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Abstract

Climate models have been key for assessing the impact of climate change and
simulating future climate scenarios. The machine learning (ML) community has
taken an increased interest in supporting climate scientists’ efforts on various tasks
such as climate model emulation, downscaling, and prediction tasks. Many of those
tasks have been addressed on datasets created with single climate models. However,
both the climate science and ML communities have suggested that to address those
tasks at scale, we need large, consistent, and ML-ready climate model datasets.
Here, we introduce ClimateSet, a dataset containing the inputs and outputs of
36 climate models from the Input4MIPs and CMIP6 archives. In addition, we
provide a modular dataset pipeline for retrieving and preprocessing additional
climate models and scenarios. We showcase the potential of our dataset by using
it as a benchmark for ML-based climate model emulation. We gain new insights
about the performance and generalization capabilities of the different ML models
by analyzing their performance across different climate models. Furthermore, the
dataset can be used to train an ML emulator on several climate models instead
of just one. Such a “super-emulator” can quickly project new climate change
scenarios, complementing existing scenarios already provided to policymakers. We
believe ClimateSet will create the basis needed for the ML community to tackle
climate-related tasks at scale.

1 Introduction

Climate change poses a significant and increasing threat to humans and the environment. Understand-
ing and projecting future climate scenarios is essential to mitigating and adapting to climate change.
Those future climate scenarios - the “Shared Socioeconomic Pathways” (SSP) 2 are determined by
climate forcer emissions and depend on socioeconomic decisions made by humanity. Here, the term
“climate forcers” refers to greenhouse gases (GHG), aerosols, and aerosol precursors, among others.

∗Address correspondence to julia.kaltenborn[at]mail.mcgill.ca
2For readers who are new to climate modeling terminology, we recommend the glossary by IPCC (2022),

also available on https://www.ipcc.ch/sr15/chapter/glossary/.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
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To navigate citizens’ future in a changing climate, policymakers rely heavily on future simulations
of our climate, summarized in reports for the Intergovernmental Panel on Climate Change (IPCC),
e.g. Arias et al. (2021)). Those simulations are traditionally created by climate models, which are
collected in the Coupled Model Intercomparison Project (CMIP; recently in Phase 6). Climate models
are based on physical parameters, equations, and coupling mechanisms that describe the climate
and Earth system; these models simulate the climate under different forcing scenarios, e.g. varying
greenhouse gas emissions. However, even on top high-performance computing (HPC) clusters, typical
climate model simulations take months to run (Balaji et al., 2017).

The machine learning (ML) community has taken increased interest in supporting the climate science
community in their efforts to scale and accelerate climate-related modeling tasks. These tasks include
climate emulation/projection, downscaling, and general prediction tasks. Climate-related tasks also
pose interesting ML challenges due to the high dimensionality of the data, relatively low sample size,
and inherent distribution shifts within the data. When approaching those climate-related tasks, ML
models have typically leveraged one climate model (Watson-Parris et al., 2022; Cachay et al., 2021;
Mansfield et al., 2020; Krasnopolsky et al., 2013; Castruccio et al., 2014; Holden and Edwards, 2010;
Beusch et al., 2020), and only rarely several climate models (Nguyen et al., 2023; Yu et al., 2022).
This runs counter to the standard practice in ML of leveraging massive datasets. This discrepancy
may be due to the difficulty in retrieving, preprocessing, and handling climate data correctly without
significant domain knowledge. Indeed the ML community has experienced difficulties in retrieving
data of several climate models Nguyen et al. (2023) and making them consistent Busecke and
Abernathey (2020). Those data challenges might limit the community’s ability to contribute to
climate-related modeling tasks.

While the need for a consistent, easy-to-retrieve, and large climate model dataset to train ML models
is currently unmet, it has been addressed in parts. For example, these desired datasets can be found
for weather (WeatherBench by Rasp et al. (2020)) and satellite data (EarthNet2021 by Requena-
Mesa et al. (2021)) rather than climate data. The access to large-scale weather data enabled the
development of large ML weather forecasting models (Lam et al., 2022; Bi et al., 2022; Pathak
et al., 2022; Gao et al., 2022). Additionally, ClimaX (Nguyen et al., 2023) – the first climate and
weather-related large-scale model – relies primarily on weather data. However, we cannot solely use
weather data capturing “the past”, to address climate change related questions concerning “the future”.
Extrapolation into such a future is difficult for ML models, especially under strong distribution shifts
in space and time. Thus, large-scale and consistent ML datasets are needed not only for weather,
but also for climate. Efforts have been made to provide such data: xmip (Busecke and Abernathey,
2020) provides the tools to create more consistent climate model data, however, it does not address
all inconsistencies and e.g. cannot align the different temporal and spatial resolutions among climate
data. ClimateBench (Watson-Parris et al., 2022) provides a consistent, ML-ready dataset for climate
emulation. A drawback to this dataset is that it provides only one climate model. Therefore, it
does not capture the multi-model uncertainty that is essential for informing policy making, and is
limited in the amount of training data it can provide to ML tasks. Refer to Appendix B for a more
comprehensive overview of related ML-datasets. The need expressed by both the ML and climate
science communities (Dueben et al., 2022; Runge et al., 2019; Mansfield et al., 2020; Watson-Parris,
2021; Chantry et al., 2021) for a consistent, large, and ML-ready dataset has not yet been addressed
jointly for climate data.

Here, we introduce ClimateSet – a consistent, multi-climate-model dataset. We showcase the value of
the dataset for the task of climate emulation; however, the dataset can also be used for a wide variety
of other tasks. Our main contributions are:

• We introduce the ClimateSet data pipeline, which can be used to retrieve and preprocess
climate model data from CMIP6 (climate model outputs) and Input4MIPs (climate model
inputs) for climate-related ML tasks.

• We use this pipeline to build a core ClimateSet dataset with outputs of 36 climate models;
and inputs for the emission fields of 4 different Shared Socioeconomic Pathway (SSP)
scenarios and historical data.

• We use ClimateSet to compare state-of-the-art ML methods across different climate models
on a climate model emulation task. We emulate temperature and precipitation responses to
climate forcers, obtaining results that are both qualitatively different and more reliable than
was possible in previous work.
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Figure 1: ClimateSet. A) ClimateSet builds on the Input4MIPs and CMIP6 datasets made available
through multiple climate modeling teams on the Earth System Grid Federation (ESGF) servers. B)
ClimateSet consists of a preprocessed, ML-ready core dataset that includes inputs and outputs for 5
scenarios, 4 climate forcing agents, 2 climatic variables (temperature and precipitation), for a set of
36 climate models. It is currently made publicly available through the Digital Research Alliance of
Canada. C) The core dataset can be extended to include different variables, height levels, ensemble
members, scenarios and any other information made available from climate models on the CMIP6
server of ESGF. The downloader and preprocessing pipelines are available on our GitHub repository.
D) Potential use cases for ClimateSet range from climate projection, climate data downscaling,
extreme weather prediction in different warming scenarios, to large ML climate models. E) The main
tools provided through ClimateSet are the downloader and the preprocessor to make the climate model
data consistent with each other. For further information visit https://climateset.github.io.
(The 3D Earth System Model visualization was created by Boris Sakschewski, used with permission).

2 ClimateSet

The core dataset of ClimateSet consists of 36 climate models and their corresponding greenhouse
gases, aerosols and aerosol precursor emission inputs for five different scenarios. The core dataset can
be extended with the pipeline we provide. For an overview of ClimateSet refer to Fig. 1. The dataset
and the pipeline are both publicly available on https://climateset.github.io. ClimateSet
serves two main purposes: (1) Providing the amount of training data needed for large-scale ML
models; and (2) capturing the projection uncertainty across climate models that is key for climate
policy making. Both purposes can only be fulfilled by a dataset containing several climate models.
The following describes the core dataset, how the data was collected, its usage and limitations.

2.1 Datasets

2.1.1 CMIP6

CMIP6. The backbone of the ClimateSet data pipeline is the Coupled Model Intercomparison Project
Phase 6 (CMIP6), an archive uniting climate model outputs from numerous sources (Eyring et al.,
2016). CMIP6 is used to inform the IPCC Assessment Reports and represents the largest available
archive of comparable climate datasets (Petrie et al., 2021; Balaji et al., 2018) with 3.7 million
datasets and an expected total size of 20-80 PB. The core-data of ClimateSet are specifically climate
model outputs of ScenarioMIP (O’Neill et al., 2016). ScenarioMIP contains projections of future

3
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Figure 2: Forcing agent trajectories. Greenhouse gas (CO2, CH4), aerosol (BC), and aerosol precursor
(SO2) emission trajectories from 2015 – 2100 for different Shared Socio-economic pathways (SSPs).

climate change scenarios from 58 climate models3. Each of those climate models provides a physical
simulation of how climate changes as a result of a forcing trajectory (SSP scenario) in the decades
to come. The climate model receives future GHG and aerosol emission fields as input (see Section
2.1.2), and simulates outputs of climate variables such as temperature, precipitation, wind velocity,
and so on. Climate models have projection uncertainties, illustrated also in Fig. 4 which shows the
different temperature projections of climate models across different SSP scenarios, while Fig. 3 shows
an example of different climate projections for the year 2100. Projection uncertainties arise both
from (A) different climate model formulations, and (B) climate model initializations. (A) means that
different climate models represent climate processes differently, leading to “inter-model variability”
in the outputs. (B) means that one climate model can be initialized differently (an initialization setting
is called an “ensemble member”), leading to “intra-model variability”. To capture these projection
uncertainties, the IPCC and policymakers rely on projections of a set of climate models and ensemble
members. Similarly, we curated a dataset that contains the output of multiple climate models and
ensemble members to reflect this projection uncertainty.

Specifications. For our core-dataset, we selected 36 climate models from ScenarioMIP that are
summarized in Table 1. Of the 58 climate models available in ScenarioMIP we chose only those
ones that had (1) monthly frequency, (2) at least a spatial resolution of 250 km, (3) the scenarios
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 available, resulting in a total of 36 climate models. A
list of relevant features is also provided in Table 2. Other features, such as spatial resolution, grids,
calendar, and units are synchronized during preprocessing (see Section 2.2). This selection ensures
that ClimateSet provides the main scenarios and is spatially and temporally high enough resolved.

Extensions. The dataset can be extended to more climate models, ensemble members, variables,
height levels, spatial, and temporal resolution, as long as the requested data is available on the Earth
System Grid Federation (ESGF) server 4.

2.1.2 Input4MIPs

Input4MIPs. The Input Datasets for Model Intercomparison Projects (Input4MIPs)5 collect the future
emission trajectories of climate forcing agents that are used as input for climate models (Durack et al.,
2017). Fig. C.1 in the Appendix shows an example of a GHG emission map. Similarly as climate
models do, ClimateSet uses such maps as input data for its climate emulation task. We selected
specifically Input4MIPs as it has been endorsed by CMIP6, i.e. it is compatible with ClimateSet’s
CMIP6 data, and is considered as the best climate model input data available (Durack et al., 2017).
The different climate forcing trajectories included in Input4MIPs are based on different SSP scenarios,
ranging from “taking the green road” (SSP1), “a rocky road” (SSP3), to “taking the highway” (SSP5).
The digits after the “SSPX” term indicate the amount of radiative forcing in W/m2 expected in 2100.
Of the different datasets available in Input4MIPs, ClimateSet uses (1) a forcing dataset including
CO2, CH4, SO2, and Black Carbon (BC), by Feng et al. (2020), and (2) the historic open biomass
burning emissions dataset by Van Marle et al. (2017).

Specifications. For our core-dataset, we selected four main SSP scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP5-8.5), the historical scenario, four climate forcers (CO2, CH4, SO2, and BC). The
future trajectory scenarios of those four climate forcers are represented in Fig. 2. Of the 9 scenarios

3Link to current status of ScenarioMIP data
4https://esgf-node.llnl.gov/search/cmip6/
5Link to current status of Input4MIPs data

4

https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/ScenarioMIP/index.html
https://esgf-node.llnl.gov/search/cmip6/
https://docs.google.com/document/d/1pU9IiJvPJwRvIgVaSDdJ4O0Jeorv_2ekEtted34K9cA/


Climate Model Input4MIPs Files

Name Publication Nominal
resolution

Ensemble
members

Historic Future

ACCESS-CM2 Bi et al. (2020) 250 km 5 all-fires all-fires
ACCESS-ESM1-5 Ziehn et al. (2020) 250 km 40 all-fires all-fires
AWI-CM-1-1-MR Semmler et al. (2020) 100 km 1 all-fires all-fires
BCC-CSM2-MR Wu et al. (2021) 100 km 1 all-fires all-fires
CAMS-CSM1-0 Hao-Ming et al. (2019) 100 km 2 all-fires all-fires
CAS-ESM2-0 Zhou et al. (2020) 100 km 2 all-fires all-fires
CESM2 Danabasoglu et al. (2020) 100 km 3 anthro-fires all-fires
CESM2-WACCM Danabasoglu et al. (2020) 100 km 5 no-fires no-fires
CMCC-CM2-SR5 Cherchi et al. (2019) 100 km 1 all-fires all-fires
CMCC-ESM2 Lovato et al. (2022) 100 km 1 no-fires no-fires
CNRM-CM6-1 Voldoire et al. (2019) 250 km 10 all-fires all-fires
CNRM-CM6-1-HR Voldoire et al. (2019) 100 km 1 all-fires all-fires
CNRM-ESM2-1 Séférian et al. (2019a) 250 km 10 anthro-fires anthro-fires
EC-Earth3 Döscher et al. (2022a) 100 km 97 all-fires all-fires
EC-Earth3-Veg Döscher et al. (2022a) 100 km 8 anthro-fires anthro-fires
EC-Earth3-Veg-LR Döscher et al. (2022a) 250 km 3 anthro-fires anthro-fires
FGOALS-f3-L He et al. (2019) 100 km 1 all-fires all-fires
FGOALS-g3 Pu et al. (2020) 250 km 5 all-fires all-fires
GFDL-ESM4 Dunne et al. (2020) 100 km 3 no-fires no-fires
GISS-E2-1-G Kelley et al. (2020) 250 km 36 all-fires all-fires
GISS-E2-1-H Kelley et al. (2020) 250 km 10 all-fires all-fires
GISS-E2-2-G Rind et al. (2020) 250 km 5 all-fires all-fires
IITM-ESM Krishnan et al. (2021) 250 km 1 all-fires all-fires
INM-CM4-8 Volodin et al. (2018) 100 km 1 all-fires all-fires
INM-CM5-0 Volodin and Gritsun (2018) 100 km 5 all-fires all-fires
IPSL-CM6A-LR Boucher et al. (2020) 250 km 11 all-fires all-fires
KACE-1-0-G Lee et al. (2020) 250 km 3 all-fires all-fires
MCM-UA-1-0 Stouffer (2019) 250 km 1 all-fires all-fires
MIROC6 Tatebe et al. (2019) 250 km 50 all-fires all-fires
MPI-ESM1-2-HR Gutjahr et al. (2019) 100 km 10 all-fires all-fires
MPI-ESM1-2-LR Mauritsen et al. (2019) 250 km 30 anthro-fires anthro-fires
MRI-ESM2-0 Yukimoto et al. (2019) 100 km 10 anthro-fires all-fires
NorESM2-LM Seland et al. (2020) 250 km 13 no-fires no-fires
NorESM2-MM Seland et al. (2020) 100 km 2 no-fires no-fires
TaiESM1 Wang et al. (2021) 100 km 1 anthro-fires all-fires
UKESM1-0-LL Sellar et al. (2019) 250 km 17 all-fires all-fires

Table 1: Climate models included in ClimateSet with related source and original nominal resolution.
The ensemble members are the maximum number of ensemble members available for one scenario,
i.e. one scenario does not always contain all ensemble members. Similarly, one ensemble member
often contains only a subset of the scenarios. The Input4MIPs files column refers to the specific
input files needed for a climate model. These input files provided by ClimateSet are representing the
corresponding climate forcer emission fields, separated for different fire models (see Section 2.1.2).

Features CMIP6 Input4MIPs

Variables temperature,
precipitation

CO2, CH4,
BC, SO2

Scenarios historical,
SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP5-8.5

historical,
SSP1-2.6, SSP2-4.5,
SSP3-7.0, SSP5-8.5

Frequency monthly monthly,
every 10 years

Time length 2015 — 2100 2015 — 2100

Spatial area global global

Levels 1 (surface) 1 – 25 (AIR)

Table 2: Features shared among
the two original datasets, CMIP6
and Input4MIPs. The features are
only representative for SSP sce-
nario data. For historical data, the
time length ranges from 1750 –
2015 however, some datasets only
provide the subset 1850 – 2014. In
terms of frequency, the historical
Input4MIPs data has monthly data
for every year. The levels for In-
put4MIPs data noted here refer to
the different height levels of the an-
thropogenic AIR emission fields.
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Figure 3: Climate model predictions. Absolute temperature projections for January 2100 under
SSP3-7.0 by A) EC-Earth3-Veg, B) CESM2-WACCM, C) MPI-ESM1-2-HR, and D) TaiESM1.

available in Input4MIPs we have chosen the mentioned four because they are part of the five most
important SSP scenarios for policy making (Arias et al., 2021). We did not include SSP1-1.9 – the
lowest and most optimistic forcing scenario – because not all climate models include SSP1-1.9
and this would have narrowed ClimateSet’s CMIP6 dataset significantly. The climate forcers we
have chosen are the same used in Watson-Parris et al. (2022)’s ClimateBench. CO2 is due to its
cumulative character (see Appendix C) and high concentration considered as the most important
climate forcing factor, followed by CH4 with a long lifecycle and high radiative forcing potential (Fig.
SPM2 in on Climate Change (IPCC) (2023)). SO2 provides a cooling effect, and damages vegetation,
while BC decreases the Earth’s albedo when deposited and has negative effects on human health.
Overall, this selection represents both long-lived GHG (CO2 and CH4), and short-lived aerosol and
aerosol precursors (SO2, BC). The Feng et al. (2020) dataset provides for each scenario and climate
forcer three data-files that represent (1) “anthropogenic”, (2) “anthropogenic aircraft”, and (3) “open
burning” emissions. Since the “open burning” emissions are not available for the historic case in Feng
et al. (2020), we supplemented this data with Van Marle et al. (2017)’s dataset. ClimateSet provides
all emissions in kg m−2 s−1. Table 2 lists the shared features of the Input4MIPs datasets. Appendix
D describes how the historical open burning data should be handled and its dependence on the fire
model of climate models (Appendix E). In our preprocessing pipeline the mentioned Input4MIPs
datasets are combined appropriately given those considerations, i.e. ClimateSet provides summed up
and ready-to-load input emission data.

Extensions. ClimateSet can be extended by additional scenarios (e.g. SSP1-1.9, SSP2-4.5-covid,
SSP4-6.0) and climate forcers (e.g. CO, H2, NH3). Note, that for additional control (e.g. piControl)
and CO2 scenarios (abrupt-4xCO2, 1pctCO2), no additional Input4MIPs data is required. Those
scenarios are set “internally” in the climate models and can be retrieved from CMIP6. When extending
the ClimateSet’s input data, note that the historical data of the desired climate forcer must be available
both in Feng et al. (2020)’s and Van Marle et al. (2017)’s dataset.

2.2 Data Collection

All data requested through ClimateSet is directly downloaded from ESGF 6 (Appendix G) and run
through ClimateSet’s preprocessing pipeline. The original data from ESGF is not consistent across

6https://esgf-node.llnl.gov/projects/esgf-llnl/
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Figure 4: (A) Scenario variance across climate models, and (B) climate model variance across
scenarios. The figures show the projected global temperature increase compared to the historical
mean (1960 – 1990). For each scenario or model the mean temperature increase is represented as
colored line and the standard deviation as area. Note the differences in temperature projections.

different datasets and climate models, and must be preprocessed. The ClimateSet preprocessor is
built modularly, as described below, and can be reused and recycled for related datasets.

The Checker uncovers some inconsistencies across different climate models or input datasets. It
checks for corruptness of files, variable naming, units, temporal and spatial resolution, and longitude-
latitude structure. Based on its output, some of the preprocessing steps can be skipped if not needed.

The Raw Processor for CMIP6 data syncs time-axis, calendars, and height levels. For the Input4MIPs
data, it additionally handles the special case of biomass burning data, corrects units, sums over
sectors, and creates loadable data files. The raw processor is using Climate Data Operators (CDO)
Schulzweida (2022), a command line tool optimized for processing large climate datasets. To our
knowledge, this is the fastest way to process the data we have at hand (see also Appendix J).

The Resolution Processor creates the desired spatial and temporal resolution across all data. The
spatial remapping can be used to increase or decrease the resolution. The chosen remapping algorithm
can be adapted for each variable. On the temporal axis, the processor can be used to aggregate (e.g.
from “months” to “years”), interpolate (e.g. from “years” to “months”), and interpolate between “time
jumps” (e.g. “monthly data every 10 years” to “monthly data every year”). To make the resolution
processor as efficient as possible, we implemented it with CDO. It can also be used separately from
the other processors, see Appendix I for further information.

The Structure Processor is mainly used for CMIP6 data to make sure that all files are using the
same longitude-latitude structure, vertices and bounds, the same names for variables and dimensions,
and to correct units where necessary. The structure processor was implemented with xmip (Busecke
and Abernathey, 2020) and follows their guidelines. Note that it is significantly slower than the
CDO-implemented modules.

More details and visualizations of ClimateSet’s preprocessing-pipelines can be found in Appendix H.

2.3 Usage

Access ClimateSet. Instructions to access and download the core-data can be found on https:
//climateset.github.io. We provide both the raw data and the final processed data. The latter
can be directly used for climate emulation and other climate prediction related tasks.

Extend ClimateSet. To extend ClimateSet, you first use the downloader to retrieve the desired data
from ESGF. Then, you build the desired preprocessing pipeline by adapting the configuration files or
by stacking the desired modules. Every processing step can be switched on or off.

Accelerate ClimateSet. If run on a machine with 1 CPU core, 16GB memory, with single-threading,
the complete preprocessing of the 36 climate models takes ∼ 160 hours. The preprocessing can be
accelerated in the following ways: (1) Using the multi-thread function of the CDO-implemented
processors (resolution & raw); (2) waiving the checker and/or the structure processor; (3) supplying
the resolution processor with an example resolution map. This is further explained in Appendix J.
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2.4 Limitations

Data Retrieval. When extending the dataset, users may run into issues with the data retrieval from
ESGF’s server nodes. Server nodes can be down from time to time, i.e. users need to wait until those
nodes are back online, which can take up to weeks (node status: https://esgf-node.llnl.gov/
status/). Usually, only a subset of the data, e.g. one specific climate model, is affected by this.

Computational Resources. Depending on the size of the desired dataset, extending ClimateSet
might only be feasible with access to a high-performance compute (HPC) cluster. The core dataset
of ClimateSet is already relatively large with 2.0 TB of preprocessed data. Furthermore, for a set
of multiple climate models, the preprocessing takes too long to be carried on a local machine that
only supports single-threading for CDO (see “Accelerate ClimateSet” in Section 2.3). However, for a
smaller set of climate models, storing and preprocessing the dataset on a local machine works well.

Weighting of Climate Models. ClimateSet currently unites 36 climate models without considering
the similarity between some of them. Explanations of within- and across- climate model similarities
are given in Appendix F. When training a large model on ClimateSet it would be beneficial to weight
the climate models to prevent over- and under-representation of some climate models or sub-models.
However, such a weighting does only exist for CMIP5 so far (Massoud et al., 2020; Wootten et al.,
2020), and requires in-depth domain knowledge and is thus beyond the work presented here.

Evaluation. ClimateSet is limited by its current deterministic setting. Climate models are determinis-
tic, however, uncertainties among and across them could be captured in future work. This requires
weighting them as discussed above. Moreover, the evaluation metrics should be extended and adapted
for different climatic variables and task settings; metrics will be updated continuously on GitHub.

Extension beyond ScenarioMIP. Users might want to retrieve and process data beyond ScenarioMIP.
The downloader and processor pipeline of ClimateSet can be re-used to that end, however, we did not
test those cases. We encourage pull and feature requests for other CMIP6-endorsed datasets.

3 Benchmarking Setup

Task. In climate emulation the objective is to simulate the output of a climate model as closely
as possible. The emulator receives the same input as the climate model, but can produce climate
projections for new input data a lot faster than climate models during inference time (see Fig. 5).
Here, the goal is to predict a time-series of climate variables (e.g. temperature and precipitation for
2015-2100) from a given parallel time-series of climate forcer emission maps from 2015-2100. We
treat the task as a diagnostic-type prediction, however, it can also be treated as an autoregressive task.
Refer to Watson-Parris et al. (2022) for further explanations about emulation. We use two different
versions of climate emulators: (1) Single-Emulators, and (2) Super-Emulators. By “Single-Emulator”
we refer to an emulator that is trained on a single climate model. By “Super-Emulator” we refer to an
emulator that is trained on a set of climate models, and is able to project the climate responses of all
the participating climate models. The super-emulator is explained in more detail in Appendix L.2.

ML Models. We trained most types of models that have been used for climate emulation on Cli-
mateBench (Watson-Parris et al., 2022) to date: Convolutional long short-term memory (ConvLSTM)
(Hochreiter and Schmidhuber, 1997; LeCun et al., 1989; Watson-Parris et al., 2022), Gaussian Process
regression (GP) (Williams and Rasmussen, 2006; Hensman et al., 2015), and ClimaX (Nguyen et al.,
2023). ClimaX is the current state-of-the-art ML model on ClimateBench. We omitted the Random
Forest (RF) (Breiman, 2001) since we could not fully reproduce ClimateBench’s experiments with
our training configuration of predicting two variables concurrently. We added a U-Net (Ronneberger
et al., 2015) as a simple baseline. Where necessary, we adapted ClimateBench’s implementations.
The implementation details and differences to the original models are described in Appendix K.

Data. Each emulator receives as input the climate forcing emission fields (CO2, CH4, SO2, BC), and
as target the output variables of climate models (temperature, precipitation). All data was processed to
have a spatial resolution of approximately 250 km (144 x 96 longitude-latitude cells) and a temporal
resolution of monthly data. For both the input and target data, there are 86-year time-series available
for the 4 SSP scenarios (2015 – 2100), and 165 years for the historical scenario (1850 – 2014).
Those time-series are divided into 1-year chunks. The resulting data has a shape of (scenarios
* years * months, variables, longitude, latitude). Assuming we choose 86 years and
four climate forcers, we would map from input shape (5*86*12, 4, 144, 96) to output (5*86*12, 2,
144, 96).
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Figure 5: Climate emulation. A) A climate model receives the future trajectories of climate forcers
as input, and uses this input to simulate the future climate with the help of its different components
(atmosphere, ocean, ice, land, and fire models). It outputs how the climate (e.g. temperature) would
respond to a given emission scenario. B) A climate model emulator receives the same inputs as a
climate model and learns to emulate its outputs. After training on several scenarios and ensemble
members, it can predict new scenarios much faster than a traditional climate model.

Train-Test-Split. For training and validation, the historical scenario, SSP1-2.6, SSP3-7.0, and
SSP5-8.5 are used. A random 10% split of the data is hold out for validation, and SSP2.45 for testing.

Experiments. We run experiments on (A) single-emulation, (B) super-emulation, and (C) gener-
alization capabilities of the different ML models. For single-emulation, each ML model is trained
on each of the 15 climate models separately (i.e., we result with 15 independent ML models). Our
models are trained on our internal cluster, using a single Nvidia-RTX8000 with 32GB of RAM. For
the super-emulation task, a single ML model is trained on 6 climate models together to demonstrate
how super-emulation works (Appendix L.2). Future work can extend the super-emulator to run on all
36 climate models. During inference, the super-emulator can predict novel scenarios for each climate
model that participated in training.

Further Notes. To test the generalization capabilities of the single-emulator, we use its weights, train
on a climate model, finetune on NorESM2-LM and compared the results with a single-emulator trained
only on NorESM2-LM. All experiments included only one ensemble member; future experiments
could evaluate the influence of intra-model variability on ML model performance further. For all
experiments we used the latitude-longitude weighted root mean squared error (RMSE) as implemented
in (Nguyen et al., 2023) as main evaluation metric. Refer to Appendix L for additional details.

4 Benchmarking Results
Here, we present a subset of our climate emulation results to investigate the differences between
using a dataset that contains a single climate model, and one that contains multiple climate models.
Fig. 6 shows the RMSE of temperature projections for the test scenario (SSP2-4.5) among the
neural-network based models (ClimaX, ClimaX Frozen, ConvLSTM, and U-Net) on a subset of
six climate models (NorESM2-LM, NorESM2-MM, MPI-ESM1-2-HR, GFDL-ESM4, TaiESM1,
and EC-Earth3). With the exception of the U-Net, the named ML models had been considered in
(Nguyen et al., 2023) on NorESM2-LM data retrieved from ClimateBench. We find the performance
of all ML models on NorESM2-LM to be in a similar range as reported in (Nguyen et al., 2023).
ClimaX, ClimateBench, and ClimateSet observed all different performance values for ConvLSTM on
NorESM2-LM due to differences in the implementations, e.g. ClimateSet’s ConvLSTM outperformed
ClimaX’s ConvLSTM version (0.3 vs. 0.4). In general, the RMSE values are in line with previous
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Figure 6: Emulation benchmark. RMSE for the temperature projection of SSP2-4.5 (2015 – 2100)
for the ML models ClimaX Frozen, ClimaX, ConvLSTM, and U-Net. Each ML model (color coded)
was trained separately on the climate models NorESM2-LM, NorESM2-MM, MPI-ESM1-2-HR,
GFDL-ESM4, TaiESM1, and EC-Earth3. The RMSE values (lower is better) are latitude-longitude
weighted and averaged over three seeds for each ML model.

work where comparable. Notably, simple models such as the U-Net and ConvLSTM (we applied no
significant tuning or adaptions to those models) can keep up with ClimaX. U-Net even outperformed
ClimaX consistently when dropping ClimaX’s warm-up period. Refer to Appendix M.1 for more
single-emulator results. This shows that for climate emulation tasks significant performance gains
can still be made with relatively simple baselines that had not yet been investigated for this task.

While the different ML models showed consistent performance across different climate models,
there were exceptions. For example, when looking only at the NorESM2 models, it seems that
ClimateSet’s ConvLSTM significantly outperforms both ClimaX and ClimaX Frozen (Fig. 6). When
looking across several climate models, however, it becomes quickly apparent that both ClimaX and
ClimaX Frozen outperform the ConvLSTM across multiple climate models. The consistency of
the performance might depend on (A) whether an ML model overfits one climate model (i.e. the
hyperparameters match this model in particular), and (B) whether an ML model is particularly good
at generalizing across different climate models. Refer to Appendix M.2 and Table 5 to see the ML
models performance across multiple climate models. Figure 6 shows also the climate model on which
the best performance could be achieved (TaiESM1) and the worst (GFDL-ESM4). Those climate
models were the best/worst across all ML models, indicating that some climate models are easier to
emulate than others. In summary, the results show that testing and comparing ML models on just one
climate model is not sufficient for finding the “best” ML emulator; instead, ML models should be
evaluated on a set of climate models - posing different levels of difficulty - to draw such conclusions.

When training ML-models on super-emulation, on six climate models, the leader-board of the ML-
models inverts (Appendix M.2): The simplest model (ConvLSTM) yields the best, and the most
complex model (ClimaX) the worst performance. The experiments to test generalizability (Appendix
M.3) could explain this: The simpler models are better at generalizing across several climate models,
while the more complex models fail to generalize as well. Future work is needed to investigate if
larger ML models simply need a longer training period to learn a full, generalizable, representation
of climate models. The results show that ClimateSet can be used to identify ML models generalizing
across different climate models. Thus, ClimateSet can be the basis for developing new climate
emulators that can emulate climate models across the CMIP6 archive instead of only a single one.

5 Conclusion
With ClimateSet, we respond to the widely expressed need for a large-scale, consistent climate model
dataset for machine learning. Among other tasks, ClimateSet can be used to reveal new insights
for ML climate emulation. We found that ClimaX is the best single-emulator, while ConvLSTM
generalizes better and is the best super-emulator across multiple climate models. We found the
overall ranking of ML models varied across different climate model datasets, showing the need for
ClimateSet as a unified benchmark. ClimateSet also provides a pipeline to retrieve and preprocess
further climate model data consistently. We envision this will be particularly useful for researchers
who need large training datasets, e.g. for climate foundation models. We hope ClimateSet enables the
ML-community to address a much wider range of climate-related tasks. Tackling those tasks on the
scale of CMIP6 will help the ML-community to contribute meaningfully to climate policy making.
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A Data and Code Availability

Access to code and data is provided on https://climateset.github.io.

B Overview of Related ML-Datasets
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Figure 7: ML datasets and models used in the weather and climate domain. Only models and datasets
are included that operate on a global scale and use either re-analysis or climate model data. The dots
represent ML-models, the squares datasets. The area covered by the datasets shows to which spatial
and temporal scales it extends. The models and datasetes are colored darker when several climate
models (ESMs) are used. Some ML-models were run for several tasks on different temporal and
spatial scales; their tasks are represented by different points that are connected with dotted lines. The
figure illustrates that related ML work has mostly focused on the weather scale and not the centurial
climate scale. It also shows that high number of climate models has been under-utilized in the ML
community so far. The figure was inspired by Mukkavilli et al. (2023).

Datasets:

• ClimSim (Yu et al., 2023)
• RainBench (de Witt et al., 2021)
• WeatherBench (Rasp et al., 2020) and WeatherBench2.0 (Rasp et al., 2023)
• ClimateLearn (Nguyen et al., 2023)
• ClimateBench (Watson-Parris et al., 2022)

Models:

• PanguWeather (Bi et al., 2022)
• AtmoRep (Lessig et al., 2023)
• ClimaX (Nguyen et al., 2023)
• FourCastNet (Pathak et al., 2022)
• deCNN (Nielsen et al., 2022)
• GraphCast (Lam et al., 2022)

• FengWu (Chen et al., 2023)

• FuXi (Chen et al., 2023)

• DLWP (Weyn et al., 2021)

• SNFO (Bonev et al., 2023)

• UNet++ (Unal et al., 2023)
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C CO2 Data

The greenhouse gas CO2 requires special handling within this dataset and within climate emulation
in particular. In Fig. C.1, an example of a CO2 emission map is shown.

One reason for the special handling is the accumulative nature of CO2 (Canadell et al., 2007), i.e. it
does not have a half-life as other greenhouse gases or aerosols do. While the carbon cycle does have
natural sinks and sources, the anthropogenic CO2 emissions are still considered accumulative, since
the CO2 does get added to the overall carbon-cycle instead of being broken down as in the case of
other GHG gases. Consequently, we oversimplify and loose important information if we only use
short time-chunks of CO2 emissions. The following two approaches could be used to address this
problem: 1) Using the full time-series of CO2 emissions, i.e. mapping 85 years of GHG emissions to
85 years of climate response. 2) Using the cumulative CO2 emissions. Presently, our dataset does not
provide the cumulative CO2 emissions for the user to select between options (1) and (2), however,
we might add the cumulative data in the future.

The other reason why CO2 requires special handling is that the “fire datasets” (historical biomass-
burning and future openburning) Van Marle et al. (2017); Feng et al. (2020) do not contain CO2. The
historic biomassburning data simply does not have this information to date. The future openburning
dataset might not have this data because it partially builds upon the historic biomassburning dataset
Van Marle et al. (2017). This leads to the the file-structure of our dataset containing “all-fires”,
“anthro-fires”, “no-fires” for all greenhouse gases except CO2. CO2 has only one type of file (“sum”),
summing up the anthropogenic emissions and the aircraft emissions. This is true for both the historical
and the SSP data. We will update our dataset in case future publications targeting Input4MIPs provide
openburning and biomassburning data.

Another case where CO2 data needs additional preprocessing is when control scenarios rather than
SSP scenarios are included in the dataset. Example for control scenarios are abrupt-4xCO2 (abrupt
quadrupling of CO2 in the atmosphere), piControl (pre-industrial CO2 kept constant). Those scenarios
are especially interesting when interventional data is needed since one variable is changed (intervened
on) while the others stay constant. For those scenarios, the internal CO2 mass balances of the
climate models must be used: The abrupt-4xCO2 scenario is the scenario of quadrupling the current
climate-model-internal CO2 amount. The CO2 mass balances can be downloaded for each climate
model from Earth System Grid Federation system (ESGF).

C.1 CO2 Emission Map

An example of a CO2 emission map is shown in Fig. 8.

D Open Burning and Biomass Burning Data

The emission datasets usually contain three different types of data: 1) Anthropogenic emissions,
2) Aircraft emissions, and 3) “fire” emissions. This data is collected across two different datasets,
one for the historical emissions (Van Marle et al., 2017) and one for the future emissions (Feng
et al., 2020). Due to different naming conventions in Van Marle et al. (2017) and Feng et al. (2020),
the “fire emissions” are called “openburning emissions” for the future case, and “biomassburning
emissions” in the past case. We use both names here to distinguish between the two datasets, because
– in contrast to the anthropogenic and aircraft emissions – the openburning and biomassburning data
need different types of treatment.

All three data types (1-3) have a spatial and temporal dimension, and all three of them separate the
emissions on another dimension: (1) The anthropogenic emission files contain different sectors, (2)
the aircraft emissions files have different height levels, and (3) the “fire” emissions consist of different
types of fires. However, in contrast to (1) and (2), the “fire” emissions in the datasets contain only
one level, i.e. the different fire types are not directly encoded in the datasets. While the sectors and
levels of the anthropogenic and the aircraft emission files are simply summed up, we actually need to
separate between the different types of “fire emissions” depending on the fire model of each climate
model (see Appendix E).

To retrieve individual numbers for the different types of fire emissions, the percentage file that are
provided alongside with the original datasets can be used. Those percentage files are available on the

20



Figure 8: Input4MIP’s projected global anthropogenic and aircraft CO2 emissions for January 2100
in the SSP3-7.0. The emissions are summed over all sectors. Transportation paths become visible in
the CO2 emission map as well as CO2 emissions across land masses.

Input4MIPs archive on ESGF. The following sectors exist for those files, and are different for the
historical and future data:

Biomassburning:

• Savanna, grassland, and shrubland fires
• Boreal forest fires
• Temperate forest fires
• Deforestation and degradation
• Peatland fires
• Agricultural waste burning

Openburning:

• Agricultural waste burning on fields
• Forest burning
• Grassland burning
• Peat burning

The preprocessing pipeline provided here computes the overall fire emission maps and separates
between three final cases: (1) anthropogenic fire emissions only, (2) all fire emission sources, (3) no
fire emissions at all. Note that for CO2 only one type exists (no “fire” emissions), as further described
in Appendix E. Which of those three files should be used in the other GHG cases, depends on the fire
model of the climate model and is listed in Table 3. The subsequent section analyses in detail which
types need to be included for each climate models.
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E Fire Models

The internal fire model of each climate model determines which GHG emission fields (Lasslop et al.,
2020) should be used as input for the climate model. For example, if a climate model contains
an extensive fire model that already models peatland burning, we cannot provide peatland burning
emissions as input to the model – the emissions would be “counted” twice. Hence, it is necessary
to evaluate for each climate model which fire model it is using, what the model is capable of, and
which fire emissions should consequently be provided as input. Table 3 provides an overview of all
the models, which fire model they are using and which types of fires need to be included in their
input data. In the preprocessing pipeline this data is summarized to anthropogenic fire emissions
(“anthro-fires”), all fire emissions (“all-fires”), and no fire emissions (“no-fires”). The latter can be
used if a fire model is capable of modeling all fires such as the NorESM2. Matching the right GHG
emission inputs to the climate models output is definitely good practice, however, we want to mention
that in the single-emulator case, ML models are expected to be adequate for mapping from simple
emission files (i.e. ignoring fire emissions) to their climatic response.

Model Land Model Historical fire emission types Future emission types Type of fire model

No fire model All other ESMs None All All No fire model

Historic +
future fire model

CESM2-WACCM CLM5 None None w/ anthro.
CNRM-ESM2-1 SURFEXv8.0 (ISBA) Deforestation + Agricultural Deforestation + Agriculture w/o anthro.
CMCC-ESM2 CLM4.5 None None w/ anthro.
EC-Earth3-Veg LPJ-GUESSv4 Deforestation + Agricultural Deforestation + Agriculture w/o anthro.

EC-Earth3-Veg-LR LPJ-GUESSv4 Deforestation + Agricultural Deforestation + Agriculture w/o anthro.
MPI-ESM1-2-LR JSBACH3.20 Deforestation + Agricultural Deforestation + Agriculture w/o anthro.

NorESM2-LM CLM5 None None w/ anthro.
NorESM2-MM CLM5 None None w/ anthro.
GFDL-ESM4 LM4.1 None None w/ anthro.

Historic fire model

TaiESM1 CLM4 Deforestation + Agricultural All w/o anthro.
CESM2 CLM5 None All w/ anthro.

MRI-ESM (2.0) HAL1.0 Deforestation + Agricultural All w/o anthro.

Table 3: Fire Models with their corresponding Historical and Future emissions type. The type of fire
model used by each climate model is listed in the last column. The historic fire models must use the
“all” fire emission types and future emission types.

We retrieved the information about the fire models from a combination of different sources. Yu
et al. (2022) describes the fire models of most the fire models we are using, while the TaiESM stems
from Lasslop et al. (2020). However, the information provided there is not explicit about which
fire types exactly must be include from the openburning / biomassburning files. Teckentrup et al.
(2019); Rabin et al. (2017) explicitely state how different fire models treat cropland, pasture, and
deforestation fire. Additionally, we referred to Séférian et al. (2019b) for CNRM-ESM2-1, Ward
et al. (2018) for GFDL-ESM4, Yukimoto et al. (2019) for MRI-ESM2, Lindeskog et al. (2013) and
Spessa et al. (2013) and Döscher et al. (2022b) for the EC-Earth3-Veg models. We could not find
any information about the land (HAL 1.0) or fire model of the MRI-ESM2 model. However, in the
meta information of their data (e.g. on esgf), they describe the “Carbon Mass Flux into Atmosphere
Due to CO2 emissions from Fire Excluding Land-Use Change [kgC m-2 s-1]”. From that we infer
that no anthropogenic fire is modelled here. A detailed report on how we compiled the fire model
information is available on request.

F Similarities Within and Across Climate Models

Similarities within climate models. When training on multiple – instead of single – ensemble
member of climate models, weighting between the different ensemble members must be considered:
Some models such as EC-Earth3-Veg contain up to 97 ensemble members while others contain
only 1 ensemble member. Training an ML model with the complete dataset without weighting the
ensemble members would skew the results heavily towards those climate models with many ensemble
members. Furthermore, some ensemble members are closer to each other than others and providing
this information to the ML models could potentially improve their performance.

Similarities across climate models. The following similarities can occur:
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(A) Climate models from different institutes share the same sub-models
(e.g. ACCESS-CM2 uses the same atmospheric model as HadGEM3 models);

(B) Climate models are newer versions of themselves, stemming from the same institute
(e.g. NorESM1 (CMIP5) and NorESM2 (CMIP6));

(C) Climate models are implemented for different resolutions, with differing physics implemen-
tations to ensure resolving the relevant processes
(e.g. NorESM2-LM (100 km) and NorESM2-MM (250 km)).

Similar climate model names (e.g. GISS-E2-1-G, GISS-E2-1-H, GISS-E2-2-G) usually indicate that
the same model is run with different sub-models for atmosphere, ocean, land, etc. (case (A)).

In future work, we would like to encode similarities within and across climate models in the super-
emulator, for example by providing an additional input vector encoding the submodels of the climate
model.

G Downloader

We present a ready-to use downloader class that forms the first step of creating a custom climate data
dataset in an intuitive and script-based fashion.

The Downloader class can be prompted with a set of properties / heuristic to select them (for an
example, see Fig. 9. Acting on those, the Downloader will automatically interact with the ESGF
nodes to narrow down the search space and obtain the data if available.

Variables and experiments have to be fixed for all data. The version can be nailed down to a specific
version e.g. ’20170519’ or alternatively, can be set to ’latest’ in which case always the latest available
version of the specified data files will be selected for download. For data coming from the CMIP6
project, the model ID has to be set additionally. For CMIP6, either all available ensemble members
can be considered, alternatively, the user can the ensemble member ID or restrict the number of
members to be considered.

The resulting search space will then be searched and constraint for the remaining properties. If the
specified default nominal resolution, frequency or grid label are not available, the Downloader will
download the first available alternative.

The Downloader communicates with the data nodes of the Earth System Grid Federation system
(ESGF) via ESGF PyClient.

G.1 Earth System Grid Federation (ESGF)

The Earth System Grid Federation (ESGF) is a partnership of climate modelling centres dedicated to
supporting climate research by making an effort to provide access to the distributed climate model
data collected by the CMIP projects, which exceeds hundreds of petabytes. The data, hosted on
several servers all around the world, can be searched over a web-based platform.

Further documentation on ESGF’s web presence can be found here: ESGF User Support

G.2 ESGF Pyclient

As the ESGF’s web presence proves to be quite slow and inflexible when it comes to broadly searching
the database in order to craft custom datasets, and more overly cannot be easily incorporated in
an automatic pipeline as it is dependent on manual selection, we resolve to make use of a python
package that hooks onto the search nodes and interfaces with the ESGF Search API. This open-source
package, named ESGF-Pyclient Documentation, allows querying the database via python scripting.

G.3 Data Structure

The Downloader will download and store the raw data files separately for each unique pair of
specifications, whereas the resulting files span over one year each, with the number of data points
per file determined by the chosen temporal resolutions. See Fig. 10 for an illustration of the folder

23

https://esgf.github.io/esgf-user-support/
https://esgf-pyclient.readthedocs.io/en/latest/


class Downloader:
"""
Class handling the downloading of the data. It communicates with

the esgf nodes to search and
download the specified data.

"""

def __init__(
self ,
model: str = "NorESM2 -LM", # default as in ClimateBench
experiments: List[str] = [

"historical",
"ssp370",
"hist -GHG",
"piControl",
"ssp434",
"ssp126",

], # sub -selection of ClimateBench default
vars: List[str] = ["tas", "pr", "SO2", "BC"],
data_dir: str = "../../ tmp/data/",
max_ensemble_members: int = 10 , #max ensemble members
ensemble_members: List[str] = None #preferred ensemble members

used , if None not
considered

):

downloader = Downloader(** kwargs)
downloader.download_from_model ()
downloader.download_raw_input ()

Figure 9: The Downloader class: The Downloader can be instantiated with the default arguments or
be prompted with a new set of specifications. Downloading CMIP data from a model and downloading
input4mips data are handled by separate functions, each of which can also be prompted with a new
set of specifications to allow for flexibility.

structure that will be created in the data directory pointed to by the ’data_dir’ variable that the
Downloader was initialized with.

H Processing Pipelines

In the following, the specific pipelines are described that were used here to create the core dataset of
ClimateSet. The different modules of the processing pipelines can be shuffled around and adapted as
needed. The three main modules are:

• The checker (checks for corruptness, inconsistencies in units, variable namings, and simi-
lar);

• The resolution processor (spatial and temporal aggregations and interpolations, see Ap-
pendix I)

• The raw processer (corrects names, units, calendars, time axis, etc.)

The modules are partially different for the Input4MIPs and CMIP6 dataset, e.g. the raw processor of
the CMIP6 dataset contains both an internal processor and a xmip Busecke and Abernathey (2020)
processor, whereas the Input4MIPs pipeline can only use the processing tools provided by us so far.
The details are described further in Fig. 11 and Fig. 12.

H.1 Input4MIPs Processing Pipeline

The flowchart of the processing pipeline is as shown in Fig.11.
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Figure 10: Raw Data Structure: Raw data will be stored separately for each unique pair of
specifications, with one file per year.

H.2 CMIP6 Processing Pipeline

The flowchart of the processing pipeline is as shown in Fig. 12.

I Resolution Preprocessing

The resolution preprocessing covers both the spatial and the temporal domain, and the user can both
interpolate or aggregate the data at hand. The resolution preprocessor was implemented with CDO
(Schulzweida, 2022) since - to our knowledge - it is the fastest tool for remapping netcdf files. Both
the resolution preprocessor and the raw preprocessor can also be extended with “National Center
of Atmospheric Research Command Language” (NCL by NCAR (2019)) commands if CDO does
not provide a desired functionality since NCL is more expressive than CDO. Python tools require
loading the data, e.g. with xarray which takes a considerable amount of time, and CDO profits
from multiprocessing and pre-weight calculations. In the following the different types of resolution
processing are described that we implemented in ClimateSet with CDO. Our python code directly
calls the CDO commands via “subprocess”. The resolution processer can also be used separately
from the rest of ClimateSet if considered helpful.

I.1 Spatial Resolution Preprocessing

The spatial resolution preprocessor uses the CDO command “remap” which can be used for both
aggregation and interpolation. Essentially, it regrids a given netcdf file. The file can be either
remapped according to a given example (e.g. the NorESM grid), or according to a target gridfile.
Please refer to our GitHub repo for an example of a grid or to the CDO documentation (Schulzweida,
2022). Usually, such a file contains the variables “gridtype”, “xsize”, “ysize”, “xfirst”, “yfirst”, “xinc”,
and “yinc”. If an example file is given, the spatial resolution preprocessor will pick a random file
from the directory that should be processed, assuming that all files in that directory have the same
grid. It will then calculate weights for this file, and the weights can then be re-used for the rest of
the directory. This accelerates the resolution processing a lot. The “remap” function of CDO works
bidirectional, i.e. both aggregation and interpolation is handled this way. Beware, that also climate
models with the right resolution, still need to be remapped since many models have different grids
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Figure 11: Flowchart of the Input4MIPs processing pipeline. The input is first repaired (CO2

files, CH4 files, correct biomassburning names). Subsequently, the data is checked. Anthropogenic
fire emission files are created. Historical biomassburning files are aggregated to 50 km. Raw
preprocessing is applied (correcting calendar, time-axis, and units, and summing levels/sectors). For
the future files a temporal interpolation is applied to retrieve annual files (instead of decadal files).
The different emission files are summed up (anthropogenic, aircraft, fire emissions) - with three
options (anthropogenic fires, all fires, no fires). All emission maps are then aggregated to 250 km
(same as climate model’s resolutions). In the end loadable data is created, with a choice of receiving
a spatial map, global totals, monthly or annual data.
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Figure 12: Flowchart of the CMIP6 processing pipeline. The checker evaluates if files are corrupt,
units, names, or similar are inconsistent. The “corrections module” makes sure time-axis, calendars,
and levels are aligned across all models. Afterwards, the model is aggregated to 250 km or the grid is
adapted to 250 km grid of the NorESM2 model. Lastly, the xmip processer is applied to get the same
structured, numpy-friendly, format across all climate models.

and different version of the same resolution. Remapping is necessary for all climate models to make
sure that they are operating on the same grid.

Different algorithms can be used to interpolate to a different resolution. Those algorithms can be set
in “res_processing_params.json”. For example, we choose bilinear interpolation for temperature files,
and first order conservative interpolation for precipitation files.

I.2 Temporal Resolution Preprocessing

Temporal Aggregation A given file can be aggregated along the temporal axis to a desired time unit.
So far the units “hour”, “day”, “month”, and “year” are supported. It requires that all timesteps are
set to the first of the original time unit. Alternatively, the aggregation can happen over a given number
of timesteps.

Temporal Interpolation The temporal interpolation can have two different forms. 1) Files can be
interpolated that have e.g. monthly data, but only every 10 years. In that case the “interpolate_jump”
function interpolates bilinearly the missing years. 2) Files can be interpolated to different time
units. This is currently supported for “seconds”, “minutes”, “hours”, “days”, “months”, and “years”.
The interpolation can either happen to another unit or by choosing how many timesteps should be
interpolated (i.e. how many new timesteps should be created between two given timesteps). All
temporal interpolation is linear. For further information refer to CDOs documentation (https:
//code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf).

J Accelerate ClimateSet

The following measures can be applied to accelerate ClimateSet’s preprocessing:

1. Using the multi-thread function of the CDO-implemented processors (resolution & raw
preprocessor);

2. Waiving the checker and/or the structure processor;
3. Supplying the resolution processor with an example resolution map.

(1) only works on machines that allow multi-threading for CDO, e.g. on HPCs.
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(2) is accelerating the process because the checker and the structure processor (xmip)(Busecke and
Abernathey, 2020) are not implemented with CDO. Since python tools such as xmip(Busecke and
Abernathey, 2020) are computationally not as optimized as CDO is, those modules are significantly
slower. While the checker can be waived, the structural preprocessor can only be waived if the
selected climate models use the same naming and structure across their dimensions. We would like to
implement multi-threading for the checker and structure processor later on, so those two processors
are not a bottleneck for the overall acceleration of the preprocessing.

(3) Is already the default. For ClimateSet a 250 km NorESM2-LM spatial map is used which can
be found in the “meta” directory of the dataset. Using an example map accelerates the process by
re-using the weights needed for remapping: Each file with the same longitude-latitude grid can use
the same weights file for computing the new grid.

K ML Models’ Implementation Details

K.1 ClimaX

ClimaX stands for a foundation model that has recently emerged for tackling a wide range of weather
and climate modelling tasks. With its remarkable capability to handle diverse spatial and temporal
resolutions, as well as high-dimensional data, ClimaX sets itself apart by offering forecasting abilities
for various lead-times and settings. It has not only achieved state-of-the-art (SOTA) or near-SOTA
performance but has also demonstrated computational feasibility across multiple forecasting and
climate modelling domains, including ClimateBench (Nguyen et al., 2023).

One of ClimaX’s key attributes is its capacity to train on heterogeneous datasets encompassing
different variables with distinct physical grounding and spatio-temporal coverage. As a foundation
model, ClimaX undergoes a pre-training phase on CMIP6 data, employing a self-supervised approach.
The pre-training process incorporates historical projections drawn from five different climate models,
including a set of both surface and atmospheric (i.e. across several pressure layers) variables, such as
wind speeds, temperature, and humidity. This foundational pre-training enables subsequent finetuning
for various specific tasks.

Architecture: ClimaX extends the vision transformer architecture (Dosovitskiy et al., 2021) with
novel encoding and aggregation blocks to accommodate the intricacies of weather and climate
modelling and weather forecasting. Notably, it employs variable tokenization, treating each variable
in the input as image-like data represented by a spatial map. These variables are then considered as
separate tokens, enabling comprehensive analysis.

To tackle the challenge of scaling computations with an increasing number of input variables, ClimaX
implements a variable aggregation technique. It performs a cross-attention operation for each
spatial position across all variables, resulting in a unified token sequence that captures the holistic
representation of the input data. The transformed data is then processed by a vision transformer in
conjunction with a prediction head.

Distinguishing Features from the Original Implementation: In adapting ClimaX to ClimateBench,
the authors introduced several modifications to their model differing from the weather forecasting
stream. Firstly, only specific parts of the pre-trained weights from the foundation model were retained.
This involved preserving and either freezing or finetuning the attention layers. Additionally, the
ClimateBench implementation included a temporal aggregation model. This model processed each
year of the 10-year input sequence through tokenization, aggregation, and attention layers, followed by
global average pooling over the spatial map and cross-attention across time. The resulting embedded
output was then fed into a linear attention head, mapping it to a spatial grid for a single variable and
single time step only.

In contrast, our approach to climate projection diverges as we designed our task in a sequence-to-
sequence manner. Thus, we maintain the same selection of pre-trained weights but exclude spatial
map pooling and temporal aggregation, as our objective is to obtain predictions for each time-step in
the input sequence. Additionally, we are modelling several output variables, i.e. temperature and
precipitation, at the same time. Therefore, we utilize the original nonlinear decoder with a prediction
head that maps the output to several variables across the spatial grid.
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Hyperparameters: The hyperparameters for ClimaX were selected based on the original implemen-
tation and the author’s adaptation to ClimateBench. The chosen values include a patch size of 16,
embedding dimension of 1024, encoder depth of 8 with 16 attention heads, and a non-linear decoder
comprising two MLP layers with GELU activation, followed by a linear prediction head layer. For
training, we use an Adam optimizer with weight decay with a learning rate of 1e-3 and a weight
decay of 1e-5 paired with a linear warm-up cosine annealing learning rate scheduler, with 5 warm-up
epochs and a maximum of 50 epochs to keep it consistent with the training of other models. The
warm-up start learning rate is set to 1e-8, with a minimum eta of 1e-8.

K.2 U-Net

The U-Net architecture, originally proposed by Ronneberger et al. (2015), has established itself as
a highly regarded convolutional neural network (CNN) model for image segmentation tasks. Its
effectiveness in capturing intricate details while preserving the global context has made it a preferred
choice for pixel-level classification and localization in various domains, including medical imaging
and computer vision.

In a recent study conducted by Orlova et al. (2022), the potential of ML models for sub-seasonal
forecasting of crucial climate variables was explored. The research encompassed an ensemble
of models, incorporating linear models, regression models, random forests, and a U-Net-based
convolutional network. The results demonstrated the superior performance of these ML methods over
traditional non-ML baselines. Notably, the U-Net architecture exhibited exceptional capabilities in
handling spatial variability within climate forecasts.

Architecture: The U-Net structure comprises an encoder path, responsible for capturing contextual
information and extracting high-level features from the input image, and a decoder path, tasked with
reconstructing the segmented image using the learned features. The decoder is followed by an output
layer, typically employing additional convolutional operations to reduce the number of channels to
match the desired number of output features.

Distinguishing Features from the Original Implementation: Following the implementation by
Orlova et al. (2022), we adopt a U-Net architecture with a pre-trained backbone for the task of
climate projection. Orlova et al. (2022) employed an off-the-shelf U-Net model available in the
segmentation models PyTorch library. This pre-existing U-Net implementation utilized a pre-trained
VGG11 (Simonyan and Zisserman, 2015) encoder backbone which was trained on the ImageNet
classification challenge (Deng et al., 2009).

To adapt the U-Net model to our specific requirements, we encountered the challenge of dealing with
input grids of varying resolutions. Unlike the original approach, we devised a solution by introducing
zero-padding to the nearest image size divisible by 32 for both the longitude and latitude dimensions
as this is required for the pre-trained encoder. Hence, we incorporated an adapted average pooling
mechanism, initially introduced by Liu et al. (2018), to restore the output to its original grid size after
the U-Net decoder process.

Furthermore, as our objective involved modelling sequence-to-sequence relationships rather than
sequence-to-one, we employed a Time Distributed Layer encapsulating the pre-trained segmentation
model. This approach, commonly used to handle sequential image data with convolutions, allows us
to construct a sequential model with one layer per time-step in the input. Each layer consists of the
same U-Net architecture, enabling the model to be applied to every temporal slice of the input. The
weights are shared and trained simultaneously during the backward step.

Hyperparameters: Consistent with the original implementation (Orlova et al., 2022), the hyper-
parameters adopted include a VGG11 encoder, a linear readout layer, the Adam optimizer with a
learning rate of 2e-4, and a weight decay of 1e-6. Additionally, an exponential learning rate scheduler
with a gamma value of 0.98 is utilized for training.

K.3 Convolutional LSTM

The Convolutional LSTM (CNN-LSTM) is a model that combines the sequential application of
convolutional neural networks (CNNs) (LeCun et al., 1989) and long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks. It is important to note that the CNN-LSTM should not
be confused with an LSTM that employs convolutional operations for its gates. The motivation behind
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the CNN-LSTM is to effectively process image-like data over time by extracting spatial dependencies
using the CNN component and temporal dependencies using the LSTM component. Thus, the model
can be used for climate projection tasks and has been recognized as the best performing baseline in
terms of root mean squared error (RMSE) scores in ClimateBench (Watson-Parris et al., 2022), albeit
with some spatial biases in its predictions.

Architecture: The architecture of the CNN-LSTM involves several key components. Firstly, the
input data undergoes feature extraction through a CNN layer. To ensure the extraction of features
at each time step while sharing the same module, a Time Distributed Layer is applied. Different
weights are assigned to the filters in this layer. Following the feature extraction, an average pooling
operation is performed to reduce the spatial dimensionality of the extracted features. This is also
done time-step wise. Subsequently, the features are fed into a single LSTM layer, which captures
the temporal dependencies in the data. Finally, a linear readout layer is applied to obtain the desired
output.

Distinguishing Features from the Original Implementation: In comparison to the original imple-
mentation in ClimateBench, several modifications have been made to fit our training pipeline and our
task setting. The ClimateBench implementation did not employ a sequence-to-sequence approach,
only considering the last output of the LSTM and also did only model one output variable at a time.
Contrary to that, in our modified version, all outputs of the LSTM are taken into account, allowing
for modelling of the entire sequence. Thus, the readout layer has been altered to enable the modelling
of the complete sequence and also to enable modelling multiple output variables simultaneously.
Furthermore, the implementation has been converted from TensorFlow to PyTorch, which may result
in slight changes due to the differences in internal workings of the layers between the two different
libraries.

Hyperparameters: Regarding the chosen hyperparameters, we have adhered to the settings selected
in ClimateBench (Watson-Parris et al., 2022). The CNN component consists of a single convolutional
layer with 20 filters, each with a kernel size of 3, and employs ReLU activation function. The pooling
stage involves two 2D average pooling layers, one with a kernel size of (2,2) and the other with a
kernel size of (longitude/2, latitude/2). The LSTM layer comprises a single layer with 25 units and
uses ReLU as the activation function. The model is trained using the Adam optimizer with a learning
rate of 2e-4, a weight decay of 1e-6, and an epsilon value of 1e-8. Additionally, an Exponential
Decay Learning Rate Scheduler with a gamma of 0.98 is applied during training.

K.4 Gaussian Process

Gaussian process regression (Williams and Rasmussen, 2006) is a nonparametric and Bayesian
regression method that has the advantage of providing uncertainty measures over predictions. Since
we deal with large datasets, we use a stochastic variational variant of the Gaussian process for
regression (SVGP; (Hensman et al., 2015)) that supports training with minibatches and scales well
with the number of samples. To deal with the multi-output nature of the task, we use the Linear
Model of Coregionalization (LMC) with 100 latent Gaussian processes. The number of latents used
is a hyperparameter that controls the capacity of the model. We use Matern1.5 kernels and train with
the Adam optimizer with a learning rate of 0.1 and batch size of 64.

As in ClimateBench (Watson-Parris et al., 2022), we use Empirical orthogonal functions (EOF)
as a dimensionality reduction technique on the aerosols input (BC and SO2) and keep only the 5
first modes. While we use SVGP, the ClimateBench uses exact Gaussian Processes which can be
problematic for large datasets since it scales cubicly with respect to the number of examples.

Finally, to implement our SVGP method, we used the library GPytorch (Gardner et al., 2018)
(https://gpytorch.ai/), a Pytorch implementation of Gaussian processes.

We showcase our results with the Gaussian Process on six climate models in Table 4. Gaussian
Process is the best-performing model when predicting TAS (surface air temperature) for NorESM2-
LM. Generally, we observe that the Gaussian Process performs really well for predicting TAS but
when predicting PR (precipitation), it underperforms the models shown in Table 5 by a huge margin.
For this reason, we chose to run the Gaussian Process on a smaller subset of the climate models and
omitted it for the experiments run on 15 climate models.
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GP

TAS PR

AWI-CM-1-1-MR 0.264 0.538
BCC-CSM2-MR 0.247 0.536
EC-Earth3 0.279 0.580
FGOALS-f3-L 0.280 0.553
MPI-ESM1-2-HR 0.257 0.544
NorESM2-LM 0.248 0.553

Table 4: RMSE of Gaussian Process single-emulating temperature (TAS) and precipitation (PR)
on six climate models. Emboldened values are showing when the GP performs best across all ML
models (GP, U-Net, ConvLstm, ClimaX, and ClimaXFrozen). Italic values show when the GP performs
worst across all ML models.

L Experimental Setup

L.1 Single-Emulator

For all our models, we use a similar training procedure where we predict the outputs for entire input
sequence in one go. Our inputs are of shape < batch, sequence_length, num_vars, lon, lat >
and outputs are of size < batch, sequence_length, 2, lon, lat > where the 2 in output dimension
denotes TAS and PR. For our experiments we have a sequence length of 12, meaning that we use data
from 12 months and predict the output for those 12 months. More details about the input and output
data, along with the variables used are in Section 2.1. Our training methodology differs slightly from
those used by Nguyen et al. (2023) and Watson-Parris et al. (2022) in the sense that we don’t use a
lead time for out models.

We train all our models on one Nvidia-RTX8000 GPU with a batch size of 4 and make use of
32GB of RAM. The U-Net and ConvLSTM are trained for 50 epochs with an initial learning rate
of 2e− 4 with an exponential decay scheduler. To keep the training consistent for ClimaX models,
we train the models for 50 epochs with an initial warm-up for 5 epochs. The learning rate for the
warm-up is set to 1e-8 and then to 5e-4 for training. Other training details are kept the same as in
the original implementation. Fig. 6 reports results from experiments without warm-up, while all
tables in the Appendix report only results from experiments with warm-up. For the loss, we use the
latitude-longitude weighted mean squared error (LLMSE) as implemented in Nguyen et al. (2023).
We report the latitude-longitude weighted root mean squared error (RMSE) as our metric to evaluate
the models.

L.2 Super-Emulator

We use the term super-emulator to refer to a single ML model trained on the entire data of all
climate models, such that it is capable of projecting a unique output of every specific climate model,
according to a user requirement. Training a single ML model (as opposed to many ML models each
trained on one climate model data) may benefit from rich and diverse data from the collection of
climate models (as opposed to only one). This joint knowledge results in a super-emulator model
with parameter sharing and increased capacity. For this goal, the super-emulator should be able to
distinguish between data inputs provided to it from different climate models. A naive super-emulator
that is trained on multiple climate models as targets without any contextual information would be
mapping the same inputs to multiple targets. This lack of context restricts the emulator’s ability to
accurately represent the different behaviours of climate models. In order to prevent the “one-to-many”
mapping, a super-emulator needs to encode the climate models in the input data. One approach is to
provide which climate model is associated with each sample, and another approach is to provide the
climate model’s internal dynamics as additional input. Both methods are outlined in the following:

Multi-head decoder: This method is centred around the idea of indexing each sample with its
respective climate model. By associating each sample with a climate model, the mapping becomes a
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“one-to-one” mapping. Here, we implement this by using a multi-head decoder on top of a neural
network model. We are using the exact same NN models as in the single-emulator experiments as
basemodels. They use the same inputs, outputs, and shapes as in the single-emulator experiments.
On top of such a basemodel (U-Net, ClimaX, ConvLSTM), a multi-head decoder is installed. Each
climate model that participates in the super-emulator receives its own head. A head consists of several
convolutional layers which can be determined by the user. Each head receives the gridded output of
the basemodel and the climate model index for each sample. The training batches can contain samples
from different climate models since each sample can be identified by its climate model index. Each
sample is forwarded only through its matching head, and back-propagated through this head, while all
other heads stay frozen. In our experiments, we used the ConvLSTM, U-Net, ClimaX, ClimaXFrozen
as base models with the same training regimes as outlined in the single-emulator experiments. Due to
memory requirements, we were only able to train the super-emulator on the smaller set of six climate
models. 7 The overall super-emulator was trained for a maximum of 100 epochs with a head for
each climate model and each head had 2 convolutional layers with 32 units. We noticed that the
performance of ClimaX-based models plummeted and other models stagnated after ∼20 epochs with
predictions converging to zero. This lead us to include a standard Early Stopping Regularization
paradigm that stopped the training process around that threshold. We used the inbuilt pytorch Early
Stopping class with patience set to 3 and a min delta of 0. Refer to Appendix M.2 for the results
of those experiments. Further experiments are necessary to be able to analyze the potential of the
multi-head decoder for super-emulation fully.

Sea-level pressure maps: The current approach of training a super-emulator solely on greenhouse
gas, aerosols and aerosol precursor emission data from Input4MIPs does not sufficiently capture
the intrinsic dynamics of the climate models. Climate models are not solely influenced by external
factors but also by intrinsic dynamics, which can exhibit chaotic behaviour. Consequently, even
numerical models generate different trajectories when provided with the same input data but different
initializations. This internal variability is captured by the multiple ensemble members that are also
included in ClimateSet. However, the current machine learning emulators fail to account for and
explain this internal variability, resulting in fluctuations in the predicted targets. To address these
challenges, one option is to incorporate one of the intrinsic dynamics present in climate models as
an additional input alongside the forcing data. For instance, concatenating sea level pressure maps
specific to the climate model and/or ensemble member with the input GHG and aerosol data would
enable the required one-to-one mapping and partially explain the variability observed in the targets.
This approach has the potential to enhance the emulator’s overall performance. It would also enable
querying for average predictions or interpolation between existing scenarios during inference time.
By interpolating or averaging sea level pressure maps from existing runs, it becomes possible to
generate new input features that incorporate both emissions data and intrinsic dynamics, even though
the intrinsic dynamics have not been simulated by a climate model yet. Consequently, the machine
learning emulator - despite using the output of a climate model - can still predict scenarios that the
climate model itself has not run.

To summarize, the possibilities to design a super-emulator are plentiful and are subject to the intended
purpose determined by the user. As such, they remain to be investigated thoroughly.

L.3 Generalization Capabilities of ML Models

In order to investigate the generalization capabilities of ML models on different climate models, we
decided to choose a finetuning approach.

L.3.1 Finetuning Single-Emulators

For the single-emulator finetuning experiments, each ML model is first pre-trained on a specific
climate model, and subsequently finetuned and evaluated on NorESM2-LM (Seland et al., 2020). The
best model to be chosen for subsequent tuning is selected based on the validation metric. We chose
NorESM2-LM as a generalization test case since it is the model that has been most widely used in
previous work. We compare the performance of the finetuned ML model with the NorESM2-LM
single-emulator to learn A) how well the ML model can generalize from one model to another, and B)
how much transferable information each climate model has for NorESM2-LM. Similar to (Nguyen

7We plan to address this limitation in future work and will update our GitHub repo continuously.
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et al., 2023), we hope that pre-training on climate datasets might help the ML model learn some
patterns that are applicable to other datasets & climate models.

The single-emulator finetuning experiments follow the training procedure described in Section L.1.
Those setups are used for pre-training. The pre-trained models are then loaded and afterwards
finetuned on NorESM2-LM for 50 epochs. We report the latitude-longitude weighted root mean
squared error (RMSE) as our evaluation metric.

L.3.2 Finetuning Super-Emulators

The multi-head decoder used for super-emulation can also be used to examine the generalization
capability of a super-emulator. For pre-training a multi-head decoder super-emulator is used with
heads for all participating climate models. The only climate model that has no header is the one
on which the super-emulator is evaluated. During finetuning another header is added and only that
head is finetuned. Subsequently, the performance of the super-emulator (e.g. trained on a set of
climate models but without NorESM2-LM) can be compared with the performance of the finetuned
super-emulator (e.g. finetuned on an added head for NorESM2-LM). We leave those experiments and
analyses for future work.

M Experimental Results

M.1 Single-Emulator

The results of our experiments for training ML models on emulating single climate models are shown
in Table 5. In these experiments, we train our models individually on 15 different climate models and
report the RMSE for our two output variables, TAS (surface air temperature) and PR (precipitation).

Our experiments indicate a trend of larger ML-models outperforming the smaller ones on single-
emulation. For most climate datasets, ClimaX performs much better than other models. This is
not unexpected as ClimaX is a much larger model being finetuned on suitable pre-trained weights
(stemming from ERA5 and two climate models) for this task. ClimaXF rozen follows usually
with slightly worse RMSE values. Thus, finetuning the weights is indeed helpful to increase the
performance of ClimaX. With some exceptions, U-Net is performing best after ClimaXF rozen,
and ConvLSTM, the simplest and smallest model, shows often the worst performance across all
ML-models. We conclude, that there is a general trend among the ML-models performance across
several climate models.

However, there are exceptions to this general “leaderboard”. We can identify three strong outliers,
namely GFDL-ESM4 (Dunne et al., 2020), NorESM2-LM (Seland et al., 2020) and NorESM2-MM
(Seland et al., 2020), where U-Net outperforms both ClimaX models by a pretty large margin. Also
on TaiESM1 (Wang et al., 2021), U-Net is performing exceptionally well and comes in second after
ClimaX. These results show, that it is not sufficient to evaluate an ML-emulator on a single climate
model. When trained only on e.g. NorESM2 models, one might conclude that U-Net is the best
performing model. Only when taking a set of climate model datasets intro consideration, we can
evaluate how well a specific ML-model can emulate climate models.

Also note, that the performance differences between the ML models is not huge. For example, U-Net
performs in a very similar range like ClimaXfrozen, outperforming it from time to time. This
indicates that simple baselines can still keep up with larger models. We hope that other simple
baselines will be investigated by other researchers in the future. Also further work on large models is
needed to achieve performance gains that justify using such models over simple baselines.

M.2 Super-Emulator

Our super-emulation experiments showed that the ranking of the best performing ML models changes
between single and super-emulation. While U-Net and ClimaX have been the best performing models
when the goal is to emulate only one climate model (see Table 5), ConvLSTM is performing best
when a set of climate models needs to be emulated (see Table 6). The ConvLSTM achieves the
highest performance among all ML models for all six climate models on both TAS and PR. However,
all super-emulator performance values are significantly worse than the single-emulator results. This
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U-Net ConvLSTM ClimaX ClimaXFrozen

TAS PR TAS PR TAS PR TAS PR

AWI-CM-1-1-MR 0.321 0.326 0.445 0.438 0.263 0.267 0.316 0.321
BCC-CSM2-MR 0.232 0.258 0.295 0.333 0.205 0.229 0.232 0.258
CAS-ESM2-0 0.317 0.315 0.393 0.394 0.226 0.226 0.272 0.276
CNRM-CM6-1-HR 0.315 0.309 0.379 0.370 0.250 0.245 0.289 0.286
EC-Earth3 0.292 0.295 0.397 0.398 0.240 0.241 0.287 0.292
EC-Earth3-Veg-LR 0.299 0.300 0.410 0.410 0.248 0.250 0.290 0.290
FGOALS-f3-L 0.286 0.305 0.362 0.381 0.260 0.274 0.294 0.313
GFDL-ESM4 0.481 0.482 0.505 0.503 0.542 0.544 0.630 0.636
INM-CM4-8 0.232 0.235 0.335 0.346 0.212 0.214 0.257 0.261
INM-CM5-0 0.258 0.264 0.329 0.345 0.207 0.209 0.247 0.252
MPI-ESM1-2-HR 0.31 0.317 0.406 0.415 0.225 0.229 0.258 0.265
MRI-ESM2-0 0.292 0.292 0.357 0.360 0.221 0.219 0.262 0.262
NorESM2-LM 0.271 0.291 0.299 0.315 0.369 0.381 0.386 0.413
NorESM2-MM 0.291 0.313 0.317 0.333 0.376 0.395 0.420 0.435
TaiESM1 0.196 0.197 0.333 0.346 0.194 0.195 0.232 0.237

Table 5: RMSE values for each ML model single-emulating surface air temperature (TAS) and
precipitation (PR) across 15 climate models. All reported values are averages over three seeds. The
highest RMSE among the ML-models is emboldened for each climate model dataset. For most of the
climate model datasets, ClimaX seems to outperform other ML models. U-Net is the best performing
model on some of the climate model datasets.

U-Net ConvLSTM ClimaX ClimaXFrozen

TAS PR TAS PR TAS PR TAS PR

AWI-CM-1-1-MR 0.579 0.571 0.396 0.398 0.908 1.172 0.647 0.634
BCC-CSM2-MR 0.334 0.299 0.270 0.238 0.495 0.88 0.366 0.338
EC-Earth3 0.508 0.481 0.287 0.286 0.616 1.287 0.491 0.480
FGOALS-f3-L 0.811 0.745 0.314 0.287 0.665 1.622 0.464 0.439
MPI-ESM1-2-HR 0.8 0.756 0.295 0.289 0.903 0.979 0.531 0.512
NorESM2-LM 0.566 0.532 0.261 0.249 0.686 1.457 0.455 0.426

Table 6: RMSE values for each ML model super-emulating surface air temperature (TAS) and
precipitation (PR) on a set of six climate models. All reported values are averages over three seeds.
The highest RMSE among the ML-models is emboldened for each climate model dataset. The
performance of super-emulator models seems to be worse as compared to the single-emulator models
as seen in Table 5. The smallest model, ConvLSTM, is performing best across all climate models.
Smaller ML models seem to be the better super-emulators in our experiments.
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can be attributed to the fact that the task of learning to emulate several climate models is harder than
learning to emulate only one climate model.

Initially, we suspected that ConvLSTM outperforms the other models since the loss curves looked
like it is able to learn “faster” due to its smaller amount of learnable parameters. However, this was
only true when training on a small subset of the years. Further experiments covering the whole
time-length showed that all ML models are early-stopping around 20 epochs as their performance
gets worse after that. It should be noted, that ClimaX’s performance is plummeting suddenly after 20
epochs. Further experiments could be done to try to stabilize the training and investigate if ClimaX
performance improves over a longer period of training time. Future work could investigate different
training regime settings for all models. The experiments we conducted to date indicate to us that all
ML models need around the same amount of epochs to learn to super-emulate.

We think that the determining factor of the super-emulator performance is the models generalization
capability. The better it can generalize onto different climate models, the better it can perform as
a super-emulator. To investigate this, we conducted finetuning experiments (see M.3. They show
that the smaller models are better at generalizing across different climate models, with ConvLSTM
clearly outperforming all the other models. The ML-model ranking of the finetuning results aligns
with the ranking for super-emulation. These results support our hypothesis that smaller models are
better at generalizing and, for this reason, might be the better super-emulators for now.

We are convinced that adding challenging tasks - such as the super-emulation task presented here -
will be helpful to benchmark ML models on climate relevant tasks.

M.3 Generalization Capabilities of ML Models

The results for the finetuning experiments of the single-emulator are shown in Table 7. The first
column lists the choice of the pre-training dataset where “None” means that the model is trained
directly on NorESM2-LM (single-emulator experiment). ConvLSTM seems to outperform all other
ML models for these experiments. One possible explanation for this is that ConvLSTM is indeed
the ML model that can generalize best from one climate model to another climate model. Another
reasonable explanation however is, that ConvLSTM is just in general the best ML model to emulate
this specific climate model, NorESM2-LM. Hence, it is more informative to look at the performance
differences between single-emulator and finetuned model which is shown in Table 8.

Here, we can see that the ConvLSTM achieves the largest performance gain through the finetuning
setting, ClimaXFrozen gains slightly, U-Net neither gains nor looses, while ClimaX drops in perfor-
mance. There are some exceptions, e.g. ClimaX gets the highest performance gain for FGOALS-f3-L.
The slight performance gain of ClimaXFrozen could be explained by the fact that it had the poorest
overall performance on NorESM2-LM before, i.e. there was more space for improvement compared
to e.g. the U-Net that was already performing very well on NorESM2-LM. However, the pretty consis-
tent performance gain of the ConvLSTM cannot be explained by that, indicating that the ConvLSTM
could actually be inherently better at generalizing to other climate models. While ConvLSTM seems
to benefit from pre-training, it makes less of a difference for U-Net, and seems to have little benefit
for ClimaX when evaluating on the NorESM2-LM dataset. The benefit for ClimaX might be limited
as compared to other models as it has already been pre-trained on a collection of datasets as described
in Nguyen et al. (2023).

Overall, Table 8 shows that finetuning on one climate model can improve the performance on another
model. This indicates, that climate models indeed share patterns and information and that patterns
learned from one climate model can be transferred to another.
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Pre-training Dataset
U-Net ConvLSTM ClimaX ClimaXFrozen

TAS PR TAS PR TAS PR TAS PR

None 0.291 0.309 0.278 0.292 0.311 0.325 0.353 0.370
AWI-CM-1-1-MR 0.302 0.325 0.208 0.220 0.351 0.365 0.335 0.346
BCC-CSM2-MR 0.327 0.253 0.277 0.291 0.354 0.368 0.326 0.344
EC-Earth3 0.302 0.319 0.247 0.262 0.385 0.399 0.329 0.343
FGOALS-f3-L 0.283 0.306 0.242 0.256 0.327 0.341 0.320 0.342
MPI-ESM1-2-HR 0.266 0.284 0.218 0.229 0.412 0.427 0.304 0.317

Table 7: RMSE values for ML models that were finetuned on NorESM2-LM and pre-trained on
different climate models. We report the RMSE for two variables, TAS (surface air temperature) and
PR (precipitation). The best performing models are emboldened. The pre-training dataset column
shows which dataset the model was initially trained on before being finetuned on the NorESM2-LM
dataset. The first row with “None” for the pre-training dataset represents the results from training on
NorESM2-LM from scratch. ConvLSTM performs best across all climate model datasets here.

Pre-training Dataset
U-Net ConvLSTM ClimaX ClimaXFrozen

TAS PR TAS PR TAS PR TAS PR

AWI-CM-1-1-MR -0.011 -0.016 0.070 0.072 -0.004 0.004 0.089 0.024
BCC-CSM2-MR -0.036 0.056 0.001 0.001 -0.043 -0.043 0.027 0.027
EC-Earth3 -0.011 -0.016 0.031 0.030 -0.074 -0.074 0.024 0.027
FGOALS-f3-L 0.019 0.013 0.005 0.006 0.058 0.058 0.009 0.001
MPI-ESM1-2-HR 0.025 0.025 0.060 0.063 -0.101 -0.102 0.049 0.053

Table 8: RMSE delta values for ML models that were finetuned on NorESM2-LM and pre-trained on
different climate models. Here, we report the RMSE differences between pre-training and finetuning
for TAS and PR. The pre-training dataset column shows which dataset the model was initially trained
on before being finetuned on the NorESM2-LM dataset. Positive digits indicate that pre-training
on this climate model improved performance compared to the single-emulator experiment, negative
digits that performance dropped. ConvLSTM is the model that can generate the largest performance
gain by finetuning.
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