Different Target Models

	EAC	DeepLIFT	GradSHAP	IntGrad	KernelSHAP	FeatAbl LIME				
ImageNet/Insertion ↑	89.594	54.455	68.125	69.480	75.152	65.656 76.161				
CoCo/Insertion ↑	76.759	37.659	48.888	50.323	63.503	59.072 64.244				
ImageNet/Deletion \downarrow	17.298	40.784	30.948	29.903	21.825	34.191 19.254				
CoCo/Deletion ↓	8.318	28.762	18.422	17.440	9.950	15.946 8.426				

Table 4: ViT-b16, 50 runs

Table 5: MobileNet-v2, 50 runs

EAC	DeepLIFT	(GradSHAP	IntGrad	KernelSHAP	FeatAbl LIME
ImageNet/Insertion ↑ 74.651	34.197		47.848	48.662	60.837	59.197 61.282
CoCo/Insertion ↑ 68.556	28.951		37.393	37.719	48.658	44.420 50.387
ImageNet/Deletion ↓ 6.002	26.381		14.679	13.382	7.766	8.866 7.344
CoCo/Deletion ↓ 6.684	21.467		14.237	14.936	9.308	11.706 7.106

Table 6: ResNet-18, 50 runs

1	EAC	DeepLIFT	G	GradSHAP	IntGrad	KernelSHAP	FeatAbl LIME
ImageNet/Insertion † 7	3.558	47.799		38.877	36.806	50.547	43.448 50.592
CoCo/Insertion \uparrow 6	5.669	50.689		42.937	45.252	54.046	53.835 53.837
ImageNet/Deletion $\downarrow \parallel 0$	6.596	8.588		11.273	11.555	6.638	8.352 6.776
CoCo/Deletion↓	5.015	9.097		11.758	11.483	7.007	9.325 6.495

We explore the performance of EAC on different target models. We choose three representative visual models, including ViT [48], MobileNet [49], and ResNet-18 [1], and use the same experimental setup as in the main text. We run each method for 50 times to report the average performance of each method. Overall, we observe a similar performance as shown in the main text. In particular, EAC consistently outperforms other methods on all target models.

Backdoor Defense

 Table 7: Backdoor-Defense on CIFAR-10

ASR	Victim Mode	el EAC	DeepLIFT	GradSHAP	IntGrad	KernelSHAP	FeatAbl	LIME
BadNet 50 ↓	0.99	∥ 0.042 ∥	0.542	0.622	0.618	0.91	0.47	0.574
TrojanNN <mark>[51</mark> ↓	0.99	0.038	0.094	0.122	0.122	0.65	0.098	0.11

To evaluate the security impact of EAC, this section conducts backdoor removal experiments on CIFAR-10 [52]. We compare EAC and other XAI methods. Specifically, we perform two representative backdoor attacks, BadNet [50] and TrojanNN [51], on ResNet-18 as the target model. During the evaluation process, aligned with relevant works in this field [53], we remove the top three patches among every poisoned image for each XAI tool, and record the corresponding Attack Success Rate (ASR) after the removal. Overall, we randomly generate 250 poisoned images, and report their average ASR in Table [7]. The evaluation results are highly encouraging; EAC has the lowest ASR under both attack settings. We interpret that this evaluation shows the high generalizability of EAC over different target models.

Figure 3: The effect of the superpixel size on AUC. A trade-off can be observed.

Analysis of the Trade-off between SuperPixel Size and AUC

Overall, superpixel-based XAI tools are sensitive to the size of the superpixel. To obtain a fair comparison between EAC and de facto superpixel-based XAI tools, we carefully studied how the size of superpixel influence the performance of LIME, KernelShap, and FeatureAblation. The evaluation results using both ImageNet and COCO are shown in Fig. 3. We observed that there exists a trade-off between AUC and the superpixel size for both datasets. Empirical observation shows that a proper range of the superpixel size ranges from 40 to 80.

To unleash the full capability of superpixel-based methods, we set the superpixel size as 75 for ImageNet evaluations, and 58 for COCO evaluations, respectively, when conducting the experiments in the main paper. In contrast, EAC does *not* require such a hyperparameter tuning step, and is able to achieve superior performance over those superpixel-based methods.