
Different Target Models

Table 4: ViT-b16, 50 runs
EAC DeepLIFT GradSHAP IntGrad KernelSHAP FeatAbl LIME

ImageNet/Insertion " 89.594 54.455 68.125 69.480 75.152 65.656 76.161

CoCo/Insertion " 76.759 37.659 48.888 50.323 63.503 59.072 64.244

ImageNet/Deletion # 17.298 40.784 30.948 29.903 21.825 34.191 19.254

CoCo/Deletion # 8.318 28.762 18.422 17.440 9.950 15.946 8.426

Table 5: MobileNet-v2, 50 runs
EAC DeepLIFT GradSHAP IntGrad KernelSHAP FeatAbl LIME

ImageNet/Insertion " 74.651 34.197 47.848 48.662 60.837 59.197 61.282

CoCo/Insertion " 68.556 28.951 37.393 37.719 48.658 44.420 50.387

ImageNet/Deletion # 6.002 26.381 14.679 13.382 7.766 8.866 7.344

CoCo/Deletion # 6.684 21.467 14.237 14.936 9.308 11.706 7.106

Table 6: ResNet-18, 50 runs
EAC DeepLIFT GradSHAP IntGrad KernelSHAP FeatAbl LIME

ImageNet/Insertion " 73.558 47.799 38.877 36.806 50.547 43.448 50.592

CoCo/Insertion " 65.669 50.689 42.937 45.252 54.046 53.835 53.837

ImageNet/Deletion # 6.596 8.588 11.273 11.555 6.638 8.352 6.776

CoCo/Deletion # 5.015 9.097 11.758 11.483 7.007 9.325 6.495

We explore the performance of EAC on different target models. We choose three representative visual
models, including ViT [48], MobileNet [49], and ResNet-18 [1], and use the same experimental setup
as in the main text. We run each method for 50 times to report the average performance of each
method. Overall, we observe a similar performance as shown in the main text. In particular, EAC
consistently outperforms other methods on all target models.

Backdoor Defense

Table 7: Backdoor-Defense on CIFAR-10
ASR Victim Model EAC DeepLIFT GradSHAP IntGrad KernelSHAP FeatAbl LIME

BadNet [50] # 0.99 0.042 0.542 0.622 0.618 0.91 0.47 0.574

TrojanNN [51]# 0.99 0.038 0.094 0.122 0.122 0.65 0.098 0.11

To evaluate the security impact of EAC, this section conducts backdoor removal experiments on
CIFAR-10 [52]. We compare EAC and other XAI methods. Specifically, we perform two representa-
tive backdoor attacks, BadNet [50] and TrojanNN [51], on ResNet-18 as the target model. During the
evaluation process, aligned with relevant works in this field [53], we remove the top three patches
among every poisoned image for each XAI tool, and record the corresponding Attack Success Rate
(ASR) after the removal. Overall, we randomly generate 250 poisoned images, and report their
average ASR in Table 7. The evaluation results are highly encouraging; EAC has the lowest ASR
under both attack settings. We interpret that this evaluation shows the high generalizability of EAC
over different target models.

14



(a) COCO, 100 runs (b) ImageNet, 100 runs

Figure 3: The effect of the superpixel size on AUC. A trade-off can be observed.

Analysis of the Trade-off between SuperPixel Size and AUC

Overall, superpixel-based XAI tools are sensitive to the size of the superpixel. To obtain a fair
comparison between EAC and de facto superpixel-based XAI tools, we carefully studied how the size
of superpixel influence the performance of LIME, KernelShap, and FeatureAblation. The evaluation
results using both ImageNet and COCO are shown in Fig. 3. We observed that there exists a trade-off
between AUC and the superpixel size for both datasets. Empirical observation shows that a proper
range of the superpixel size ranges from 40 to 80.

To unleash the full capability of superpixel-based methods, we set the superpixel size as 75 for
ImageNet evaluations, and 58 for COCO evaluations, respectively, when conducting the experiments
in the main paper. In contrast, EAC does not require such a hyperparameter tuning step, and is able
to achieve superior performance over those superpixel-based methods.
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