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Abstract

We study the problem of learning general (i.e., not necessarily homogeneous)
halfspaces with Random Classification Noise under the Gaussian distribution. We
establish nearly-matching algorithmic and Statistical Query (SQ) lower bound
results revealing a surprising information-computation gap for this basic problem.
Specifically, the sample complexity of this learning problem is Θ̃(d/ϵ), where d is
the dimension and ϵ is the excess error. Our positive result is a computationally
efficient learning algorithm with sample complexity Õ(d/ϵ + d/(max{p, ϵ})2),
where p quantifies the bias of the target halfspace. On the lower bound side, we
show that any efficient SQ algorithm (or low-degree test) for the problem requires
sample complexity at least Ω(d1/2/(max{p, ϵ})2). Our lower bound suggests that
this quadratic dependence on 1/ϵ is inherent for efficient algorithms.

1 Introduction

A halfspace or Linear Threshold Function (LTF) is any Boolean function h : Rd → {±1} of the
form h(x) = sign (w · x+ t), where w ∈ Rd is the weight vector and t ∈ R is the threshold.
The function sign : R → {±1} is defined as sign(u) = 1 if u ≥ 0 and sign(u) = −1 otherwise.
The problem of learning halfspaces is a classical problem in machine learning, going back to the
Perceptron algorithm [Ros58] and has had a big impact in both the theory and the practice of the
field [Vap98, FS97]. Here we study the problem of PAC learning halfspaces in the distribution-
specific setting in the presence of Random Classification Noise (RCN) [AL88]. Specifically, we
focus on the basic case in which the marginal distribution on examples is the standard Gaussian —
one of the simplest and most extensively studied distributional assumptions.

In the realizable PAC model [Val84b] (i.e., when the labels are consistent with a concept in the
class), the class of halfspaces on Rd is efficiently learnable to 0-1 error ϵ using Õ(d/ϵ) samples via
linear programming (even in the distribution-free setting). This sample complexity upper bound
is information-theoretically optimal, even if we know a priori that the distribution on examples is
well-behaved (e.g., Gaussian or uniform). That is, in the realizable setting, there is an efficient
algorithm for halfspaces achieving the optimal sample complexity (within logarithmic factors).
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Learning Gaussian Halfspaces with RCN. The RCN model [AL88] is the most basic model of
random noise. In this model, the label of each example is independently flipped with probability
exactly η, for some noise parameter 0 < η < 1/2. One of the classical results on PAC learning
with RCN [Kea98] states that any Statistical Query (SQ) algorithm can be transformed into an RCN
noise-tolerant PAC learner with at most a polynomial complexity blowup. Halfspaces are known to
be efficiently PAC learnable in the presence of RCN, even in the distribution-free setting [BFKV97,
Coh97, DKT21, DTK22]. Alas, all these efficient algorithms require sample complexity that is
suboptimal within polynomial factors in d and 1/ϵ.

The sample complexity of PAC learning Gaussian halfspaces with RCN is Θ̃(d/((1− 2η)ϵ)). This
bound can be derived, e.g., from [MN06], and the lower bound essentially matches the realizable case,
up to a necessary scaling of (1− 2η).1 Given the fundamental nature of this learning problem, it is
natural to ask whether a computationally efficient algorithm with (near-) optimal sample complexity
(i.e., within logarithmic factors of the optimal) exists. That is, we are interested in a fine-grained
sample size versus computational complexity analysis of the problem. This leads us to the following
question:

Is there a sample near-optimal and polynomial-time algorithm
for learning Gaussian halfspaces with RCN?

In this paper, we explore the above question and provide two main contributions — essentially
resolving the question within logarithmic factors. On the positive side, we give an efficient algorithm
with sample complexity Õη(d/ϵ+d/(max{p, ϵ})2) for the problem. Here the parameter p ∈ [0, 1/2]
(Definition 1.2) quantifies the bias of the target function; a “balanced” function has p = 1/2 and a
constant function has p = 0. The worst-case upper bound arises when p = Θ(ϵ), in which case our
algorithm has sample complexity of Õη(d/ϵ

2). Perhaps surprisingly, we provide formal evidence that
the quadratic dependence on the quantity 1/max{p, ϵ} in the sample complexity cannot be improved
for computationally efficient algorithms. Our lower bounds apply for two restricted yet powerful
models of computation, namely Statistical Query algorithms and low-degree polynomial tests. Our
lower bounds suggest an inherent statistical-computational tradeoff for this problem.

1.1 Our Results

We study the complexity of learning halfspaces with RCN under the Gaussian distribution. Let
C = {f : Rd → {±1} | f(x) = sign(w · x + t)} be the class of general (i.e., not necessarily
homogeneous) halfspaces in Rd. The following definition summarizes our learning problem.
Definition 1.1 (Learning Gaussian Halfspaces with RCN). Let D be a distribution on (x, y) ∈
Rd × {±1} whose x-marginal Dx is the standard Gaussian. Moreover, there exists η ∈ (0, 1/2)
and a target f ∈ C such that the label y of example x satisfies y = f(x) with probability 1− η and
y = −f(x) otherwise. Given ϵ > 0 and sample access to D, the goal is to output a hypothesis h that
with high probability satisfies errD0−1(h) := PrD[h(x) ̸= y] ≤ η + ϵ.

Our main contribution is a sample near-optimal efficient algorithm for this problem coupled with a
matching statistical-computational tradeoff for SQ algorithms and low-degree polynomial tests. It
turns out that the sample complexity of our algorithm depends on the bias of the target halfspace,
defined below.
Definition 1.2 (p-biased function). For p ∈ [0, 1/2], we say that a Boolean function f : Rd → {±1}
is p-biased with respect to the distribution Dx, if min

{
Prx∼Dx [f(x) = 1], Prx∼Dx [f(x) =

−1]
}
= p.

For example, a homogeneous halfspace f(x) = sign(w · x) under the standard Gaussian distribution
Dx = N (0, I) satisfies Ex∼Dx [f(x)] = 0, and therefore has bias p = 1/2. For a general halfspace
f(x) = sign(w · x + t) with ∥w∥2 = 1, it is not difficult to see that its bias under the standard
Gaussian is approximately p ∼ (1/t) exp(−t2/2) (see Fact B.1).

We can now state our algorithmic contribution.
Theorem 1.3. (Main Algorithmic Result) There exists an algorithm that, given ϵ, δ ∈ (0, 1/2) and
N samples from a distribution D satisfying Definition 1.1, runs in time O(dN/ϵ2) and returns a

1Throughout this introduction, it will be convenient to view η as a constant bounded away from 1/2.
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hypothesis h ∈ C such that with probability at least 1− δ, it holds errD0−1(h) ≤ η + ϵ. The sample
complexity of the algorithm is N = Õ

(
d

(1−2η)ϵ +
d

max(p(1−2η),ϵ)2

)
log(1/δ) .

Some comments are in order. We note that the first term in the sample complexity matches the
information-theoretic lower bound (within a logarithmic factor), even for homogeneous halfspaces
(p = 1/2); see, e.g., [MN06, HY15]. The second term — scaling quadratically with 1/max{(1−
2η)p, ϵ}— is not information-theoretically necessary and dominates the sample complexity when
p = Oη(

√
ϵ). In the worst-case, i.e., when p = Oη(ϵ), our algorithm has sample complexity

Θ̃η(d/ϵ
2). Perhaps surprisingly, we show in Theorem 1.5 that this quadratic dependence is required

for any computationally efficient SQ algorithm; and, via [BBH+20], for any low-degree polynomial
test.

Basics on SQ Model. SQ algorithms are a broad class of algorithms that, instead of having direct
access to samples, are allowed to query expectations of bounded functions of the distribution.

Definition 1.4 (SQ algorithms). Let D be a distribution on Rd. A statistical query is a bounded
function q : Rd → [−1, 1]. For u > 0, the VSTAT(u) oracle responds to the query q with a value v

such that |v−Ex∼D[q(x)]| ≤ τ , where τ = max(1/u,
√

Varx∼D[q(x)]/u). We call τ the tolerance
of the statistical query. A Statistical Query algorithm is an algorithm whose objective is to learn some
information about an unknown distribution D by making adaptive calls to the corresponding oracle.

The SQ model was introduced in [Kea98] as a natural restriction of the PAC model [Val84a]. Subse-
quently, the model has been extensively studied in a range of contexts, see, e.g., [Fel16]. The class of
SQ algorithms is broad and captures a range of known supervised learning algorithms. More broadly,
several known algorithmic techniques in machine learning are known to be implementable using SQs
(see, e.g., [FGR+17, FGV17]).

We can now state our SQ lower bound result.

Theorem 1.5 (SQ Lower Bound). Fix any constant c ∈ (0, 1/2) and let d be sufficiently large. For
any p ≥ 2−O(dc), any SQ algorithm that learns the class of p-biased halfspaces on Rd with Gaussian
marginals in the presence of RCN with η = 1/3 to error less than η + p/3 either requires queries
of accuracy better than Õ(pdc/2−1/4), i.e., queries to VSTAT(Õ(d1/2−c/p2)), or needs to make at
least 2Ω(dc) statistical queries.

Informally speaking, Theorem 1.5 shows that no SQ algorithm can learn p-biased halfspaces in the
presence of RCN (with η = 1/3) to accuracy η +O(ϵ) (considering p > ϵ/2) with a sub-exponential
in dΩ(1) many queries, unless using queries of small tolerance — that would require at least Ω(

√
d/p2)

samples to simulate. This result can be viewed as a near-optimal information-computation tradeoff for
the problem, within the class of SQ algorithms. When p = 2ϵ, the computational sample complexity
lower bound we obtain is Ω(

√
d/ϵ2). That is, for sufficiently small ϵ, the computational sample

complexity of the problem (in the SQ model) is polynomially higher than its information-theoretic
sample complexity.

Via [BBH+20], we obtain a qualitatively similar lower bound in the low-degree polynomial testing
model; see Appendix D.

1.2 Our Techniques

Upper Bound. At a high level, our main algorithm consists of three main subroutines. We start
with a simple Initialization (warm-start) subroutine which ensures that we can choose a weight vector
w0 with sufficiently small angle to the target vector w∗. This subroutine essentially amounts to
estimating the degree-one Chow parameters of the target function and incurs sample complexity
Õ(d/(max(p(1− 2η), ϵ)2). We emphasize that our procedure does not require knowing the bias p of
the target halfspace; instead, it estimates this parameter to a constant factor.

Our next (and main) subroutine is an optimization procedure that is run for Õ(1/ϵ2) different guesses
of the threshold t. At a high level, our optimization subroutine can be seen as a variant of Riemannian
(sub)gradient descent on the unit sphere, applied to the empirical LeakyReLU loss — defined as
LeakyReLUλ(u) = (1 − λ)u1{u ≥ 0} + λu1{u < 0}— with parameter λ set to η, u = w · x,
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and with samples restricted to a band, namely a < |w · x| < b — with a and b chosen as functions
of the guess for the threshold t. The band restriction is key in avoiding Ω(d/ϵ2) dependence in
the sample complexity; instead, we only require order-(d/ϵ) samples to be drawn for the empirical
LeakyReLU loss subgradient estimate. Using the band, the objective is restricted to a region where the
current hypothesis incorrectly classifies a constant fraction of the mass from which we can perform
“denoising” with constantly many samples.

For a sufficiently accurate estimate t̂ of t (which is satisfied by at least one of the guesses for
which our optimization procedure is run), we argue that there is a sufficiently negative correlation
between the empirical subgradient and the target weight vector w∗. This result, combined with our
initialization, enables us to inductively argue that the distance between the weight vector constructed
by the optimization procedure and the target vector w∗ contracts and becomes smaller than ϵ within
order-log(1/ϵ) iterations. This result is quite surprising, since the LeakyReLU loss is nonsmooth
(it is, in fact, piecewise linear) and we do not explicitly bound its growth outside the set of its
minima (i.e., we do not prove a local error bound, which would typically be used to prove linear
convergence). Thus, the result we establish is impossible to obtain using black-box results for
nonsmooth optimization. Additionally, we never explicitly use the LeakyReLU loss function or prove
that it is minimized by w∗; instead, we directly prove that the vectors w constructed by our procedure
converge to the target vector w∗. At a technical level, our result is enabled by a novel inductive
argument, which we believe may be of independent interest (see Lemma 2.8 for more details).

Since each run of our optimization subroutine returns a different hypothesis, at least one of which is
accurate (the one using the “correct” guess of the threshold t), we need an efficient way to select a
hypothesis with the desired error guarantee. This is achieved via our third subroutine — a simple
hypothesis testing procedure, which draws a fresh sample and selects a hypothesis with the lowest
test error. By standard results [MN06], such a hypothesis satisfies our target error guarantee.
SQ Lower Bound. To prove our SQ lower bound, it suffices to establish the existence of a large
set of distributions whose pairwise correlations are small [FGR+17]. Inspired by the methodology
of [DKS17], we achieve this by selecting our distributions on labeled examples (x, y) to be random
rotations of a single one-dimensional distribution that nearly matches low-order Gaussian moments,
and embedding this in a hidden random direction. Our hard distributions are as follows: We define
the halfspaces fv(x) = sign(v · x− t), where v is a randomly chosen unit vector and the threshold
t is chosen such that Prx∼N [fv(x) = 1] = p. We then let y = fv(x) with probability 2/3, and
−fv(x) otherwise. By picking a packing of nearly orthogonal vectors v on the unit sphere (i.e., set
of vectors with pairwise small inner product), we show that each pair of these fv’s corresponding to
distinct vectors in the packing have very small pairwise correlations (with respect to the distribution
where x is a standard Gaussian and y is independent of x). While the results of [DKS17] cannot be
directly applied to give our desired corerlation bounds, the Hermite analytic ideas behind them are
useful in this context. In particular, the correlation between two such distributions can be computed
in terms of their angle and the Hermite spectrum. A careful analysis (Lemma 3.3) gives an inner
product that is Õ(cos(θ)p), where θ is the angle between the corresponding vectors. Combined with
our packing bound, this is sufficient to obtain our final SQ lower bound result.

1.3 Related and Prior Work

A long line of work in theoretical machine learning has focused on developing computationally
efficient algorithms for learning halfspaces under natural distributional assumptions in the presence
of RCN and related semi-random noise models; see, e.g., [ABHU15, ABHZ16, YZ17, ZLC17,
DKTZ20a, DKTZ20b, DKK+20, DKK+21, DKK+22]. Interestingly, the majority of these works
focused on the special case of homogeneous halfspaces. We next describe in detail the most relevant
prior work.

Prior work [YZ17, ZSA20, ZL21] gave sample near-optimal and computationally efficient learners
for homogeneous halfspaces with RCN (and, more generally, bounded noise). Specifically, these
works developed algorithms using near-optimal sample complexity of Õη(d/ϵ). However, their
algorithms and analyses are customized to the homogeneous case, and it is not clear how to extend
them for general halfspaces. In fact, since all of these algorithms are easily implementable in the
SQ model, our SQ lower bound (Theorem 1.5) implies that these prior algorithms cannot be adapted
to handle the general case without an increase in sample complexity. Finally, [DKTZ22] gave an
algorithm with sample complexity Õ(d/ϵ2) to learn general Gaussian halfspaces with adversarial
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label noise to error O(OPT) + ϵ, where OPT is the optimal misclassification error. Unfortunately,
this algorithm does not suffice for our RCN setting (where OPT = η), since its error guarantee is
significantly weaker than ours.

Very recent work [DDK+23] gave an SQ lower bound for γ-margin halfspaces with RCN, which
has some similarities to ours. Specifically, [DDK+23] showed that any efficient SQ algorithm for
that problem requires sample complexity Ω(1/(γ1/2ϵ2)). Intuitively, the margin assumption allows
for a much more general family of distributions compared to our Gaussian assumption here. In
particular, the SQ construction of that work does not have any implications in our setting. Even though
the Gaussian distribution does not have a margin, it is easy to see that it satisfies an approximate
margin property for γ ∼ 1/

√
d. In fact, using an adaptation of our construction, we believe we

can quantitatively strengthen the lower bound of [DDK+23] to Ω(1/(γϵ2)). For more details, see
Appendix A.

1.4 Preliminaries

For n ∈ Z+, we define [n] := {1, . . . , n}. We use lowercase bold characters for vectors and
uppercase bold characters for matrices. For x ∈ Rd and i ∈ [d], xi denotes the i-th coordinate of
x, and ∥x∥2 := (

∑d
i=1 xi

2)1/2 denotes the ℓ2-norm of x. We use x · y for the inner product of
x,y ∈ Rd and θ(x,y) for the angle between x and y. We slightly abuse notation and denote by
ei the ith standard basis vector in Rd. We further use 1A to denote the characteristic function of
the set A, i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. We use the standard O(·),Θ(·),Ω(·)
asymptotic notation. We also use Õ(·) to omit poly-logarithmic factors in the argument. We use
Ex∼D[x] for the expectation of the random variable x according to the distribution D and Pr[E ]
for the probability of event E . For simplicity of notation, we omit the distribution when it is clear
from the context. For (x, y) distributed according to D, we denote by Dx the distribution of x. As is
standard, we use N to denote the standard normal distribution in d dimensions; i.e., with its mean
being the zero vector and its covariance being the identity matrix.

2 Efficiently Learning Gaussian Halfspaces

In this section, we prove Theorem 1.3 by analyzing Algorithm 1. As discussed in the introduction
and shown in Algorithm 1, there are three main procedures in our algorithm. The guarantees of our
Initialization (warm start) procedure, which ensures sufficient correlation between the initial weight
vector w0 and the target vector w∗, are stated in Section 2.1, while the proofs and pseudocode are in
Appendix B.1. Our main results for this section, including the Optimization procedure and associated
analysis, are in Section 2.2. The Testing procedure is standard and deferred to Appendix B.2, together
with most of the technical details from this section.

Throughout this section, we assume that the parameter η (RCN parameter) is known. As will become
clear from our analysis, a constant factor approximation to the value of 1− 2η is sufficient to obtain
our results. For completeness, we show how to obtain such an approximation in Appendix B.3. For
simplicity, we present the results for t ≥ 0 and t ≤

√
2 log((1− 2η)/ϵ). This is without loss of

Algorithm 1 Main Algorithm

1: Input: δ, η, ϵ, sample access to distribution D
2: [w0, p̂] = Initialization(δ, η, ϵ); ϵ′ = ϵ/(1− 2η)

3: t0 =
√

2 log(1/p̂), M = 8
⌈√2(log(4/p̂))−

√
2 log(1/p̂)

(ϵ′)2

⌉
+ 1

4: Draw N2 = O(d log(1/δ) log(1/ϵ′)
(1−2η)2ϵ′ ) samples {(x(i), y(i))}N2

i=1 from D
5: for m = 1 : M do
6: tm = t0 + (m− 1) (ϵ

′)2

8 , γm = ϵ′

2 exp(t2m/2)

7: ŵm = Optimization(w0, tm, γm, η, {(x(i), y(i))}N2
i=1)

8: end for
9: [ŵout, tout] = Testing((ŵ1, t1), (ŵ2, t2), . . . , (ŵM , tM ))

10: return ŵout, tout
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Algorithm 2 Optimization

1: Input: w0, t̂, γ̂, η, N2 i.i.d. samples (x(i), y(i)) from D
2: µ0 ← (1−4ρ)

√
2π

16(1−2η) ; ρ← 0.00098; P (t̂, γ̂)← Prz∼N [−t̂ ≤ z ≤ −t̂+ γ̂]

3: for k = 0 to K do
4: Let E(wk, t̂) := {x : −t̂ ≤ wk · x ≤ −t̂+ γ̂}
5: Let g(wk;x

(i), y(i)) = 1
2 ((1− 2η)sign(wk · x(i) + t̂)− y(i))projw⊥

k
(x(i))

6: ĝ(wk)← 1
N2

∑N2

i=1 g(wk;x
(i), y(i))1{x

(i)∈E(wk,t̂)}
P (t̂,γ̂)

7: µk ← µk−1(1− ρ)

8: wk+1 ← wk−µkĝ(wk)
∥wk−µkĝ(wk)∥2

9: end for
10: return wK+1

generality. For the former, it is by the simple symmetry of the standard normal distribution that the
entire argument translates into the case t < 0, possibly by exchanging the meaning of ‘+1’ and ‘-1’
labels. For the latter, we note that when the bias is small, i.e., for p ≤ ϵ/(2(1 − 2η)), a constant
hypothesis suffices.

2.1 Initialization Procedure

We begin this section with Lemma 2.1, which shows that given N1 = Õ(d/(κ4p2(1−2η)2) log(1/δ))
i.i.d. samples from D, we can construct a good initial point w0 that forms an angle at most κ with
the target weight vector w∗. For our purposes, κ should be of the order 1/t. For t ≤

√
2 log(1/ϵ′),

where ϵ′ = ϵ/(1 − 2η), we can ensure that N1 = Õ(d/(p2(1 − 2η)2) log(1/δ)). The downside of
the lemma, however, is that the number of samples N1 requires at least approximate knowledge
of the bias parameter p (or, more accurately, of e−t2/2). We address this challenge by arguing (in
Lemma 2.2) that we can estimate p using the procedure described in Algorithm 4, without increasing
the total number of drawn samples by a factor larger than order-log(1/ϵ′).

Lemma 2.1 (Initialization via Chow Parameters). Given κ > 0, define pt = e−t2/2, N1 =
O(d/(κ4pt

2(1−2η)2) log(1/δ)) and let (x(i), y(i)) for i ∈ [N1] be i.i.d. samples drawn fromD. Let
u = 1

N1

∑N1

i=1 x
(i)y(i) and w0 = u/∥u∥2. Then, with probability 1− δ, we have θ(w0,w

∗) ≤ κ.

We now leverage Lemma 2.1 to argue about the correctness of implementable Initialization procedure,
stated as Algorithm 4 in Appendix B.1, where the proofs for this subsection can be found.

Lemma 2.2. Consider the Initialization procedure described by Algorithm 4 in Appendix B.1. If 0 ≤
t ≤

√
2 log((1− 2η)/ϵ), then with probability at least 1−δ, exp(−t2/2) ≤ p̂ ≤ 4 exp(−t2/2). The

algorithm draws a total of Õ
( d log(1/δ)
max{(1−2η)p, ϵ}2

)
samples and ensures that θ(w0,w

∗) ≤ min{ 1
5t ,

π
2 }.

2.2 Optimization

As discussed before, our Optimization procedure (Algorithm 2) can be seen as Riemannian subgradi-
ent descent on the unit sphere. Crucial to our analysis is the use of subgradient estimates from Line 5
and Line 6, where we condition on the event that the samples come from a thin band, defined in
Line 4. Without this conditioning, the algorithm would correspond to projected subgradient descent
of the LeakyReLU loss on the unit sphere. The conditioning effectively changes the landscape of the
loss function being optimized, which cannot be argued anymore to even be convex, as the definition
of the band depends on the weight vector w at which the vector ĝ(w) is evaluated. Nevertheless, as
we argue in this section, the optimization procedure can be carried out very efficiently, even exhibit-
ing a linear convergence rate. To simplify the notation, in this section we denote the conditioned
distribution D|E(w,t̂) by D(w, t̂). We carry out the analysis assuming the estimate t̂ is within additive
ϵ2 of the true threshold value t; as argued before, this has to be true for at least one estimate t̂ for
which the Optimization procedure is invoked.
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In the following lemma, we show that if the angle between a weight vector w and the target vector
w∗ is from a certain range, we can guarantee that g(w) is sufficiently negatively correlated with w∗.
This condition is then used to argue about progress of our algorithm. The upper bound on θ will hold
initially, by our initialization procedure, and we will inductively argue that it holds for all iterations.
The lower bound, when violated, will imply that the distance between w and w∗ is small, in which
case we would have converged to a sufficiently good solution w.

Lemma 2.3. Fix any ϵ′ ∈ (0, 1). Suppose that 0 ≤ t ≤
√
2 log(1/ϵ′) and w ∈ Rd is such that

∥w∥2 = 1, and θ = θ(w,w∗) satisfies the inequality ϵ′ exp(t2/2) ≤ θ ≤ 1/(5t). If |t̂− t| ≤ ϵ′2/8

and γ̂ = (1/2)ϵ′ exp(t̂2/2), then E(x,y)∼D(w,t̂)[g(w;x, y) ·w∗] ≤ −(1− 2η) sin θ/(2
√
2π).

Since, by construction, g(w) is orthogonal to w (see Line 5 in Algorithm 2), we can bound the norm
of the expected gradient vector by bounding g(w) · u for some unit vectors u that are orthogonal to
w using similar techniques as in Lemma 2.3. To be specific, we have the following lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3,
∥∥E(x,y)∼D(w,t̂)[g(w;x, y)]

∥∥
2
≤ (1−2η)√

2π
.

The last technical ingredient that we need is the following lemma which shows a uniform bound
on the difference between the empirical gradient ĝ(w) and its expectation (for more details, see
Lemma B.6 and Corollary B.8 in Appendix B).

Lemma 2.5. Consider the learning problem from Definition 1.1. Let ϵ′, t̂, γ̂ be parameters satisfying
the conditions of Lemma 2.3. Let δ ∈ (0, 1). Then using Õ(d log(1/δ)/((1 − 2η)2ϵ′)) samples
to construct ĝ, for any unit vector w such that ϵ′ exp(t2/2) ≤ θ(w,w∗) ≤ 1/(5t), it holds with
probability at least 1− δ: ∥ĝ(w)−E(x,y)∼D(w,t̂)[g(w)]∥2 ≤ (1/4)∥E(x,y)∼D(w,t̂)[g(w)]∥2.

We are now ready to present and prove our main algorithm-related result. A short roadmap for our
proof is as follows. Since Algorithm 1 constructs a grid with grid-width ϵ′2/8 that covers all possible
values of the true threshold t, there exists at least one guess t̂ that is ϵ′2-close to the true threshold
t. We first show that to get a halfspace with error at most ϵ′, it suffices to use this t̂ as the threshold
and find a weight vector w such that the angle θ(w,w∗) is of the order ϵ′, which is exactly what
Algorithm 2 does. The connection between θ(w,w∗) and the error is conveyed by the inequality
Pr[sign(w · x + t) ̸= sign(w∗ · x + t)] ≤ (θ(w,w∗)/π) exp(−t2/2); see Appendix B. Let wk

be the parameter generated by Algorithm 2 at iteration k for threshold t̂. We show that θ(wk,w
∗)

converges to zero at a linear rate. To this end, we prove that under our carefully devised step size
µk, there exists an upper bound on ∥wk −w∗∥2, which contracts at each iteration. Note that since
both wk and w∗ are on the unit sphere, we have ∥wk −w∗∥2 = 2 sin(θ(wk,w

∗)/2). Essentially,
this implies that Algorithm 2 produces a sequence of parameters wk such that θ(wk,w

∗) converges
to 0 linearly, under this threshold t̂. Thus, we can conclude that there exists a halfspace among all
halfspaces generated by Algorithm 1 that achieves ϵ′ error with high probability.
Theorem 2.6. Consider the learning problem from Definition 1.1. Fix any unit vector w0 ∈ Rd

such that θ(w0, w
∗) ≤ min(1/(5t), π/2). Fix any ϵ, δ > 0. Let t̂ > 0 be a threshold such

that |t̂ − t| ≤ ϵ2/(8(1 − 2η)2), and let γ̂ = ϵ/(2(1− 2η)) exp(t̂2/2). Then Algorithm 2 uses
N2 = Õ

(
d/((1− 2η)ϵ) log(1/δ)

)
samples from D, has runtime Õ(N2d), and outputs a weight

vector w such that h(x) = sign(w · x+ t̂) satisfies Pr[h(x) ̸= y] ≤ η + ϵ with probability at least
1− δ.

Proof. Let ϵ′ = (ϵ/1− 2η), and denote by wk the vector produced by the algorithm at kth iteration
for threshold t̂. For any unit vector w and |t̂− t| ≤ ϵ′2/8, it holds Pr[sign(w · x+ t̂) ̸= sign(w∗ ·
x+ t)] ≤ ϵ′2/(4

√
2π) + θ(w,w∗)/π exp(−t2/2) (see Appendix B.2 for more details). Therefore,

it suffices to find a parameter w such that θ(w,w∗) ≤ πϵ′ exp(t2/2). Note that since both w
and w∗ are unit vectors, we have ∥w −w∗∥2 = 2 sin(θ/2), indicating that it suffices to minimize
∥w −w∗∥2 efficiently. As proved in Section 2.1, we can start with an initial vector w0 such that
θ(w0,w

∗) ≤ 1/(5t) by calling Algorithm 4 (in Appendix B.1). Denote θk = θ(wk,w
∗) and

consider the case when θk ≥ ϵ′ exp(t2/2). We establish the following claim:

Claim 2.7. Let C1 := (1− 2η)/
√
2π. Drawing N2 = Õ(d log(1/δ)/((1− 2η)2ϵ′)) samples from

distribution D, we have that if θk ≥ ϵ′ exp(t2/2) then with probability at least 1 − δ: ∥wk+1 −
w∗∥22 ≤ ∥w −w∗∥22 − (C1/2)µk sin θk + 4C2

1µ
2
k.
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It remains to choose the step size µk properly to get linear convergence. By carefully designing a
shrinking step size, we are able to construct an upper bound ϕk on the distance of ∥wk+1 −wk∥2
using Claim 2.7. Importantly, by exploiting the property that both w and w∗ are on the unit sphere,
we show that the upper bound is contracting at each step, even though the distance ∥wk+1 −wk∥2
could be increasing. Concretely, we have the following lemma.

Lemma 2.8. Let ρ = 0.00098 and ϕk = (1− ρ)k. Then, setting µk = (1− 4ρ)ϕk/(16C1) it holds
sin(θk/2) ≤ ϕk for k = 1, · · · ,K.

Proof. Let ϕk = (1− ρ)k where ρ = 0.00098. This choice of ρ ensures that 32ρ2 + 1020ρ− 1 ≤ 0.
We show by induction that choosing µk = (1 − 4ρ)ϕk/(16C1) = (1 − ρ)k(1 − 4ρ)/(16C1), it
holds sin(θk/2) ≤ ϕk. The condition certainly holds for k = 1 since θ1 ∈ [0, π/2]. Now suppose
that sin(θk/2) ≤ ϕk for some k ≥ 1. We discuss the following 2 cases: ϕk ≥ sin(θk/2) ≥ 3

4ϕk

and sin(θk/2) ≤ 3
4ϕk. First, suppose ϕk ≥ sin(θk/2) ≥ 3

4ϕk. Since sin(θk/2) ≤ sin θk, it also
holds sin θk ≥ 3

4ϕk. Bringing in the fact that ∥wk+1 −w∗∥2 = 2 sin(θk+1/2) and ∥wk −w∗∥2 =
2 sin(θk/2), as well as the definition of µk, the conclusion of Claim 2.7 becomes:

(2 sin(θk+1/2))
2 ≤ (2 sin(θk/2))

2 − (C1/2)µk sin θk + 4C2
1 (1− 4ρ)ϕkµk/(16C1)

≤ 4ϕ2
k − 3C1µkϕk/8 + C1(1− 4ρ)µkϕk/4 = 4ϕ2

k(1− (1 + 8ρ)(1− 4ρ)/512),

where in the second inequality we used sin θk ≥ 3
4ϕk and in the last equality we used the definition

of µk by which µk = (1− 4ρ)ϕk/(16C1). Since ρ is chosen so that 32ρ2+1020ρ− 1 ≤ 0, we have:

sin(θk+1/2) ≤ ϕk

√
1− (1 + 8ρ)(1− 4ρ)/512 ≤ (1− ρ)ϕk = (1− ρ)k+1,

as desired. Next, consider sin(θk/2) ≤ (3/4)ϕk. Recall that wk+1 = projB(wk − µkĝ(wk))
and wk ∈ B, where B is the unit ball2; therefore, ∥wk+1 − wk∥2 ≤ ∥wk − µkĝ(w) − wk∥2 =
µk∥ĝ(wk)∥2 by the non-expansiveness of the projection operator. Furthermore, applying Lemma 2.5
and Lemma 2.4, it holds that ∥ĝ(wk)∥2 ≤ (5/4)∥E(x,y)∼D(w,t̂)[g(w)]∥2 ≤ 2(1− 2η)/

√
2π, i.e.,

we have ∥ĝ(wk)∥2 ≤ 2C1; therefore, ∥wk+1 −wk∥2 ≤ 2µkC1, which indicates that:

2(sin(θk+1/2)− sin(θk/2)) = ∥wk+1 −w∗∥2 − ∥wk −w∗∥2 ≤ ∥wk+1 −wk∥2 ≤ 2µkC1.

Since we have assumed sin(θk/2) ≤ (3/4)ϕk, then it holds:

ϕk+1− sin(θk+1/2) ≥ (1−ρ)ϕk−ϕk+ϕk− sin(θk/2)− (1− 4ρ)ϕk/16 ≥ 3(1− 4ρ)ϕk/16 > 0,

since we have chosen µk = (1− 4ρ)ϕk/(16C1). Hence, it also holds that sin(θk+1/2) ≤ ϕk+1.

Lemma 2.8 shows that sin(θk/2) converges to 0 linearly. Therefore, using N2 = Õ(d log(1/δ)/((1−
2η)2ϵ′)) samples, after K = O((1/ρ) log(1/(exp(t2/2)ϵ′)) = O(log(1/ϵ′) iterations, we get a wK

such that θK ≤ 2 sin(θK/2) ≤ ϵ′ exp(t2/2). Let h(x) := sign(wK · x + t̂). Then it holds that
the disagreement of h(x) and f(x) is bounded by Pr[h(x) ̸= f(x)] ≤ ϵ′ (see Appendix B for
more details). Finally, since errD0−1(h) = Pr(x,y)∼D[h(x) ̸= y] = η + (1 − 2η)Prx∼Dx [h(x) ̸=
sign(w∗ ·x+ t)], for any h : Rd 7→ {±1}, to get misclassification error at most η+ ϵ (with respect to
the y), it suffices to use ϵ′ = ϵ/(1−2η). Therefore, we get Pr(x,y)∼D[sign(wK ·x+ t̂) ̸= y] ≤ η+ϵ,
using N2 = Õ(d log(1/δ)/((1−2η)ϵ)) samples. Since the algorithm runs for O(log(1/ϵ)) iterations,
the overall runtime is Õ(N2d). This completes the proof of Theorem 2.6.

Proof Sketch of Theorem 1.3. From Lemma 2.2, we get that with Õ(d/((1−2η)2p2)) samples our Ini-
tialization procedure (Algorithm 4) produces a unit vector w0 so that θ(w0,w

∗) ≤ min(1/(5t), π/2)
with high probability. We construct a grid of (ϵ2/(8(1− 2η)2)-separated values, containing all the
possible values of the threshold t of size roughly ∼ 1/ϵ2. We run Algorithm 2 for each possible
choice of the threshold t. Conditioned on the choice of t̂ and w0 that satisfies the assumptions of
Theorem 2.6, Algorithm 2 outputs a weight vector ŵ so that Pr(x,y)∼D[sign(ŵ ·x+ t̂) ̸= y] ≤ η+ ϵ.
Using standard concentration facts, we have that with a sample size of order Õ(d/((1− 2η)ϵ)) from
D, we can output the hypothesis with the minimum empirical error with high probability.

2This is true because ĝ(wk) is orthogonal to wk, and thus ∥wk−µkĝ(wk)∥2 > 1, meaning that projections
onto the unit ball and the unit sphere are the same in this case.
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3 SQ Lower Bound for Learning Gaussian Halfspaces with RCN

To state our SQ lower bound theorem, we require the following standard definition.
Definition 3.1 (Decision/Testing Problem over Distributions). Let D be a distribution and D be a
family of distributions over Rd. We denote by B(D, D) the decision (or hypothesis testing) problem
in which the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the
goal of the algorithm is to distinguish between these two cases.

Theorem 3.2 (SQ Lower Bound for Testing RCN Halfspaces). Fix c ∈ (0, 1/2) and let d ∈ N be
sufficiently large. For any p ≥ 2−O(dc), any SQ algorithm that learns the class of (at most) p-biased
Gaussian halfspaces on Rd in the presence of RCN with η = 1/3 to error less than η + p/3 either
requires queries to VSTAT(Õ(d1/2−c/p2)), or needs to make at least 2Ω(dc) statistical queries.

We note that our SQ lower bound applies to a natural testing version of our learning problem. By a
standard reduction (see Lemma C.9), it follows that any learning algorithm for the problem requires
either 2Ω(dc) many queries or at least one query to VSTAT(Õ(d2c−1/2/p2)). We also note that the
established bound is tight for the corresponding testing problem (see Appendix C.6).

Proof of Theorem 3.2. For any unit vector v ∈ Rd, we define the LTF fv(x) = sign(v · x − t),
where t > 0 and denote p = Prx∼N [fv(x) = 1]. Let Dv be the distribution on (x, y) with respect
to fv with the random variable y supported on {±1} as follows: Pr[y = fv(x) | x] = 1− η and x
is distributed as standard normal. Denote by Av the distribution Dv conditioned on y = 1 and by Bv

the distribution Dv conditioned on y = −1. It is easy to see that

Av(x) = G(x)(η + (1− 2η)1{fv(x) > 0})/(η + (1− 2η)p)

and
Bv(x) = G(x)(1− η − (1− 2η)1{fv(x) > 0})/(1− η − (1− 2η)p) .

Fix unit vectors v,u ∈ Rd and let θ be the angle between them. We bound from above the correlation
between fv(x) and fu(x). Our main technical lemma is the following:

Lemma 3.3. Let fv(x) and fu(x) defined as above. Then it holds∣∣ E
x∼N

[fv(x)fu(x)]− E
x∼N

[fv(x)] E
x∼N

[fu(x)]
∣∣ ≤ 4| cot(θ)| exp(−t2) exp

(
| cos(θ)|t2

)
.

Proof of Lemma 3.3. We start by calculating the Hermite coefficients of the univariate function
sign(z− t). We will use the fact that Ez∼N [sign(z− t)Hei(z)] = 2i−1/2Hei−1(t) exp(−t2/2) (see
Claim C.7). Let ci be the Hermite coefficient of degree i. Without loss of generality (due to the
rotational invariance of the Gaussian distribution), we can assume that v = e1 and u = cos θe1 +
sin θe2. Using standard algebraic manipulations and orthogonality arguments (see Claim C.5 for
more details), we have that

E
x∼N

[fv(x)fu(x)] = E
x1,x2∼N

[sign(x1 − t)sign(cos θx1 + sin θx2 − t)] =
∑
i≥0

cosi θ c2i .

Note that He0(x) = 1, therefore c0 = Ex∼N [fv(x)]. Therefore, we have that

E
x∼N

[fv(x)fu(x)] =
∑
i≥1

cosi θc2i + E
x∼N

[fv(x)] E
x∼N

[fu(x)] .

Let J =
∑

i≥1 cos
i θc2i . To complete the proof, it remains to bound the |J |. We show the following:

Claim 3.4. It holds that |J | ≤ 4| cot(θ)| exp(−t2) exp
(
| cos(θ)|t2

)
.

Proof of Claim 3.4. Note that from Claim C.7, we have that ci = 2Hei−1(t) exp(−t2/2)/
√
i, hence,

it holds that J = 4 cos(θ) exp(−t2)
∑∞

i=1 i
−1He2i−1(t) cos

i−1 θ. We use the following fact.

Fact 3.5 (Mehler Formula, see, e.g. [Foa78]). For |ρ| < 1 and x, y ∈ R, it holds that

exp
(
− 1

2

ρ

1− ρ2
(x− y)2

)
=

√
1− ρ2

∑
k≥0

ρkHek(x)Hek(y) exp
(
− 1

2

ρ

1 + ρ2
(x2 + y2)

)
.
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Applying Fact 3.5 for ρ = cos(θ) and x = y = t, we get that

|J | = 4
∣∣ cos θ exp(−t2) ∑

i≥1

i−1He2i−1(t) cos
i−1 θ

∣∣ ≤ 4| cos θ| exp(−t2)
∑
i≥0

He2i (t)| cos θ|i

= 4| cot θ| exp(−t2) exp
(
| cos(θ)|t2

(1 + cos2 θ)

)
.

This completes the proof of Claim 3.4.

Using Claim 3.4, we get that∣∣ E
x∼N

[fv(x)fu(x)]− E
x∼N

[fv(x)] E
x∼N

[fu(x)]
∣∣ ≤ 4| cot(θ)| exp(−t2) exp

(
| cos(θ)|t2

)
,

completing the proof of Lemma 3.3.

We associate each v and u to a distribution Dv and Du, constructed as above. The following lemma
provides explicit bounds on the correlation between the distributions Dv and Du. Recall that the
pairwise correlation of two distributions with cdfs D1, D2 with respect to a distribution with cdf
D is defined as χD(D1, D2) + 1 :=

∫
x∈X D1(x)D2(x)/D(x) (see Definition C.1). We have the

following lemma (see Appendix C.4 for its proof):

Lemma 3.6. Let D0 be a product distribution distributed asN ×{±1}, where Pr(x,y)∼D0
[y = 1] =

Pr(x,y)∼Dv
[y = 1] = p. We have χD0(Dv, Du) ≤ 2(1−2η)(E[fv(x)fu(x)]−E[fv(x)]E[fu(x)])

and χ2(Dv, D0) ≤ (1− 2η)(E[fv(x)]−E[fv(x)]
2).

For any c ∈ (0, 1/2), there exists a set S of 2Ω(dc) unit vectors in Rd such that for
any pair v ̸= u ∈ S satisfies |v · u| < d−1/2+c (Fact C.4). We associate each
v ∈ S with fv and a distribution Dv and denote D = {Dv,v ∈ S}. By the def-
inition of S and Lemma 3.3, for any v,u ∈ S, we have that Ex∼N [fv(x)fu(x)] ≤
4d−1/2+c exp(−t2) exp

(
(t/d1/4−c/2)2

)
+ Ex∼N [fv(x)]Ex∼N [fu(x)]. Since t/d1/4−c/2 ≤

1/2 by assumption, we get that |Ex∼N [fv(x)fu(x)] − Ex∼N [fv(x)]Ex∼N [fu(x)]| ≤
d−1/2+c exp(−t2) . By Lemma 3.6, it follows that χD0

(Dv, Du) ≤ C(1 − 2η) exp(−t2)d−1/2+c

and χ2(Dv, D0) ≤ C(1− 2η) exp(−t2/2), where C > 0 is an absolute constant. From standard SQ
machinery (see, e.g., Lemma C.3), we have that any SQ algorithm that solves the decision problem
B(D, D0), requires either 2Ω(dc) queries, or at least one query to VSTAT(exp(t2)d1/2+c). Noting
that p = O(exp(−t2/2)/t) (by Fact B.1) completes the proof of Theorem 3.2.
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Appendix

Organization The appendix is organized as follows: In Appendix A, we provide additional
comparison to prior work. In Appendix B, we present the full version of Section 2, completing
proofs and providing supplementary lemmas omitted in the main body. In Appendix C, we start with
background on Hermite polynomials and the SQ model, followed by omitted proofs from Section 3.
Finally, in Appendix D, we prove our lower bound for low-degree polynomial testing.

A Comparison with Previous Work

Here we provide a more detailed comparison with the very recent work of [DDK+23], which gives
an algorithm and an SQ lower bound for learning γ-margin halfspaces in the presence of RCN. We
start by noting that the SQ-hard instance of [DDK+23] is based on a discrete distribution on the
hypercube. Consequently, neither the construction nor its analysis have any implications on the
Gaussian setting studied here. More generally, the margin assumption intuitively captures a much
more general family of distributions than the Gaussian distribution (though, formally speaking, the
two assumptions are incomparable, as the Gaussian only exhibits an approximate margin property).
On the positive side, [DDK+23] gives an efficient algorithm for learning margin halfspaces in the
presence of RCN with sample complexity Õ(1/(γ2ϵ2)). It is important to note that the homogeneity
(i.e., origin-centered) assumption provably does not help for the margin case — i.e., the case of
homogeneous halfspaces with a margin is as hard as the case of general halfspaces with a margin.
In sharp contrast, our algorithm in this work has sample complexity that crucially depends on the
unknown bias p of the target halfspace — interpolating between Õ(d/ϵ) and Õ(d/ϵ2).

B Full Version of Section 2

Throughout this paper, we frequently use the following fact. For x drawn from the standard normal
distribution, the threshold t in the definition of the halfspace can be related to the bias of f(x) =
sign(w∗ · x+ t), as follows.
Fact B.1 (Komatsu’s Inequality). For any t ∈ R, the bias p of a halfspace described by f(x) =
sign(w∗ · x+ t) can be bounded as:√

2

π

exp(−t2/2)
t+
√
t2 + 4

≤ p ≤
√

2

π

exp(−t2/2)
t+
√
t2 + 2

.

We begin by stating our main result, in Theorem 1.3 below, and providing a high-level summary
of the main algorithm, in Algorithm 3. We note that both the assumption that t ≥ 0 and that
t ≤

√
2 log((1− 2η)/ϵ) are without loss of generality. For the former, it is by the simple symmetry

of the standard normal distribution that the entire argument translates into the case t < 0, possibly
by exchanging the meaning of ‘+1’ and ‘-1’ labels. For the latter, we note that when the bias is
small, i.e., for p ≤ ϵ/(2(1− 2η)), a constant hypothesis suffices. Thus, only the cases covered by
Theorem 1.3 are of interest to us. For the rest of the section, we assume that η is known a priori; we
show in Appendix B.3 an efficient way to estimate it without increasing the sample complexity.
Theorem 1.3. (Main Algorithmic Result) There exists an algorithm that, given ϵ, δ ∈ (0, 1/2) and
N samples from a distribution D satisfying Definition 1.1, runs in time O(dN/ϵ2) and returns a
hypothesis h ∈ C such that with probability at least 1− δ, it holds errD0−1(h) ≤ η + ϵ. The sample
complexity of the algorithm is N = Õ

(
d

(1−2η)ϵ +
d

max(p(1−2η),ϵ)2

)
log(1/δ) .

Remark B.2. The sample complexity stated in Theorem 1.3 has two components: the first depends
on ϵ, and the second depends on the bias p. As we demonstrate in Section 3, the 1/p2 term is
required for computationally efficient SQ algorithms and low-degree tests. Moreover, the term
Õ(d log(1/δ)/((1− 2η)ϵ)) is information-theoretically optimal, even when p = 1/2, as shown, e.g.,
in [HY15].

At a high level, our main algorithm consists of three main subroutines, as summarized in Algorithm 3.
The subroutines are specified in the rest of the section, where we analyze the sample complexity
and the runtime of our algorithm, and, as a consequence, prove Theorem 1.3. In more detail, the
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Algorithm 3 Main Algorithm

1: Input: δ, η, ϵ, sample access to distribution D
2: [w0, p̂] = Initialization(δ, η, ϵ); ϵ′ = ϵ/(1− 2η)

3: t0 =
√

2 log(1/p̂), M = 8
⌈√2(log(4/p̂))−

√
2 log(1/p̂)

(ϵ′)2

⌉
+ 1

4: Draw N2 = O(d log(1/δ) log(1/ϵ′)
(1−2η)2ϵ′ ) samples {(x(i), y(i))}N2

i=1 from D
5: for m = 1 : M do
6: tm = t0 + (m− 1) (ϵ

′)2

8 , γm = ϵ′

2 exp(t2m/2)

7: ŵm = Optimization(w0, tm, γm, η, {(x(i), y(i))}N2
i=1)

8: end for
9: [ŵout, tout] = Testing((ŵ1, t1), (ŵ2, t2), . . . , (ŵM , tM ))

10: return ŵout, tout

Initialization subroutine (specified in Algorithm 4) ensures that we can choose a vector w0 from the
unit sphere that forms a sufficiently small angle with the target vector w∗, using Õ(d log(1/δ)/((1−
2η)2p2)) samples. This can be seen as warm-start for the main optimization procedure (specified in
Algorithm 5). Crucially, the Initialization procedure does not require knowing the bias p of the target
halfspace; instead, it estimates this parameter to a constant factor.

The Optimization procedure is run for different guesses of the threshold t (O(log(1/ϵ)/ϵ2) of
them). At a high level, it can be seen as a variant of Riemannian (sub)gradient descent on the unit
sphere, applied to the empirical LeakyReLU loss — defined as LeakyReLUλ(u) = (1− λ)u1{u ≥
0}+ λu1{u < 0}— with parameter λ set to η, u = w · x, and with samples restricted to a band,
namely a < |w · x| < b — with a and b chosen as functions of the guess for the threshold t. The
band restriction is key in avoiding d/ϵ2 dependence in the sample complexity, and instead only
requiring order-(d/ϵ) samples to be drawn for the empirical LeakyReLU loss subgradient estimate.
For a sufficiently accurate estimate t̂ of t (which is satisfied by at least one of the guesses for
which the Optimization procedure is run), we argue that there is a sufficiently negative correlation
between the empirical subgradient and the target weight vector w∗. This result, combined with the
Initialization result, then enables us to inductively argue that the distance between the weight vector
constructed by the Optimization procedure and the target vector w∗ contracts and becomes smaller
than ϵ within order-log(1/ϵ) iterations. This result is quite surprising, since the LeakyReLU loss
is nonsmooth (it is, in fact, piecewise linear) and we do not explicitly bound its growth outside the
set of its minima (i.e., we do not prove a local error bound, which would typically be used to prove
linear convergence). Thus, the result as ours is impossible using black-box results for nonsmooth
optimization. Additionally, we never even explicitly use the LeakyReLU loss function or prove that
it is minimized by w∗; instead, we directly prove that the vectors w constructed by our procedure
converge to the target vector w∗. On a technical level, our result is enabled by a novel inductive
argument, which we believe may be of independent interest.

Finally, since each run of the Optimization subroutine returns a different hypothesis, with only the
one(s) with the guess of t being sufficiently accurate satisfying our theoretical guarantee, we need a
principled approach to selecting a hypothesis with the target error guarantee. This is achieved in the
Testing procedure, which simply draws a fresh sample and selects a hypothesis with the lowest test
error. By a standard result due to [MN06], such a hypothesis satisfies our target error guarantee.

B.1 Initialization Procedure

We begin this section with Lemma 2.1, which shows that for any κ > 0, given N1 = Õ(d/(κ4p2(1−
2η)2) log(1/δ)) i.i.d. samples from D, we can construct a good initial point w0 that forms an angle
at most κ with the target weight vector w∗. For our purposes, κ should be of the order 1

t . For
t ≤ 2

√
log(1/ϵ′), where ϵ′ = ϵ/(1− 2η), we can ensure that N1 = Õ(d/(p2(1− 2η)2) log(1/δ)).

The downside of the lemma, however, is that the number of samples N1 requires at least approximate
knowledge of the bias parameter p (or, more accurately, of e−t2/2). We address this challenge by
arguing (in Lemma 2.2) that we can estimate p using the procedure described in Algorithm 4, without
increasing the total number of drawn samples by a factor larger than order-log(1/ϵ′).
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Algorithm 4 Initialization

1: Input: δ, η, ϵ > 0
2: Let j = 0
3: repeat
4: j ← j + 1
5: pj ← 1/2j

6: Draw nj =
⌈ 32πd(log(1/δ)+log log((1−2η)/ϵ))

(1−2η)2p2
j

⌉
new samples from D

7: uj ← 1
nj

∑nj

i=1 y
(i)x(i)

8: until ∥uj∥2 ≥ 3
4

√
2
π (1− 2η)pj or (1− 2η)pj ≤ ϵ

9: Let p̂ = 2pj , κ = 1/(5
√
2(log(4) + log(1/p̂)))

10: Draw N1 = ⌈ 64πd log(2/δ)
κ4(1−2η)2p̂2 ⌉ new samples from D

11: u← 1
N1

∑N1

i=1 x
(i)y(i)

12: w0 ← u/∥u∥2
13: return w0, p̂

Lemma 2.1 (Initialization via Chow Parameters). Given κ > 0, define pt = e−t2/2, N1 =
O(d/(κ4pt

2(1−2η)2) log(1/δ)) and let (x(i), y(i)) for i ∈ [N1] be i.i.d. samples drawn fromD. Let
u = 1

N1

∑N1

i=1 x
(i)y(i) and w0 = u/∥u∥2. Then, with probability 1− δ, we have θ(w0,w

∗) ≤ κ.

Proof. We start by showing that E(x,y)∼D[yx] is parallel to w∗ and has nontrivial magnitude, and
then draw our conclusions from there. In particular, we prove that

E
(x,y)∼D

[yx] =

√
2

π
(1− 2η)ptw

∗. (1)

To do so, observe first that for any vector v in the orthogonal complement of w∗ (i.e., such that
v ·w∗ = 0), x · v (projection of x onto v) is independent of x ·w∗, as x is drawn from N . Thus,
E(x,y)∼D[yx] · v = 0, which means that E(x,y)∼D[yx] is either a zero vector or parallel to w∗. To
determine the magnitude of this vector, we next look at the projection of E(x,y)∼D[yx] onto w∗.
Using that w∗ · x is a one-dimensional standard normal random variable, we have

E
x∼N

[sign(w∗ · x+ t)w∗ · x] = E
z∼N

[1{z ≥ −t}z − 1{z < −t}z]

= E
z∼N

[1{−t < z < t}z] + 2 E
z∼N

[1{z ≥ t}z]

= 2 E
z∼N

[1{z ≥ t}z]

=
2√
2π

∫ +∞

t

ze−z2/2dz = − 2√
2π

∫ +∞

t

d
(
e−z2/2

)
=

√
2

π
e−t2/2 =

√
2

π
pt.

Recalling the definition of y, we now obtain Equation (1). We then conclude from Equation (1) that

∥E(x,y)∼D[yx]∥2 =
√

2
π (1− 2η)pt, as ∥w∗∥2 = 1, by assumption.

The next step is to show that u = 1
N1

∑N1

i=1 y
(i)x(i) concentrates near its expectation. Note that yx

is
√
2-sub-Gaussian as x is standard normal, therefore, by the multiplicative Hoeffding bound,

Pr

[∥∥∥∥ 1

N1

N1∑
i=1

y(i)x(i) − E
(x,y)∼D

[yx]

∥∥∥∥
2

≥ κ2

8
∥ E
(x,y)∼D

[yx]∥2
]
≤ 2 exp

(
−

N1κ
4∥E(x,y)∼D[yx]∥22

128d

)
≤ 2 exp

(
− N1κ

4(1− 2η)2pt
2

64πd

)
.

Thus, choosing N1 = ⌈ 64πd log(2/δ)
κ4(1−2η)2pt

2 ⌉ suffices to guarantee that ∥u − E(x,y)∼D[yx]∥2 ≤
κ2

8 ∥E(x,y)∼D[yx]∥2, with probability at least 1− δ.
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It remains to bound θ(w0,w
∗), where w0 = u/∥u∥2. Since w∗ is a unit vector, we have that with

probability at least 1− δ,

cos θ(w0,w
∗) =

u ·w∗

∥u∥2
≥

(u−E(x,y)∼D[yx]) ·w∗ +E(x,y)∼D[yx] ·w∗

∥u−E(x,y)∼D[yx]∥2 + ∥E(x,y)∼D[yx]∥2

≥
(1− κ2/8)∥E(x,y)∼D[yx]∥2
(1 + κ2/8)∥E(x,y)∼D[yx]∥2

= 1− κ2/4

1 + κ2/8
,

where we have used that E(x,y)∼D[yx] · w∗ = ∥E(x,y)∼D[yx]∥2 (by Equation (1)) and (u −
E(x,y)∼D[yx]) · w∗ ≥ − supw:∥w∥2=1(u − E(x,y)∼D[yx]) · w, which is greater than or equal to

−κ2

8 ∥E(x,y)∼D[yx]∥2, by the concentration argument used above.

As cos θ(w0,w
∗) ≤ 1− θ(w0,w

∗)2/4, we further have

θ(w0,w
∗)2/4 ≤ κ2/4

1 + κ2/8
≤ κ2/4,

yielding the desired result that θ(w0,w
∗) ≤ κ.

We now leverage Lemma 2.1 to argue about correctness of Algorithm 4, which provides an imple-
mentable initialization procedure.
Lemma 2.2. Consider the Initialization procedure described by Algorithm 4 in Appendix B.1. If 0 ≤
t ≤

√
2 log((1− 2η)/ϵ), then with probability at least 1−δ, exp(−t2/2) ≤ p̂ ≤ 4 exp(−t2/2). The

algorithm draws a total of Õ
( d log(1/δ)
max{(1−2η)p, ϵ}2

)
samples and ensures that θ(w0,w

∗) ≤ min{ 1
5t ,

π
2 }.

Proof. Let ϵ′ = ϵ/(1 − 2η) and J = ⌈log2(1/ϵ′)⌉. As we have shown in the proof of Lemma 2.1,
vector uj satisfies

Pr

[
∥uj −E[yx]∥2 ≥

1

4

√
2

π
(1− 2η)pj

]
≤ 2 exp

(
−

nj(1− 2η)2p2j
32πd

)
.

Since the algorithm runs for at most J = ⌈log2(1/ϵ′)⌉ iterations, applying the union bound yields:

Pr

[
∥uj −E[yx]∥2 ≥

1

4

√
2

π
(1− 2η)pj , ∀j = 1, · · · , J

]
≤ 2J exp

(
−

nj(1− 2η)2p2j
32πd

)
≤ δ,

where we plugged in nj =
⌈ 32πd(log(1/δ)+log log(1/ϵ′))

(1−2η)2p2
j

⌉
. Furthermore, recall that we have proved in

Lemma 2.1 that ∥E[yx]∥2 =
√
2/π(1− 2η) exp(−t2/2). Hence, with probability at least 1− δ, we

have that for all j = 1, · · · , J ,√
2

π
(1− 2η)(exp(−t2/2)− pj/4) ≤ ∥uj∥2 ≤

√
2

π
(1− 2η)(exp(−t2/2) + pj/4). (2)

Since we have assumed 0 ≤ t ≤
√
2 log(1/ϵ′), it must be exp(−t2/2) ≥ ϵ′, thus the claimed bound

on p̂ holds if the algorithm loop ends because j = ⌈log2(1/ϵ′)⌉. Consider now the case that the loop
ends before reaching the upper bound on the number of iterations. Observe that when pj is still far
away from exp(−t2/2), i.e., when pj > 2 exp(−t2/2), Equation (2) shows that with probability
at least 1 − δ, ∥uj∥2 < (3/4)

√
2/π(1 − 2η)pj ; thus, the algorithm will continue to decrease our

guess pj . On the other hand, if pj is already small, i.e., if pj ≤ exp(−t2/2), Equation (2) implies
that ∥uj∥2 ≥ (3/4)

√
2/π(1− 2η)pj , reaching the repeat-until loop termination condition. As any

iteration of the algorithm reduces the value of pj by a factor of 2, we conclude that the loop ends with
pj that satisfies 1

2 exp(−t
2/2) ≤ pj ≤ 2 exp(−t2/2), hence the bound on p̂ follows as p̂ = 2pj .

The bound on the total number of samples drawn by the algorithm follows by observing that for each
iteration j of the repeat-until loop, nj = O(N1), while there are O(log(1/ϵ′)) total loop iterations.

To complete the proof, it remains to note that the bound on p̂ implies√
2 log(1/p̂) ≤ t ≤

√
2(log(4) + log(1/p̂))

Hence κ selected in the algorithm satisfies κ ≤ 1
5t . Furthermore, since the algorithm runs for

at least one iteration, it holds that p̂ ≤ 2p1 = 1. Thus, our choice of κ also guarantees that
κ ≤ 1/(5

√
2 log(4)) ≤ π

2 . It remains to apply Lemma 2.1.
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Algorithm 5 Optimization

1: Input: w0, t̂, γ̂, η, N2 i.i.d. samples (x(i), y(i)) from D
2: µ0 ← (1−4ρ)

√
2π

16(1−2η) ; ρ← 0.00098; P (t̂, γ̂)← Prz∼N [−t̂ ≤ z ≤ −t̂+ γ̂]

3: for k = 0 to K do
4: Let E(wk, t̂) := {x : −t̂ ≤ wk · x ≤ −t̂+ γ̂}
5: Let g(wk;x

(i), y(i)) = 1
2 ((1− 2η)sign(wk · x(i) + t̂)− y(i))projw⊥

k
(x(i))

6: ĝ(wk)← 1
N2

∑N2

i=1 g(wk;x
(i), y(i))1{x

(i)∈E(wk,t̂)}
P (t̂,γ̂)

7: µk ← µk−1(1− ρ)

8: wk+1 ← wk−µkĝ(wk)
∥wk−µkĝ(wk)∥2

9: end for
10: return wK+1

B.2 Optimization

As discussed before, our Optimization procedure (Algorithm 5) can be seen as Riemannian subgradi-
ent descent on the unit sphere. Crucial to our analysis is the use of subgradient estimates from Line 5
and Line 6, where we condition on the event that the samples come from a thin band, defined in
Line 4. Without this conditioning, the algorithm would correspond to projected subgradient descent
of the LeakyReLU loss on the unit sphere. The conditioning effectively changes the landscape of the
loss function being optimized, which cannot be argued anymore to even be convex, as the definition
of the band depends on the weight vector w at which the vector ĝ(w) is evaluated. Nevertheless, as
we argue in this section, the optimization procedure can be carried out very efficiently, even exhibit-
ing a linear convergence rate. To simplify the notation, in this section we denote the conditioned
distribution D|E(w,t̂) by D(w, t̂). We carry out the analysis assuming the estimate t̂ is within additive
ϵ2 of the true threshold value t; as argued before, this has to be true for at least one estimate t̂ for
which the Optimization procedure is invoked.

In the following lemma, we show that if the angle between a weight vector w and the target vector
w∗ is from a certain range, we can guarantee that g(w) is sufficiently negatively correlated with w∗.
This condition is then used to argue about progress of our algorithm. The upper bound on θ will hold
initially, by our initialization procedure, and we will inductively argue that it holds for most iterations.
The lower bound, when violated, will imply that the distance between w and w∗ is small, in which
case we would have converged to a sufficiently good solution w.

Lemma 2.3. Fix any ϵ′ ∈ (0, 1). Suppose that 0 ≤ t ≤
√
2 log(1/ϵ′) and w ∈ Rd is such that

∥w∥2 = 1, and θ = θ(w,w∗) satisfies the inequality ϵ′ exp(t2/2) ≤ θ ≤ 1/(5t). If |t̂− t| ≤ ϵ′2/8

and γ̂ = (1/2)ϵ′ exp(t̂2/2), then E(x,y)∼D(w,t̂)[g(w;x, y) ·w∗] ≤ −(1− 2η) sin θ/(2
√
2π).

Proof. To simplify the notation, in the following we write g(w) = g(w;x, y), as (x, y) is clear from
the context. Using the definition of conditional expectations as well as the definition of D(w, t̂), we
have

E
(x,y)∼D(w,t̂)

[g(w) ·w∗] = E
(x,y)∼D

[g(w) ·w∗|E(w, t̂)] =
E(x,y)∼D[g(w) ·w∗1{E(w, t̂)}]

Pr[E(w, t̂)]
. (3)

We carry out the proof by bounding the numerator E(x,y)∼D[g(w) · w∗1{E(w, t̂)}]. Recall that
E(x,y)∼D[y|x] = (1−2η)sign(w∗ ·x+t). Furthermore, since the Gaussian distribution is rotationally
invariant, we can assume without loss of generality that w = e1 and w∗ = cos θe1 + sin θe2.
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Therefore,
E

(x,y)∼D
[g(w) ·w∗1{E(w, t̂)}]

=
1− 2η

2
E

(x,y)∼D
[(sign(w · x+ t̂)− sign(w∗ · x+ t))projw⊥(x) ·w∗1{E(w, t̂)}]

=
1− 2η

2
E

x∼Dx

[
(sign(x1 + t̂)− sign(cos θx1 + sin θx2 + t))(x2e2)

· (cos θe1 + sin θe2)1{E(w, t̂)}
]

= (1− 2η) sin θ E
x∼Dx

[
1{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}x2

]
, (4)

where in the final equality, we used the fact that under the event E(w, t̂), x1 = w · x is greater than
or equal to −t̂ and consequently, the expression sign(x1 + t̂)− sign(cos θx1 + sin θx2 + t) equals 2
when cos θx1 + sin θx2 + t is less than or equal to zero, and it is zero in all other cases.

Recall that under the assumptions of the lemma, |t − t̂| ≤ ϵ′2/8. To bound the expectation in
Equation (4), we consider two possible cases: t ≥ 1 and t ≤ 1. The reason that we discuss these two
cases is that when t is large, under the condition that−t̂ ≤ x1 ≤ −t̂+ γ̂ and x2 sin θ ≤ −t−x1 cos θ,
it is guaranteed that x2 ≤ 0. On the other hand, when t is small, it is possible that x2 ≥ 0. However,
we can show that even though x2 ≥ 0 in some area of the band, the expectation E[x21{E(w, t̂), 0 ≤
x2 sin θ ≤ −t− x1 cos θ}] is small since t is very small. This is handled in the following two claims,
under the same assumptions as in the statement of the lemma.

Claim B.3. If t ≥ 1, then

E
x∼Dx

[x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}] ≤ −
2Pr[E(w, t̂)]

3
√
2π

.

Proof. When t ≥ 1, under event E(w, t̂), we have

x2 sin θ ≤ −t− x1 cos θ ≤ −t+ t̂ cos θ

≤ −t+ t cos(θ) + ϵ′2 cos(θ)/8

≤ −2 sin2(θ/2)t+ ϵ′2/8.

Since we have assumed t ≥ 1 and θ ≥ ϵ′ exp(t2/2), we further have

x2 sin θ ≤ −2 sin2(θ/2)t+ ϵ′2/8 ≤ −ϵ′2

8
(exp(t2)− 1) ≤ 0,

where we used that sin(θ/2) ≥ θ/4, which holds for any θ ≤ π. Therefore, x2 ≤ 0 when
1{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ} = 1.

Note that conditioning on E(w, t̂) we have x1 ≤ −t̂+ γ̂, hence it holds 1{E(w, t̂),x2 sin θ ≤ −t−
x1 cos θ} ≥ 1{E(w, t̂),x2 sin θ ≤ −t− (−t̂+ γ̂) cos θ}. In addition, since t̂ ≥ t− ϵ′2/8, we have
1{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ} ≥ 1{E(w, t̂),x2 sin θ ≤ −(1− cos θ)t− (ϵ′2/8 + γ̂) cos θ}.
Therefore, we have the following upper bound:

E
x∼Dx

[x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}]

≤ E
x∼Dx

[x2 1{E(w, t̂),x2 ≤ −t tan(θ/2)− (ϵ′2/8 + γ̂) cot θ}],
(5)

where we used the trigonometric identity (1 − cos θ)/ sin θ = tan(θ/2). Since x1 and x2 are
independent standard normal random variables, the expectation on the right-hand side of Equation (5)
has the following closed form expression:

E
x∼Dx

[x2 1{E(w, t̂),x2 ≤ −t tan(θ/2)− (ϵ′2/8 + γ̂) cot θ}]

= Pr[E(w, t̂)]

∫ −t tan(θ/2)−(ϵ′2/8+γ̂) cot θ

−∞

x√
2π

exp(−x2/2) dx

= −Pr[E(w, t̂)]√
2π

exp

(
− 1

2

(
t tan

(
θ

2

)
+

ϵ′2

8
cot θ + γ̂ cot θ

)2)
. (6)
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Let us now bound t tan
(
θ
2

)
+ ϵ′2

8 cot θ+γ̂ cot θ. Using the trigonometric inequalities tan(θ/2) ≤ θ/2

and cot θ ≤ 1/θ, which hold for θ ∈ [0, π/2], and recalling that ϵ′ exp(t2/2) ≤ θ ≤ 1/(5t), we have

t tan
(θ
2

)
+

ϵ′2

8
cot θ + γ̂ cot θ ≤ tθ

2
+

ϵ′2

8θ
+

γ̂

θ

≤ 1

10
+

1

8
+

1

2
e

t̂2−t2

2

≤ 9

40
+

1

2
e

ϵ′2
8

√
2 log(1/ϵ′) ≤ 7

8
, (7)

where the second inequality is by the definition of γ̂ and the bounds on θ and the third inequality is
by t̂− t ≤ ϵ′2

8 and t̂, t ≤
√
2 log(1/ϵ′). Hence, combining Equation (5)–Equation (7), we get

E
x∼Dx

[x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}] ≤ −
Pr[E(w, t̂)]√

2π
exp(−(7/8)2/2)

≤ −2Pr[E(w, t̂)]

3
√
2π

, (8)

as claimed.

We now proceed to the case where t < 1.

Claim B.4. If t < 1, then

E
x∼Dx

[x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}] ≤ −
Pr[E(w, t̂)]

2
√
2π

.

Proof. In this case, it is possible that x2 ≥ 0 when 1{E(w),x2 sin θ ≤ −t − x1 cos θ} = 1.
However, since γ̂ = ϵ′ exp(t̂2/2)/2 ≥ ϵ′2/8, it must be −t̂+ γ̂ ≥ −t− ϵ′2/8 + γ̂ ≥ −t, indicating
that −t − (−t̂ + γ̂) cos θ ≤ −t + t cos θ ≤ 0, hence x2 ≤ 0 when 1{E(w, t̂),x2 ≤ −t/ sin θ −
(−t̂+ γ̂) cot θ} = 1. Therefore, we split the indicator 1{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ} into the
indicators of three sub-events:

1{E(w, t̂),x2 ≤ −t/ sin θ − x1 cot θ} = 1{E1}+ 1{E2}+ 1{E3},

where

E1 := E(w, t̂) ∩ {x2 ≤ −t/ sin θ − (−t̂+ γ̂) cot θ}
E2 := E(w, t̂) ∩ {0 ≤ x2 ≤ −t/ sin θ − x1 cot θ}
E3 := E(w, t̂) ∩ {−t/ sin θ − (−t̂+ γ̂) cot θ ≤ x2 ≤ min{−t/ sin θ − x1 cot θ, 0}}.

For Ex∼Dx [x21{E1}], observe first that

1{E1} = 1{E(w, t̂),x2 ≤ −t/ sin θ + t̂ cot θ − γ̂ cot θ}
≥ 1{E(w, t̂),x2 ≤ −t/ sin θ + (t− ϵ′2/8) cot θ − γ̂ cot θ}

Since x2 ≤ 0 under E1, it then holds

E
x∼Dx

[x21{E1}] ≤ E
x∼Dx

[x21{E(w, t̂),x2 ≤ −t/ sin θ + (t− ϵ′2/8) cot θ − γ̂ cot θ}]

= E
x∼Dx

[x21{E(w, t̂),x2 ≤ −t tan(θ/2)− ϵ′2/8 cot θ − γ̂ cot θ}]

= −Pr[E(w, t̂)]√
2π

exp

(
− 1

2

(
t tan

(
θ

2

)
+

ϵ′2

8
cot θ + γ̂ cot θ

)2)
,

following similar steps as in Claim B.3, Equation (5)–Equation (6). Again, note that we have
assumed ϵ′ exp(t2/2) ≤ θ ≤ 1/(5t) and have chosen γ̂ = ϵ′ exp(t2/2)/2, thus, using the fact that
tan(θ/2) ≤ θ/2, cot θ ≤ 1/θ, we further get:

E
x∼Dx

[x21{E1}] ≤ −
Pr[E(w, t̂)]√

2π
exp

(
− 1

2

(
tθ

2
+

ϵ′2

8θ
+

γ̂

θ

)2)
≤ −2Pr[E(w, t̂)]

3
√
2π

,
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using the same arguments as in Equation (7)–Equation (8). For Ex∼Dx [x21{E3}], note that x2 ≤ 0
under E3, hence Ex∼Dx [x21{E3}] ≤ 0.

We now study Ex∼Dx [x21{E2}]. Observe that

1{E2} = 1{E(w, t̂), 0 ≤ x2 ≤ −t/ sin θ − x1 cot θ}
≤ 1{E(w, t̂), 0 ≤ x2 ≤ −t/ sin θ + t̂ cot θ}
≤ 1{E(w, t̂), 0 ≤ x2 ≤ | − t(1− cos θ)/ sin θ + (ϵ′2/8) cot θ|},

where the first inequality results from the condition that x1 ≥ −t̂. Hence, the expectation
Ex∼Dx [x21{E2}] can be upper-bounded by

E
x∼Dx

[x21{E2}] ≤ E
x∼Dx

[x21{E(w, t̂), 0 ≤ x2 ≤ | − t tan(θ/2) + (ϵ′2/8) cot θ|}]

= Pr[E(w, t̂)]

∫ |−t tan(θ/2)+(ϵ′2/8) cot θ|

0

x√
2π

exp(−x2/2) dx

≤ Pr[E(w, t̂)]

∫ |−t tan(θ/2)+(ϵ′2/8) cot θ|

0

x√
2π

dx

≤ Pr[E(w, t̂)]

2
√
2π

(t tan(θ/2)− (ϵ′2/8) cot θ)2.

We again use the fact that tan(θ/2) ≤ θ and cot θ ≤ 1/θ, then recall that ϵ′ exp(t2/2) ≤ θ ≤ 1/(5t),
ϵ′/θ ≤ 1, thus, we get

E
x∼Dx

[x21{E2}] ≤
Pr[E(w, t̂)]√

2π
((tθ)2+(ϵ′2/(8θ))2) ≤ Pr[E(w, t̂)]√

2π
(1/25+ϵ′2/64) ≤ Pr[E(w, t′)]

12
√
2π

.

Combining with the derived upper bounds on Ex∼Dx [x21{E1}] and Ex∼Dx [x21{E3}] completes
the proof.

Combining Claim B.4 and Claim B.3, we have Ex∼Dx [x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}] ≤
−Pr[E(w,t̂)]

2
√
2π

. Thus, plugging this result back to Equation (4) and then combining with Equation (3),
we complete the proof of the lemma.

Since, by construction, g(w) is orthogonal to w (see Line 5 in Algorithm 5), we can bound the norm
of the expected gradient vector by bounding g(w) · u for some unit vectors u that are orthogonal to
w using similar techniques as in Lemma 2.3. To be specific, we have the following lemma.

Lemma 2.4. Under the assumptions of Lemma 2.3,
∥∥E(x,y)∼D(w,t̂)[g(w;x, y)]

∥∥
2
≤ (1−2η)√

2π
.

Proof. First, we show that for any vector that is orthogonal to both w and w∗, the expected gradient
of g(w) = g(w;x, y) is zero. As a consequence, E[g(w)] must lie in the 2-dimensional space
spanned by w and w∗. To see that, observe first that

E
(x,y)∼D(w,t̂)

[g(w) · v] = 1− 2η

Pr[E(w, t̂)]
E

x∼Dx

[1{E(w, t̂),w∗ · x+ t ≤ 0}v · projw⊥(x)]

=
1− 2η

Pr[E(w, t̂)]
E

x∼Dx

[1{E(w, t̂),w∗ · x+ t ≤ 0}] E
x∼Dx

[v · x] = 0,

where we used projw⊥(x) = x− (x ·w)w and v ·w = 0, the fact that v · x is independent of w · x
and w∗ ·x, and that Ex∼Dx [v ·x] = 0. Furthermore, by construction, g(w) is orthogonal to w. This
indicates that E(x,y)∼D[g(w)] is parallel to w∗, as both w and w∗ are unit vectors. Since x ∼ Dx

is rotation invariant, we can assume w = e1 and w∗ = cos θe1 + sin θe2. We thus only need to
bound |E(x,y)∼D(w,t̂)[g(w)] · e2|. Recall that D(w, t̂) is the distribution conditioned on the band
E(w, t̂) = {x : −t̂ ≤ w · x ≤ −t̂+ γ̂}; hence, by the definition of g(w), we have

| E
(x,y)∼D(w,t̂)

[g(w) · e2]| =
|E(x,y)∼D[g(w) · e21{E(w, t̂)}]|

Pr[E(w, t̂)]

=
(1− 2η)

Pr[E(w, t̂)]
| E
x∼Dx

[x21{E(w, t̂), sin θx2 ≤ −t− cos θx1}]|. (9)
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To proceed, we discuss the cases where t ≤ 1 and t ≥ 1, following similar steps as in Lemma 2.3.

Claim B.5. Under the assumptions of Lemma 2.3, if t ≥ 1, then∥∥ E
(x,y)∼D(w,t̂)

[g(w;x, y)]
∥∥
2
≤ 1− 2η√

2π
.

Proof. As shown in the proof of Claim B.3, when t ≥ 1 the condition x2 ≤ −t/ sin θ − x1 cot θ,
−t̂ ≤ x1 ≤ −t̂+ γ̂ implies that x2 ≤ 0. Hence, in this case we have

1{E(w, t̂),x2 ≤ −t/ sin θ − x1 cot θ} ≤ 1{E(w, t̂),x2 ≤ 0},
and we can further conclude that∣∣ E
x∼Dx

[x21{E(w, t̂), x2 sin θ ≤ −t− x1 cos θ}]
∣∣ = E

x∼Dx

[−x21{E(w, t̂),x2 sin θ ≤ −t− x1 cos θ}]

≤ E
x∼Dx

[−x21{E(w, t̂),x2 ≤ 0}]

=
Pr[E(w, t̂)]√

2π
.

Plugging this back into Equation (9) yields the claimed result.

When t ≤ 1, we use a slightly different decomposition

1{E(w, t̂), x2 ≤ −t̂/ sin θ − x1 cot θ} = 1{E ′1}+ 1{E ′2},
where

E ′1 = E(w, t̂) ∩ {x2 ≤ −t/ sin θ − x1 cot θ,x2 ≤ 0},
E ′2 = E(w, t̂) ∩ {0 ≤ x2 ≤ −t/ sin θ − x1 cot θ}.

By the definitions of these two events, we have

E
Dx

[
x21{E ′1}

]
≤ 0, E

Dx

[
x21{E ′2}

]
≥ 0.

Since in the proof of Lemma 2.3 we have shown that

E
Dx

[x21{E(w, t̂), x2 ≤ −t̂/ sin θ − x1 cot θ}] ≤ 0,

it must hold that∣∣ E
x∼Dx

[x21{E(w, t̂),x2 ≤ −t̂/ sin θ − x1 cot θ}]
∣∣ = ∣∣ E

x∼Dx

[x21{E ′1}] + E
x∼Dx

[x21{E ′2}]
∣∣

≤ − E
x∼Dx

[x21{E ′1}].

Since 1{E ′1} ≤ 1{E(w, t̂),x2 ≤ 0}, we thus have∣∣ E
x∼Dx

[x21{E(w, t̂),x2 ≤ −t̂/ sin θ − x1 cot θ}]
∣∣ ≤ Pr[E(w, t̂)]√

2π
.

Plugging this back into Equation (9) completes the proof.

The following lemma establishes a uniform convergence result for the empirical subgradient.
Lemma B.6. Consider the learning problem defined in Definition 1.1. Fix ϵ′, δ ∈ (0, 1/2), and let α
be any absolute constant in (0, 1). Consider the following class of functions for (x, y) ∼ D :

F =
{
g′(w) : w ∈ Rd, ∥w∥2 = 1, ϵ′ exp

(
t2/2

)
≤ θ(w,w∗) ≤ 1/(5t)

}
, where

g′(w;x, y) =
1

2

(
(1− 2η)sign(w · x+ t̂)− y

)
projw⊥(x)1

{
w · x ∈ [−t̂,−t̂+ γ̂]

}
,

and where t̂ satisfies |t̂ − t| ≤ ϵ′2/8 and γ̂ = (1/2)ϵ′ exp(t̂2/2). Then, using N = Õ(d log(1/(δ))
(1−2η)2ϵ′ )

samples from D with probability at least 1− δ, for any g′(w, t̂) ∈ F it holds∥∥∥ 1

N

N∑
i=1

g′(w;x(i), y(i))− E
(x,y)∼D

[g′(w;x, y)]
∥∥∥
2
≤ α∥ E

(x,y)∼D
[g′(w;x, y)]∥2 .
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Proof. For simplicity, we will use g′(w)to denote g′(w;x, y) and we further define

ĝ′(w) :=
1

N

N∑
i=1

g′(w;x(i), y(i)).

By definition, g′(w) is orthogonal to w, hence so is ĝ′(w). As already argued in the proof of
Lemma 2.4, E(x,y)∼D[g

′(w)] is also orthogonal to w. Thus, ∥ĝ′(w) − E(x,y)∼D[g
′(w)]∥2 is

determined by (ĝ′(w)−E(x,y)∼D[g
′(w)]) ·w′, where w′ is a unit vector that is orthogonal to w.

Fix unit vectors w,w′ ∈ Rd with w ·w′ = 0. We are going to make use of the following variant of
Bernstein’s inequality (see, e.g., [God55]).

Fact B.7. Let X1, . . . , XN be zero mean i.i.d. random variables. Assume that for some positive reals
L, σ > 0, it holds that E[|Xi|k] ≤ (1/2)σ2Lk−2k!. Then, for any x ∈ (0,

√
Nσ2/(2L)),

Pr

[∣∣∣∣ N∑
i=1

Xi

∣∣∣∣ ≥ 2x
√
Nσ2

]
≤ exp(−x2) .

We show that the random variable g′(w) ·w′ satisfies the assumptions of Fact B.7. For any k ≥ 2,
using the definition of g′ which enforces g′(w;x, y) = 0 whenever 1{w · x ∈ [−t̂,−t̂+ γ̂]} = 0,
we have that

E
(x,y)∼D

[|g′(w) ·w′|k] ≤ E
x∼Dx

[1{w · x ∈ [−t̂,−t̂+ γ̂]}] E
x∼Dx

[|w′ · x|k]

≤ Pr[w · x ∈ [−t̂,−t̂+ γ̂]]Ck−2k! ,

where the last inequality comes from the fact that for a
√
2-sub-Gaussian variable z (e.g., a Gaussian

random variable), it holds E[|z|k] ≤ (
√
2e
√
k)k ≤ C1C

k−2
2 k! for some absolute constants C1 and

C2, and we choose C to be a large enough multiple of C1, C2. Let σ2 = Pr[w · x ∈ [−t̂,−t̂+ γ̂]].
Note that since γ̂ = 1

2ϵ
′ exp(t̂2/2), we have σ2 ≥ γ̂ exp(−t̂2/2) = 1

2ϵ
′. Then, the condition of

Fact B.7 is satisfied with σ2 ≥ 1
2ϵ

′.

Next, we show that we can bound ∥E(x,y)∼D[g
′(w)]∥2 from below. In Lemma 2.3 we showed that

when ϵ′ exp(t2/2) ≤ θ(w,w∗) ≤ 1/(5t), |t̂− t| ≤ ϵ′2/8 and γ̂ = 1
2ϵ

′ exp(t̂2/2), it holds

E
(x,y)∼D(w,t̂)

[g(w) ·w∗] =
E(x,y)∼D[g(w) ·w∗1{w · x ∈ [−t̂,−t̂+ γ̂]}]

Pr[w · x ∈ [−t̂,−t̂+ γ̂]]

=
E(x,y)∼D[g

′(w) ·w∗}]
σ2

≤ − (1− 2η) sin(θ(w,w∗))

2
√
2π

. (10)

Let w̃ be a unit vector orthogonal to w such that w∗ = w cos(θ(w,w∗)) + w̃ sin(θ(w,w∗)). Then,
recalling the fact that E(x,y)∼D[g

′(w)] is also orthogonal to w, we have:

∥ E
(x,y)∼D

[g′(w)]∥2 = sup
v∈Rd:∥v∥2=1

E
(x,y)∼D

[g′(w)] · v

≥ − E
(x,y)∼D

[g′(w)] · w̃

= −
E(x,y)∼D[g

′(w)] ·w∗

sin θ(w,w∗)

≥ 1− 2η

2
√
2π

,

where in the last line we used Equation (10). Thus, as σ2 ≤ 1 (it is defined as a probability), we
conclude that

∥ E
(x,y)∼D

[g′(w)]∥2 ≥
(1− 2η)

2
√
2π

σ2. (11)

Applying Fact B.7, we now get that for any w′ ∈ Rd, ∥w′∥2 = 1,

Pr

[∣∣∣∣ĝ′(w) ·w′ − E
(x,y)∼D

[g′(w) ·w′]

∣∣∣∣ ≥ 2x
√

σ2/N

]
≤ exp(−x2) .
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Choosing x = α(1−2η)

2
√
2π

√
σ2N , where α ∈ (0, 1) is an absolute constant, yields

Pr

[∣∣∣∣ĝ′(w) ·w′ − E
(x,y)∼D

[g′(w) ·w′]

∣∣∣∣ ≥ α(1− 2η)

2
√
2π

σ2

]
≤ exp(−Nα2(1− 2η)2σ2/(8π)) .

In particular, since the above inequality holds for any unit w′, using Equation (11), it follows that

Pr

[∣∣∣∣ĝ′(w) ·w′ − E
(x,y)∼D

[g′(w) ·w′]

∣∣∣∣ ≥ α∥ E
(x,y)∼D

[g′(w)]∥2
]

≤ exp(−Nα2(1− 2η)2σ2/(8π)) . (12)

It remains to show that Equation (12) holds for all functions in F . To do that, we apply the union
bound along all the directions w′, all the hypothesis w. A cover for these parameters will be of order
(1/ϵ′)O(d). Hence, we have that for any unit vector w ∈ Rd with ϵ′ exp(t2/2) ≤ θ(w,w∗) ≤ 1/(5t),

Pr

[
∥ĝ′(w)− E

(x,y)∼D
[g′(w)]∥2 ≥ α∥ E

(x,y)∼D
[g′(w)]∥2

]
≤ exp(O(d log(1/ϵ′))) exp(−Nα2(1− 2η)2σ2/(8π)) ≤ δ ,

where in the last inequality, we used that σ2 ≥ 1
2ϵ

′, and N ≥ Õ(d log(1/δ)/(ϵ′(1− 2η)2)).

Recall that for some fixed w and t̂, we have defined the empirical gradient vector in Line 6 as:

ĝ(w) =
1

N2P (t̂, γ̂)

N2∑
i=1

g(w;x(i), y(i))1{x(i) ∈ E(w, t̂)},

where P (t̂, γ̂) = Prz∼N [z ∈ [−t̂,−t̂+ γ̂]] = Pr[E(w, t̂)], since w is a unit vector and w ·x follows
standard Gaussian. Thus, ĝ(w) = ĝ′(w)/Pr[E(w, t̂)]. In addition, by definition we know that

E
(x,y)∼D(w,t̂)

[g(w)] = E
(x,y)∼D

[g(w)]/Pr[E(w, t̂)],

and so Lemma B.6 immediately implies the following corollary.

Corollary B.8. Consider the learning problem from Definition 1.1. Let ϵ′, δ, t̂, γ̂ be parameters satis-
fying the condition of Lemma B.6 and choose α = 1/4. Then using Õ(d log(1/(δ))/((1− 2η)2ϵ′))
samples to construct ĝ, for any unit vector w such that ϵ′ exp(t2/2) ≤ θ(w,w∗) ≤ 1/(5t), it holds
with probability at least 1− δ: ∥ĝ(w)−E(x,y)∼D(w,t̂)[g(w)]∥2 ≤ (1/4)∥E(x,y)∼D(w,t̂)[g(w)]∥2.

We are now ready to present and prove our main algorithm-related result. A short roadmap for our
proof is as follows. Since Algorithm 3 constructs a grid with grid-width ϵ′2/8 that covers all possible
values of the true threshold t, there exists at least one guess t̂ that is ϵ′2-close to the true threshold
t. We first show that to get a halfspace with error at most ϵ′, it suffices to use this t̂ as the threshold
and find a weight vector w such that the angle θ(w,w∗) is of the order ϵ′, which is exactly what
Algorithm 5 does. The connection between θ(w,w∗) and the error is conveyed by the following fact:

Fact B.9 (see, e.g., Lemma 4.2 of [DKS18]). Under the standard normal distribution, it holds:

Pr[sign(w · x+ t) ̸= sign(w∗ · x+ t)] ≤ θ(w,w∗)

π
exp(−t2/2).

Let wk be the parameter generated by Algorithm 5 at iteration k for threshold t̂. We show that
θ(wk,w

∗) converges to zero at a linear rate. To this end, we prove that under our carefully devised
step size µk, there exists an upper bound on ∥wk −w∗∥2, which contracts at each iteration. Note
that since both wk and w∗ are on the unit sphere, we have ∥wk − w∗∥2 = 2 sin(θ(wk,w

∗)/2).
Essentially, this implies that Algorithm 5 produces a sequence of parameters wk such that θ(wk,w

∗)
converges to 0 linearly, under this threshold t̂. Thus, we can conclude that there exists a halfspace
among all halfspaces generated by Algorithm 3 that achieves ϵ′ error with high probability.
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Theorem 2.6. Consider the learning problem from Definition 1.1. Fix any unit vector w0 ∈ Rd

such that θ(w0, w
∗) ≤ min(1/(5t), π/2). Fix any ϵ, δ > 0. Let t̂ > 0 be a threshold such

that |t̂ − t| ≤ ϵ2/(8(1 − 2η)2), and let γ̂ = ϵ/(2(1− 2η)) exp(t̂2/2). Then Algorithm 2 uses
N2 = Õ

(
d/((1− 2η)ϵ) log(1/δ)

)
samples from D, has runtime Õ(N2d), and outputs a weight

vector w such that h(x) = sign(w · x+ t̂) satisfies Pr[h(x) ̸= y] ≤ η + ϵ with probability at least
1− δ.

Proof. Let ϵ′ = ϵ
1−2η , and denote wk as the parameter produced by the algorithm at kth iteration

under threshold t̂. Observe that for any unit vector w:

Pr[sign(w · x+ t̂) ̸= sign(w∗ · x+ t)]

= Pr[sign(w · x+ t̂) ̸= sign(w · x+ t), sign(w · x+ t) = sign(w∗ · x+ t)]

+Pr[sign(w · x+ t̂) = sign(w · x+ t), sign(w · x+ t) ̸= sign(w∗ · x+ t)]

≤ Pr[sign(w · x+ t̂) ̸= sign(w · x+ t)] +Pr[sign(w · x+ t) ̸= sign(w∗ · x+ t)].

Since |t̂− t| ≤ ϵ′2/8, it holds

Pr[sign(w · x+ t̂) ̸= sign(w · x+ t)] = Pr[−max{t, t̂} ≤ w · x ≤ −min{t, t̂}]

≤ 2|t̂− t|√
2π

≤ ϵ′2

4
√
2π

.

In addition, as shown in Fact B.9, Pr[sign(w · x+ t) ̸= sign(w∗ · x+ t)] ≤ θ(w,w∗)
π exp(−t2/2);

thus,

Pr[sign(w · x+ t̂) ̸= sign(w∗ · x+ t)] ≤ ϵ′2

4
√
2π

+
θ(w,w∗)

π
exp(−t2/2). (13)

Therefore, it suffices to find a parameter w such that θ(w,w∗) ≤ πϵ′ exp(t2/2). Note that since
both w and w∗ are unit vectors, we have ∥w − w∗∥2 = 2 sin(θ/2), indicating that it suffices to
minimize ∥w −w∗∥2 efficiently. As proved in Lemma 2.1 and Lemma 2.2, we can start with an
initial vector w0 such that θ(w0,w

∗) ≤ 1/(5t) by calling Algorithm 4. Starting from this w0, we
show that ∥wk − w∗∥2 contracts linearly whenever the angle between wk and w∗ is larger than
ϵ′ exp(t2/2), thus we reach the required upper bound for this angle within a logarithmic number of
steps. Denote θk = θ(wk,w

∗) and consider the case when θk ≥ ϵ′ exp(t2/2).

Claim 2.7. Let C1 := (1− 2η)/
√
2π. Drawing N2 = Õ(d log(1/δ)/((1− 2η)2ϵ′)) samples from

distribution D, we have that if θk ≥ ϵ′ exp(t2/2) then with probability at least 1 − δ: ∥wk+1 −
w∗∥22 ≤ ∥w −w∗∥22 − (C1/2)µk sin θk + 4C2

1µ
2
k.

Proof. Observe first that since ĝ(wk) is orthogonal to wk, we have ∥wk − µkĝ(wk)∥22 = ∥wk∥22 +
µ2
k∥ĝ(wk)∥22 ≥ 1, thus normalizing wk − µĝ(wk) is equivalent to projecting wk − µkĝ(wk) to the

unit ball B. Since we have assumed w∗ ∈ B, by the non-expansiveness of the projection operator and
projB(w

∗) = w∗, we have:

∥wk+1 −w∗∥22 =

∥∥∥∥ wk − µkĝ(wk)

∥wk − µkĝ(wk)∥2
−w∗

∥∥∥∥2
2

= ∥projB(wk − µkĝ(wk))−w∗∥22

≤ ∥wk − µkĝ(wk)−w∗∥22.

Thus, expanding the squared norm on the right-hand side yields:

∥wk+1 −w∗∥22 ≤ ∥wk −w∗∥22 − 2µkĝ(wk) · (wk −w∗) + µ2
k∥ĝ(wk)∥22

= ∥wk −w∗∥22 + 2µk E
(x,y)∼D(wk,t̂)

[g(wk) ·w∗] (14)

+ 2µk(ĝ(wk)− E
(x,y)∼D(wk,t̂)

[g(wk)]) ·w∗ + µ2
k∥ĝ(wk)∥22

where in the first equality we used the fact that ĝ(wk) and E(x,y)∼D(wk,t̂)
[g(wk)] are both orthogonal

to wk. Without loss of generality (because of the rotational invariance), assume wk = e1 and
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w∗ = cos θe1 + sin θe2. Then, again by the fact that both ĝ(wk) and E(x,y)∼D(wk,t̂)
[g(wk)] are

orthogonal to wk, we have

(ĝ(wk)− E
(x,y)∼D(wk,t̂)

[g(wk)]) ·w∗ = sin θk(ĝ(wk)− E
(x,y)∼D(wk,t̂)

[g(wk)]) · e2

≤ sin θk
∥∥ĝ(wk)− E

(x,y)∼D(wk,t̂)
[g(wk)]

∥∥
2
.

Thus, further invoking Lemma 2.3, we have:

∥wk+1 −w∗∥22 ≤ ∥wk −w∗∥22 − 2µk
(1− 2η) sin θk

2
√
2π

+ 2µk sin θk
∥∥ĝ(wk)− E

(x,y)∼D(wk,t̂)
[g(wk)]

∥∥
2
+ µ2

k∥ĝ(wk)∥22. (15)

Corollary B.8 (or Lemma 2.5) implies that with N2 = Õ(d log(1/δ)/((1− 2η)2ϵ′)) samples in total,
for any unit vector wk satisfying ϵ′ exp(t2/2) ≤ θk ≤ 1/(5t) with probability at least 1− δ, it holds:∥∥ĝ(wk)− E

(x,y)∼D(wk,t̂)
[g(wk)]

∥∥
2
≤ 1

4

∥∥ E
(x,y)∼D(wk,t̂)

[g(wk)]
∥∥
2
. (16)

Recall that we have shown in the proof of Lemma 2.4 that ∥E(x,y)∼D(wk,t̂)
[g(wk)]∥2 ≤ 1−2η√

2π
;

therefore, Equation (16) further gives that with probability at least 1− δ:

∥ĝ(wk)∥2 ≤
∥∥ĝ(wk)− E

(x,y)∼D(wk,t̂)
[g(wk)]

∥∥
2
+

∥∥ E
(x,y)∼D(wk,t̂)

[g(wk)]
∥∥
2

≤ 5

4

∥∥ E
(x,y)∼D(wk,t̂)

[g(wk)]
∥∥
2
≤ 2(1− 2η)√

2π
. (17)

Thus, plugging Equation (16) and Equation (17) back into Equation (15), we get that with probability
at least 1− δ,

∥wk+1 −w∗∥22 ≤ ∥wk −w∗∥22 − 2µk
1− 2η

2
√
2π

sin θk + 2µk
1− 2η

4
√
2π

sin θk + µ2
k

2(1− 2η)2

π

≤ ∥wk −w∗∥22 − µk
1− 2η

2
√
2π

sin θk + µ2
k

2(1− 2η)2

π
. (18)

Let C1 := 1−2η√
2π

. Then Equation (18) is simplified to:

∥wk+1 −w∗∥22 ≤ ∥w −w∗∥22 −
C1

2
µk sin θk + 4C2

1µ
2
k, (19)

completing the proof of this claim.

It remains to choose the step size µk properly to get linear convergence. By carefully designing a
shrinking step size, we are able to construct an upper-bound ϕk on the distance of ∥wk+1 −wk∥2
using Claim 2.7. Importantly, by exploiting the property that both w and w∗ are on the unit sphere,
we show that the upper bound is contracting at each step, even though the distance ∥wk+1 −wk∥2
could be increasing. Concretely, we have the following claim.

Lemma 2.8. Let ρ = 0.00098 and ϕk = (1− ρ)k. Then, setting µk = (1− 4ρ)ϕk/(16C1) it holds
sin(θk/2) ≤ ϕk for k = 1, · · · ,K.

Proof. Let ϕk = (1− ρ)k where ρ = 0.00098. This choice of ρ ensures that 32ρ2 + 1020ρ− 1 ≤ 0.
We show by induction that choosing µk = (1− 4ρ)ϕk/(16C1) = (1− ρ)k(1− 4ρ)/(16C1), it holds
sin(θk/2) ≤ ϕk. The condition certainly holds for k = 1 since θ1 ∈ [0, π/2]. Now suppose that
sin(θk/2) ≤ ϕk for some k ≥ 1. We discuss the following 2 cases: ϕk ≥ sin(θk/2) ≥ 3

4ϕk and
sin(θk/2) ≤ 3

4ϕk.
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First, suppose ϕk ≥ sin(θk/2) ≥ 3
4ϕk. Since sin(θk/2) ≤ sin θk, it also holds sin θk ≥ 3

4ϕk.
Bringing in the fact that ∥wk+1 −w∗∥2 = 2 sin(θk+1/2) and ∥wk −w∗∥2 = 2 sin(θk/2), as well
as the definition of µk, Equation (19) becomes:

(2 sin(θk+1/2))
2 ≤ (2 sin(θk/2))

2 − C1

2
µk sin θk + 4C2

1

(1− 4ρ)

16C1
ϕkµk

≤ 4ϕ2
k −

C1

2
µk

3

4
ϕk +

C1(1− 4ρ)

4
µkϕk

= 4ϕ2
k −

C1

4

(
1

2
+ 4ρ

)
1− 4ρ

16C1
ϕ2
k

= 4ϕ2
k

(
1− (1 + 8ρ)(1− 4ρ)

512

)
,

where in the second line we used sin θk ≥ 3
4ϕk and in the third line we used the definition of µk by

which µk = (1− 4ρ)ϕk/(16C1). Since ρ is chosen so that 32ρ2 + 1020ρ− 1 ≤ 0, we have:

sin(θk+1/2) ≤ ϕk

√
1− (1 + 8ρ)(1− 4ρ)

512

≤ ϕk

(
1− (1 + 8ρ)(1− 4ρ)

1024

)
≤ (1− ρ)ϕk = (1− ρ)k+1,

as desired.

Next, consider sin(θk/2) ≤ 3
4ϕk. Recall that wk+1 = projB(wk − µkĝ(wk)) and wk ∈ B;

therefore, ∥wk+1 −wk∥2 ≤ ∥wk − µkĝ(w)−wk∥2 = µk∥ĝ(wk)∥2 by the non-expansiveness of
the projection operator. Furthermore, applying Equation (17), we have ∥ĝ(wk)∥2 ≤ 2C1; therefore,
∥wk+1 −wk∥2 ≤ 2µkC1, which indicates that:

2(sin(θk+1/2)− sin(θk/2)) = ∥wk+1 −w∗∥2 − ∥wk −w∗∥2 ≤ ∥wk+1 −wk∥2 ≤ 2µkC1.

Since we have assumed sin(θk/2) ≤ 3
4ϕk, then it holds:

ϕk+1 − sin(θk+1/2) ≥ (1− ρ)ϕk − ϕk + ϕk − sin(θk/2)− µkC1

≥ −ρϕk +
1

4
ϕk −

1− 4ρ

16
ϕk =

3(1− 4ρ)

16
ϕk > 0,

since we have chosen µk = (1− 4ρ)ϕk/(16C1). Hence, it also holds that sin(θk+1/2) ≤ ϕk+1.

Lemma 2.8 shows that sin(θk/2) converges to 0 linearly. Therefore, using N2 = Õ(d log(1/δ)/((1−
2η)2ϵ′)) samples, after K = O( 1ρ log(1/(exp(t

2/2)ϵ′)) = O(log(1/(pϵ′)) iterations, we get a wK

such that θK ≤ 2 sin(θK/2) ≤ ϵ′ exp(t2/2). Let h(x) := sign(wK · x + t̂). Equation (13) then
implies that the disagreement of h(x) and f(x) is bounded by:

Pr[h(x) ̸= f(x)] ≤ ϵ′2

4
√
2π

+
ϵ′

π
≤ ϵ′.

Furthermore, for any boolean function h : Rd 7→ {±1} it holds

errD0−1(h) = Pr
(x,y)∼D

[h(x) ̸= y] = η + (1− 2η) Pr
x∼Dx

[h(x) ̸= sign(w∗ · x+ t)].

Thus, to get misclassification error at most η + ϵ (with respect to the y), we only need to use
ϵ′ = ϵ/(1 − 2η), and we finally get that Pr(x,y)∼D[sign(wK · x + t̂) ̸= y] ≤ η + ϵ, using
N2 = Õ(d log(1/δ)/((1− 2η)ϵ)) samples. Since the algorithm runs for O(log(1/ϵ)) iterations, the
overall runtime is Õ(N2d). This completes the proof of Theorem 2.6.

Proof of Theorem 1.3. From Lemma 2.2, we get that with Õ(d log(1/δ)/((1 − 2η)2p2)) samples
Algorithm 4 produces a unit vector w0 so that θ(w0,w

∗) ≤ min(1/(5t), π/2).
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Since our guesses of the threshold tm, m ∈ [M ] form a grid of (ϵ2/(8(1− 2η)2)-separated values on
the interval [

√
2 log(1/p̂),

√
2 log(4/p̂)] ∋ t, which covers all possible values of the true threshold t,

there exists a m̄ ∈ [M ] such that |tm̄ − t| ≤ ϵ2/(8(1− 2η)2). Thus, the condition of Theorem 2.6 is
satisfied by at least one input threshold. Given w0, let ŵm, m ∈ [M ] be the weight vector produced by
Algorithm 5 at call m = 1, · · · ,M . From Theorem 2.6, we know that with Õ(d log(1/δ)/((1−2η)ϵ))
samples, with probability at least 1− δ we get a list of halfspaces {hm(x) : hm(x) = sign(ŵm +
tm),m = 1, · · · ,M} so that

min
hm,m∈[M ]

Pr
(x,y)∼D

[hm(x) ̸= y] ≤ η + ϵ .

Finally, to pick the optimal hypothesis from the list, we utilize the following fact.

Fact B.10 (Equation (7) in [MN06]). Let D be a distribution over Rd × {±1}. Let F be a concept
set of boolean functions with VC dimension at most d. Let D̂ be the empirical distribution obtained
by drawing Õ(d log(1/δ)/((1− 2η)ϵ)) samples from D. Then it holds that

min
f∈F

Pr
(x,y)∼D̂

[f(x) ̸= y] ≤ min
f∈F

Pr
(x,y)∼D

[f(x) ̸= y] + ϵ .

Using the above fact and a sample size of N3 = Õ(d log(1/δ)/((1− 2η)ϵ)) from D, we output the
hypothesis with the minimum empirical error. By Fact B.10, we have that this will introduce an
error at most ϵ with probability at least 1 − δ. Since M = O(1/ϵ2), the total number of calls of
Algorithm 5 in Algorithm 3 is O(1/ϵ2), and the runtime is Õ(Nd/ϵ2).

Algorithm 6 Testing Procedure

Input: Hypothesis weight vectors ŵ1, ŵ2, . . . , ŵm and thresholds t1, t2, . . . , tm
Draw N3 samples {(x(i), y(i))}N3

i=1 from D
Calculate the test error (the fraction of misclassified points) for hm(x) = sign(ŵm · x + tm),
m ∈ [M ], using {(x(i), y(i))}N3

i=1
Let hm̄(x) = sign(ŵm̄ · x+ tm̄), m̄ ∈ [M ] be the halfspace with smallest empirical error.
return ŵm̄, tm̄

B.3 The Case Where Both η and p are Unknown

Throughout this section, we carried out the analysis assuming knowledge of the noise parameter η.
We now show how to relax this requirement, without changing the sample complexity (up to constant
factors) and only affecting the algorithm runtime by a factor 1/ϵ. In the following lemma, we show
that with Õ(d log(1/δ)/(p2(1 − 2η)2)) samples we can compute constant factor estimates of the
values of p and 1− 2η, which suffice for determining the correct number of samples to draw in all
three subprocedures of our main algorithm (i.e., we can correctly determine N1, N2, and N3).

Lemma B.11. There is an algorithm that uses Õ(d log(1/δ)/(p2(1 − 2η)2)) samples, and with
probability at least 1− δ outputs estimates p̂, η̂, so that Cp̂ ≥ p ≥ p̂ and C(1− 2η̂) ≥ (1− 2η) ≥
(1− 2η̂), where C > 0 is a sufficient large absolute constant.

Proof Sketch. We note that Algorithm 4, can, in fact, be used to get an estimate of (1− 2η)p instead
of only p. Therefore, Algorithm 4 outputs ẑ so that 2ẑ ≥ (1− 2η)p ≥ ẑ.

We assume for simplicity that f(x) is positively biased, i.e., Ex∼N [f(x)] ≥ 0. Note that
E(x,y)∼D[1{y = b}] = (1 − 2η)Prx∼N [f(x) = b] + η, where b ∈ {±1}. Because f(x) is
positively biased, we have that Prx∼N [f(x) = 1] ≥ 1/2. Denote the random variable Z as
Z = 1{y = 1} − 1/2. Note that E[Z] ≥ (1/2)(1− 2η)(Pr[f(x) = 1]− 1/2). Note that if p is less
than a sufficiently small constant, then E[Z] ≥ (1/4)(1− 2η), whereas if p = 1/2, this expectation
does not give any useful information. Note that by standard Chernoff bounds, using O(N log(1/δ))

samples, where N is a parameter, we can get estimates Ẑ, so that E[Z] ≥ Ẑ −
√
1/N . By letting

N = O(1/ẑ), we can distinguish between the cases that (1 − 2η)(Pr[f(x) = 1] − 1/2) ≤ ẑ, in
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which case we have that p is close to 1/2, therefore ẑ is an estimate of 1 − 2η that satisfies our
requirements. Otherwise, we are in the case where E[Z] ≥ (1/4)(1 − 2η). Therefore, we run the
following algorithm: In each round s, we draw Ns = O(2s log(log(1/ϵ)/δ)) samples, and we check
whether Ẑs −

√
1/Ns ≥ 1/2Ẑs. If Ẑs −

√
1/Ns < 1/2Ẑs, we continue, otherwise we stop and

return 1/2Ẑs, which is an effective lower bound of (1 − 2η). The number of rounds is at most
log(1/ϵ), so by union bound, the probability of success is at least 1− δ. After we have estimated an
effective lower bound for (1− 2η), we can get an estimate for the value of p, using the estimator ẑ
(recalling that 2ẑ ≥ (1− 2η)p ≥ ẑ).

While Lemma B.11 is sufficient for ensuring that the number of samples our algorithm draws is not
higher than when assuming the knowledge of η, it is not sufficient for correctly translating the 0-1
error and guaranteeing that it is bounded by η +O(ϵ). However, it is not hard to verify that if we run
the Optimization procedure for an estimate η̂ that is within ±ϵ of η, then the correct 0-1 error bound
of η +O(ϵ) would follow. This is resolved by simply running the entire optimization component of
the algorithm (including all calls to Algorithm 2) for a grid of ϵ-separated values of η in the range
(0, 1/2), which must contain the true value of η. It is immediate that this increases the runtime (and
the number of hypothesis halfspaces) by a factor O(1/ϵ). Yet the same number of samples suffices
for the optimization and testing, as all that we require is that at least one hypothesis is constructed
using estimates of η and t that are sufficiently close to their true values (by order-ϵ and order-ϵ2,
respectively, as discussed before).

C Omitted Content from Section 3

C.1 Background on Hermite Polynomials

We define the standard Lp norms with respect to the Gaussian measure, i.e., ∥g∥Lp =
(Ex∼N [|g(x)|p)1/p. We denote by L2(N ) the vector space of all functions f : Rd → R such
that Ex∼N [f2(x)] <∞. The usual inner product for this space is Ex∼N [f(x)g(x)]. While, usually
one considers the probabilist’s or physicist’s Hermite polynomials, in this work we define the normal-
ized Hermite polynomial of degree i to be He0(x) = 1,He1(x) = x,He2(x) =

x2−1√
2
, . . . ,Hei(x) =

Ĥei(x)√
i!

, . . . where by Ĥei(x) we denote the probabilist’s Hermite polynomial of degree i. The un-

normalized Hermite polynomials are defined as Ĥei(z) exp(−z2/2) = (−1)i d
i exp(−z2/2)

dzi . The
normalized Hermite polynomials He1,He2, . . . ,Hei, . . . form a complete orthonormal basis for the
single dimensional version of the inner product space defined above. To get an orthonormal basis
for L2(N ), we use a multi-index V ∈ Nd to define the d-variate normalized Hermite polynomial as
HeV (x) =

∏d
i=1 Hevi(xi). The total degree of HeV is |V | =

∑
vi∈V vi. Given a function f ∈ L2,

we compute its Hermite coefficients as f̂(V ) = Ex∼N [f(x)HeV (x)] and express it uniquely as∑
V ∈Nd f̂(V )HeV (x).

C.2 Additional Background on the SQ Model

To define the SQ dimension, we need the following definition.

Definition C.1 (Pairwise Correlation). The pairwise correlation of two distributions with probability
density functions (pdfs) D1, D2 : X → R+ with respect to a distribution with pdf D : X → R+,
where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) + 1 :=∫
x∈X D1(x)D2(x)/D(x)dx. We say that a collection of s distributions D = {D1, . . . , Ds} overX is

(γ, β)-correlated relative to a distribution D if |χD(Di, Dj)| ≤ γ for all i ̸= j, and |χD(Di, Dj)| ≤
β for i = j.

The following notion of dimension effectively characterizes the difficulty of the decision problem.

Definition C.2 (SQ Dimension). For γ, β > 0, a decision problem B(D, D), where D is fixed and D
is a family of distributions over X , let s be the maximum integer such that there exists DD ⊆ D such
that DD is (γ, β)-correlated relative to D and |DD| ≥ s. We define the Statistical Query dimension
with pairwise correlations (γ, β) of B to be s and denote it by SD(B, γ, β).
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The connection between SQ dimension and lower bounds is captured by the following lemma.
Lemma C.3 ([FGR+17]). Let B(D, D) be a decision problem, where D is the reference distribution
and D is a class of distributions over X . For γ, β > 0, let s = SD(B, γ, β). Any SQ algorithm that
solves B with probability at least 2/3 requires at least s · γ/β queries to the VSTAT(1/γ) oracle.

In order to construct a large set of nearly uncorrelated hypotheses, we need the following fact:
Fact C.4 (see, e.g., [DKS17]). Let d ∈ Z+. Let 0 < c < 1/2. There exists a collection S of 2Ω(dc)

unit vectors in Rd, such that any pair v,u ∈ S, with v ̸= u, satisfies |v · u| < d−1/2+c.

C.3 Omitted Details from the Proof of Theorem 3.2

Claim C.5. Let fv(x) = sign(v · x − t) and fu(x) = sign(u · x − t) and let ci be the Hermite
coefficient of Hei. Then, it holds Ex∼N [fv(x)fu(x)] =

∑∞
i=0 cos

i θ c2i , where θ is the angle
between v and u.

Proof. We first need the following standard fact about the rotations of Hermite polynomials (see,
e.g., Fact D.1 in [DKS17]):

Fact C.6. For θ ∈ R, it holds Hei(x cos(θ)+y sin θ) =
∑i

j=0

(
i
j

)
cosj θ sini−j θHej(x)Hei−j(y) .

We have that
E

x∼N
[fv(x)fu(x)] = E

x1,x2∼N
[sign(x1 − t)sign(cos θx1 + sin θx2 − t)]

= E
x1,x2∼N

[( ∞∑
i=0

ciHei(x1)

)( ∞∑
i=0

ciHei(cos θx1 + sin θx2)

)]

= E
x1∼N

[( ∞∑
i=0

ciHei(x1)

)
E

x2∼N

[( ∞∑
i=0

ciHei(cos θx1 + sin θx2)

)]]

= E
x1∼N

[( ∞∑
i=0

ciHei(x1)

)( ∞∑
i=0

cosi θciHei(x1)

)]
=

∞∑
i=0

cosi θ c2i ,

where in the third equality, we used Fact C.6 and the orthogonality of the Hermite polynomials with
respect to the Gaussian.

We prove the following.
Claim C.7. It holds that Ez∼N [sign(z − t)Hei(z)] = 2(i)−1/2Hei−1(t) exp(−t2/2) .

Proof. Denote as Ĥei(z) the non-normalized Hermite polynomial of order d. The Hermite polyno-
mials are defined as follows:

Ĥei(z) exp(−z2/2) = (−1)i d
i exp(−z2/2)

dzi
.

By taking the derivative over z (which exists as Hei is a polynomial and exp(−z2/2) is differentiable),
we have that

∫
(Ĥei(z) exp(−z2/2)) = −Ĥei−1(z). Therefore, we have that

E
z∼N

[sign(z − t)Ĥei(z)] =

∫
z∈R

sign(z − t)Ĥei(z)G(z)dz

= 2

∫ ∞

t

Ĥei(z)G(z)dz ,

where we used that
∫
z∈R Ĥei(z)G(z)dz = 0 by the orthogonality of the Hermite Polynomials with

respect to the Gaussian measure. Furthermore, using that
∫
(Ĥei(z) exp(−z2/2)) = −Ĥei−1(z) we

get that

E
z∼N

[sign(z − t)Ĥei(z)] = 2

∫ ∞

t

(−Ĥei−1(z)G(z))′dz

= 2Ĥei−1(t)G(t) .
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By normalizing the Hermite polynomial, we complete the proof of Claim C.7.

C.4 Proof of Lemma 3.6

We restate and prove the following lemma.
Lemma C.8. Let D0 be a product distribution over N × {±1}, where Pr(x,y)∼D0

[y = 1] =
Pr(x,y)∼Dv

[y = 1] = p. We have χD0
(Dv, Du) ≤ 2(1−2η)(E[fv(x)fu(x)]−E[fv(x)]E[fu(x)])

and χ2(Dv, D0) ≤ (1− 2η)(E[fv(x)]−E[fv(x)]
2).

Proof. We have that

χD0(Dv, Du) = Pr
(x,y)∼Dv

[y = 1]χN (Av, Au) + Pr
(x,y)∼Dv

[y = 0]χN (Bv, Bu)

= (1/p)χN (Av, Au) + (1/(1− p))χN (Bv, Bu) .

We bound each term. Note that by construction Av(x) = G(x)(η + (1− 2η)1{fv(x) > 0})/(η +
(1 − 2η)Ex∼N [1{fv(x) > 0}]). Note that 1{fv(x) > 0} = (f(x) + 1)/2, therefore Av(x) =
G(x)(1 + (1− 2η)fv(x))/(1 + (1− 2η)Ex∼N [fv(x)]). Therefore,

Av(x)

G(x)
− 1 =

(1− 2η)

p

(
fv(x)− E

x∼N
[fv(x)]

)
.

Using the above, we get that χN (Av, Au) = (1 − 2η)/p(E[fv(x)fu(x)] − E[fv(x)]E[fu(x)]).
Similarly, we get that χN (Bv, Bu) = (1− 2η)/(1− p)(E[fv(x)fu(x)]− E[fv(x)]E[fu(x)]). It
remains to bound χ2(Dv, D0). Note that χ2(Dv, D0) = χD0(Dv, Dv), hence, χ2(Dv, D0) ≤
(1− 2η)Ex∼N ([fv(x)]−Ex∼N [fv(x)]

2).

C.5 Reduction of Testing to Learning

Lemma C.9 (Reduction of Testing to Learning). Any algorithm that learns halfspaces with η = 1/3
RCN noise can be used to solve the decision problem of Theorem 3.2.

Proof. Assume that there is an algorithm A which given ϵ > 0 and distribution D with Gaussian
x- marginals and corrupted with η = 1/3 random classification noise, outputs a hypothesis h with
Pr(x,y)∼D[h(x) ̸= y] ≤ η + ϵ. We can use A to solve the decision problem B(D0,D). Note that
if the distribution were D0, then any hypothesis would get error at least η + (1 − 2η)p (as y is
independent of x). If the distribution were one in the set D, then the algorithm for ϵ = (1− 2η)p/2
would give a hypothesis such that Pr(x,y)∼D[h(x) ̸= y] ≤ η + (1 − 2η)p/2. So making one
additional query of tolerance (1− 2η)p would be able to solve the decision problem. This completes
the proof.

C.6 Solving the Decision Problem Efficiently

In this section, we show that our SQ lower bound (Theorem 3.2) for the testing problem is, in fact,
tight. We prove the following:
Theorem C.10 (Efficient Algorithm for Testing). Let d ∈ N and ϵ ∈ (0, 1) and letD be a distribution
supported on Rd × {±1} such that Dx is the standard Gaussian on Rd. There exists an algorithm
that, given N = C

√
d/(ϵ2 log(1/ϵ)) samples from D, where C > 0 is a sufficiently large absolute

constant, distinguishes between the following cases with probability of error at most 1/3:

1. x is independent of y, where (x, y) ∼ D.

2. y is f(x) corrupted with RCN for η = 1/3, where f is an LTF with Pr[f(x) = 1] = ϵ.

Proof. Let Z = yx be the random variable where (x, y) ∼ D and let ZN = (1/N)
∑N

i=1 x
(i)y(i) be

the random variables where (x(i), y(i)), for i ∈ [N ] are samples drawn from D. The tester works as
follows: If ∥ZN∥22 > d/N + cϵ2 log(1/ϵ), where c > 0 is a sufficiently small universal constant, we
answer that we are in Case 2, otherwise that we are in the Case 1. We prove the correctness of the
algorithm below.
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We note that if we are in the Case 1, then Z follows the standard Gaussian distribution. To see that,
we show the following simple claim:

Claim C.11. Let x be distributed as standard normal and let y supported in {±1} be a random
variable independent of x, then yx is distributed as standard normal.

Proof. We assume that y = 1 with probability 1−η for some η ∈ (0, 1). Let ϕA(t) = E[exp(itA)] be
the characteristic function of A. Then, we have that ϕyx(t) = E[exp(ityx)] = (1−η)E[exp(itx)]+
ηE[exp(−itx)] = (1 − η)ϕx(t) + ηϕ−x(t) = ϕx(t), where in the last equality we used that
ϕ−x(t) = ϕx(t) as the standard normal distribution is symmetric. Therefore, ϕyx(t) = ϕx(t), hence
the distribution of yx and x is the same.

From Claim C.11, we have that Z follows standard normal distribution if we are in Case 1 and
therefore ZN follows N (0, I/N). Hence, ∥ZN∥22 has mean d/N and standard deviation O(

√
d/N).

By Chebyshev’s inequality, we answer correctly in this case with a probability of at least 2/3.

We next analyze the case where Z is in Case 2. Let f(x) = sign(v · x+ t) be the defining halfspace.
Then for any u orthogonal to v, we have that the random variables y and (x · u) are independent
as y only depends on x · v. Therefore, by Claim C.11, we have that y(x · u) is standard normal,
therefore yx⊥v is standard (d− 1)-dimensional normal. Furthermore, note that from Equation (1)
that E[yx · v] = Θ(ϵ

√
log(1/ϵ)) and Var[yx · v] = Θ(1). Therefore, we can write ∥ZN∥22 =

(1/N)(
∑d−1

i=1 g2
i +E2), where gi are distributed as standard normal and E2 is the contribution due

to the noise. We show that with probability at least 2/3, it holds that ∥ZN∥22 ≥ d/N + cϵ2 log(1/ϵ).
Note that with probability at least 9/10, we have that |E| = Θ(ϵ

√
log(1/ϵ)) by Chebyshev’s

inequality. Due to the independence of the directions, the random variables gi for i = 1, . . . , d− 1

are independent of E. Hence, conditioned on the event that |E| = Θ(ϵ
√

log(1/ϵ)), we have that
∥Zn∥22 has mean (d− 1)/N +Θ(ϵ2 log(1/ϵ)) and standard deviation O(

√
d/N). Hence, again the

tester would succeed with a probability of at least 2/3.

C.7 SQ Algorithm for Learning Halfspaces with RCN with Exponential Number of Queries

Here we show that there exists a query-inefficient SQ algorithm that can be simulated with near-
optimal sample complexity of Õ(d/ϵ).

Lemma C.12 (Inefficient SQ Algorithm). There is an SQ algorithm that makes 2O(d)polylog(1/ϵ)

queries to VSTAT(1/ϵ), and learns the class of halfspaces on Rd in the presence of RCN with
η = 1/3 with error at most η + ϵ.

Proof Sketch. We note that it is always possible to design an exponential query SQ algorithm that
achieves the optimal sample complexity of Õ(d/ϵ) (if we were to simulate it with samples). One
approach is to generate an ϵ-cover G that encompasses all hypotheses in Rd (with size roughly (1/ϵ)d),
and then utilize the query function f(x, y) = 1{h1(x) ̸= y} − 1{h2(x) ̸= y} for any h1, h2 ∈ G. It
can be readily observed that the variance of f is at most the probability that h1(x) ̸= h2(x), which
means that VSTAT(1/ϵ) can distinguish which hypothesis, h1 or h2, yields a smaller error. Note
that if we were to simulate this SQ algorithm using samples, we would also need to do a union bound
over the set of all hypotheses.

D Lower Bound for Low-Degree Polynomial Testing

D.1 Preliminaries: Low-Degree Method

We begin by recording the necessary notation, definitions, and facts. This section mostly fol-
lows [BBH+20].

Low-Degree Polynomials A function f : Ra → Rb is a polynomial of degree at most k if it can be
written in the form

f(x) = (f1(x), f2(x), . . . , fb(x)) ,
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where each fi : Ra → R is a polynomial of degree at most k. We allow polynomials to have
random coefficients as long as they are independent of the input x. When considering list-decodable
estimation problems, an algorithm in this model of computation is a polynomial f : Rd1×n → Rd2×ℓ,
where d1 is the dimension of each sample, n is the number of samples, d2 is the dimension of the
output hypotheses, and ℓ is the number of hypotheses returned. On the other hand, [BBH+20] focuses
on binary hypothesis testing problems defined in Definition D.2.

A degree-k polynomial test for Definition D.2 is a degree-k polynomial f : Rd×n → R and a
threshold t ∈ R. The corresponding algorithm consists of evaluating f on the input x1, . . . , xn and
returning H0 if and only if f(x1, . . . , xn) > t.

Definition D.1 (n-sample ϵ-good distinguisher). We say that the polynomial p : Rd×n 7→ R is an
n-sample ϵ-distinguisher for the hypothesis testing problem in Definition D.2 if

| E
X∼D⊗n

0

[p(X)]− E
u∼µ

E
X∼D⊗n

u

[p(X)]| ≥ ϵ
√
VarX∼D⊗n

0
[p(X)].

We call ϵ the advantage of the distinguisher.

Let C be the linear space of polynomials with a degree at most k. The best possible advantage is
given by the low-degree likelihood ratio

max
p∈C

E
X∼D

⊗n
0

[p2(X)]≤1

| E
u∼µ

E
X∼D⊗n

u

[p(X)]− E
X∼D⊗n

0

[p(X)]| =
∥∥∥∥ E
u∼µ

[
(D̄⊗n

u )≤k
]
− 1

∥∥∥∥
D⊗n

0

,

where we denote D̄u = Du/D0 and the notation f≤k denotes the orthogonal projection of f to C.

Another notation we will use regarding a finer notion of degrees is the following: We say that the
polynomial f(x1, . . . , xn) : Rd×n → R has samplewise degree (r, k) if it is a polynomial, where
each monomial uses at most k different samples from x1, . . . , xn and uses degree at most r for each
of them. In analogy to what was stated for the best degree-k distinguisher, the best distinguisher of
samplewise degree (r, k)-achieves advantage

∥∥Eu∼µ[(D̄
⊗n
u )≤r,k]− 1

∥∥
D⊗n

0
the notation f≤r,k now

means the orthogonal projection of f to the space of all samplewise degree-(r, k) polynomials with
unit norm.

We begin by formally defining a hypothesis problem.
Definition D.2 (Hypothesis testing). Let D0 be a distribution and S = {Du}u∈S be a set of
distributions on X . Let µ be a prior distribution on the indices S of that family. We are given access
(via i.i.d. samples or oracle) to an underlying distribution where one of the two is true:

• H0: The underlying distribution is D0.

• H1: First u is drawn from µ and then the underlying distribution is set to be Du.

We say that a (randomized) algorithm solves the hypothesis testing problem if it succeeds with
non-trivial probability (i.e., greater than 0.9).
Definition D.3. Let D0 be the joint distribution over the pairs (x, y) ∈ Rd × {±1} where x ∼ N
and y ∼ D0(y) independently of x. Let Dv be the joint distribution over pairs (x, y) ∈ Rd × {±1}
where the marginal on y is again D0(y) but the conditional distribution Ev(x|1) is of the form
Av (as in Theorem 3.2) and the conditional distribution Ev(x| − 1) is of the form Bv . Define
S = {Ev}v∈S for S being the set of d-dimensional nearly orthogonal vectors from Fact C.4 and let
the hypothesis testing problem be distinguishing between D0 vs. S with prior µ being the uniform
distribution on S.

In this section, we prove the following:
Theorem D.4. Let 0 < c < 1/2. Consider the hypothesis testing problem of Definition D.3. For
d ∈ Z+ with d larger than an absolute constant, any n ≤ Ω(d)1/2−c/p2 and any even integer
k < dc/4, we have that ∥∥∥∥ E

v∼µ

[
(Ē⊗n

v )≤∞,Ω(k)
]
− 1

∥∥∥∥2
D⊗n

0

≤ 1 .
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We need the following variant of the statistical dimension from [BBH+20], which is closely related to
the hypothesis testing problems considered in this section. Since this is a slightly different definition
from the statistical dimension (SD) used so far, we will assign the distinct notation (SDA) for it.

Notation For f : R → R, g : R → R and a distribution D, we define the inner product
⟨f, g⟩D = EX∼D[f(X)g(X)] and the norm ∥f∥D =

√
⟨f, f⟩D.

Definition D.5 (Statistical Dimension). For the hypothesis testing problem of Definition D.2, we
define the statistical dimension SDA(S, µ, n) as follows:

SDA(S, µ, n) = max

{
q ∈ N : E

u,v∼µ
[|⟨D̄u, D̄v⟩D0

− 1| | E] ≤ 1

n
for all events E s.t. Pr

u,v∼µ
[E] ≥ 1

q2

}
.

We will omit writing µ when it is clear from the context.

D.2 Proof of Theorem D.4

To prove Theorem D.4, we first need to bound the SDA of our setting. The following lemma translates
the (γ, β)-correlation of S to a lower bound for the statistical dimension of the hypothesis testing
problem. The proof is very similar to that of Corollary 8.28 of [BBH+20] but it is given below for
completeness.
Lemma D.6. Let 0 < c < 1/2 and d,m ∈ Z+. Consider the hypothesis testing problem of
Definition D.3. Then, for any q ≥ 1,

SDA

(
D,

(
p−1Ω(d)1/2−c

p(q2/2Ω(dc/2) + 1)

))
≥ q .

Proof. The first part is to calculate the correlation of the set S . By Theorem 3.2, we know that the set
S is (γ, β)-correlated with γ = p2Ω(d)c−1/2 and β = 4p.

We next calculate the SDA according to Definition D.5. We denote by Ēv the ratios of the density of
Ev to the density of R. Note that the quantity ⟨Ēu, Ēv⟩ − 1 used there is equal to ⟨Ēu − 1, Ēv − 1⟩.
Let E be an event that has Pru,v∼µ[E] ≥ 1/q2. For d sufficiently large we have that

E
u,v∼µ

[|⟨Ēu, Ēv⟩ − 1|E] ≤ min

(
1,

1

|S|Pr[E]

)
β +max

(
0, 1− 1

|S|Pr[E]

)
γ

≤ p

(
q2

2Ω(dc)
+

p

Ω(d)1/2−c

)
= p

(
p−1Ω(d)1/2−c

q2/2Ω(dc/2) + 1

)−1

,

where the first inequality uses that Pr[u = v|E] = Pr[u = v, E]/Pr[E] and bounds the numerator
in two different ways: Pr[u = v, E]/Pr[E] ≤ Pr[u = v]/Pr[E] = 1/(|S|Pr[E]) and Pr[u =
v, E]/Pr[E] ≤ Pr[E]/Pr[E] = 1.

In [BBH+20], the following relation between SDA and low-degree likelihood ratio is established.
Fact D.7 (Theorem 4.1 of [BBH+20]). Let D be a hypothesis testing problem on Rd with respect
to null hypothesis D0. Let n, k ∈ N with k even. Suppose that for all 0 ≤ n′ ≤ n, SDA(S, n′) ≥
100k(n/n′)k. Then, for all r,

∥∥Eu∼µ

[
(D̄⊗n

u )≤r,Ω(k)
]
− 1

∥∥2
D⊗n

0
≤ 1.

In Lemma D.6 we set n = Ω(d)1/2−c/p2 and q =
√
2Ω(dc/2)(n/n′). Then, SDA(S, n′) ≥√

2Ω(dc/2)(n/n′) ≥ (100n/n′)k for k < dc/4 and then we apply the theorem above.
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