
7 Supplementary Material

7.1 Proofs of Theorems 1 and 2.

Proof of Theorem 1. An element in � can be represented as � = WL+1�1(WL�1(. . .�1(W1x +
b1) . . .) + bL) + bL+1. Therefore, an element in D� can be represented as

 (x) = Di�(x) =WL+1�0(WL�1(. . .�1(W1x+ b1) . . .) + bL)

·WL�0(. . .�1(W1x+ b1) . . .) . . .W2�0(W1x+ b1)(W1)i, (19)

where Wi 2 RNi⇥Ni�1 ((W )i is i-th column of W ) and bi 2 RNi are the weight matrix and the
bias vector in the i-th linear transform in �, and �0(x) = sgn(x) = 1[x > 0], which is the derivative
of the ReLU function and �0(x) = diag(�0(xi)). Denote Wi as the number of parameters in Wi, bi,
i.e., Wi = NiNi�1 +Ni.

Let x 2 Rd be an input and ✓ 2 RW be a parameter vector in  . We denote the output of  with
input x and parameter vector ✓ as f(x,✓). For fixed x1,x2, . . . ,xm in Rd, we aim to bound

K :=
��{(sgn(f(x1,✓)), . . . , sgn(f(xm,✓))) : ✓ 2 RW }

�� . (20)

The proof is inspired by [4, Theorem 7]. For any partition S = {P1, P2, . . . , PT } of the parameter
domain RW , we have K 

P
T

i=1 |{(sgn(f(x1,✓)), . . . , sgn(f(xm,✓))) : ✓ 2 Pi}|. We choose the
partition such that within each region Pi, the functions f(xj , ·) are all fixed polynomials of bounded
degree. This allows us to bound each term in the sum using Lemma 1.

We define a sequence of sets of functions {Fj}Lj=0 with respect to parameters ✓ 2 RW :

F0 := {(W1)i,W1x+ b1}
F1 := {(W1)i,W2�0(W1x+ b1),W2�1(W1x+ b1) + b2}
F2 := {(W1)i,W2�0(W1x+ b1),W3�0(W2�1(W1x+ b1) + b2),

W3�1(W2�1(W1x+ b1) + b2) + b3}
...

FL := {(W1)i,W2�0(W1x+ b1), . . . ,WL+1�0(WL�1(. . .�1(W1x+ b1) . . .) + bL)}. (21)

The partition of RW is constructed layer by layer through successive refinements denoted by
S0,S1, . . . ,SL. These refinements possess the following properties:

1. We have |S0| = 1, and for each n = 1, . . . , L, we have |Sn|
|Sn�1|  2

⇣
2emnNkPn

i=1 Wi

⌘Pn
i=1 Wi

.

2. For each n = 0, . . . , L� 1, each element S of Sn, when ✓ varies in S, the output of each term in
Fn is a fixed polynomial function in

P
n

i=1 Wi variables of ✓, with a total degree no more than n+ 1.

3. For each element S of SL, when ✓ varies in S, the h-th term in FL for h 2 {1, 2, . . . , L+ 1} is a
fixed polynomial function in Wh variables of ✓, with a total degree no more than 1.

We define S0 = {RW }, which satisfies properties 1,2 above, since W1xj + b1 and (W1)i are affine
functions of W1, b1.

To define Sn, we use the last term of Fn�1 as inputs for the last two terms in Fn. Assuming that
S0,S1, . . . ,Sn�1 have already been defined, we observe that the last two terms are new additions to
Fn when comparing it to Fn�1. Therefore, all elements in Fn except the last two are fixed polynomial
functions in Wn variables of ✓, with a total degree no greater than n when ✓ varies in S 2 Sn. This
is because Sn is a finer partition than Sn�1.

We denote pxj ,n�1,S,k(✓) as the output of the k-th node in the last term of Fn�1 in response to xj

when ✓ 2 S. The collection of polynomials
{pxj ,n�1,S,k(✓) : j = 1, . . . ,m, k = 1, . . . , Nn}

can attain at most 2
⇣

2emnNnPn
i=1 Wi

⌘Pn
i=1 Wi

distinct sign patterns when ✓ 2 S due to Lemma 1 for

sufficiently large m. Therefore, we can divide S into 2
⇣

2emnNnPn
i=1 Wi

⌘Pn
i=1 Wi

parts, each having the
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property that pxj ,n�1,S,k(✓) does not change sign within the subregion. By performing this for all
S 2 Sn�1, we obtain the desired partition Sn. This division ensures that the required property 1 is
satisfied.

Additionally, since the input to the last two terms in Fn is pxj ,n�1,S,k(✓), and we have shown that
the sign of this input will not change in each region of Sn, it follows that the output of the last two
terms in Fn is also a polynomial without breakpoints in each element of Sn. Therefore, the required
property 2 is satisfied.

In the context of DNNs, the last layer is characterized by all terms containing the activation function
�0. Consequently, for any element S of the partition SL, when the vector of parameters ✓ varies
within S, the h-th term in FL for h 2 {1, 2, . . . , L+1} can be expressed as a polynomial function of
at most degree 1, which depends on at most Wh variables of ✓. Hence, the required property 3 is
satisfied.

Due to property 3, we multiply all the terms in FL and obtain a term in D�. Hence, the output of each
term in D� is a polynomial function in

P
L+1
i=1 Wi variables of ✓ 2 S 2 SL, of total degree no more

than L+1. Therefore, for each S 2 SL we have |{(sgn(f(x1,✓)), . . . , sgn(f(xm,✓))) : ✓ 2 S}| 

2
⇣
2em(L+ 1)/

P
L+1
i=1 Wi

⌘PL+1
i=1 Wi

. Then

K 2

 
2em(L+ 1)/

L+1X

i=1

Wi

!PL+1
i=1 Wi

·
LY

n=1

2

✓
2emnNnP

n

i=1 Wi

◆Pn
i=1 Wi


L+1Y

n=1

2

✓
2emnNnP

n

i=1 Wi

◆Pn
i=1 Wi

2L+1

✓
2em(L+ 2)(L+ 1)N

2U

◆U

(22)

where U :=
P

L+1
n=1

P
n

i=1 Wi = O(N2L2), N is the width of the network, and the last inequality is
due to weighted AM-GM. For the definition of the VC-dimension, we have

2VCdim(D�)  2L+1

✓
eVCdim(D�)(L+ 1)(L+ 2)N

U

◆U

. (23)

Due to Lemma 2, we obtain that

VCdim(D�)  L+1+U log2[2(L+1)(L+2) log2(L+1)(L+2)] = O(N2L2 log2 L log2 N) (24)

since U = O(N2L2).

Proof of Theorem 2. Denote D�N := {⌘(x, y) : ⌘(x, y) =  (x) � y, 2 D�, (x, y) 2 Rd+1}.
Based on the definition of VC-dimension and pseudo-dimension, we have that

Pdim(D�)  VCdim(D�N ). (25)

For the VCdim(D�N ), it can be bounded by O(N2L2 log2 L log2 N). The proof is similar to that
for the estimate of VCdim(D�) as given in Theorem 1.

We establish that Pdim(D�)  VCdim(D�N ), where �N represents DNNs with N + 1 width
and L+ 1 depth. This implies that Pdim(D�) is upper bounded by C̄(N + 1)2(L+ 1)2 log2(L+
1) log2(N + 1)  64C̄N2L2 log2 L log2 N . Therefore, we conclude that 64C̄ � Ĉ.

7.2 Proof of Theorem 3

7.2.1 Propositions of Sobolev spaces and ReLU neural networks

The following two lemmas estimate the Sobolev norms and Sobolev semi-norms for the composition
and product, which will be used in later proof.
Lemma 3 ([18, Corollary B.5]). Let d,m 2 N+ and ⌦1 ⇢ Rd and ⌦2 ⇢ Rm both be open, bounded,
and convex. Then for f 2 W 1,1(⌦1,Rm) and g 2 W 1,1(⌦2) with ranf ⇢ ⌦2, we have

kg � fkW 1,1(⌦2) 
p
dmmax{kgkL1(⌦2), |g|W 1,1(⌦2)|f |W 1,1(⌦1,Rm)}.

14



Lemma 4 ([18, Corollary B.6]). Let d 2 N+ and ⌦ ⇢ Rd. Then for f, g 2 W 1,1(⌦), we have

kgfkW 1,1(⌦)  kgkL1(⌦)|f |W 1,1(⌦) + kfkL1(⌦)|g|W 1,1(⌦).

Then we collect and establish some propositions for ReLU neural networks.

Proposition 2 ([28, Proposition 4.3]). Given any N,L 2 N+ and � 2
⇣
0, 1

3K

i
for K =

bN1/dc2bL2/dc, there exists a �1-NN � with the width 4N + 5 and depth 4L+ 4 such that

�(x) = k, x 2

k

K
,
k + 1

K
� � · 1k<K�1

�
, k = 0, 1, . . . ,K � 1.

Proposition 3. [28, Proposition 4.4] Given any N,L, s 2 N+ and ⇠i 2 [0, 1] for i = 0, 1, . . . N2L2�
1, there exists a �1-NN � with the width 16s(N + 1) log2(8N) and depth (5L+ 2) log2(4L) such
that

1. |�(i)� ⇠i|  N�2sL�2s for i = 0, 1, . . . N2L2 � 1.

2. 0  �(x)  1, x 2 R.
Proposition 4. For any N,L 2 N+ and a > 0, there is a �1-NN � with the width 15N and depth 2L
such that k�kW 1,1((�a,a)2)  12a2 and

k�(x, y)� xyk
W 1,1((�a,a)2)  6a2N�L. (26)

Furthermore,

�(0, y) =
@�(0, y)

@y
= 0, y 2 (�a, a). (27)

Proof. We first need to construct a neural network to approximate x2 on (�1, 1), and the idea is
similar with [23, Lemma 3.2] and [28, Lemma 5.1]. The reason we do not use [23, Lemma 3.4] and
[28, Lemma 4.2] directly is that constructing �(x, y) by translating a neural network in W 1,1[0, 1]
will lose the proposition of �(0.y) = 0. Here we need to define teeth functions Ti on ex 2 [�1, 1]:

T1(ex) =
⇢
2|ex|, |ex|  1

2 ,
2(1� |ex|), |ex| > 1

2 ,

and
Ti = Ti�1 � T1, for i = 2, 3, · · · .

Define
e (ex) = ex�

sX

i=1

Ti(ex)
22i

,

According to [23, Lemma 3.2] and [28, Lemma 5.1], we know  is a neural network with the
width 5N and depth 2L such that k e (ex)kW 1,1((�1,1))  2, k e (ex)� ex2kW 1,1((�1,1))  N�L and
 (0) = 0.

By setting x = aex 2 (�a, a) for ex 2 (�1, 1), we define

 (x) = a2 e 
⇣x
a

⌘
.

Note that x2 = a2
�
x

a

�2, we have

k (x)� x2kW1,1(�a,a) = a2
���� e 

⇣x
a

⌘
�
⇣x
a

⌘2
����
W1,1((�a,a))

 a2N�L,

and  (0) = 0, which will be used to prove Eq. (27).

Then we can construct �(x, y) as

�(x, y) = 2


 

✓
|x+ y|

2

◆
�  

✓
|x|
2

◆
�  

✓
|y|
2

◆�
(28)
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where �(x) is a neural network with the width 15N and depth 2L such that k�kW 1,1((�a,a)2)  12a2

and
k�(x, y)� xyk

W 1,1((�a,a)2)  6a2N�L. (29)

For the last equation Eq. (27) is due to �(x, y) in the proof can be read as Eq. (28) with  (0) = 0.

Proposition 5. For any N,L, s 2 N+with s � 2, there exists a �1-NN � with the width 9(N + 1) +
s� 1 and depth 14s(s� 1)L such that k�kW1,1((0,1)s)  18 and

k�(x)� x1x2 · · ·xskW1,1((0,1)s)  10(s� 1)(N + 1)�7sL. (30)

Furthermore, for any i = 1, 2, . . . , s, if xi = 0, we will have

�(x1, x2, . . . , xi�1, 0, xi+1, . . . , xs) =
@�(x1, x2, . . . , xi�1, 0, xi+1, . . . , xs)

@xj

= 0, i 6= j. (31)

Proof. The proof of the first inequality Eq. (30) can be found in [23, Lemma 3.5]. The proof of
Eq. (31) can be obtained via induction. For s = 2, based on Proposition 4, we know there is a neural
network �2 satisfied Eq. (31).

Now assume that for any i  n � 1, there is a neural network �i satisfied Eq. (31). �n in [23] is
constructed as

�n(x1, x2, . . . , xn) = �2(�n�1(x1, x2, . . . , xn�1),�(xn)), (32)
which satisfies Eq. (30). Then �n(x1, x2, . . . , xi�1, 0, xi+1, . . . , xn) = 0 for any i = 1, 2, . . . , n.
For i = n, we have

�(x1, x2, . . . , 0)

@xj

=
@�2(�n�1(x1, x2, . . . , xn�1), 0)

@�n�1(x1, x2, . . . , xn�1)| {z }
=0, by the property of �2.

·@�n�1(x1, x2, . . . , xn�1)

@xj

= 0. (33)

For i < n and j < n, we have

�(x1, x2, . . . , xi�1, 0, xi+1, . . . , xn)

@xj

=
@�2(�n�1(x1, x2, . . . , xi�1, 0, xi+1, . . . , xn�1),�(xn))

@�n�1(x1, . . . , 0, xi+1, . . . , xn�1)
· @�n�1(x1, . . . , 0, xi+1, . . . , xn�1)

@xj| {z }
=0, via induction.

= 0.

(34)

For i < n and j = n, we have

�(x1, x2, . . . , xi�1, 0, xi+1, . . . , xn)

@xn

=
@�2(�n�1(x1, x2, . . . , xi�1, 0, xi+1, . . . , xn�1),�(xn))

@�(xn)| {z }
=0, by the property of �2.

· d�(xn)

dxn

= 0. (35)

Therefore, Eq. (31) is valid.

Proposition 6 ([23, Propositiion 3.6]). For any N,L, s 2 N+ and |↵|  s , there is a �1-NN � with
the width 9(N + 1) + s� 1 and depth 14s2L such that k�kW 1,1((0,1)d)  18 and

k�(x)� x
↵k

W 1,1((0,1)d)  10s(N + 1)�7sL. (36)

Proposition 7 ([39, Proposition 1]). Given a sequence of the neural network {pi}Mi=1, and each pi is
a �1-NN from R ! R with the width N and depth Li, then

P
M

i=1 pi is a �1-NN with the width N +4

and depth
P

M

i=1 Li.

We present the proof of Proposition 1 below.
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Proof of Proposition 1. First, we construct g1 and g2 by neural networks in [0, 1]. Note that bL2/dc 
L2/d 

�
bL1/dc+ 1

�2
. We first construct a �1-NN in the small set

⇥
0, bN1/dcbL2/dc

⇤
. It is easy to

check there is a neural network  ̂ with the width 4 and one layer such as

 ̂(x) :=

8
>><

>>:

1, x 2
⇥

1
8K , 3

8K

⇤

4K
�
x� 1

8K

�
, x 2

⇥
1

8K , 3
8K

⇤

�4K
�
x� 7

8K

�
, x 2

⇥
5

8K , 7
8K

⇤

0, Otherwise.

(37)

Figure 2:  1

Hence, we have a network  1 with the width 4bN1/dc and one layer such as

 1(x) :=

bN1/dc�1X

i=0

 ̂

✓
x� i

K

◆
.

Next, we construct  i for i = 2, 3, 4 based on the symmetry and periodicity of gi.  2 is the function
with period 2

bN1/dcbL2/dc in
h
0, 1

bL2/dc

i
, and each period is a hat function with gradient 1.  3 is

the function with period 2
bL2/dc in

h
0, bL1/dc+1

bL2/dc

i
, and each period is a hat function with gradient 1.

 4 is the function with period
2(bL1/dc+1)

bL2/dc in

0,

(bL1/dc+1)2

bL2/dc

�
, and each period is a hat function

with gradient 1. The schematic diagram is in Fig. 3 (The diagram is shown the case for bN1/dc and
bL1/dc+ 1 is a even integer.).

Note that  2 �  3 �  4(x) is the function with period 2
bN1/dcbL2/dc in [0, 1] ⇢


0,

(bL1/dc+1)2

bL2/dc

�
, and

each period is a hat function with gradient 1. Then function  1 �  2 �  3 �  4(x) is obtained by

repeating reflection  1 in

0,

(bL1/dc+1)2

bL2/dc

�
, which is the function we want.

Similar with  1,  2 is a network with 4bN1/dc width and one layer. Due to Proposition 7, we know
that  3 and  4 is a network with 7 width and bL1/dc+ 1 depth. Hence

 (x) :=  1 �  2 �  3 �  4(x) (38)

is a network with 4bN1/dc width and 2bL1/dc + 4 depth and g1 =  
�
x+ 1

8K

�
and g1 =

 
�
x+ 5

8K

�
.

Now we can construct gm for m 2 {1, 2}d based on Proposition 5: There is a neural network �prod
with the width 9(N + 1) + d� 1 and depth 14d(d� 1)nL such that k�prodkW1,1((0,1)d)  18 and

k�prod(x)� x1x2 · · ·xdkW1,1((0,1)d)  10(d� 1)(N + 1)�7dnL.
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Figure 3:  i for i = 2, 3, 4

Then denote �m(x) := �prod(gm1 , gm2 , . . . , gmd) which is a neural network with the width smaller
than (9 + d)(N + 1) + d� 1 and depth smaller than 15d(d� 1)nL. Furthermore, due to Lemma 3,
we have

k�m(x)� gm(x)kW1,1((0,1)d) d
3
2 k�prod(x)� x1x2 · · ·xdkL1((0,1)d)

+ d
3
2 k�prod(x)� x1x2 · · ·xdkW1,1((0,1)d) | |W 1,1(0,1)

d
3
2 10(d� 1)(N + 1)�7ndL

⇣
1 + 4bN1/dc2bL2/dc

⌘

50d
5
2 (N + 1)�4dnL, (39)

where the last inequality is due to

bN1/dc2bL2/dc
(N + 1)3dnL

 N2L2

(N + 1)3dnL
 L2

(N + 1)3dnL�2
 L2

2dnL
 1.

In the final of this subsection, we establish three lemmas for {⌦m}m2{1,2}d , {gm}m2{1,2}d and
{�m}m2{1,2}d defined in Subsection 3.1.

Lemma 5. For {⌦m}m2{1,2}d defined in Definition 5, we have
[

m2{1,2}d

⌦m = [0, 1]d.

Proof. We prove this lemma via induction. d = 1 is valid due to ⌦1 [ ⌦2 = [0, 1]. Assume that the
lemma is true for d� 1, then

[

m2{1,2}d

⌦m =[0, 1]d =
[

m2{1,2}d�1

⌦m ⇥ ⌦1 +
[

m2{1,2}d�1

⌦m ⇥ ⌦2

=
�
[0, 1]d�1 ⇥ ⌦1

�[�
[0, 1]d�1 ⇥ ⌦2

�
= [0, 1]d, (40)

hence the case of d is valid, and we finish the proof of the lemma.
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Lemma 6. {gm}m2{1,2}d defined in Definition 6 satisfies:

(i):
P

m2{1,2}d gm(x) = 1 for every x 2 [0, 1]d.

(ii): supp gm \ [0, 1]d ⇢ ⌦m, where ⌦m is defined in Definition 5.

(ii): For any m = (m1,m2, . . . ,md) 2 {1, 2}d and x = (x1, x2, . . . , xd) 2 [0, 1]d\⌦m, there
exists j such as gmj (xj) = 0 and

dgmj (xj)

dxj
= 0.

Proof. (i) can be proved via induction as Lemma 5, and we leave it to readers.

As for (ii) and (iii), without loss of generality, we show the proof for m⇤ := (1, 1, . . . , 1). For any
x 2 [0, 1]d\⌦m⇤ , there is xj 2 [0, 1]\⌦1. Then g1(xj) = 0 and gm⇤(x) =

Q
d

j=1 g1(xj) = 0,

therefore supp gm⇤ \ [0, 1]d ⇢ ⌦m⇤ . Furthermore,
dgmj (xj)

dxj
= 0 for xj 2 [0, 1] 2 ⌦1 due to the

definition of g1 (Definition 6), then we finish this proof.

The following lemma demonstrates that �m, as defined in Proposition 1, can restrict the Sobolev
norm of the entire space to ⌦m.
Lemma 7. For any �(x) 2 W 1,1((0, 1)d), denote

M = max{k�kW 1,1((0,1)d), k�mkW 1,1((0,1)d)},
then we have

k�m(x) · �(x)kW 1,1((0,1)d) =k�m(x) · �(x)kW 1,1(⌦m)

k�m(x) · �(x)� �M (�m(x),�(x))kW 1,1((0,1)d) =k�m(x) · �(x)� �M (�m(x),�(x))kW 1,1(⌦m)

(41)

for any m 2 {1, 2}d, where �m(x) and ⌦m is defined in Proposition 1 and Definition. 5, and �M is
from Proposition 4 (choosing a = M in the proposition).

Proof. For the first equality, we only need to show that
k�m(x) · �(x)kW 1,1((0,1)d\⌦m) = 0. (42)

According to the Proposition 1, we have �m(x) = �prod(gm1 , gm2 , . . . , gmd), and for any x =

(x1, x2, . . . , xd) 2 (0, 1)d\⌦m, there is mj such as gmj (xj) = 0 and
dgmj (xj)

dxj
= 0 due to Lemma

6. Based on Eq. (31) in Proposition 5, we have

�m(x) =
@�m(x)

@xs

= 0, x 2 (0, 1)d\⌦m, s 6= j.

Furthermore,
@�m(x)

@xj

=
@�prod(gm1 , gm2 , . . . , gmd)

@gmj

dgmj (xj)

dxj

= 0. (43)

Hence we have

|�m(x) · �(x)|+
dX

q=1

����
@ [�m(x) · �(x)]

@xq

���� = 0 (44)

for all x 2 (0, 1)d\⌦m.

Similarly, for the second equality in this lemma, we have

|�M (�m(x),�(x))|+
dX

q=1

����
@ [�M (�m(x),�(x))]

@xq

����

=|�M (0,�(x))|+
dX

q=1

����
@ [�M (0,�(x))]

@�(x)
· @�(x)
@xq

����+
����
@ [�M (�m(x),�(x))]

@�m(x)
· @�m(x)

@xq

����

�

=0, (45)
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for all x 2 (0, 1)d\⌦m based on

�M (0, y) =
@�M (0, y)

@y
= 0, y 2 (�M,M),

and @�m(x)
@xq

= 0. Hence we finish our proof.

7.2.2 An approximation of functions in Sobolev spaces based on the Bramble–Hilbert Lemma
[7, Lemma 4.3.8]

In this subsection, we establish {fK,m}m2{1,2}d as mentioned in Subsection 3.1, which is presented
in Theorem 6. To prove this result, we build upon the work of [18], which leverages the average
Taylor polynomials and the Bramble-Hilbert Lemma to approximate functions in Sobolev spaces.

Before we show Theorem 6, we define subsets of ⌦m for simplicity notations.

For any m 2 {1, 2}d, we define

⌦m,i := [0, 1]d \
dY

j=1


2ij � 1mj2

2K
,
3 + 4ij � 2 · 1mj2

4K

�
(46)

i = (i1, i2, . . . , id) 2 {0, 1 . . . ,K}d, and it is easy to check
S

i2{0,1...,K}d ⌦m,i = ⌦m.

Theorem 6. Let K 2 N+ and n � 2. Then for any f 2 Wn,1((0, 1)d) with kfkWn,1((0,1)d)  1
and m 2 {1, 2}d, there exist piece-wise polynomials function fK,m =

P
|↵|n�1 gf,↵,m(x)x↵ on

⌦m (Definition 5) with the following properties:

kf � fK,mkW 1,1(⌦m)  C1(n, d)K
�(n�1),

kf � fK,mkL1(⌦m)  C1(n, d)K
�n. (47)

Furthermore, gf,↵,m(x) : ⌦m ! R is a constant function with on each⌦m,i for i 2 {0, 1 . . . ,K}d.
And

|gf,↵,m(x)|  C2(n, d) (48)
for all x 2 ⌦m, where C1 and C2 are constants independent with K.

This proof is similar to that of [18, Lemma C.4.], but we provide detailed proof as follows for
readability. Before the proof, we must introduce the partition of unity, average Taylor polynomials,
and a lemma.
Definition 7 (The partition of unity). Let d,K 2 N+, then

 =
�
hi : i 2 {0, 1, . . . ,K}d

 

with hi : Rd ! R for all i 2 {0, 1, . . . ,K}d is called the partition of unity [0, 1]d if it satisfies

(i): 0  hi(x)  1 for every hi 2  .

(ii):
P

hi2 hi = 1 for every x 2 [0, 1]d.

Definition 8. Let n � 1 and f 2 Wn,1((0, 1)d), x0 2 ((0, 1)d) and r > 0 such that for the ball
B(x0) := B(x0)r,|·| which is a compact subset of ((0, 1)d). The corresponding Taylor polynomial
of order n of f averaged over B is defined for

Qnf(x) :=

Z

B

Tn

y f(x)br(y) dy (49)

where

Tn

y f(x) :=
X

|↵|n�1

1

↵!
D↵f(y)(x� y)↵,

br(x) :=

(
1
cr
e�(1�(|x�x0|/r)2)�1

, |x� x0| < r,

0, |x� x0|  r,

cr =

Z

Rd

e�(1�(|x�x0|/r)2)�1

dx. (50)
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Lemma 8. Let n � 1 and f 2 Wn,1((0, 1)d), x0 2 ⌦ and r > 0 such that for the ball B(x0) :=
Br,|·|(x0) which is a compact subset of ((0, 1)d). The corresponding Taylor polynomial of order n of
f averaged over B can be read as

Qnf(x) =
X

|↵|n�1

cf,↵x
↵.

Furthermore,

|cf,↵|  C2(n, d)kfkWn�1,1(B). (51)

where C2(n, d) =
P

|↵+�|n�1
1

↵!�! .

Proof. Based on [18, Lemma B.9.], Qnf(x) can be read as

Qnf(x) =
X

|↵|n�1

cf,↵x
↵ (52)

where
cf,↵ =

X

|↵+�|n�1

1

(� +↵)!
a�+↵

Z

B

D↵+�f(x)y�br(y) dy (53)

for a�+↵  (↵+�)!
↵!�! . Note that

����
Z

B

D↵+�f(x)y�br(y) dy

����  kfkWn�1,1(B)kbr(x)kL1(B) = kfkWn�1,1(B). (54)

Then

|cf,↵|  C2(n, d)kfkWn�1,1(Bm,N ). (55)

where C2(n, d) =
P

|↵+�|n�1
1

↵!�! .

The proof of Theorem 6 is based on average Taylor polynomials and the Bramble–Hilbert Lemma [7,
Lemma 4.3.8].
Definition 9. Let ⌦, B 2 Rd. Then ⌦ is called stared-shaped with respect to B if

conv ({x} [B ⇢ ⌦) , for all x 2 ⌦.

Definition 10. Let ⌦ 2 Rd be bounded, and define

R :=

⇢
r > 0 :

there exists x0 2 ⌦ such that ⌦ is
star-shaped with respect to Br,|·| (x0)

�
.

Then we define

r?max := supR and call � :=
diam(⌦)

r?max

the chunkiness parameter of ⌦ if R 6= ;.
Lemma 9 (Bramble–Hilbert Lemma [7, Lemma 4.3.8]). Let ⌦ 2 Rd be open and bounded, x0 2 ⌦
and r > 0 such that ⌦ is the stared-shaped with respect to B := Br,|·| (x0), and r � 1

2r
?

max.
Moreover, let n 2 N+, 1  p  1 and denote by � by the chunkiness parameter of ⌦. Then there is
a constant C(n, d, �) > 0 such that for all f 2 Wn,p(⌦)

|f �Qnf |
Wk,p(⌦)  C(n, d, �)hn�k|f |Wn,p(⌦) for k = 0, 1, . . . , n

where Qnf denotes the Taylor polynomial of order n of f averaged over B and h = diam(⌦).

Proof of Theorem 6. Without loss of generalization, we prove the case for m = (1, 1, . . . , 1) =: m⇤.

Denote E : Wn,1((0, 1)d) ! Wn,1(Rd) be an extension operator [43] and set f̃ := Ef and CE is
the norm of the extension operator.
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Define pf,i as the average Taylor polynomial Definition 8 in Bi,K := B 1
4K ,|·|

�
8i+3
8K

�
i.e.

pf,i :=

Z

Bi,K

Tn

y f̃(x)b 1
4K

(y) dy. (56)

Based on Lemma 8, pf,i can be read as

pf,i =
X

|↵|n�1

cf,i,↵x
↵ (57)

where
|cf,i,↵|  C2(n, d). (58)

The reason to define average Taylor polynomial on Bi,K is to use the Bramble–Hilbert Lemma 9 on

⌦m⇤,i = B 3
8K ,k·k`1

✓
8i+ 3

8K

◆
=

dY

j=1


ij
K

,
3 + 4ij
4K

�
.

Note that
1

4K
� 1

2
· 3

8K
=

1

2
r?max(⌦m⇤,i), �(⌦m⇤,i) =

diam(⌦m⇤,i)

r?max(⌦m⇤,i)
= 2

p
d.

Therefore we can apply the Bramble–Hilbert Lemma 9 and have

kf̃ � pf,ikL1(⌦m⇤,i)  CBH(n, d)K�n

|f̃ � pf,i|W 1,1(⌦m⇤,i)  CBH(n, d)K�(n�1) (59)

where CBH(n, d) = |{|↵| = n}| 1

d
R 1
0 xd�1e

�(1�x2)�1
dx

⇣
2 + 4

p
d
⌘d

CE by following the proof of

Lemma [7, Lemma 4.3.8]. Therefore,

kf̃ � pf,ikW 1,1(⌦m⇤,i)  C1(n, d)K
�(n�1)

where C1(n, d) = 2CBH(n, d).

Now we construct a partition of unity that we use in this theorem. First of all, given any integer K,
define {hi}Ki=0 from R ! R:

hi(x) := h

✓
4K

✓
x� 8i+ 3

8K

◆◆
, h(x) :=

8
<

:

1, |x| < 3
2

0, |x| > 2
4� 2|x|, 3

2  |x|  2.
(60)

It is easy to check that {hi}Ki=0 is a partition of unity of [0, 1] and hi(x) = 1 for x 2
⇥

i

K
, 3+4i

4K

⇤
. Hence

we can define hi(x) for i = (i1, i2, . . . , id) 2 {0, 1, . . . ,K}d and x = (x1, x2, . . . , xd) 2 Rd:

hi(x) =
dY

j=1

hij (xj), (61)

and
�
hi : i 2 {0, 1, . . . ,K}d

 
is a partition of unity of [0, 1]d and hi(x) = 1 for x 2

Q
d

j=1

h
ij

K
, 3+4ij

4K

i
= ⌦m⇤,i and i = (i1, i2, . . . , id) 2 {0, 1, . . . ,K}d.

Furthermore,

khi(f̃ � pf,i)kL1(⌦m⇤,i)  kf̃ � pf,ikL1(⌦m⇤,i)  CBH(n, d)K�n (62)

and

|hi(f̃ � pf,i)|W 1,1(⌦m⇤,i) |f̃ � pf,i|W 1,1(⌦m⇤,i)  CBH(n, d)K�(n�1) (63)

which is due to hi = 1 on ⌦m⇤,i.

Then
khi(f̃ � pf,i)kW 1,1(⌦m⇤,i)  C1(n, d)K

�(n�1).
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Finally,
������
f �

X

i2{0,1,...,K}d

hipf,i

������
W 1,1(⌦m⇤ )

 max
i2{0,1,...,K}d

khi(f̃ � pf,i)kW 1,1(⌦m⇤,i)

 C1(n, d)K
�(n�1), (64)

which is due to [i2{0,1,...,K}d⌦m⇤,i = ⌦m⇤ and supp hi \ ⌦m⇤ = ⌦m⇤,i.

Similarly, ������
f �

X

i2{0,1,...,K}d

hipf,i

������
L1(⌦1,d)

 C1(n, d)K
�n. (65)

Last of all,

fk,m⇤(x) :=
X

i2{0,1,...,K}d

hipf,i =
X

i2{0,1,...,K}d

X

|↵|n�1

hicf,i,↵x
↵

=
X

|↵|n�1

X

i2{0,1,...,K}d

hicf,i,↵x
↵

=:
X

|↵|n�1

gf,↵,m⇤(x)x
↵ (66)

with |gf,↵,m⇤(x)|  C2(n, d) for x 2 ⌦m⇤ . Note that gf,↵,m⇤(x) is a step function from ⌦m⇤ !
R:

gf,↵,m⇤(x) = cf,i,↵ (67)

for x 2
Q

d

j=1

h
ij

K
, 3+4ij

4K

i
and i = (i1, i2, . . . , id) since hi(x) = 0 for x 2 ⌦m⇤\

Q
d

j=1

h
ij

K
, 3+4ij

4K

i

and hi(x) = 1 for x 2
Q

d

j=1

h
ij

K
, 3+4ij

4K

i
.

7.2.3 Approximation of functions in Wn,1 with W 1,1 norm by ReLU neural networks in the
whole space except a small set

Theorem 7. For any f 2 Wn,1((0, 1)d) with kfkWn,1((0,1)d)  1, any N,L 2 N+, and m =
(m1,m2, . . . ,md) 2 {1, 2}d, there is a neural network  m with the width 25nd+1(N +1) log2(8N)
and depth 27n2(L+ 2) log2(4L) such that

kf(x)�  m(x)kW 1,1(⌦m)  C6(n, d)N
�2(n�1)/dL�2(n�1)/d

kf(x)�  m(x)kL1(⌦m)  C6(n, d)N
�2n/dL�2n/d, (68)

where C6 is the constant independent with N,L.

Proof. Without loss of the generalization, we consider the case for m⇤ = (1, 1, . . . , 1). Due to
Theorem 6 and setting K = bN1/dc2bL2/dc, we have

kf � fK,m⇤kW 1,1(⌦m⇤ )
 C1(n, d)K

�(n�1)  C1(n, d)N
�2(n�1)/dL�2(n�1)/d

kf � fK,m⇤kL1(⌦m⇤ )
 C1(n, d)K

�n  C1(n, d)N
�2n/dL�2n/d, (69)

where fK,m⇤ =
P

|↵|n�1 gf,↵,m⇤(x)x
↵ for x 2 ⌦m⇤ . Note that gf,↵,m⇤(x) is a constant

function for x 2
Q

d

j=1

h
ij

K
, 3+4ij

4K

i
and i = (i1, i2, . . . , id) 2 {0, 1, . . . ,K � 1}d. The remaining

part is to approximate fK,m⇤ by neural networks.

The way to approximate gf,↵,m⇤(x) is similar with [23, Theorem 3.1]. First of all, due to Proposition
2, there is a neural network �1(x) with the width 4N + 5 and depth 4L+ 4 such that

�(x) = k, x 2

k

K
,
k + 1

K
� 1

4K

�
, k = 0, 1, . . . ,K � 1. (70)
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Note that we choose � = 1
4K  1

3K in Proposition 2. Then define

�2(x) =


�1(x1)

K
,
�1(x2)

K
, . . . ,

�1(xd)

K

�|
.

For each p = 0, 1, . . . ,Kd � 1, there is a bijection

⌘(p) = [⌘1, ⌘2, . . . , ⌘d] 2 {0, 1, . . . ,K � 1}d

such that
P

d

j=1 ⌘jK
j�1 = p. Then define

⇠↵,p =
gf,↵,m⇤

⇣
⌘(p)
K

⌘
+ C2(n, d)

2C2(n, d)
2 [0, 1],

where C2(n, d) is the bounded of gf,↵,m⇤ defined in Theorem 6. Therefore, based on Proposition 3,
there is a neural network �̃↵(x) with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L)
such that |�̃↵(p)� ⇠↵,p|  N�2nL�2n for p = 0, 1, . . .Kd � 1. Denote

�↵(x) = 2C2(n, d)�̃↵

0

@
dX

j=1

xjK
j

1

A� C2(n, d)

and obtain that
�����↵

✓
⌘(p)

K

◆
� gf,↵,m⇤

✓
⌘(p)

K

◆���� = 2C2(n, d)|�̃↵(p)� ⇠↵,p|  2C2(n, d)N
�2nL�2n.

Then we obtain that

k�↵ (�2(x))� gf,↵,m⇤ (x) kW 1,1(⌦m⇤ )
=k�↵ (�2(x))� gf,↵,m⇤ (x) kL1(⌦m⇤ )

2C2(n, d)N
�2nL�2n (71)

which is due to �↵ (�2(x))� gf,↵,m⇤ (x) is a step function, and the first order weak derivative is 0
in ⌦m⇤ .

Due to Proposition 6, there is a neural network �3,↵ with the width 9(N + 1) + n � 1 and depth
14n2L such that k�3,↵kW 1,1((0,1)d)  18 and

k�3,↵(x)� x
↵k

W 1,1((0,1)d)  10n(N + 1)�7nL. (72)

Due to Proposition 4, there is a neural network �4 with the width 15(N + 1) and depth 4n(L+ 1)
such that k�4kW 1,1(�C3,C3)2  12(C2(n, d))2 and

k�4(x, y)� xyk
W 1,1((�C3,C3)2)

 6(C2(n, d))
2(N + 1)�2n(L+1). (73)

where C3(n, d) = max{3C2(n, d), 18}.

Now we define the neural network �m⇤(x) to approximate fK,m⇤(x) in ⌦m⇤ :

 m⇤(x) =
X

|↵|n�1

�4 [�↵(�2(x)),�3,↵(x)] . (74)
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The remaining question is to find the error E :

E :=

������

X

|↵|n�1

�4 [�↵(�2(x)),�3,↵(x)]� fK,m⇤(x)

������
W 1,1(⌦m⇤ )


X

|↵|n�1

k�4 [�↵(�2(x)),�3,↵(x)]� gf,↵,m⇤(x)x
↵k

W 1,1(⌦m⇤ )


X

|↵|n�1

k�4 [�↵(�2(x)),�3,↵(x)]� �↵(�2(x))�3,↵(x)kW 1,1(⌦m⇤ )

| {z }
=:E1

+
X

|↵|n�1

k�↵(�2(x))�3,↵(x)� gf,↵,m⇤(x)�3,↵(x)kW 1,1(⌦m⇤ )

| {z }
=:E2

+
X

|↵|n�1

kgf,↵,m⇤(x)�3,↵(x)� gf,↵,m⇤(x)x
↵k

W 1,1(⌦m⇤ )

| {z }
=:E3

. (75)

As for E1, due to Lemma 3, we have

E1 
X

|↵|n�1

2
p
dmax

n
k�4(x, y)� xyk

L1((�C3,C3)2)
, k�4(x, y)� xyk

W 1,1((�C3,C3)2)

·max{k�↵(�2(x))kW 1,1(⌦m⇤ )
, k�3,↵(x)kW 1,1(⌦m⇤ )

}
o


X

|↵|n�1

2
p
dmax

n
k�4(x, y)� xyk

L1((�C3,C3)2)
, C3(n, d) k�4(x, y)� xyk

W 1,1((�C3,C3)2)

o


X

|↵|n�1

12
p
d [C3(n, d) + 1] (C2(n, d))

2(N + 1)�2n(L+1)

C4(n, d)(N + 1)�2n(L+1) (76)

where C4(n, d) = 12
p
dnd [C3(n, d) + 1] (C2(n, d))2.

As for E2, due to Lemma 4, we have

E2 
X

|↵|n�1

2 k�↵(�2(x))� gf,↵,m⇤(x)kW 1,1(⌦m⇤ )
· k�3,↵(x)kW 1,1(⌦m⇤ )

72ndC2(n, d)N
�2nL�2n. (77)

The estimation of E3 is similar with that of E2 which is

E3 
X

|↵|n�1

kgf,↵,m⇤kW 1,1(⌦m⇤ )
· k�3,↵(x)� x

↵k
W 1,1(⌦m⇤ )

 10ndC2(n, d)n(N + 1)�7nL. (78)

Therefore, using
(N + 1)�7nL  (N + 1)�2n(L+1)  N�2nL�2n

the total error is

E  E1 + E2 + E3  C5(n, d)K
�2nL�2n, (79)

where C5(n, d) = C4(n, d) + 72ndC2(n, d) + 10ndC2(n, d)n.

At last, we finish the proof by estimating the network’s width and depth, implementing  m⇤(x).
From Eq. (74), we know that  m⇤(x) consists of the following subnetworks:

1. �3,↵(x) with the width 9(N + 1) + n� 1 and depth 14n2L.
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2. �2(x) with the width 4N + 5 and depth 4L+ 4.

3. �↵ with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L).

4. �4(x, y) with the width 15(N + 1) and depth 4n(L+ 1).

Therefore �(x) is a neural network with the width 25nd+1(N + 1) log2(8N) and depth 27n2(L+
2) log2(4L).

Combining Eqs. (69) and (79), we have that there is a neural network  m⇤ with the width 25nd+1(N+
1) log2(8N) and depth 27n2(L+ 2) log2(4L) such that

kf(x)�  m⇤(x)kW 1,1(⌦m⇤ )
 C6(n, d)N

�2(n�1)/dL�2(n�1)/d

kf(x)�  m⇤(x)kL1(⌦m⇤ )
 C6(n, d)N

�2n/dL�2n/d, (80)
where C6 = C1 + C5 is the constant independent with N,L.

Similarly, we can construct a neural network  m with the width 25nd+1(N +1) log2(8N) and depth
27n2(L+ 2) log2(4L) which can approximate f on ⌦m with same order of Eq. (80).

7.2.4 Proof of Theorem 3

Now we can prove Theorem 3 based on Theorem 7 and Proposition 1.

Proof of Theorem 3. Based on Theorem 7, there is a sequence of the neural network
{ m(x)}m2{1,2}d such that

kf(x)�  m(x)kW 1,1(⌦m)  C6(n, d)N
�2(n�1)/dL�2(n�1)/d

kf(x)�  m(x)kL1(⌦m)  C6(n, d)N
�2n/dL�2n/d, (81)

where C6 = C1 + C5 is the constant independent with N,L, and each  m is a neural network with
the width 25nd+1(N + 1) log2(8N) and depth 27n2(L+ 2) log2(4L). According to Proposition 1,
there is a sequence of the neural network {�m(x)}m2{1,2}d such that

k�m(x)� gm(x)kW 1,1((0,1)d)  50d
5
2 (N + 1)�4dnL,

where {gm}m2{1,2}d is defined in Definition 6 with
P

m2{1,2}d gm(x) = 1 and supp gm\[0, 1]d =
⌦m. For each �m, it is a neural network with the width smaller than (9 + d)(N + 1) + d� 1 and
depth smaller than 15d(d� 1)nL.

Due to Proposition 4, there is a neural network b� with the width 15(N + 1) and depth 14n2L such
that kb�kW 1,1(�C7,C7)2  12(C7(n, d))2 and

���b�(x, y)� xy
���
W 1,1(�C7,C7)2

 6(C7)
2(N + 1)�7n(L+1), (82)

where C7 = C6 + 50d
5
2 + 1.

Now we define
�(x) =

X

m2{1,2}d

b�(�m(x), m(x)). (83)

Note that

R :=kf(x)� �(x)kW 1,1((0,1)d) =

������

X

m2{1,2}d

gm · f(x)� �(x)

������
W 1,1((0,1)d)



������

X

m2{1,2}d

[gm · f(x)� �m(x) ·  m(x)]

������
W 1,1((0,1)d)

+

������

X

m2{1,2}d

h
�m(x) ·  m(x)� b�(�m(x), m(x))

i
������
W 1,1((0,1)d)

. (84)
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As for the first part,
������

X

m2{1,2}d

[gm · f(x)� �m(x) ·  m(x)]

������
W 1,1((0,1)d)


X

m2{1,2}d

kgm · f(x)� �m(x) ·  m(x)k
W 1,1((0,1)d)


X

m2{1,2}d

h
k(gm � �m(x)) · f(x)k

W 1,1((0,1)d) + k(fm �  m(x)) · �m(x)k
W 1,1((0,1)d)

i

=
X

m2{1,2}d

h
k(gm � �m(x)) · f(x)k

W 1,1((0,1)d) + k(fm �  m(x)) · �m(x)k
W 1,1(⌦m)

i
,

(85)

where the last equality is due to Lemma 7. Based on Lemma 4 and kfkW 1,1((0,1)d)  1, we have

k(gm � �m(x)) · f(x)k
W 1,1((0,1)d)  k(gm � �m(x))k

W 1,1((0,1)d)  50d
5
2 (N + 1)�4dnL.

(86)

And

k(fm �  m(x)) · �m(x)k
W 1,1(⌦m)

k(fm �  m(x))k
W 1,1(⌦m) · k�mkL1(⌦m) + k(fm �  m(x))k

L1(⌦m) · k�mkW 1,1(⌦m)

C6(n, d)N
�2(n�1)/dL�2(n�1)/d ·

⇣
1 + 50d

5
2

⌘
+ C6(n, d)N

�2n/dL�2n/d · 54d 5
2 bN1/dc2bL2/dc

C7(n, d)N
�2(n�1)/dL�2(n�1)/d, (87)

where the second inequality is due to

k�mkL1(⌦m)  k�mkL1([0,1]d)  kgmkL1([0,1]d) + k�m � gmkL1([0,1]d)  1 + 50d
5
2

k�mkW 1,1(⌦m)  k�mkW 1,1([0,1]d)  kgmkW 1,1([0,1]d) + k�m � gmkW 1,1([0,1]d)

 4bN1/dc2bL2/dc+ 50d
5
2 . (88)

Therefore������

X

m2{1,2}d

[gm · f(x)� �m(x) ·  m(x)]

������
W 1,1((0,1)d)

 2d(C7(n, d) + 50d
5
2 )N�2(n�1)/dL�2(n�1)/d

(89)

due to (N + 1)�4dnL  N�2nL�2n.

For the second part, due to Lemma 7, we have
������

X

m2{1,2}d

h
�m(x) ·  m(x)� b�(�m(x), m(x))

i
������
W 1,1((0,1)d)


X

m2{1,2}d

����m(x) ·  m(x)� b�(�m(x), m(x))
���
W 1,1((0,1)d)

=
X

m2{1,2}d

����m(x) ·  m(x)� b�(�m(x), m(x))
���
W 1,1(⌦m)

. (90)

Similarly with the estimation of E1 (76), we have that
����m(x) ·  m(x)� b�(�m(x), m(x))

���
W 1,1(⌦m)

C8(n, d)(N + 1)�7n(L+1)  C8(n, d)N
�2(n�1)/dL�2(n�1)/d. (91)
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Combining (89) and (91), we have that there is a �1-NN � with the width (34 + d)2dnd+1(N +
1) log2(8N) and depth 56d2n2(L+ 1) log2(4L) such that

kf(x)� �(x)kW 1,1((0,1)d)  C9(n, d)N
�2(n�1)/dL�2(n�1)/d,

where C9 is the constant independent with N,L.

The method proposed in [28, 23, 39, 38, 37] may not be applied to prove Theorems 3. These
works approximate the target function f using a deep neural network � in the unit cube except
for an arbitrarily small region ⌦�, as per [36, Lemma 2.2]. Since k�kL1(⌦) can be bounded and
is independent of the size of ⌦�, kf � �kLp(⌦) can be well estimated across the entire space for
p 2 [1,+1). For approximations measured in the L1(⌦) norm, [28] translates the deep neural
network �, while [39] constructs different neural networks in the unit cube away from various
negligible regions. Both methods aim to find neural networks {�i(x)}i = 1N that approximate the
target function f well in different regions. They then observe that the middle value of {�i(x)}Ni=1 is
close to f(x) for all x⇤ 2 ⌦, and construct the middle-value function using a ReLU neural network.
However, these methods may not be generalized to prove the theorems presented in this paper.

Neither of the methods previously proposed can be applied to the approximation measured in Sobolev
space. In the first method, k�kW 1,1(⌦) depends on the length of ⌦�, and the derivative is substantial
in the negligible region, as shown in [36, Lemma 2.2]. Thus, kf � �kW 1,p(⌦) will be excessively
large. In the second method, median value functions can only identify the median values, not the
median values of functions and their derivatives simultaneously. In this paper, we overcome this
difficulty using a partition of unity. We construct a partition of unity of ⌦ and approximate them
using ReLU DNNs denoted as {�m}m2{1,2}d . For each �m, its support set is the unit cube away
from a small region, and we can construct a deep neural network  m that approximates the target
function f well on supp �m. We then combine {�m}m2{1,2}d and { m}m2{1,2}d to obtain a deep
neural network that can approximate the target function f well across the entire space. This approach
resolves the issue of simultaneous approximation of both functions and their derivatives in Sobolev
spaces.

7.3 Proofs of Corollaries 1 and 2

7.3.1 Preliminaries

First, we list a few basic lemmas of �2 neural networks repeatedly applied in our main analysis.
Lemma 10 ([23, Lemma 3.7]). The following basic lemmas of �2 neural networks hold:

(i) �1 neural networks are �2 neural networks.

(ii) Any identity map in Rd can be realized exactly by a �2 neural network with one hidden layer and
2d neurons.

(iii) f(x) = x2 can be realized exactly by a �2 neural network with one hidden layer and two neurons.

(iv) f(x, y) = xy = (x+y)2�(x�y)2

4 can be realized exactly by a �2 neural network with one hidden
layer and four neurons.

(v) Assume x
↵ = x↵1

1 x↵2
2 · · ·x↵d

d
for ↵ 2 Nd. For any N,L 2 N+ such that NL+ 2blog2 Nc � |↵|,

there exists a �2 neural network �(x) with the width 4N + 2d and depth L+ dlog2 Ne such that

�(x) = x
↵

for any x 2 Rd.

(vi) Assume P (x) =
P

J

j=1 cjx
↵j for ↵j 2 Nd. For any N,L, a, b 2 N+such that ab � J

and (L� 2b� b log2 N)N � bmaxj |↵j |, there exists a �2 neural network �(x) with the width
4Na+ 2d+ 2 and depth L such that

�(x) = P (x) for any x 2 Rd.

Next, we define a function which will be repeatly used in the proof of Corollary 1 in this section.
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Definition 11. Define s(x) from R ! [0, 1] as

s(x) :=

8
>>>>>>><

>>>>>>>:

2x2, x 2
⇥
0, 1

2

⇤

�2(x� 1)2 + 1, x 2
⇥
1
2 , 1

⇤

1, x 2 [1, 2]
�2(x� 2)2 + 1, x 2

⇥
2, 5

2

⇤

2(x� 3)2, x 2
⇥
5
2 , 3

⇤

0, Otherwise.

(92)

Figure 4: s(x) in R.

Definition 12. Given K 2 N+, then we define two functions in R:

s1(x) =
KX

i=0

s (4Kx+ 1� 4i) , s2(x) = s1

✓
x+

1

2K

◆
. (93)

Then for any m = (m1,m2, . . . ,md) 2 {1, 2}d, we define

sm(x) :=
dY

j=1

smj (xj) (94)

for any x = (x1, x2, . . . , xd) 2 Rd.
Proposition 8. Given N,L, d 2 N+ with NL + 2blog2 Nc � d and L � dlog2 Ne, and setting
K = bN1/dcbL2/dc, {sm(x)}m2{1,2}d defined in Definition 12 satisfies:

(i): ksm(x)kL1((0,1)d)  1, ksm(x)kW 1,1((0,1)d)  8K and ksm(x)kW 1,1((0,1)d)  64K2 for
any m 2 {1, 2}d.

(ii): {sm(x)}m2{1,2}d is a partition of the unity [0, 1]d with supp sm(x) \ [0, 1]d = ⌦m defined in
Definition 5.

(iii):For any m 2 {1, 2}d, there is a �2 neural network �m(x) with the width 16N + 2d and depth
4L+ 5 such as

�m(x) =
dY

j=1

smj (xj) = sm(x),x 2 [0, 1]d.

Proof. (i) and (ii) are proved by direct calculation. The proof of (iii) follows:

First, we architect s(x) by a �2 neural network. The is a �1 neural network g(x) with 3 the width
and one layer such that:

g(x) :=

8
><

>:

x, x 2
⇥
0, 1

2

⇤

1
2 , x 2

h
1
2 ,+1

⌘

0, Otherwise.
(95)

Based on (iii) in Lemma 10, g2(x) is a �2 neural network with 3 the width and two layers. Then by
direct calculation, we notice that

s(x) = 2g2(x)� 2g2(�x+ 1) + 2g2 (3� x)� 2g2 (2 + x) +
1

2
, (96)
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which is a �2 neural network with 12 the width and two layers. The eg(x) defined as

eg(x) =
bN1/dc�1X

i=0

s

✓
4Kx� 4i� 1

2

◆
(97)

is a �2 neural network with 12(bN1/dc) the width and two layers.

Similar with Lemma 1, we know that

ĝ = eg �  2 �  3 �  4(x)

is a �2 neural network with 12(bN1/dc) the width and 5 + 2bL1/dc, and

s1(x) = ĝ

✓
x+

1

8K

◆
, s2(x) = s1

✓
x+

1

2K

◆
, x 2 [0, 1]. (98)

Based on (v) in Lemma 10, we have there is a �2 neural network �m(x) with the width 16N + 2d
and depth 4L+ 5 such as

�m(x) =
dY

j=1

smj (xj) = sm(x),x 2 [0, 1]d.

7.3.2 Proof of Corollaries 1 and 2

The proof is comprised of three parts, which include Theorem 8 and 9, followed by the combination
of these results. Theorem 8 is to apply the Bramble–Hilbert Lemma 9 measured in the norm of
W 2,1:
Theorem 8. Let K 2 N+ and n � 2. Then for any f 2 Wn,1((0, 1)d) with kfkWn,1((0,1)d)  1
and m 2 {1, 2}d, there exist piece-wise polynomials function fK,m =

P
|↵|n�1 gf,↵,m(x)x↵ on

⌦m (Definition 5) with the following properties:

kf � fK,mkW 2,1(⌦m)  C1(n, d)K
�(n�2),

kf � fK,mkW 1,1(⌦m)  C1(n, d)K
�(n�1),

kf � fK,mkL1(⌦m)  C1(n, d)K
�n. (99)

Furthermore, gf,↵,m(x) : ⌦m ! R is a constant function with on each⌦m,i for i 2 {0, 1 . . . ,K}d.
And

|gf,↵,m(x)|  C2(n, d) (100)

for all x 2 ⌦m, where C1 and C2 are constants independent with K.

The proof is the same as that of Theorem 6. Note that {fK,m}m2{1,2}d will be same in two theorems
if f 2 Wn,1((0, 1)d) in two theorem are same.

Theorem 9 is to establish �2 neural networks {�m}{1,2}d , and each �m can approximate f well on
⌦m.
Theorem 9. For any f 2 Wn,1((0, 1)d) with kfkWn,1((0,1)d)  1, any N,L 2 N+ with NL +

2blog2 Nc � n and L � dlog2 Ne, and m = (m1,m2, . . . ,md) 2 {1, 2}d, there is a �2 neural
network �m with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L) such that

kf(x)� �m(x)kW 2,1(⌦m)  C10(n, d)N
�2(n�2)/dL�2(n�2)/d

kf(x)� �m(x)kW 1,1(⌦m)  C10(n, d)N
�2(n�1)/dL�2(n�1)/d

kf(x)� �m(x)kL1(⌦m)  C10(n, d)N
�2n/dL�2n/d, (101)

where C10 is the constant independent with N,L.
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Proof. The proof is similar to that of Theorem 7; the difference is that xy and x
↵ can be architected

precisely by �2 neural networks.

Without loss of the generalization, we consider the case for m⇤ = (1, 1, . . . , 1). Due to Theorem 8
and setting K = bN1/dc2bL2/dc, we have

kf � fK,m⇤kW 2,1(⌦m⇤ )
 C1(n, d)K

�(n�2)  C1(n, d)N
�2(n�2)/dL�2(n�2)/d

kf � fK,m⇤kW 1,1(⌦m⇤ )
 C1(n, d)K

�(n�1)  C1(n, d)N
�2(n�1)/dL�2(n�1)/d

kf � fK,m⇤kL1(⌦m⇤ )
 C1(n, d)K

�n  C1(n, d)N
�2n/dL�2n/d, (102)

where fK,m⇤ =
P

|↵|n�1 gf,↵,m⇤(x)x
↵ for x 2 ⌦m⇤ . Note that gf,↵,m⇤(x) is a constant

function for x 2
Q

d

j=1

h
ij

K
, 3+4ij

4K

i
and i = (i1, i2, . . . , id) 2 {0, 1, . . . ,K � 1}d. The remaining

part is to approximate fK,m⇤ by neural networks.

The way to approximate gf,↵,m⇤(x) is same with Theorem 7, and we have that

k�↵ (�2(x))� gf,↵,m⇤ (x) kW 2,1(⌦m⇤ )
=k�↵ (�2(x))� gf,↵,m⇤ (x) kW 1,1(⌦m⇤ )

=k�↵ (�2(x))� gf,↵,m⇤ (x) kL1(⌦m⇤ )

2C2(n, d)N
�2nL�2n (103)

which is due to �↵ (�2(x))� gf,↵,m⇤ (x) is a step function, and the first order weak derivative is 0
in ⌦m⇤ .

Due to (v) in Lemma 10, there is a �2 neural network �5,↵(x) with the width 4N + 2d and depth
L+ dlog2 Ne such that

�5,↵(x) = x
↵, x 2 Rd. (104)

Due to (iv) in Lemma 10, there is a �2 neural network �6(x) with the width 4 and depth 1 such that

�6(x, y) = xy, x, y 2 R. (105)

Now we define the neural network �m⇤(x) to approximate fK,m⇤(x) in ⌦m⇤ :

�m⇤(x) =
X

|↵|n�1

�6 [�↵(�2(x)),�5,↵(x)] . (106)

The remaining question is to find the error E :

eE :=

������

X

|↵|n�1

�6 [�↵(�2(x)),�5,↵(x)]� fK,m⇤(x)

������
W 2,1(⌦m⇤ )


X

|↵|n�1

k�6 [�↵(�2(x)),�5,↵(x)]� gf,↵,m⇤(x)x
↵k

W 2,1(⌦m⇤ )

=
X

|↵|n�1

k�↵(�2(x))x
↵ � gf,↵,m⇤(x)x

↵k
W 2,1(⌦m⇤ )

n2
X

|↵|n�1

k�↵(�2(x))� gf,↵,m⇤(x)kW 2,1(⌦m⇤ )

2nd+2C2(n, d)N
�2nL�2n. (107)

At last, we finish the proof by estimating the network’s the width and depth, implementing �m⇤(x).
From Eq. (106), we know that �m⇤(x) consists of the following subnetworks:

1. �5,↵(x) with the width 4N + 2d and depth L+ dlog2 Ne.

2. �2(x) with the width 4N + 5 and depth 4L+ 4.

3. �↵ with the width 16n(N + 1) log2(8N) and depth (5L+ 2) log2(4L).

4. �6(x, y) with the width 4 and depth 1.
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Therefore �(x) is a neural network with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+
2) log2(4L).

Combining Eqs. (102) and (107), we have that there is a neural network �m⇤ with the width
28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L) such that

kf(x)�  m⇤(x)kW 2,1(⌦m⇤ )
 C10(n, d)N

�2(n�2)/dL�2(n�2)/d

kf(x)�  m⇤(x)kW 1,1(⌦m⇤ )
 C10(n, d)N

�2(n�1)/dL�2(n�1)/d

kf(x)�  m⇤(x)kL1(⌦m⇤ )
 C10(n, d)N

�2n/dL�2n/d, (108)

where C10 = C1 + 2nd+2C2 is the constant independent with N,L.

Similarly, we can construct a neural network �m with the width 28nd+1(N + d) log2(8N) and depth
11n2(L+ 2) log2(4L) which can approximate f on ⌦m with same order of Eq. (108).

The last part is to combine {�m}m2{1,2}d and {�m}m2{1,2}d in [0, 1]d and obtain a �2 neural
network to approximate f measured in the norm of W 2.

Proof of Corollary 1. Based on Theorem 9, there is a sequence of the neural network
{�m(x)}m2{1,2}d such that

kf(x)� �m(x)kW 2,1(⌦m)  C10(n, d)N
�2(n�2)/dL�2(n�2)/d

kf(x)� �m(x)kW 1,1(⌦m)  C10(n, d)N
�2(n�1)/dL�2(n�1)/d

kf(x)� �m(x)kL1(⌦m)  C10(n, d)N
�2n/dL�2n/d, (109)

where C10 is the constant independent with N,L, and each �m is a neural network with the width
28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L). According to Proposition 8, there is a
sequence of the neural network {sm(x)}m2{1,2}d satisfies:

(i): ksm(x)kL1((0,1)d)  1, ksm(x)kW 1,1((0,1)d)  8K and ksm(x)kW 1,1((0,1)d)  64K2 for
any m 2 {1, 2}d.

(ii): {sm(x)}m2{1,2}d is a partition of the unity [0, 1]d with supp sm(x) \ [0, 1]d = ⌦m defined in
Definition 5.

For each sm, it is a �2 neural network with the width 16N + 2d and depth 4L+ 5.

Due to (iv) in Lemma 10, there is a �2 neural network �6(x) with the width 4 and depth 1 such that
�6(x, y) = xy, x, y 2 R. (110)

Now we define
�(x) =

X

m2{1,2}d

�6(sm(x), �m(x)). (111)

Note that
eR :=kf(x)� �(x)kW 2,1((0,1)d) 

X

m2{1,2}d

ksm(x) · f(x)� sm(x)�m(x)k
W 2,1((0,1)d)

=
X

m2{1,2}d

ksm(x) · f(x)� sm(x)�m(x)k
W 2,1(⌦m) . (112)

where the last equality is due to supp sm(x) \ [0, 1]d = ⌦m.

Then due to chain rule, for each m 2 {1, 2}d, we have
ksm(x) · f(x)� sm(x)�m(x)k

W 2,1(⌦m)

ksm(x)k
W 2,1(⌦m) kf(x)� �m(x)k

L1(⌦m) + 2 ksm(x)k
W 1,1(⌦m) kf(x)� �m(x)k

W 1,1(⌦m)

+ ksm(x)k
L1(⌦m) kf(x)� �m(x)k

W 2,1(⌦m) + ksm(x)k
W 1,1(⌦m) kf(x)� �m(x)k

L1(⌦m)

+ ksm(x)k
L1(⌦m) kf(x)� �m(x)k

W 1,1(⌦m) + ksm(x)k
L1(⌦m) kf(x)� �m(x)k

L1(⌦m)

91C10(n, d)N
�2(n�2)/dL�2(n�2)/d. (113)
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Hence
eR  2d+7C10(n, d)N

�2(n�2)/dL�2(n�2)/d.

At last, we finish the proof by estimating the network’s width and depth, implementing �(x). From
Eq. (111), we know that �(x) consists of the following subnetworks:

1. �m(x) with the width 28nd+1(N + d) log2(8N) and depth 11n2(L+ 2) log2(4L).

2. sm(x) with the width 16N + 2d and depth 4L+ 5.

3. �6(x, y) with the width 4 and depth 1.

Therefore �(x) is a neural network with the width 2d+6nd+1(N + d) log2(8N) and depth 15n2(L+
2) log2(4L).

Our method can easily extend to approximations measured by the norm of Wm,1. The primary
difference in the proof lies in the need to establish a differential {sm(x)}{1,2}d , which can be
achieved by constructing architected sm(x) as piece-wise m-degree polynomial functions. By
extanding this approach, we can obtain Corollary 2 using our method.

7.4 Proof of Theorem 4

Proof. The Theorem 4 will be proved by contradiction. The idea of the proof is inspired by Ref. [28].

Claim 1. There exist ⇢, C1, C2, C3, J0 > 0 and s, d 2 N+ such that, for any f 2 Fn,d, we have

inf
�2b�

|�� f |W 1,1((0,1)d)  C3L
�2(n�1)/d�⇢N�2(n�1)/d�⇢. (114)

for all NL � J0, where

b� := {� : ReLU FNNs � with the width  C1N logN and depth  C2L logL}.

The remaining question is to show Claim 1 is invalid.

Denote
Db� := { :  = Di�,� 2 b�, i = 1, . . . , d},

Due to Theorem 1, we obtain

VCDim(Db�)  C4N
2L2 log2 L log2 N =: bu. (115)

Now we will use Claim 1 to estimate a lower bound

bl := b(NL)
2
d+

⇢
2(n�1) cd

of VCDim(Db�). In other words, we will construct { �(x) :  �(x) 2 Db�,� 2 B} to scatter bl
points. B will be defined later.

First, fix i = 1, . . . , d, and there exists eg 2 C1 (0, 1)d such that @eg(0)
@xi

= 1 and eg(x) = 0 for
kxk2 � 1/3. And we can find a constant C5 > 0 such that g := eg/C5 2 Fn,d.

Denote M = b(NL)
2
d+

⇢
2(n�1) c. Divide [0, 1]d into Md non-overlapping sub-cubes {Q✓}✓ as

follows:

Q✓ :=

⇢
x = [x1, x2, · · · , xd]

T 2 [0, 1]d : xi 2

✓i � 1

M
,
✓i
M

�
, i = 1, 2, · · · , d

�
,

for any index vector ✓ = [✓1, ✓2, · · · , ✓d]T 2 {1, 2, · · · ,M}d. Denote the center of Q✓ by x✓ for all
✓ 2 {1, 2, · · · ,M}d. Define

B :=
�
� : � is a map from {1, 2, · · · ,M}d to {�1, 1}

 
.
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For each � 2 B, we define, for any x 2 Rd,

h�(x) :=
X

✓2{1,2,··· ,M}d

M�n�(✓)g✓(x), where g✓(x) = g (M · (x� x✓)) .

Due to |suppeg(x)|  2
3 and |D↵h�(x)|  M�n+|↵|kgkWn,1  1, we obtain that

|D↵f�(x)|  1

for any |↵|  n Therefore, f� 2 Fn,d. And it is easy to check {Dih� = h� : � 2 B} can scatters bl
points since @eg(0)

@xi
= 1 and eg(x) = 0 for kxk2 � 1/3.

Note that for any h� 2 Fn,d, there is a �� 2 b� such that C3(NL)
�2(n�1)

d � ⇢
2 � |Dih�(x✓) �

Di��(x✓)| for any J�  NL due to Claim 1. Denote J1 = max�2B{J�}. There is a constant
J2 such that M

�n+1

C5
� C3(NL)

�2(n�1)
d �⇢ for J2  NL. Define J := max{J1, J2}, then for any

J  NL, we have

|Dih�(x✓)| =
����M

�n+1 @g(x✓)

@xi

���� =
M�n+1

C5
� C3(NL)

�2(n�1)
d �⇢ � |Dih�(x✓)�Di��(x✓)|.

(116)

In other words, for any � 2 B and ✓ 2 {1, 2, · · · ,M}d, Dif� (x✓) and Di�� (x✓) have the same
sign. Then {Di�� : � 2 B} shatters

�
x✓ : ✓ 2 {1, 2, · · · ,M}d

 
since {Dih� : � 2 B} shatters�

x✓ : ✓ 2 {1, 2, · · · ,M}d
 

as discussed above. Hence,

VCDim ({�� : � 2 B}) � Md = bl, (117)

for N,L 2 N with NL � J .

By Eqs. (115,117), for any N,L 2 N with NL � J , we have bl  VCDim ({�� : � 2 B}) 
VCDim(Db�)  bu, implying that

b(NL)
2
d+

⇢
2(n�1) cd  C4N

2L2 log2 L log2 N (118)

which is a contradiction for sufficiently large N,L 2 N. So we finish the proof of Theorem 4.

Based on the proof of Theorem 4, we can easily check that the estimation of VC-dimension of
DNN derivatives (Theorem 1) is nearly optimal and prove Corollary 3. Assume VCDim(Db�) 
bu = O(N2�"L2�") in Eq. (118) for " > 0, and bl must be larger than b(NL)

2
d cd according the

construction in the proof of Theorem 4 and Theorem 3. Hence we still obtain a contradiction in
Eq. (118), and the estimation in Theorem 1 is nearly optimal.

7.5 Proof of Theorem 5

7.5.1 Bounding generalization error by Rademacher complexity

Definition 13 (Rademacher complexity [3]). Given a sample set S = {z1, z2, . . . , zM} on a domain
Z , and a class F of real-valued functions defined on Z , the empirical Rademacher complexity of F
in S is defined as

RS(F) :=
1

M
E⌃M

"
sup
f2F

MX

i=1

�if(zi)

#
,

where ⌃M := {�1,�2, . . . ,�M} are independent random variables drawn from the Rademacher
distribution, i.e., P(�i = +1) = P(�i = �1) = 1

2 for i = 1, 2, . . . ,M. For simplicity, if S =
{z1, z2, . . . , zM} is an independent random variable set with the uniform distribution, denote

RM (F) := ESRS(F).

The following lemma will be used to bounded generalization error by Rademacher complexities:
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Lemma 11 ([47], Proposition 4.11). Let F be a set of functions. Then

EX sup
u2F

�����
1

M

MX

i=1

u(xj)�Ex⇠P⌦u(x)

�����  2RM (F),

where X := {x1, . . . , xM} is an independent random variable set with the uniform distribution.

Now we can show that generalization error can be bounded by Rademacher complexities of two
function sets.
Lemma 12. Let d,N,L,M 2 N+, B,C1, C2 2 R+. For any f 2 W 1,1((0, 1)d) with
kfkW 1,1((0,1)d)  1, set

e� := {� : � with the width  C1N logN and depth  C2L logL, k�kW 1,1((0,1)d)  B}

De� := { :  = Di�, i = 1, . . . , d}. (119)

We have
2 sup
✓,�(x;✓)2e�

|E(RS(✓))�RD(✓)|  4(B + 1)(dRM (De�) + RM (e�)),

where E is expected responding to X , and X := {x1, . . . ,xM} is an independent random variables
set uniformly distributed on (0, 1)d.

Proof. For any �(x;✓) 2 e�, we have

|E(RS(✓))�RD(✓)|

=
dX

j=1

 
E

1

M

MX

i=1

����
@(f(xi)� �(xi;✓))

@xj

����
2

�
Z

(0,1)d

����
@(f(x)� �(x;✓))

@xj

����
2

dx

!

+E
1

M

MX

i=1

|(f(xi)� �(xi;✓))|2 �
Z

(0,1)d
|(f(x)� �(x;✓))|2 dx

(B + 1)
dX

j=1

 
E

�����
1

M

MX

i=1

@(f(xi)� �(xi;✓))

@xj

�
Z

(0,1)d

@(f(x)� �(x;✓))

@xj

dx

�����

!

+ (B + 1)E

�����
1

M

MX

i=1

(f(xi)� �(xi;✓))�
Z

(0,1)d
(f(x)� �(x;✓)) dx

�����

2(B + 1)(dRM (De�) + RM (e�)) (120)

where the last inequality is due to Lemma 12.

7.5.2 Bounding the Rademacher complexity and the proof of Theorem 5

In this subsection, we aim to estimate the Rademacher complexity using the covering number. We
then estimate the covering number using the pseudo-dimension.
Definition 14 (covering number [3]). Let (V, k ·k) be a normed space, and⇥ 2 V . {V1, V2, . . . , Vn}
is an "-covering of ⇥ if ⇥ ⇢ [n

i=1B",k·k(Vi). The covering number N (",⇥, k · k) is defined as

N (",⇥, k · k) := min{n : 9"-covering over ⇥ of size n}.

Definition 15 (Uniform covering number [3]). Suppose the F is a class of functions from F to R.
Given n samples Zn = (z1, . . . , zn) 2 Xn, define

F|Zn = {(u(z1), . . . , u(zn)) : u 2 F}.

The uniform covering number N (",F , n) is defined as

N (",F , n) = max
Zn2Xn

N (",F|Zn , k · k1) ,

where N (",F|Zn , k · k1) denotes the "-covering number of F|Zn w.r.t the L1-norm.

35



Then we use a lemma to estimate the Rademacher complexity using the covering number.
Lemma 13 (Dudley’s theorem [3]). Let F be a function class such that sup

f2F kfk1  B. Then
the Rademacher complexity Rn(F) satisfies that

Rn(F)  inf
0�B

(
4� +

12p
n

Z
B

�

p
log 2N (",F , n) d"

)

To bound the Rademacher complexity, we employ Lemma 13, which bounds it by the uniform
covering number. We estimate the uniform covering number by the pseudo-dimension based on the
following lemma.
Lemma 14 ([3]). Let F be a class of functions from X to [�B,B]. For any " > 0, we have

N (",F , n) 
✓

2enB

"Pdim(F)

◆Pdim(F)

for n � Pdim(F).

The remaining problem is to bound Pdim(e�) and Pdim(De�). Based on [4], Pdim(e�) =
O(L2N2 log2 L log2 N). For the Pdim(De�), we can estimate it by Theorem 2.

Now we can estimate generalization error based on Lemma 12.

Proof of Theorem 5. Let J = max{Pdim(De�), Pdim(e�)}. Due to Lemma 13, 14 and Theorem 2,
for any M � J , we have

RM (De�) 4� +
12p
M

Z
B

�

q
log 2N (", De�,M) d"

4� +
12p
M

Z
B

�

vuuutlog 2

 
2eMB

"Pdim(De�)

!Pdim(De�)

d"

4� +
12Bp
M

+ 12

 
Pdim(De�)

M

! 1
2 Z B

�

vuutlog

 
2eMB

"Pdim(De�)

!
d". (121)

By the direct calculation for the integral, we have
Z

B

�

vuutlog

 
2eMB

"Pdim(De�)

!
d"  B

vuutlog

 
2eMB

�Pdim(De�)

!
.

Then choosing � = B
⇣

Pdim(De�)
M

⌘ 1
2  B, we have

RM (De�)  28B

 
Pdim(De�)

M

! 1
2

vuutlog

 
2eM

Pdim(De�)

!
. (122)

Therefore, due to Theorem 2, there is a constant C4 independent with L,N,M such as

RM (De�)  C4
NL(log2 L log2 N)

1
2

p
M

logM. (123)

RM (e�) can be estimate in the similar way. Due to Lemma 12, we have that there is a constant
C5 = C5(B, d,C1, C2) such that

ERS(✓D)�RD(✓D) +ERD(✓S)�ERS(✓S)  C5
NL(log2 L log2 N)

1
2

p
M

logM. (124)
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