
T lnT.

It remains to bound the summation component of the regret bound in Lemma 4.2. To do so, we prove
the following lemma, which we alluded to in Section 4.1 as the heart of the proof of Theorem 3.2.

Lemma 4.6. For t ∈ {0, 1, . . . , T}, let

φ(t) :=

t∑
s=1

∇Ls(ws) · (ws −ws+1) + 19m2γ2η(T − t)− 4γ

m∑
i=1

lnwt+1
i .

Under the small gradient assumption, for sufficiently large T , φ(t) is a decreasing function of t.

To prove this claim, consider a particular t ∈ [T ]. We may write

φ(t)− φ(t− 1) =

m∑
i=1

(
(wt

i − wt+1
i )∂iL

t(wt)− 19mγ2η + 4γ(lnwt
i − lnwt+1

i )
)

(1)
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and we wish to show that this quantity is negative. In fact, we show that the contribution from every
i ∈ [m] is negative. The key idea is to consider two cases: wt+1

i ≤ wt
i and wt+1

i ≥ wt
i . In each case,

Corollary 4.5 provides an upper bound on the magnitude of the difference between wt
i and wt+1

i . If
wt+1

i ≤ wt
i then the first and third terms in the summation are positive but small, and are dominated

by the middle term. If wt+1
i ≥ wt

i then the first term may be quite large, because of the asymmetric
bound in the small gradient assumption (and the consequently asymmetric bound in Corollary 4.5).
However, in this case the contribution of the third term is very negative, enough to make the overall
expression negative. In this sense, the third term keeps track of unspent potential for future regret,
which gets “spent down" whenever a large amount of regret is realized (as measured by the first term).

We now prove formally that each term of the summation in Equation 1 is negative.

Proof. First assume that wt
i − wt+1

i ≤ 0. Note that by combining (#1) and (#2) of Corollary 4.5, we
have

wt+1
i − wt

i ≤ 32(wt
i)

1−αηγ ≤ 8wt
i .

By the small gradient assumption we have that

(wt
i − wt+1

i )∂iL
t(wt) ≤ γ(wt+1

i − wt
i)

wt
i

.

On the other hand, we have

4γ(lnwt
i − lnwt+1

i ) = −4γ ln
(
1 +

wt+1
i − wt

i

wt
i

)
≤ −γ(w

t+1
i − wt

i)

wt
i

for T large enough. (Here we use that wt+1
i − wt

i ≤ 8wt
i and that ln(1 + x) ≥ x

4 for x ≤ 8.) Thus,
the first and third terms in Equation 1 are net negative; meanwhile, the second term is also negative,
so the expression is negative.

Now assume that wt
i − wt+1

i ≥ 0. Again by the small gradient assumption, we have that

(wt
i − wt+1

i )∂iL
t(wt) ≤ γ(wt

i − wt+1
i ) ≤ 2(m+ 1)ηγ2(wt

i)
2−α ≤ 3mηγ2

and

4γ(lnwt
i − lnwt+1

i ) = −4γ ln
(
1− wt

i − wt+1
i

wt
i

)
≤ −4γ ln(1− 2(m+ 1)ηγ(wt

i)
1−α)

≤ −4γ ln(1− 2(m+ 1)ηγ) ≤ −4γ ln(1− 3mηγ) ≤ 16mηγ2

for T sufficiently large, where in the last step we use that ln(1− x) ≥ − 4
3x for x > 0 sufficiently

small (and we have limT→∞ 3mηγ = 0). Since 16 + 3 ≤ 19, the right-hand side of Equation 1 is
negative. This concludes the proof.

Corollary 4.7. For sufficiently large T , under the small gradient assumption, the regret of Algorithm 1
is at most

(
240 + 12

α

)
m(3−α)/2n

√
T lnT .

Proof. We have already bounded the first term in the regret bound in Lemma 4.2. It remains only
to bound the second term. This term is exactly equal to φ(T ) + 4γ

∑m
i=1 lnw

T+1
i ≤ φ(T ), and

φ(T ) ≤ φ(0), by Lemma 4.6. We have

φ(0) = 19m2γ2ηT + 4mγ lnm ≤ 20m2γ2ηT

for sufficiently large T . Plugging in γ = 12n lnT and η = 1√
T lnT

· 1
12m(1+α)/2n

concludes the
proof.

4.4 The case where the small gradient assumption fails

It remains to consider the case in which the small gradient assumption does not hold. This part of the
proof consists primarily of technical lemmas, which we defer to Appendix A. The key lemma is a
bound on the probability that the small gradient assumption fails by a given margin:
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Lemma 4.8. For any weight vector w, i ∈ [m], and ζ ≥ 0, we have that

P [∂iL(w) ≥ ζ] ≤ ne−ζ (2)

and

P
[
∂iL(w) ≤ − ζ

wi

]
≤ mn2e−ζ/n. (3)

Note that plugging in ζ = γ yields a bound of mT (ne−γ +mn2e−γ/n) on the probability that the
small gradient assumption fails to hold. (Since γ = 12n lnT , this quantity is on the order of T−11.)

The proof of Lemma 4.8 is the only part of the proof of Theorem 3.2 that uses the calibration property.
While we defer the full proof to Appendix A, we highlight how the calibration property is used to
prove Equation 2. In brief, it is straightforward to show that ∂iL(w) ≤ − ln pij , where J is the
random variable corresponding to the realized outcome.8 Therefore, we have

P [∂iL(w) ≥ ζ] ≤ P
[
− ln piJ ≥ ζ

]
= P

[
piJ ≤ e−ζ

]
=

n∑
j=1

P
[
J = j & pij ≤ e−ζ

]
=

n∑
j=1

P
[
pij ≤ e−ζ

]
P
[
J = j | pij ≤ e−ζ

]
≤

n∑
j=1

P
[
J = j | pij ≤ e−ζ

]
≤ ne−ζ ,

where the last step follows by the calibration property, thus proving Equation 2.

Combining Lemma 4.8 with an analysis of our algorithm using the standard regret bound for online
mirror descent (Orabona, 2021, Theorem 6.8) gives us the following result as a corollary.
Corollary 4.9. The expected total regret of our algorithm conditional on the small gradient assump-
tion not holding, times the probability of this event, is at most Õ(T (5−α)/(1−α)−10).

It follows that the contribution to expected regret from the case that the small gradient assumption
does not hold is Õ(T−1), which is negligible. Together with Corollary 4.7 (which bounds regret
under the small gradient assumption), this proves Theorem 3.2. As a matter of fact, Theorem 3.2
holds even if experts are only approximately calibrated. As with other details of this section, we refer
the reader to Appendix A.

5 Conclusion

In this work we have considered the problem of learning optimal weights for the logarithmic pooling
of expert forecasts. It quickly became apparent that under the usual fully adversarial setup, attaining
vanishing regret is impossible (Example 1.1). We chose to relax the environment by imposing the
constraint on the adversary that experts must be calibrated. Put otherwise, the adversary is allowed to
choose a joint probability distribution over the experts’ reports and the outcome however it wants
to, so long as the experts’ reports are calibrated, after which the realized reports and outcome are
selected at random from this distribution. To our knowledge, this setting is a novel contribution to
the literature on prediction with expert advice. The setting may be of independent interest: we have
demonstrated that no-regret bounds are possible in this setting when they are otherwise impossible,
and it seems plausible that even in settings where no-regret bounds are attainable in a fully adversarial
setting, the calibration property allows for stronger results.

Another important direction for future work is learning weights for other pooling methods. In
particular, because of the close connection between a proper loss function and its associated quasi-
arithmetic pool, it is natural to ask for which proper loss functions it is possible to achieve vanishing
regret when learning weights for quasi-arithmetic pooling with respect to the loss function. (Neyman
and Roughgarden, 2023, §5) showed that the loss of a quasi-arithmetic pool is convex in the experts’
weights, and therefore the usual no-regret algorithms (e.g. online gradient descent) guarantee O(

√
T )

regret — so long as the loss function is bounded. In this work, we extended their result to the log loss
(with the associated QA pooling method, i.e. logarithmic pooling.) Extending our techniques to other
unbounded loss functions is a promising avenue for future exploration.

8Writing out the expression for L(w) and differentiating leaves us with − ln pij plus a negative term – see
Equation 8.
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A Omitted Proofs

Efficiency of Algorithm 1 The only nontrivial step of the algorithm is finding the weight vector
satisfying the equation on the last line of the algorithm. To do so, it is first necessary to compute
the gradient of the loss. This gradient, given by Equation 8 below, can clearly be computed in time
O(mn). After that, it is necessary to find the weight vector wt+1 that satisfies the equation on the last
line. This can be done efficiently through local search: the goal amounts to find weights (w1, . . . , wm)
such that the vector (wα−1

1 , . . . , wα−1
m ) is equal to a target vector (call it v) plus a constant c times

the all-ones vector. That is, we need to simultaneously solve the equation wα−1
i = vi + c for all i,

with weights that add to 1. (Here, the vi are knowns and the wi and c are unknowns.)

We start by finding c, by solving the equation
∑

i(vi + c)1/(α−1) = 1. Such a c exists because the
left-hand side of this equation is continuous and monotone decreasing, going from infinity to zero as
c ranges from −mini vi to infinity. We can solve for c very efficiently, e.g. with Newton’s method.
Once we know c, we know each wi: we have wi = (vi + c)1/(α−1). Thus, Algorithm 1 takes O(mn)
time.

Proof of Lemma 4.4. Fix any t. Note that since the space of possible weights is ∆m, it is most natural
to think of ∇R as a function from ∆m to Rm/T (1m), i.e. Rm modulo translation by the all-ones
vector (which is orthogonal to ∆m in Rm). That is, ∇R(w) = −((w1)

α−1, . . . , (wm)α−1), where
this vector may be thought of as modulo translation by the all-ones vector. Nevertheless, we find it
convenient to define ∂iR(w) := −(wi)

α−1. We define ∂iL
t(w) similarly (see Section 4.4).

Define h ∈ Rm to have coordinates hi := ∂iR(wt)− ηt∂iL
t(wt). Per the update rule, we have that

hi ≡ R(wt+1) mod T (1m). We have

−(wt
i)

α−1 − ηtζ = ∂iR(wt)− ηtζ ≤ hi ≤ ∂iR(wt) +
ηtζ

wt
i

= −(wt
i)

α−1 +
ηtζ

wt
i

(4)

Applying the first and last claims of Lemma A.1 (below) with a = α − 1, v = wt, κ = ηtζ, and
g = −h, we have that there exists a unique c ∈ R such that

m∑
i=1

(−hi + c)1/(α−1) = 1,

and in fact that −ηtζ ≤ c ≤ mηtζ. (Equation 4 is relevant here because it is equivalent to the
vai − κ

wt
i
≤ gi ≤ vai +κ conditions in Lemma A.1. This is also where we use that ηtζ ≤ (1−α)2(wt

i)
α,

which is equivalent to κ ≤ a2va+1
i .) The significance of this fact is that (−hi+ c)1/(α−1) is precisely

wt+1
i , since (in Rm) we have that

(
∂iR(wt+1), . . . , ∂iR(wt+1)

)
= h − c · 1 for some c, and in

particular this c must be such that
∑

i w
t+1
i = 1. In particular, this means that for all i, we have

(wt+1
i )α−1 = −hi + c ≤ (wt

i)
α−1 + ηtζ +

1

mink wk
ηtζ = (wt

i)
α−1 +

(
1

mink wk
+ 1

)
ηtζ.

Here, the inequality comes from the left inequality of Equation 4 and the fact that c ≤ 1
mink wk

ηtζ . If
we also have that ηtζ ≤ (1− α)2(wt

i)
α, then the last claim of Lemma A.1 gives us that

(wt+1
i )α−1 = −hi + c ≤ (wt

i)
α−1 + ηtζ +mηtζ = (wt

i)
α−1 + (m+ 1)ηtζ.

Similarly, we have

(wt+1
i )α−1 = −hi + c ≥ (wt

i)
α−1 − ηtζ

wt
i

− ηtζ = (wt
i)

α−1 −
(

1

wt
i

+ 1

)
ηtζ.

Lemma A.1. Let −1 < a < 0 and g ∈ Rm. There is a unique c ∈ R such that
∑

i(gi + c)1/a = 1.
Furthermore, let v ∈ ∆m and κ ≥ 0. Then:

• If gi ≤ vai + κ for all i, then c ≥ −κ.

• If gi ≥ vai − κ
vi

for all i, then c ≤ κ
mini vi

.
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– And if, furthermore, κ ≤ a2va+1
i for all i, then c ≤ mκ.

Proof. Observe that
∑

i(gi + c)1/a is a continuous, monotone decreasing function on c ∈
(−mini gi,∞); the range of the function on this interval is (0,∞). Therefore, there is a unique
c ∈ (−mini gi,∞) such that the sum equals 1.

We now prove the first bullet. Since x1/a decreases in x and gi ≤ vai + κ, we have that

1 =
∑
i

(gi + c)1/a ≥
∑
i

(vai + κ+ c)1/a.

Suppose for contradiction that c < −κ. Then vai + κ+ c < vai for all i, so∑
i

(vai + κ+ c)1/a >
∑
i

(vai )
1/a =

∑
i

vi = 1.

This is a contradiction, so in fact c ≥ −κ.

The first claim of the second bullet is analogous. Since x1/a decreases in x and gi ≥ vai − κvi, we
have that

1 =
∑
i

(gi + c)1/a ≤
∑
i

(
vai −

κ

vi
+ c

)1/a

. (5)

Suppose for contradiction that c > κ
vi

for every i. Then vai − κ
vi

+ c > vai for all i, so

∑
i

(
vai −

κ

vi
+ c

)1/a

<
∑
i

(vai )
1/a =

∑
i

vi = 1.

This is a contradiction, so in fact c ≤ κ
mini vi

.

We now prove the second claim of the second bullet. To do so, we note the following technical lemma
(proof below).

Lemma A.2. For −1 < a < 0 and κ, c ≥ 0, the function f(x) =
(
xa − κ

x + c
)1/a

is defined and
concave at any value of x > 0 such that a2xa+1 ≥ κ.

Since for a general concave function f it holds that 1
m

∑m
i=1 f(xi) ≤ f

(
1
m

∑m
i=1 xi

)
, the following

inequality follows from Lemma A.2:∑
i

(
vai −

κ

vi
+ c

)1/a

≤ m

((
1

m

)a

− κm+ c

)1/a

.

(Here we are using the fact that
∑

i vi = 1.) Now, combining this fact with Equation 5, we have that

m

((
1

m

)a

− κm+ c

)1/a

≥ 1(
1

m

)a

− κm+ c ≤
(

1

m

)a

so c ≤ mκ, as desired.

Proof of Lemma A.2. To show that f is defined for any x such that a2xa+1 ≥ κ, we need to show
that xa − κ

x + c > 0 for such values of x. This is indeed the case:

xa − κ

x
+ c ≥ xa − a2xa + c = (1− a2)xa + c > c ≥ 0.

Now we show concavity. We have

f ′′(x) =
1

−a

((
1 +

1

−a

)(
xa − κ

x
+ c

)1/a−2 (
axa−1 +

κ

x2

)2

−
(
xa − κ

x
+ c

)1/a−1
(
a(a− 1)xa−2 − 2κ

x3

))
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so we wish to show that(
1 +

1

−a

)(
xa − κ

x
+ c
)1/a−2 (

axa−1 +
κ

x2

)2
≤
(
xa − κ

x
+ c
)1/a−1

(
a(a− 1)xa−2 − 2κ

x3

)
for every x such that a2xa+1 ≥ κ. Fix any such x, and let d = κ

xa+1 (so 0 ≤ d ≤ a2). We have

d ≤ a2

(1 + a)(a2 − d)d ≥ 0

(1− a)(a+ d)2 ≤ −a(1− d)(a(a− 1)− 2d) (rearrange terms)(
1− 1

a

)
(a+ d)2xa ≤ ((1− d)xa)(a(a− 1)− 2d) (multiply by

xa

−a
)(

1− 1

a

)
(a+ d)2xa ≤ ((1− d)xa + c)(a(a− 1)− 2d) (c(a(a− 1)− 2d) ≥ 0)(

1− 1

a

)
((a+ d)xa−1)2 ≤ ((1− d)xa + c)(a(a− 1)− 2d)xa−2 (multiply by xa−2)(

1− 1

a

)(
axa−1 +

κ

x2

)2
≤
(
xa − κ

x
+ c
)(

a(a− 1)xa−2 − 2κ

x3

)
(substitute d = κx−a−1).

Note that the fifth line is justified by the fact that c ≥ 0 and a(a − 1) ≥ 2d (because a2 ≥ d and
−a > a2 ≥ d). Now, multiplying both sides by

(
xa − κ

x + c
)1/a−2

completes the proof.

Proof of Corollary 4.5. Note that ηγ = 1√
Tm(1+α)/2

and also that ηt ≤ η for all t; we will be using
these facts.

To prove (#1), we proceed by induction on t. In the case of t = 1, all weights are 1/m, so the claim
holds for sufficiently large T . Now assume that the claim holds for a generic t < T ; we show it for
t+ 1.

By the small gradient assumption, we may use Lemma 4.4 with ζ = γ. By the inductive hypothesis
(and the fact that ηt ≤ η), we may apply the second part of Lemma 4.4:

(wt+1
i )α−1 ≤ (wt

i)
α−1 + (m+ 1)ηγ ≤ · · · ≤ (1/m)α−1 + t(m+ 1)ηγ.

≤ (1/m)α−1 +
(T − 1)(m+ 1)

m(1+α)/2
√
T
≤ 3m(1−α)/2

√
T .

Since −1
2 < α− 1 < 0, this means that wt

i ≥ 1
10

√
m
T 1/(2(α−1)).

We also have that

(wt+1
i )α ≥ 1

(10
√
m)α

Tα/(2(α−1)) ≥ 4

m(1+α)/2
T−1/2 = 4ηγ

for T sufficiently large, since α
2(α−1) >

−1
2 . This completes the inductive step, and thus the proof of

(#1).

To prove (#2), we use the following technical lemma (see below for the proof).

Lemma A.3. Fix x > 0 and −1 < a < 0. Let f(y) = (xa + y)1/a. Then for all y > −xa, we have

x− f(y) ≤ −1
a

x1−ay (6)

and for all −1 < c ≤ 0, for all cxa ≤ y ≤ 0, we have

f(y)− x ≤ 1

a
(1 + c)1/a−1x1−ay. (7)

We apply Equation 6 to x = wt
i , y = (m+ 1)ηγ, and a = α− 1. This tells us that

wt
i − wt+1

i ≤ wt
i − ((wt

i)
α−1 + (m+ 1)ηγ)1/(α−1) ≤ 2(wt

i)
2−α(m+ 1)ηγ.
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The first step follows by the second part of Lemma 4.4 and the fact that ηt ≤ η. The second step
follows from Equation 6 and uses the fact that 1

1−α > 2.

For the other side of (#2), we observe that since by (#1) we have (wt
i)

α ≥ 4ηγ, it follows that
1
2 (w

t
i)

α ≥ (wt
i + 1)ηγ, and so

(
1
wt

i
+ 1
)
ηγ ≤ 1

2 (w
t
i)

α−1. Therefore, we can apply Equation 7 to

x = wt
i , y = −

(
1
wt

i
+ 1
)
ηγ, a = α− 1, and c = − 1

2 . This tells us that

wt+1
i − wt

i ≤
(
(wt

i)
α−1 −

(
1

wt
i

+ 1

)
ηγ

)1/(α−1)

− wt
i ≤ 16(wt

i)
2−α

(
1

wt
i

+ 1

)
ηγ

≤ 32(wt
i)

1−αηγ.

This completes the proof.

Proof of Lemma A.3. For all y > −xa, we have

f ′(y) =
1

a
(xa + y)1/a−1

and

f ′′(y) =
1

a

(
1

a
− 1

)
(xa + y)1/a−2 > 0,

so f ′ is increasing. Thus, for positive values of y we have

f ′(0) ≤ f(y)− f(0)

y
=

f(y)− x

y
≤ f ′(y)

and for negative values of y we have

f ′(y) ≤ f(y)− f(0)

y
=

f(y)− x

y
≤ f ′(0).

Regardless of whether y is positive or negative, this means that x− f(y) ≤ −yf ′(0) = −1
a x1−ay.

Now, let −1 < c ≤ 0 and suppose that cxa ≤ y ≤ 0. Since f ′ is increasing, we have that

f ′(y) ≥ f ′(cxa) =
1

a
((1 + c)xa)1/a−1 =

1

a
(1 + c)1/a−1x1−a,

so

f(y)− x ≤ yf ′(y) ≤ 1

a
(1 + c)1/a−1x1−ay.

Proof of Lemma 4.8. We first derive an expression for ∂iL(w) given expert reports p1, . . . ,pm,
where L(w) is the log loss of the logarithmic pool p∗(w) of p1, . . . ,pm with weights w, and j is
the realized outcome. We have9

∂iL(w) = −∂i ln
∏m

k=1(p
k
j )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
= ∂i ln

(
n∑

ℓ=1

m∏
k=1

(pkℓ )
wk

)
− ∂i ln

(
m∏

k=1

(pkj )
wk

)

=

∑n
ℓ=1 ln p

i
ℓ ·
∏m

k=1(p
k
ℓ )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
− ln pij =

n∑
ℓ=1

p∗ℓ (w) ln piℓ − ln pij . (8)

9It should be noted that ∇L(w) is most naturally thought of as living in Rm/T (1m), i.e. m-dimensional
space modulo translation by the all-ones vector, since w lives in a place that is orthogonal to the all-ones vector.
As an arbitrary but convenient convention, we define ∂iL(w) to be the specific value derived below, and define
the small gradient assumption accordingly.
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Equation (2) now follows fairly straightforwardly. Equation 8 tells us that ∂iL(w) ≤ − ln piJ , where
J is the random variable corresponding to the realized outcome. Therefore, we have

P [∂iL(w) ≥ ζ] ≤ P
[
− ln piJ ≥ ζ

]
= P

[
piJ ≤ e−ζ

]
=

n∑
j=1

P
[
J = j & pij ≤ e−ζ

]
=

n∑
j=1

P
[
pij ≤ e−ζ

]
P
[
J = j | pij ≤ e−ζ

]
≤

n∑
j=1

P
[
J = j | pij ≤ e−ζ

]
≤ ne−ζ ,

where the last step follows by the calibration property. This proves Equation (2).

We now prove Equation (3). The proof has a similar idea, but is somewhat more technical. We begin
by proving the following lemma; we again use the calibration property in the proof.

Lemma A.4. For all q, we have

P
[
∀j∃i : pij ≤ q

]
≤ mnq.

Proof. Let J be the random variable corresponding to the index of the outcome that ends up happening.
We have

P
[
∀j∃i : pij ≤ q

]
≤ P

[
∃i : piJ ≤ q

]
=
∑
j∈[n]

P
[
J = j & ∃i : pij ≤ q

]
≤
∑
j∈[n]

∑
i∈[m]

P
[
J = j & pij ≤ q

]
=
∑
j∈[n]

∑
i∈[m]

P
[
pij ≤ q

]
P
[
J = j | pij ≤ q

]
≤
∑
j∈[n]

∑
i∈[m]

1 · q = mnq,

where the fact that P
[
J = j | pij ≤ q

]
≤ q follows by the calibration property.

Corollary A.5. For any reports p1, . . . ,pm, weight vector w, i ∈ [m], and j ∈ [n], we have

P

[
p∗j (w) ≥

(pij)
wi

q

]
≤ mnq.

Proof. We have

p∗j (w) =

∏m
k=1(p

k
j )

wk∑n
ℓ=1

∏m
k=1(p

k
ℓ )

wk
≤

(pij)
wi∑n

ℓ=1

∏m
k=1(p

k
ℓ )

wk
.

Now, assuming that there is an ℓ such that for every k we have pkℓ > q, the denominator is greater

than q, in which case we have p∗j (w) <
(pi

j)
wi

q . Therefore, if p∗j (w) ≥ (pi
j)

wi

q , it follows that for
every ℓ there is a k such that pkℓ ≤ q. By Lemma A.4, this happens with probability at most mnq.

We now use Corollary A.5 to prove Equation (3). Note that the equation is trivial for ζ < n, so we
assume that ζ ≥ n. By setting q := e

−ζ
n , we may restate Equation (3) as follows: for any q ≤ 1

e , any
i ∈ [m], and any weight vector w,

P
[
∂iL(w) ≤ −n ln 1/q

wi

]
≤ mn2q.

(Note that the condition q ≤ 1
e is equivalent to ζ ≥ n.) We prove this result.

From Equation 8, we have

∂iL(w) =

n∑
j=1

p∗j (w) ln pij − ln pij ≥
n∑

j=1

pj(w) ln pij .
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Now, it suffices to show that for each j ∈ [n], the probability that pj(w) ln pij ≤ −
ln 1/q
wi

= ln q
wi

is at
most mnq; the desired result will then follow by the union bound. By Corollary A.5, for each j we
have that

P

[
pj(w) ln pij ≤

(pij)
wi

q
ln pij

]
≤ mnq.

Additionally, we know for a fact that pj(w) ln pij ≥ ln pij (since pj(w) ≤ 1), so in fact

P

[
pj(w) ln pij ≤ max

(
(pij)

wi

q
ln pij , ln p

i
j

)]
≤ mnq.

It remains only to show that max
(

(pi
j)

wi

q ln pij , ln p
i
j

)
≥ ln q

wi
. If pij ≥ q1/wi then this is clearly true,

since in that case ln pij ≥
ln q
wi

. Now suppose that pij < q1/wi . Observe that xwi

q lnx decreases on
(0, e−1/wi), and that (since q ≤ 1

e ) we have q1/wi ≤ e−1/wi . Therefore,

(pij)
wi

q
ln pij ≤

(q1/wi)wi

q
ln q1/wi =

ln q

wi
.

This completes the proof of Equation (3), and thus of Lemma 4.8.

The following lemma lower bounds the regret of Algorithm 1 as a function of ζ.

Lemma A.6. Consider a run of Algorithm 1. Let ζ be such that − ζ
wt

i
≤ ∂iL

t(wt) ≤ ζ for all i, t.
The total regret is at most

O
(
ζ2(2−α)/(1−α)T (5−α)/(1−α)

)
.

Proof of Lemma A.6. We first bound wt
i for all i, t. From Lemma 4.4, we have that

(wt+1
i )α−1 ≤ (wt

i)
α−1 +

(
1

mini wt
i

+ 1

)
ηtζ ≤ (wt

i)
α−1 + 2ζ.

Here we use that 1
mini wi

+ 1 ≤ 2
mini wi

and that ηt ≤ mini wi. Therefore, we have that

(wt
i)

α−1 ≤ (wt−1
i )α−1 + 2ζ ≤ · · · ≤ m1−α + 2ζ(t− 1) ≤ m1−α + 2ζT.

Thus, wt
i ≥ (m1−α + 2ζT )1/(α−1) ≥ Ω((ζT )1/(α−1)) for all i, t.

We now use the standard regret bound for online mirror descent, see e.g. (Orabona, 2021, Theorem
6.8):

Regret ≤ max
t

BR(u;w
t)

ηT
+

1

2λ

T∑
t=1

ηt
∥∥∇Lt(wt)

∥∥2
∗ (9)

where BR(·; ·) is the Bregman divergence of with respect to R, u is the optimal (overall loss-
minimizing) point, λ is a constant such that R is λ-strongly convex with respect to a norm of our
choice over ∆m, and ∥·∥∗ is the dual norm of the aforementioned norm.

Note that for any x ∈ ∆m, we have

max
v∈∆m

BR(v;x) = max
v∈∆m

R(v)−R(x)−∇R(x) · (v − x) ≤ m1−α

α
+ (min

i
xi)

α−1.

In the last step, we use the fact that −∇R(x) = (xα−1
1 , . . . , xα−1

m ) (all of these coordinates are
positive), so−∇R(x)·(v−x) ≤ (xα−1

1 , . . . , xα−1
m )·v, and that all coordinates of v are non-negative

and add to 1.

Therefore, given our bound on wt
i , we have that this first component of our regret bound (9) is at most

1

ηT

(
m1−α

α
+m1−α + 2ζT

)
≤ O

(
ζT

ηT

)
≤ O

(
ζT

(ζT )1/(α−1)

)
= O

(
(ζT )(2−α)/(1−α)

)
.
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To bound the second term, we choose to work with the ℓ1 norm. To show that R is λ-convex it suffices
to show that for all x,y ∈ ∆m we have (∇2R(x)y) · y ≥ λ ∥y∥2, where∇2R is the Hessian of R
(Shalev-Shwartz, 2007, Lemma 14) (see also (Orabona, 2021, Theorem 4.3)). Equivalently, we wish
to find a λ such that

(1− α)
∑
i

xα−2
i y2i ≥ λ.

Since xα−2
i ≥ 1 for all i, the left-hand side is at least (1− α)

∑
i y

2
i ≥ 1−α

m , so λ = 1−α
m suffices.

Now, given θ ∈ Rm, we have ∥θ∥∗ = maxx:∥x∥≤1 θ · x. In the case of the ℓ1 primal norm, the dual
norm is the largest absolute component of θ. Thus, we have∥∥∇Lt(xt)

∥∥
∗ ≤

ζ

wt
i

≤ O
(
ζ(ζT )1/(1−α)

)
= O

(
ζ(2−α)/(1−α)T 1/(1−α)

)
.

Since ηt ≤ O(T−1/2), we have that the second component of our regret bound (9) is at most

O
(
T · T−1/2 · ζ2(2−α)/(1−α)T 2/(1−α)

)
≤ O

(
ζ2(2−α)/(1−α)T (5−α)/(1−α)

)
.

This component dominates our bound on the regret of the first component, in both ζ and T . This
concludes the proof.

Proof of Corollary 4.9. Let Z be the minimum value of ζ such that − ζ
wt

i
≤ ∂iL

t(wt) ≤ ζ for all i, t.
Note that by Lemma 4.8, we have that

P [Z ≥ x] ≤
m∑
i=1

T∑
t=1

(mn2e−
x
n + ne−x) ≤ 2m2n2Te−

x
n .

Let µ be the constant hidden in the big-O of Lemma A.6, i.e. a constant (dependent on m, n, and α)
such that

Regret ≤ µZ2(2−α)/(1−α)T (5−α)/(1−α).

Let r(Z, T ) be the expression on the right-hand side. The small gradient assumption not holding
is equivalent to Z > 12n lnT , or equivalently, r(Z, T ) > r(12n lnT, T ). The expected regret of
our algorithm conditional on the small gradient assumption not holding, times the probability of this
event, is therefore at most the expected value of r(Z, T ) conditional on the value being greater than
r(12n lnT, T ), times this probability. This is equal to

r(12n lnT, T ) · P [Z > 12n lnT ] +

∫ ∞

x=r(12n lnT,T )

P [r(Z, T ) ≥ x] dx

≤
∞∑

k=11

r((k + 1)n lnT, T ) · P [Z ≥ kn lnT ]

≤
∞∑

k=11

µ · ((k + 1)n lnT )2(2−α)/(1−α)T (5−α)/(1−α) · 2m2n2T · T−k

≤
∞∑

k=11

Õ(T 1+(5−α)/(1−α)−k) = Õ(T (5−α)/(1−α)−10),

as desired. (The first inequality follows by matching the first term with the k = 11 summand and
upper-bounding the integral with subsequent summands, noting that r((k + 1)n lnT, T ) ≥ 1.)

Note that 5−α
1−α − 10 ≤ 5−1/2

1−1/2 − 10 = −1. Therefore, the contribution to expected regret from the

case that the small gradient assumption does not hold is Õ(T−1), which is negligible. Together with
Corollary 4.7 (which bounds regret under the small gradient assumption), this proves Theorem 3.2.

We now extend Theorem 3.2 by showing that the theorem holds even if experts are only approximately
calibrated.
Definition A.7. For τ ≥ 1, we say that expert i is τ -calibrated if for all p ∈ ∆n and j ∈ [n], we
have that P

[
J = j | pj = p

]
≤ τpj . We say that P satisfies the τ -approximate calibration property

if every expert is τ -calibrated.
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Corollary A.8. For any τ , Theorem 3.2 holds even if the calibration property is replaced with the
τ -approximate calibration property.

(Note that the τ is subsumed by the big-O notation in Theorem 3.2; Corollary A.8 does not allow
experts to be arbitrarily miscalibrated.)

Technically, Corollary A.8 is a corollary of the proof of Theorem 3.2, rather than a corollary of the
theorem itself.10

Proof. We only used the calibration property in the proofs of Equations (2) and (3). In the proof of
Equation (2), we used the fact that P

[
J = j | pij ≤ e−ζ

]
≤ e−ζ ; the right-hand side now becomes

τe−ζ , and so the right-hand side of Equation (2) changes to τne−ζ . Similarly, in the proof of
Equation (3), we use the calibration property in the proof of Lemma A.4; the right-hand side of the
lemma changes to τmnq, and correspondingly Equation (3) changes to τmn2e−ζ/n.

Lemma 4.8 is only used in the proof of Corollary 4.9, where 2m2n2T is replaced by 2τm2n2T .
Since τ is a constant, Corollary 4.9 holds verbatim.

B Ω(
√
T ) Lower bound

We show that no OMD algorithm with a constant step size11 substantially outperforms Algorithm 1.
Theorem B.1. For every strictly convex function R : ∆m → R that is continuously twice differen-
tiable at its minimum, and η ≥ 0, online mirror descent with regularizer R and constant step size η
incurs Ω(

√
T ) expected regret.

Proof. Our examples will have m = n = 2. The space of weights is one-dimensional; let us call w
the weight of the first expert. We may treat R as a (convex) function of w, and similarly for the losses
at each time step. We assume that R′(0.5) = 0; this allows us to assume that w1 = 0.5 and does not
affect the proof idea.

It is straightforward to check that if Experts 1 and 2 assign probabilities p and 1
2 , respectively, to the

correct outcome, then

L′(w) =
(1− p)w

pw + (1− p)w
ln

1− p

p
.

If roles are reversed (they say 1
2 and p respectively) then

L′(w) = − (1− p)1−w

p1−w + (1− p)1−w
ln

1− p

p
.

We first prove the regret bound if η is small (η ≤ T−1/2). Consider the following setting: Expert
1 always reports (50%, 50%); Expert 2 always reports (90%, 10%); and Outcome 1 happens with
probability 90% at each time step. It is a matter of simple computation that:

• L′(w) ≤ 2 no matter the outcome or the value of w.

• If w ≥ 0.4, then p∗1(w) ≤ 0.8.

The first point implies that R′(wt) ≥ −2ηt for all t. It follows from the second point that the
algorithm will output weights that will result in an aggregate probability of less than 80% for values
of t such that −2ηt ≥ R′(0.4), i.e. for t ≤ −R′(0.4)

2η . Each of these time steps accumulates constant
regret compared to the optimal weight vector in hindsight (which with high probability will be
near 1). Therefore, the expected total regret accumulated during these time steps is Ω(1/η) = Ω(

√
T ).

10Fun fact: the technical term for a corollary to a proof is a porism.
11While Algorithm 1 does not always have a constant step size, it does so with high probability. The examples

that prove Theorem B.1 cause Ω(
√
T ) regret in the typical case, rather than causing unusually large regret in an

atypical case. This makes our comparison of Algorithm 1 to this class fair.
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Now we consider the case in which η is large (η ≥
√
T ). In this case our example is the same as

before, except we change which expert is “ignorant" (reports (50%, 50%) and which is “informed"
(reports (90%, 10%)). Specifically the informed expert will be the one with a lower weight (breaking
ties arbitrarily).

We will show that our algorithm incurs Ω(η) regret compared to always choosing weight 0.5. Suppose
without loss of generality that at a given time step t, Expert 1 is informed (so wt ≤ 0.5). Observe that

L(wt)− L(0.5) = −(0.5− wt)L′(0.5) +O((0.5− w)2)

= −(0.5− wt)

√
1− p

√
p+
√
1− p

ln
1− p

p
+O((0.5− w)2),

where p is the probability that Expert 1 assigns to the event that happens (so p = 0.9 with probability
0.9 and p = 0.1 with probability 0.1). This expression is (up to lower order terms) equal to c(0.5−wt)
if p = 0.9 and −3c(0.5 − wt) if p = 0.1, where c ≈ 0.55. This means that an expected regret
(relative to w = 0.5) of 0.6c(0.5− wt) (up to lower order terms) is incurred.

Let D be such that R′′(w) ≤ D for all w such that |w − 0.5| ≤
√
T

4D . (Such a D exists because R is
continuously twice differentiable at 0.5.) If |wt − 0.5| ≥

√
T

4D , we just showed that an expected regret

(relative to w = 0.5) of Ω
(√

T
4D

)
is incurred. On the other hand, suppose that |wt − 0.5| ≤

√
T

4D . We

show that
∣∣wt+1 − 0.5

∣∣ ≥ √
T

4D .

To see this, note that |L′(wt)| ≥ 0.5, we have that
∣∣R′(wt+1)−R′(wt)

∣∣ ≥ 0.5η. We also have
that D

∣∣wt+1 − wt
∣∣ ≥ ∣∣R′(wt+1)−R′(wt)

∣∣, so D
∣∣wt+1 − wt

∣∣ ≥ 0.5η. Therefore,
∣∣wt+1 − wt

∣∣ ≥
η
2D ≥

√
T

2D , which means that
∣∣wt+1 − 0.5

∣∣ ≥ √
T

4D .

This means that an expected regret (relative to w = 0.5) of Ω
(√

T
4D

)
is incurred on at least half of

time steps. Since D is a constant, it follows that a total regret of at least Ω(
√
T ) is incurred, as

desired.

21


	Introduction
	Logarithmic pooling
	Logarithmic pooling with weighted experts
	Choosing the right benchmark
	Our main result

	Related work
	Probabilistic opinion pooling
	Online prediction with expert advice

	Preliminaries
	Calibration property
	Our online learning setting
	Our algorithm

	Proof of no-regret guarantee
	Outline of proof
	Bounds on wt under the small gradient assumption
	Bounding regret under the small gradient assumption
	The case where the small gradient assumption fails

	Conclusion
	Omitted Proofs
	(T) Lower bound

