
Neuro-symbolic Learning Yielding Logical Constraints

Zenan Li1 Yunpeng Huang1 Zhaoyu Li2
Yuan Yao1 Jingwei Xu1 Taolue Chen3 Xiaoxing Ma1 Jian Lü1

1State Key Lab of Novel Software Technology, Nanjing University, China
2Department of Computer Science, University of Toronto, Canada

3School of Computing and Mathematical Sciences, Birkbeck, University of London, UK
{lizn, hyp}@smail.nju.edu.cn, zhaoyu@cs.toronto.edu,
t.chen@bbk.ac.uk, {y.yao,jingweix,xxm,lj}@nju.edu.cn

Abstract

Neuro-symbolic systems combine neural perception and logical reasoning, repre-
senting one of the priorities of AI research. End-to-end learning of neuro-symbolic
systems is highly desirable, but remains to be challenging. Resembling the dis-
tinction and cooperation between System 1 and System 2 of human thought (à la
Kahneman), this paper proposes a framework that fuses neural network training,
symbol grounding, and logical constraint synthesis to support learning in a weakly
supervised setting. Technically, it is cast as a game with two optimization problems
which correspond to neural network learning and symbolic constraint learning re-
spectively. Such a formulation naturally embeds symbol grounding and enables the
interaction between the neural and the symbolic part in both training and inference.
The logical constraints are represented as cardinality constraints, and we use the
trust region method to avoid degeneracy in learning. A distinguished feature of the
optimization lies in the Boolean constraints for which we introduce a difference-of-
convex programming approach. Both theoretical analysis and empirical evaluations
substantiate the effectiveness of the proposed framework.

1 Introduction

Perception and reasoning serve as fundamental human abilities that are intrinsically linked within the
realm of human intelligence [Kahneman, 2011, Booch et al., 2021]. The objective of our study is
to develop a learning framework for neuro-symbolic systems (e.g., the one illustrated in Figure 1),
enabling simultaneous learning of neural perception and symbolic reasoning.

The merit of neuro-symbolic learning lies in resembling the integration of System 1 and System
2 of human minds [Kahneman, 2011, Yoshua and Gary, 2020, LeCun, 2022]. First, it eliminates
unnatural and sometimes costly human labeling of the latent variables and conducts learning in an
end-to-end fashion. Second, it generates not only a neural network for perception, but also a set of
explicit (symbolic) constraints enabling exact and interpretable logical reasoning. Last but not least,
the mutually beneficial interaction between the neural and the symbolic parts during both training
and inference stages potentially achieves better performance than separated learning approaches.

However, existing approaches do not provide an adequate solution to the problem. They either (1)
are not end-to-end, i.e., human intervention is employed to label the latent z so that the task can
be divided into a purely neural subtask of image classification and a purely symbolic subtask of
constraint solving, or (2) are not interpretable, i.e., can only approximate symbolic reasoning with
neural network but without explicit logical constraints generated (e.g., Wang et al. [2019], Yang et al.
[2023]), which inevitably sacrifices the exactness and interpretability of symbolic reasoning, resulting
in an inaccurate black-box predictor but not a genuine neuro-symbolic system.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Neural network !!Raw input " Latent symbol # Logical reasoning $" Final output y
1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1
<latexit sha1_base64="e08d9coLuXySkbjuGaJXhzrvCvo=">AAAD0HicfZLLjtMwFIbdhMsQLjMDSzaGCsSiVElaBMvRsGE5INoZqalGjnOaWHWcyHZgqhAhtjwA78bDIOFcQLTTYMnSyX/O7/Pl2GHOmdKu+3Ng2Tdu3rp9cMe5e+/+g8Oj44dzlRWSwoxmPJMXIVHAmYCZZprDRS6BpCGH83D9ts6ffwKpWCY+6k0Oy5TEgq0YJdpIl8eDH4EEAZ9plqZERGVApCQbpSVomlSlN/YrJwghZqJsMlU5N+Krin6hO4GpS2qK0+YLe/g5LoMGsOQsTnRcu7FfGX1i9hQHQefYVzep9vunPbrXo5t+f/t0ZH1UPcTTlvi/tH1UzV/4vcQ7ZE4A5gbaMV8eDd2x2yx8PfC6YIi6dWZu8kkQZbRIQWjKiVILz8310hynGeVgDi8U5ISuSQwLEwqSglqWDVaFnxklwqtMmi00btR/HeVVW7ilkVSpTRoad0p0onZztbgvtyj06s2yZCIvNAjaNl8VHOsM108UR0wC1XxjAkIlM/yYJkQSqs1D3u5Sz2qEw4xH9RhHOCVroMB5rWVrTUI1wn9QHMcM1dsd4fVg7o+9ydh/Px2enHbjPUCP0VP0AnnoNTpB79AZmiE6+GUNrZH10v5gX9lf7W9tqTXoPI/Q1rK//wbRPzrN</latexit>

SMT solver

Information flow:
: Inference – perception by neural network, reasoning by SMT solver
: Constraint learning – revising !! with current " = $"(&)
: Symbol grounding – revising " to satisfy constraints ℎ! ", * = +
: Network training – revising $" by back-propagating grounded #

ℎ! ", * = +
System 1 System 2

Neuro-Symbolic
Learning Combining
System 1 and System 2

C A

A B

C B

2

3 4 1 2

2 4

4 3 1
<latexit sha1_base64="RcFPjWhb6P9dU7xbSy4dEtTEe4Y=">AAADynicfVLLjtMwFHUTHkN4zAwsEZKhYmBRVUk7CJajYcOCxSDRzkhNNXKc28aq7US2A0QhOz6A3+NL2OKkAdFH5iqWTs59HR07yjjTxvd/9Rz31u07dw/uefcfPHx0eHT8eKrTXFGY0JSn6ioiGjiTMDHMcLjKFBARcbiMVu/r/OUXUJql8rMpMpgLspRswSgxlro+7v0MFUj4SlMhiIzLkChFCm0UGJpUZTAcVV4YwZLJsslU5dSSbyr6nW4BW5fUKs6bP4xPcBk2+krOlolZ1s14VFm+/sKwLd9XNa72d5928EEHb7f929PKukFT18KbtXZpGndPDXZkeSFY79cGXx/1/aHfBN4FQQv6qI0Le4fPwziluQBpKCdazwI/M3M7zjDKwQ7PNWSErsgSZhZKIkDPy0ZWhV9aJsaLVNkjDW7Y/zvKb+vCDY4IrQsR2W5BTKK3czW5LzfLzeLdvGQyyw1Iul6+yDk2Ka4fJ46ZAmp4YQGhiln9mCZEEWrsE97cUns1wFHK49rGARZkBRQ4r7l0ZUikB/ivFM+zpgbbFu6C6WgYjIejT6f9s/PW3gP0FL1Ar1GA3qIz9AFdoAmivd/OM+fEeeV+dJVbuOW61Om1PU/QRrg//gAW5Tlj</latexit>

Figure 1: An example of neuro-symbolic learning for visual SudoKu solving. In this task, the neural
network is employed to transform the puzzle image (strawberry etc.) into its corresponding symbols,
while symbolic reasoning is utilized to produce the puzzle’s solution. Importantly, the neuro-symbolic
learning task is framed in a weakly supervised setting, where only the raw input (the puzzle image x)
and the final output (the puzzle solution y, but without numbers in z) is observed.

We argue that end-to-end and interpretable neuro-symbolic learning is extremely challenging due to
the semantic and representation gaps between the neural part and the symbolic part. The semantic gap
caused by the latency of the intermediate symbol (i.e., z in Figure 1) makes the neural network training
lack effective supervision and the logic constraint synthesis lack definite inputs. The representation
gap between the differentiable neural network and the discrete symbol logic makes it difficult to
yield explicit symbolic constraints given the continuous neural network parameters. Despite existing
proposals mitigating some of these obstacles such as visual symbol grounding [Topan et al., 2021, Li
et al., 2023], softened logic loss [Kimmig et al., 2012, Xu et al., 2018], semidefinite relaxation [Wang
et al., 2019], etc., none of them realize the full merit of neuro-symbolic learning.

In this paper, we propose a new neuro-symbolic learning framework directly meeting the challenges.
It bridges the semantic gap with an efficient symbol grounding mechanism that models the cooperative
learning of both the neural network and the logical constraint as a bilevel optimization problem. It
bridges the representation gap by employing difference-of-convex (DC) programming as a relaxation
technique for Boolean constraints in the optimization. DC programming ensures the convergence to
explicit logical constraints, which enables exact symbolic reasoning with powerful off-the-shell tools
such as SAT/SMT solvers [Eén and Sörensson, 2006, Bailleux and Boufkhad, 2003, Bailleux et al.,
2006] during the inference stage. In addition, to address degeneracy in logical constraint learning,
i.e., the tendency to learn only trivial logical constraints (e.g., resulting in simple rules insufficient to
solve SudoKu), we introduce an additional trust region term [Boyd et al., 2004, Conn et al., 2000],
and then employ the proximal point algorithm in the learning of logical constraints.

We provide a theoretical analysis of the convergence of our algorithm, as well as the efficacy of the
DC relaxation in preserving the exactness and the trust region in preventing degeneracy. Empirical
evaluations with four tasks, viz. Visual Sudoku Solving, Self-Driving Path Planning, Chained XOR,
and Nonograms, demonstrate the new learning capability and the significant performance superiority
of the proposed framework.

Organization. Section 2 formulates our neuro-symbolic learning framework. Section 3 details the
algorithm and theoretical analysis. Section 4 presents empirical evaluations. Section 5 covers related
work. Section 6 discusses the limitations. Section 7 concludes the paper.

2 Neuro-symbolic Learning Framework

In this paper, we focus on end-to-end neuro-symbolic systems comprising two components: (1)
neural network fθ : X → Z , which transforms the raw input x ∈ X into a latent state z ∈ Z; and
(2) symbolic reasoning gϕ : Z → Y , which deduces the final output y ∈ Y from state z ∈ Z . Both
components are built simultaneously, taking only the input x and output y as supervision. We assume
that Z and Y are represented by finite sets, and thus we can encode z and y by binary vectors using

2

one-hot encoding. For ease of discussion, we directly define Z and Y to be spaces Bu and Bv of
Boolean vectors, respectively, where B = {0, 1}.

Unlike existing work (e.g., SATNet [Wang et al., 2019]) that simulates logical reasoning in an implicit
and approximate way via a network layer, our key insight is to learn explicit logical constraints
hϕ : Bu+v → B on (z,y) in the training phrase, which allow to perform exact reasoning by off-
the-shelf constraint solvers (e.g., SMT solvers) in the inference phrase. Fig. 1 illustrates our neuro-
symbolic learning framework.

The latent state z enables the interaction between neural perception and logical reasoning. If z were
observable, we could perform the learning of neural network and logical constraint by solving the
following two separate optimization problems:

θ = argminθ E(x,z)∼D1
[ℓ1(fθ(x), z)], ϕ = argminϕ E(z,y)∼D2

[ℓ2(hϕ(z,y), 1)],

where ℓ1(fθ(x), z) refers to the error between network prediction fθ(x) and the actual symbol z, and
ℓ2(hϕ(z,y), 1) refers to the (un)satisfaction degree of the learned logical constraints hϕ(z,y) = 1.

Nevertheless, with z being latent, these two problems become tightly coupled:

θ = argminθ E(x,y)∼D[ℓ1(fθ(x), z)], ϕ = argminϕ E(x,y)∼D[ℓ2(hϕ(z,y), 1)],

s.t. hϕ(z,y) = 1, z ∈ Z; s.t. z = fθ(x), z ∈ Z.

We further surrogate the constraint satisfaction by loss functions, and obtain essentially a game
formulation as follows:

θ = argminθ E(x,y)∼D[ℓ1(fθ(x), z̄)], ϕ = argminϕ E(x,y)∼D[ℓ2(hϕ(z̄,y), 1)],

s.t. z̄ = argminz∈Z ℓ2(hϕ(z,y), 1); s.t. z̄ = argminz∈Z ℓ1(fθ(x), z).
(1)

Three players are involved in this game: neural network fθ and logical constraint hϕ pursue optimal
(prediction/satisfaction) accuracy, while z strives for the grounding that integrates the network
prediction and logical reasoning.

2.1 Efficient and Effective Logical Constraint Learning

For efficient learning of logical constraints, we adopt cardinality constraint [Syrjänen, 2009, 2004,
Fiorini et al., 2021] to represent logical constraint.1Cardinality constraints can be easily arithmetized,
enabling the conventional optimization method and avoiding the computationally expensive model
counting or sampling [Manhaeve et al., 2018, Xu et al., 2018, Li et al., 2020, 2023], which significantly
boosts the learning efficiency. In addition, the conjunctive normal form and cardinality constraints can
be easily converted from each other, ensuring not only the expressiveness of the learned constraints,
but also the seamless compatibility with existing reasoning engines.

Formally, we denote the column concatenation of z and y by (z;y), and define a cardinality constraint
hϕ(z,y) := wT(z;y) ∈ [bmin, bmax], where ϕ = (w, bmin, bmax), w ∈ Bu+v is a Boolean vector,
and bmin, bmax ∈ N+ are two positive integers. Moreover, we can directly extend hϕ to the matrix
form representing m logical constraints, i.e.,

hϕ(z,y) := W (z;y) = (wT
1 (z;y), . . . ,w

T
m(z;y)) ∈ [bmin, bmax],

where ϕ = (W , bmin, bmax), W := (wT
1 ; . . . ;w

T
m) ∈ Bm×(u+v), and bmin, bmax ∈ Nm

+ .

For effective learning of logical constraints, one must tackle the frequent problem of degeneracy that
causes incomplete or trivial constraints2. First, for the bounding box [bmin, bmax], any of its superset
is a feasible result of logical constraint learning, but we actually expect the tightest one. To overcome
this difficulty, we propose to use the classic mean squared loss, i.e., defining ℓ2(hϕ(z,y), 1) =
∥W (z;y) − b∥2, where b can be computed in optimization or pre-defined. Then, our logical
constraint learning problem can be formulated as a Boolean least squares problem [Vandenberghe
and Boyd, 2004]. The unbiased property of least squares indicates that b ≈ (bmin + bmax)/2, and

1Cardinality constraints express propositional logic formulae by constraining the number of variables being
true. For example, x ∨ y ∨ ¬z is encoded as x+ y + z̄ ≥ 1.

2For example, suppose the targeted logical constraints are z1 + z2 + y1 ≥ 2 and z1 ≥ 1. Degeneracy
happens if one only obtains a single constraint z1 + z2 + y1 ≥ 2 or a trivial constraint z1 ≥ 0.

3

the minimum variance property of least squares ensures that we can achieve a tight bounding box
[bmin, bmax] [Henderson, 1975, Björck, 1990, Hastie et al., 2009].

Second, it is highly possible that some of the m distinct logical constraints as indicated by matrix W
eventually degenerate to the same one during training, because the Boolean constraints and stochastic
gradient descent often introduce some implicit bias [Gunasekar et al., 2017, Smith et al., 2021, Ali
et al., 2020]. To mitigate this problem, we adopt the trust region method [Boyd et al., 2004, Conn
et al., 2000], i.e., adding constraints ∥wi −w

(0)
i ∥ ≤ λ, i = 1, . . . ,m, where w

(0)
i is a pre-defined

centre point of the trust region. The trust region method enforces each wi to search in their own local
region. We give an illustrative figure in Appendix D to further explain the trust region method.

To summarize, using the penalty instead of the trust region constraint, we can formulate the optimiza-
tion problem of logical constraint learning in (1) as

min
(W ,b)

E(x,y)∼D[∥W (z̄;y)− b∥2] + λ∥W −W (0)∥2,

s.t. z̄ = argminz∈Z ℓ1(fθ(x), z), W ∈ Bm×(u+v), b ∈ Nm
+ .

(2)

2.2 Neural Network Learning in Tandem with Constraint Learning

A key challenge underlines end-to-end neuro-symbolic learning is symbol grounding, which is
to tackle the chicken-and-egg situation between network training and logical constraint learning:
training the network requires the supervision of symbol z that comes from solving the learned
logical constraints, but the constraint learning needs z as input recognized by the trained network.
Specifically, since matrix W is often underdetermined in high-dimensional cases, the constraint
z̄ = argminz∈Z ℓ2(hϕ(z,y), 1) := ∥W (z;y)− b∥2 often has multiple minimizers (i.e., multiple
feasible groundings of z), all of which satisfy the logical constraints hϕ(z,y) = 1. Moreover,
matrix W is also a to-be-trained parameter, meaning that it is highly risky to determine the symbol
grounding solely on the logical constraints.

To address these issues, instead of (approximately) enumerating all the feasible solutions via model
counting or sampling [Manhaeve et al., 2018, Xu et al., 2018, Li et al., 2020, van Krieken et al., 2022,
Li et al., 2023], we directly combine network prediction and logical constraint satisfaction to establish
symbol grounding, owing to the flexibility provided by the cardinality constraints. Specifically, for
given α ∈ [0,+∞), the constraint in network learning can be rewritten as follows,

z̄ = argminz∈Z ∥W (z;y)− b∥2 + α∥z− fθ(x)∥2.

The coefficient α can be interpreted as the preference of symbolic grounding for network predictions
or logical constraints. For α → 0, the symbol grounding process can be interpreted as distinguishing
the final symbol z from all feasible solutions based on network predictions. For α → +∞, the symbol
grounding process can be viewed as a “correction” step, where we revise the symbol grounding from
network’s prediction towards logical constraints. Furthermore, as we will show in Theorem 1 later,
both symbol grounding strategies can finally converge to the expected results.

The optimization problem of network training in (1) can be written as

min
θ

E(x,y)∼D[∥z̄− fθ(x)∥2],

s.t. z̄ = argminz̄∈Z ∥W (z̄;y)− b∥2 + α∥z̄− fθ(x)∥2.
(3)

where we also use the mean squared loss, i.e., ℓ1(fθ(x), z) = ∥fθ(x)− z∥2, for compatibility.

3 Algorithms and Analysis

Our general framework is given by (1), instantiated by (2) and (3). Both optimizations contain Boolean
constraints of the form ∥Qu − q1∥2 + τ∥u − q2∥2 where u are Boolean variables.3 We propose
to relax these Boolean constraints by difference of convex (DC) programming [Tao and Hoai An,
1997, Yuille and Rangarajan, 2003, Lipp and Boyd, 2016, Hoai An and Tao, 2018]. Specifically, a

3In (2), for each logic constraint, Q = (z;y)T, q1 = bi, q2 = w
(0)
i , and τ = λ; in (3), Q = W , q1 =

b, q2 = (fθ(x);y), and τ = α.

4

Boolean constraint u ∈ {0, 1} can be rewritten into two constraints of u− u2 ≥ 0 and u− u2 ≤ 0.
The first constraint is essentially a box constraint, i.e., u ∈ [0, 1], which is kept in the optimization.
The second one is concave, and we can equivalently add it as a penalty term, as indicated by the
following proposition [Bertsekas, 2015, Hansen et al., 1993, Le Thi and Ding Tao, 2001] .

Proposition 1. Let e denote the all-one vector. There exists t0 ≥ 0 such that for every t > t0, the
following two problems are equivalent, i.e., they have the same optimum.

(P) min
u∈{0,1}n

q(u) := ∥Qu− q1∥2 + τ∥u− q2∥2,

(Pt) min
u∈[0,1]n

qt(u) := ∥Qu− q1∥2 + τ∥u− q2∥2 + t(eTu− uTu).

Remarks. We provide more details, including the setting of t0, in Appendix A.

However, adding this penalty term causes non-convexity. Thus, DC programming further linearizes
the penalty u− u2 ≈ ũ− ũ2 + (u− ũ)(1− 2ũ) at the given point ũ, and formulates the problem in
Proposition 1 as

min
u∈[0,1]n

∥Qu− q1∥2 + τ∥u− q2∥2 + t(e− 2ũ)Tu.

By applying this linearization, we achieve a successive convex approximation to the Boolean con-
straint [Razaviyayn, 2014], ensuring that the training is more stable and globally convergent [Lipp
and Boyd, 2016]. Furthermore, instead of fixing the coefficient t, we propose to gradually increase it
until the Boolean constraint is fully satisfied, forming an “annealing” procedure. We illustrate the
necessity of this strategy in the following proposition [Beck and Teboulle, 2000, Xia, 2009].

Proposition 2. A solution u ∈ {0, 1}n is a stationary point of (Pt) if and only if

[∇q(u)]i(1− 2ui) + t ≥ 0, i = 1, . . . , n.

Then, if u ∈ {0, 1}n is a global optimum of (P) (as well as (Pt)), it holds that

[∇q(u)]i(1− 2ui) + ρi ≥ 0, i = 1, . . . , n,

where ρi is the i-th diagonal element of (QTQ+ τI).

Remarks. The proposition reveals a trade-off of t: a larger t encourages exploration of more stationary
points satisfying the Boolean constraints, but a too large t may cause the converged point to deviate
from the optimality of (P). Therefore, a gradual increase of t is sensible for obtaining the desired
solution. Moreover, the initial minimization under small t results in a small gradient value (i.e.,
|[∇q(u)]i|), thus a Boolean stationary point can be quickly achieved with a few steps of increasing t.

3.1 Algorithms

For a given dataset {(xi,yi)}Ni=1, X = (x1, . . . ,xN) and Y = (y1, . . . ,yN) represent the data
matrix and label matrix respectively, and fθ(k)(X) denotes the network prediction at the k-th iteration.

Logical constraint learning. Eliminating the constraint in (2) by letting Z = fθ(k)(X), the empirical
version of the logical constraint learning problem at the (k+1)-th iteration is

min
(W ,b)

m∑
i=1

∥(fθ(k)(X);Y)wi − bi∥2 + λ∥wi −w
(0)
i ∥2 + t1(e− 2w

(k)
i)Twi,

where w
(k)
1 , . . . ,w

(k)
m are parameters of logical constraints at the k-th iteration. In this objective

function, the first term is the training loss of logical constraint learning, the second term is the trust
region penalty to avoid degeneracy, and the last term is the DC penalty of the Boolean constraint.

To solve this problem, we adopt the proximal point algorithm (PPA) [Rockafellar, 1976, Parikh et al.,
2014, Rockafellar, 2021], as it overcomes two challenges posed by stochastic gradient descent. First,
stochastic gradient descent has an implicit inductive bias [Gunasekar et al., 2017, Ali et al., 2020,
Zhang et al., 2021, Smith et al., 2021], causing different wi, i = 1, . . . ,m, to converge to a singleton.
Second, the data matrix (fθ(k)(X);Y) is a 0-1 matrix and often ill-conditioned, leading to diverse or
slow convergence rates of stochastic gradient descent.

5

Algorithm 1 Neuro-symbolic Learning Procedure

Set step sizes (γ, η), and penalty coefficients (λ, t1, t2).
Randomly generate an initial matrix W (0) under [0, 1] uniform distribution.
for k = 0, 1, . . . ,K do

Randomly draw a batch {(xi,yi)}Ni=1 from training data.
Compute the predicted symbol zi = fθ(k)(xi), i = 1, . . . , N . ▷ Network prediction
Update (W , b) from (zi,yi), i = 1, . . . ,m, by PPA update (Eq. 4). ▷ Constraint learning
Correct the symbol grounding z̄ from zi to logical constraints hϕ (Eq. 5). ▷ Symbol grounding
Update θ from (xi, z̄i), i = 1, . . . ,m, by SGD update (Eq. 6). ▷ Network training
if W /∈ Bm×(u+v)/Z̄ /∈ BN×(u+v) then

Increasing t1/t2. ▷ Enforcing DC penalty
end if

end for
Estimate (bmin, bmax) based on network fθ and logical constraints hϕ from training data.

Given (W (k), b(k)) at the k-th iteration, the update of PPA can be computed by

W (k+1) = (M + (λ+
1

γ
)I)−1

(
(fθ(k)(X);Y)Tb(k) + λW (0) + (

1

γ
+ t1)W

(k−1) − t1
2
E
)
,

b(k+1) = (1 +
1

γ
)−1(W (k)(fθ(k)(X);Y)Te+

1

γ
b(k)), (4)

where γ > 0 is the step size of PPA, E is an all-ones matrix, and M = (fθ(k)(X);Y)T(fθ(k)(X);Y).
Note that the computation of matrix inverse is required, but it is not an issue because M is positive
semidefinite, and so is the involved matrix, which allows the use of Cholesky decomposition to
compute the inverse. Moreover, exploiting the low rank and the sparsity of M can significantly
enhance the efficiency of the computation.

Neural network training. By adding the DC penalty, the constraint (i.e., symbol grounding) in (3) is

z̄ = argmin ∥W (z̄;y)− b∥2 + α∥z̄− fθ(k)(x)∥2 + t2(e− 2(z̄(k))T)z̄.

We can also compute the closed-form solution, i.e.,

Z̄ =

(
bW + (α+ t2)Z̄

(k) + αfθ(k)(X)− t2
2
E

)(
W TW + αI

)−1
. (5)

Similarly, the low-rank and sparsity properties of W TW ensure an efficient computation of matrix
inverse. Finally, the parameter θ of network is updated by stochastic gradient descent,

θ(k+1) = θ(k) − η∇θfθ(k)(xi)

N∑
i=1

(z̄i − fθ(k)(xi)). (6)

The overall algorithm is summarized in Algorithm 1, which mainly involves three iterative steps: (1)
update the logical constraints by combining the network prediction and observed output; (2) correct
the symbol grounding by revising the prediction to satisfy logical constraints; (3) update the neural
network by back-propagating the corrected symbol grounding with observed input.

3.2 Theoretical Analysis

Theorem 1. With an increasing (or decreasing) α, the constraint learning and network training
performed by Algorithm 1 converge to the stationary point of (2) and (3), respectively. Specifically, it
satisfies

E[∥∇θℓ
k
1(θ

k)∥2] = O(
1√

K + 1
), and E[∥∇ϕℓ2(ϕ

k)∥2] = O(
1√

K + 1
).

Remarks. The proof and additional results can be found in Appendix B. In summary, Theorem 1
confirms the convergence of our neuro-symbolic learning framework and illustrates its theoretical

6

complexity. Furthermore, note that an increase (or decrease) in α indicates a preference for correcting
the symbol grounding over network prediction (or logical constraint learning). In practice, we can
directly set a small (or large) enough α instead.

Next, we analyze the setting of centre points W (0) in the trust region penalty as follows.

Theorem 2. Let w(0)
1 ∈ [0, 1]n and w

(0)
2 ∈ [0, 1]n be two initial points sampled from the uniform

distribution. For given t ≥ 0, the probability that the corresponding logical constraints ϕ1 and ϕ2

converge to the same (binary) stationary point ϕ satisfies

Pr(ϕ1 = ϕ,ϕ2 = ϕ) ≤
n∏

i=1

min
{ 1

2λ
([∇q(u)]i(1− 2ui) + t), 1

}2
.

Remarks. The proof is in Appendix C. In a nutshell, Theorem 2 shows that the probability of w1 and
w2 degenerating to the same logical constraint can be very small provided suitably chosen λ and t.
Note that λ and t play different roles. As shown by Proposition 2, the coefficient t in DC penalty
ensures the logical constraint learning can successfully converge to a sensible result. The coefficient
λ in trust region penalty enlarges the divergence of convergence conditions between two distinct
logical constraints, thereby preventing the degeneracy effectively.

4 Experiments

We carry out experiments on four tasks, viz., chained XOR, Nonogram, visual Sudoku solving,
and self-driving path planning. We use Z3 SMT (MaxSAT) solver [Moura and Bjørner, 2008] for
symbolic reasoning. Other implementation details can be found in Appendix E. The experimental
results of chained XOR and Nonogram tasks are detailed in Appendix F due to the space limit. The
code is available at https://github.com/Lizn-zn/Nesy-Programming.

4.1 Visual Sudoku Solving

Datasets. We consider two 9× 9 visual SudoKu solving datasets, i.e., the SATNet dataset [Wang
et al., 2019, Topan et al., 2021]4 and the RRN dataset [Yang et al., 2023], where the latter is more
challenging (17 - 34 versus 31 - 42 given digits in each puzzle). Both datasets contain 9K/1K
training/test examples, and their images are all sampled from the MNIST dataset. We typically
involve two additional transfer tasks, i.e., training the neuro-symbolic system on SATNet dataset
(resp. RRN dataset), and then evaluating the system on RRN dataset (resp. SATNet dataset).

Baselines. We compare our method with four state-of-the-art methods, i.e., RRN [Palm et al., 2018],
SATNet [Wang et al., 2019], SATNet* [Topan et al., 2021], and L1R32H4 [Yang et al., 2023]. RRN
is modified to match visual SudoKu as done by Yang et al. [2023]. SATNet* is an improved version
of SATNet that addresses the symbol grounding problem by introducing an additional pre-clustering
step. As part of our ablation study, we introduce two variants of our method (NTR and NDC) where
NTR removes the trust region penalty (i.e., setting λ = 0), and NDC removes the DC penalty (i.e.,
fixing t1 = t2 = 0) and directly binarizes (W , b) as the finally learned logical constraints.

Results. We report the accuracy results (i.e., the percentage of correctly recognized boards, correctly
solved boards, and both) in Table 1.5 A more detailed version of our experimental results is given
in Appendix F. The results show that our method significantly outperforms the existing methods
in all cases, and both trust region penalty and DC penalty are critical design choices. The solving
accuracy is slightly higher than the perception accuracy, as the MaxSAT solver may still solve the
problem correctly even when the perception result is wrong. Notably, our method precisely learns
all logical constraints,6 resulting in a logical reasoning component that (1) achieves full accuracy
when the neural perception is correct; (2) ensures robust results on transfer tasks, in comparison to
the highly sensitive existing methods.

4The SATNet dataset is originally created by Wang et al. [2019]. However, Topan et al. [2021] point out that
the original dataset has the label leakage problem, which was fixed by removing the labels of given digits.

5We successfully reproduce the baseline methods, achieving consistent results with Yang et al. [2023].
6We need 324 (= 9×9×4: each row/column/block should fill 1 - 9, and each cell should be in 1 - 9) ground-

truth cardinality constraints for the Sudoku task, whose rank is 249. After removing redundant constraints, our
method learns exact 324 logical constraints that are one-to-one corresponding to the ground-truth.

7

https://github.com/Lizn-zn/Nesy-Programming

Table 1: Accuracy results (%) of visual Sudoku task. Our method performs the best.

Method
SATNet dataset RRN dataset SATNet → RRN

Percep. Solving Total Percep. Solving Total Percep. Solving Total

RRN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SATNet* 72.7 75.9 67.3 75.7 0.1 0.1 80.8 1.4 1.4
L1R32H4 94.1 91.0 90.5 87.7 65.8 65.7 84.8 21.3 21.3

NTR 87.4 0.0 0.0 91.4 3.9 3.9 90.2 0.0 0.0
NDC 79.9 0.0 0.0 88.0 0.0 0.0 86.1 0.0 0.0

Ours 95.5 95.9 95.5 93.1 94.4 93.1 93.9 95.2 93.9

0K 10K 20K 30K 40K
Iteration

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

L1R32H4 Ours

0K 10K 20K 30K 40K 50K
Iteration

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

L1R32H4
Ours

0K 20K 40K 60K 80K
Iteration

0

200

400

600

800

Ra
nk

NDC NTR Ours

0K 20K 40K 60K 80K
Iteration

0

200

400

600

800

Ra
nk

NDC NTR Ours

Figure 2: Training curves of accuracy (left) and rank (right). Our method significantly boosts the
efficiency of symbol grounding, and accurately converges to ground-truth constraints.

Furthermore, we plot some training curves in Figure 2. The left two figures depict the training
curves of neural perception accuracy on the SATNet dataset and RRN dataset, which demonstrate the
extremely higher efficiency of our method in symbol grounding compared with the best competitor
L1R32H4. We also compute the rank of matrix W to evaluate the degeneracy of logical constraint
learning. The results are presented in the right two figures, illustrating that logical constraints learned
by our method are complete and precise. In contrast, the ablation methods either fail to converge to
the correct logical constraints or result in a degenerate outcome.

4.2 Self-driving Path Planning

Motivation. Self-driving systems are fundamentally neuro-symbolic, where the primary functions
are delineated into two components: object detection empowered by neural perception and path
planning driven by symbolic reasoning. Neuro-symbolic learning has great potential in self-driving,
e.g., for learning from demonstrations [Schaal, 1996] and to foster more human-friendly driving
patterns [Sun et al., 2021, Huang et al., 2021].

Datasets. We simulate the self-driving path planning task based on two datasets, i.e., Kitti [Geiger
et al., 2013] and nuScenes [Caesar et al., 2020]. Rather than provide the label of object detection,
we only use planning paths as supervision. To compute planning paths, we construct obstacle maps
with 10× 10 grids, and apply the A∗ algorithm with fixed start points and random end points. Note
that Kitti and nuScenes contain 6160/500 and 7063/600 training/test examples, respectively, where
nuScenes is more difficult (7.4 versus 4.6 obstacles per image on average).

Baselines. We include the best competitor L1R32H4 [Yang et al., 2023] in the previous experiment
as comparison. Alongside this, we also build an end-to-end ResNet model (denoted by ResNet) [He
et al., 2016] and an end-to-end recurrent transformer model (denoted by RTNet) [Hao et al., 2019].
These models take the scene image, as well as the start point and the end point, as the input, and
directly output the predicted path. Finally, as a reference, we train a ResNet model with direct
supervision (denoted by SUP) by using labels of object detection, and the logical reasoning is also
done by the A∗ algorithm.

Results. We include the F1 score of predicted path grids, the collision rate of the planning path, and
the distance error between the shortest path and the planning path (only computed for safe paths) in
Table 2. The results show that our method achieves the best performance on both datasets, compared
with the alternatives. Particularly, the existing state-of-the-art method L1R32H4 fails on this task,

8

Table 2: Results of self-driving path planning task. Our method performs the best.

Method
Kitti dataset nuScenes

F1 score ↑ Coll. rate ↓ Dist. Err. ↓ F1 score ↑ Coll. Rate ↓ Dist. Err. ↓
ResNet 68.5% 54.0% 2.91 51.8% 68.1% 3.60
RTNet 77.3% 36.8% 2.89 55.9% 63.8% 2.94

L1R32H4 11.9% 100.0% NA. 12.0% 91.5% 100.0

Ours 80.2% 32.8% 2.84 58.8% 57.8% 2.81
SUP 84.9% 28.3% 2.75 74.6% 52.9% 2.90

resulting in a high collision rate. Our method is nearly comparable to the supervised reference model
SUP on the Kitti dataset. On the nuScenes dataset, our method even produces slightly less distance
error of safe paths than the SUP method.

5 Related Work

Neuro-symbolic learning. Neuro-symbolic learning has received great attention recently. For
instance, Dai et al. [2019] and Corapi et al. [2010] suggest bridging neural perception and logical
reasoning via an abductive approach, where a logic program is abstracted from a given knowledge
base. To reduce reliance on knowledge bases, Ciravegna et al. [2020] and Dong et al. [2019] directly
represent and learn constraints using neural networks. However, the learned constraints are still
uninterpretable. To improve interpretability, Wang et al. [2019] introduce SATNet, a method that
relaxes the MaxSAT problem with semidefinite programming and incorporates it as a layer into neural
networks. SATNet is further followed up by several works [Topan et al., 2021, Lim et al., 2022, Yang
et al., 2023]. However, how to explicitly extract and use the learned constraints is still unclear for
these works. In contrast to the existing neuro-symbolic learning methods, our method can synthesize
explicit logical constraints supporting exact reasoning by off-the-shelf reasoning engines.

Constraint learning. Our work is also related to constraint learning, which can be traced back to
Valiant’s algorithm [Valiant, 1984] and, more generally, inductive logic programming [Muggleton
and De Raedt, 1994, Bratko and Muggleton, 1995, Yang et al., 2017, Evans and Grefenstette, 2018].
However, Cropper and Dumančić [2022] highlight that inductive logic programming is limited when
learning from raw data, such as images and speech, as opposed to perfect symbolic data. To this end,
our method goes a step further by properly tackling the symbol grounding problem.

Boolean quadratic programming and its relaxation. Many constraint learning and logical rea-
soning tasks, e.g., learning Pseudo-Boolean function [Marichal and Mathonet, 2010], MaxSAT
learning [Wang et al., 2019] and solving [Gomes et al., 2006], and SAT solving [Lipp and Boyd,
2016], can be formulated as Boolean quadratic programming (i.e., quadratic programming with binary
variables) [Hammer and Rubin, 1970]. However, commonly used techniques, such as branch and
bound [Buchheim et al., 2012] and cutting plane [Kelley, 1960], cannot be applied in neuro-symbolic
learning tasks. In literature, semidefinite relaxation (SDR) [d’Aspremont and Boyd, 2003, Gomes
et al., 2006, Wang and Kolter, 2019] and difference-of-convex (DC) programming [Tao and Hoai An,
1997, Yuille and Rangarajan, 2003, Lipp and Boyd, 2016, Hoai An and Tao, 2018] are two typical
methods to relax Boolean constraints. Although SDR is generally more efficient, the tightness and
recovering binary results from relaxation are still an open problem [Burer and Ye, 2020, Wang and
Kılınç-Karzan, 2022], compromising the exactness of logical reasoning. In this work, we choose DC
programming and translate DC constraints to a penalty term with gradually increasing weight, so as
to ensure that the Boolean constraints can be finally guaranteed.

6 Limitations

In this section, we discuss the limitations of our framework and outline some potential solutions.

Expressiveness. The theoretical capability of cardinality constraints to represent any propositional
logic formula does not necessarily imply the practical ability to learn any such formula in our frame-

9

work; this remains a challenge. Fundamentally, logical constraint learning is an inductive method, and
thus different learning methods would have different inductive biases. Cardinality constraint-based
learning is more suitable for tasks where the logical constraints can be straightforwardly translated
into the cardinality form. A typical example of such a task is Sudoku, where the target CNF formula
consists of at least 8,829 clauses [Lynce and Ouaknine, 2006], while the total number of target
cardinality constraints stands at a mere 324.

Technically, our logical constraint learning prefers equality constraints (e.g., x + y = 2), which
actually induce logical conjunction (e.g., x ∧ y = T) and may ignore potential logical disjunction
which is represented by inequality constraints (e.g., x ∨ y = T is expressed by x + y ≥ 1). To
overcome this issue, a practical trick is to introduce some auxiliary variables, which is commonly
used in linear programming [Fang and Puthenpura, 1993]. Consider the disjunction x ∨ y = T; here,
the auxiliary variables z1, z2 help form two equalities, namely, x+ y + z1 = 2 for (x, y) = (T,T)
and x+ y+ z2 = 1 for (x, y) = (T,F) or (x, y) = (F,T). One can refer to the Chain-XOR task (cf.
Section F.1) for a concrete application of auxiliary variables.

Reasoning efficiency. The reasoning efficiency, particularly that of SMT solvers, during the inference
phase can be a primary bottleneck in our framework. For instance, in the self-driving path planning
task, when we scale the map size up to a 20× 20 grid involving 800 Boolean variables (400 variables
for grid obstacles and 400 for path designation), the Z3 MaxSAT solver takes more than two hours
for some inputs.

To boost reasoning efficiency, there are several practical methods that could be applied. One
straightforward method is to use an integer linear program (ILP) solver (e.g., Gurobi) as an alternative
to the Z3 MaxSAT solver. In addition, some learning-based methods (e.g., Balunovic et al. [2018])
may enhance SMT solvers in our framework. Nonetheless, we do not expect that merely using a
more efficient solver can resolve the problem. The improve the scalability, a more promising way is
to combine System 1 and System 2 also in the inference stage (e.g., Cornelio et al. [2023]). Generally
speaking, in the inference stage, neural perception should first deliver a partial solution, which is then
completed by the reasoning engine. Such a paradigm ensures fast reasoning via neural perception,
drastically reducing the logical variables that need to be solved by the exact reasoning engine, thereby
also improving its efficiency.

7 Conclusion

This paper presents a neuro-symbolic learning approach that conducts neural network training and
logical constraint synthesis simultaneously, fueled by symbol grounding. The gap between neural
networks and symbol logic is suitably bridged by cardinality constraint-based learning and difference-
of-convex programming. Moreover, we introduce the trust region method to effectively prevent the
degeneracy of logical constraint learning. Both theoretical analysis and empirical evaluations have
confirmed the effectiveness of the proposed approach. Future work could explore constraint learning
using large language models to trim the search space of the involved logical variables, and augment
reasoning efficiency by further combining logical reasoning with neural perception.

Acknowledgment

We are thankful to the anonymous reviewers for their helpful comments. This work is supported
by the National Natural Science Foundation of China (Grants #62025202, #62172199). T. Chen
is also partially supported by Birkbeck BEI School Project (EFFECT) and an overseas grant of
the State Key Laboratory of Novel Software Technology under Grant #KFKT2022A03. Yuan Yao
(y.yao@nju.edu.cn) and Xiaoxing Ma (xxm@nju.edu.cn) are the corresponding authors.

10

References
Daniel Kahneman. Thinking, fast and slow. macmillan, 2011.

Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck, Andreas
Loreggia, Keerthiram Murgesan, Nicholas Mattei, Francesca Rossi, et al. Thinking fast and
slow in ai. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
15042–15046, 2021.

Bengio Yoshua and Marcus Gary. Ai debate: The best way forward for ai, 2020. URL https:
//montrealartificialintelligence.com/aidebate/.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62, 2022.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver. In International Conference on Machine
Learning, pages 6545–6554. PMLR, 2019.

Zhun Yang, Adam Ishay, and Joohyung Lee. Learning to solve constraint satisfaction problems with
recurrent transformer. In The Eleventh International Conference on Learning Representations,
2023.

Sever Topan, David Rolnick, and Xujie Si. Techniques for symbol grounding with satnet. Advances
in Neural Information Processing Systems, 34:20733–20744, 2021.

Zenan Li, Yuan Yao, Taolue Chen, Jingwei Xu, Chun Cao, Xiaoxing Ma, and Lü Jian. Softened
symbol grounding for neuro-symbolic systems. In The Eleventh International Conference on
Learning Representations, 2023.

Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. A short
introduction to probabilistic soft logic. In Proceedings of the NIPS workshop on probabilistic
programming: foundations and applications, pages 1–4, 2012.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for
deep learning with symbolic knowledge. In International conference on machine learning, pages
5502–5511. PMLR, 2018.

Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal on
Satisfiability, Boolean Modeling and Computation, 2(1-4):1–26, 2006.

Olivier Bailleux and Yacine Boufkhad. Efficient cnf encoding of boolean cardinality constraints. In
Principles and Practice of Constraint Programming–CP 2003: 9th International Conference, CP
2003, Kinsale, Ireland, September 29–October 3, 2003. Proceedings 9, pages 108–122. Springer,
2003.

Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translation of pseudo-boolean constraints
to sat. Journal on Satisfiability, Boolean Modeling and Computation, 2(1-4):191–200, 2006.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Tommi Syrjänen. Logic programs and cardinality constraints: Theory and practice. PhD thesis, PhD
thesis, Helsinki University of Technology, 2009.

Tommi Syrjänen. Cardinality constraint programs. In Logics in Artificial Intelligence: 9th European
Conference, JELIA 2004, Lisbon, Portugal, September 27-30, 2004. Proceedings 9, pages 187–199.
Springer, 2004.

Samuel Fiorini, Tony Huynh, and Stefan Weltge. Strengthening convex relaxations of 0/1-sets using
boolean formulas. Mathematical programming, 190:467–482, 2021.

11

https://montrealartificialintelligence.com/aidebate/
https://montrealartificialintelligence.com/aidebate/

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. advances in neural information processing
systems, 31, 2018.

Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu. Closed
loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic
reasoning. In International Conference on Machine Learning, pages 5884–5894. PMLR, 2020.

Lieven Vandenberghe and Stephen Boyd. Convex optimization (Tutorial), volume 1. Cambridge
university press Cambridge, 2004.

Charles R Henderson. Best linear unbiased estimation and prediction under a selection model.
Biometrics, pages 423–447, 1975.

Åke Björck. Least squares methods. Handbook of numerical analysis, 1:465–652, 1990.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems,
30, 2017.

Samuel L Smith, Benoit Dherin, David GT Barrett, and Soham De. On the origin of implicit
regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic gradient
flow for least squares. In International conference on machine learning, pages 233–244. PMLR,
2020.

Emile van Krieken, Thiviyan Thanapalasingam, Jakub M Tomczak, Frank van Harmelen, and
Annette ten Teije. A-nesi: A scalable approximate method for probabilistic neurosymbolic
inference. arXiv preprint arXiv:2212.12393, 2022.

Pham Dinh Tao and Le Thi Hoai An. Convex analysis approach to dc programming: theory,
algorithms and applications. Acta mathematica vietnamica, 22(1):289–355, 1997.

Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15(4):
915–936, 2003.

Thomas Lipp and Stephen Boyd. Variations and extension of the convex–concave procedure. Opti-
mization and Engineering, 17:263–287, 2016.

Le Thi Hoai An and Pham Dinh Tao. Dc programming and dca: thirty years of developments.
Mathematical Programming, 169(1):5–68, 2018.

Dimitri Bertsekas. Convex optimization algorithms. Athena Scientific, 2015.

Pierre Hansen, Brigitte Jaumard, MichèLe Ruiz, and Junjie Xiong. Global minimization of indefinite
quadratic functions subject to box constraints. Naval Research Logistics (NRL), 40(3):373–392,
1993.

Hoai An Le Thi and Pham Ding Tao. A continuous approch for globally solving linearly constrained
quadratic. Optimization, 50(1-2):93–120, 2001.

Meisam Razaviyayn. Successive convex approximation: Analysis and applications. PhD thesis,
University of Minnesota, 2014.

Amir Beck and Marc Teboulle. Global optimality conditions for quadratic optimization problems
with binary constraints. SIAM journal on optimization, 11(1):179–188, 2000.

Yong Xia. New optimality conditions for quadratic optimization problems with binary constraints.
Optimization letters, 3:253–263, 2009.

12

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization, 1
(3):127–239, 2014.

R Tyrrell Rockafellar. Advances in convergence and scope of the proximal point algorithm. J.
Nonlinear and Convex Analysis, 22:2347–2375, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer,
2008.

Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. Advances in neural
information processing systems, 31, 2018.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems, 9,
1996.

Jiankai Sun, Hao Sun, Tian Han, and Bolei Zhou. Neuro-symbolic program search for autonomous
driving decision module design. In Conference on Robot Learning, pages 21–30. PMLR, 2021.

Junning Huang, Sirui Xie, Jiankai Sun, Qiurui Ma, Chunxiao Liu, Dahua Lin, and Bolei Zhou.
Learning a decision module by imitating driver’s control behaviors. In Conference on Robot
Learning, pages 1–10. PMLR, 2021.

Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research, 32(11):1231–1237, 2013.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for
autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang, and Zhaopeng Tu. Modeling
recurrence for transformer. arXiv preprint arXiv:1904.03092, 2019.

Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and logical
reasoning by abductive learning. Advances in Neural Information Processing Systems, 32, 2019.

Domenico Corapi, Alessandra Russo, and Emil Lupu. Inductive logic programming as abductive
search. In Technical communications of the 26th international conference on logic programming.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

Gabriele Ciravegna, Francesco Giannini, Stefano Melacci, Marco Maggini, and Marco Gori. A
constraint-based approach to learning and explanation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3658–3665, 2020.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations, 2019.

Sangho Lim, Eun-Gyeol Oh, and Hongseok Yang. Learning symmetric rules with satnet. In The
36th Conference on Neural Information Processing Systems (NeurIPS 2022). Neural information
processing systems foundation, 2022.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

13

Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19:629–679, 1994.

Ivan Bratko and Stephen Muggleton. Applications of inductive logic programming. Communications
of the ACM, 38(11):65–70, 1995.

Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for knowledge
base reasoning. Advances in neural information processing systems, 30, 2017.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Andrew Cropper and Sebastijan Dumančić. Inductive logic programming at 30: a new introduction.
Journal of Artificial Intelligence Research, 74:765–850, 2022.

Jean-Luc Marichal and Pierre Mathonet. Symmetric approximations of pseudo-boolean functions.
arXiv preprint arXiv:1004.2593, 2010.

Carla P Gomes, Willem-Jan Van Hoeve, and Lucian Leahu. The power of semidefinite programming
relaxations for max-sat. In Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems: Third International Conference, CPAIOR 2006, Cork,
Ireland, May 31-June 2, 2006. Proceedings 3, pages 104–118. Springer, 2006.

Peter L Hammer and Abraham A Rubin. Some remarks on quadratic programming with 0-1 variables.
Revue française d’informatique et de recherche opérationnelle. Série verte, 4(V3):67–79, 1970.

Christoph Buchheim, Alberto Caprara, and Andrea Lodi. An effective branch-and-bound algorithm
for convex quadratic integer programming. Mathematical programming, 135:369–395, 2012.

James E Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the society for
Industrial and Applied Mathematics, 8(4):703–712, 1960.

Alexandre d’Aspremont and Stephen Boyd. Relaxations and randomized methods for nonconvex
qcqps. EE392o Class Notes, Stanford University, 1:1–16, 2003.

Po-Wei Wang and J Zico Kolter. Low-rank semidefinite programming for the max2sat problem. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1641–1649, 2019.

Samuel Burer and Yinyu Ye. Exact semidefinite formulations for a class of (random and non-random)
nonconvex quadratic programs. Mathematical Programming, 181(1):1–17, 2020.

Alex L Wang and Fatma Kılınç-Karzan. On the tightness of sdp relaxations of qcqps. Mathematical
Programming, 193(1):33–73, 2022.

Inês Lynce and Joël Ouaknine. Sudoku as a sat problem. In AI&M, 2006.

Shu-Cherng Fang and Sarat Puthenpura. Linear optimization and extensions: theory and algorithms.
Prentice-Hall, Inc., 1993.

Mislav Balunovic, Pavol Bielik, and Martin Vechev. Learning to solve smt formulas. Advances in
Neural Information Processing Systems, 31, 2018.

Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where and when
to reason in neuro-symbolic inference. In The Eleventh International Conference on Learning
Representations, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep learning.
In International Conference on Machine Learning, pages 3067–3075. PMLR, 2017.

14

A Proofs of DC technique

Notations. We define S := (QTQ+ τI), s := (QTq1 + τq2), and denote the largest eigenvalues
and largest diagonal element of S by σmax and δmax, respectively. Hence, the two problems can be
equivalently rewritten as

(P) min
u∈{0,1}n

uTSu− 2sTu, (Pt) min
u∈[0,1]n

uT(S − tI)u− (2s− te)Tu.

A.1 Proof of Proposition 1

Proof. The results are primarily based on Bertsekas [2015, Proposition 1.3.4]: the minima of a strictly
concave function cannot be in the relative interior of the feasible set.

We first show that if t0 ≥ σmax, then the two problems are equivalent [Le Thi and Ding Tao, 2001,
Theorem 1]. Specifically, since S−tI is negative definite, problem (Pt) is strictly concave. Therefore,
the minima should be in the vertex set of the feasible domain, which is consistent with problem (P).

We can further generalize this result to the case t0 ≥ δmax[Hansen et al., 1993, Proposition 1]. In this
case, considering the i-th component of u, its second-order derivative in problem (Pt) is 2(Sii − t).
Similarly, the strict concavity of ui ensures a binary solution, indicating the equivalence of problems
(P) and (Pt).

A.2 Proof of Proposition 2

Proof. The Karush–Kuhn–Tucker (KKT) conditions of the problem (Pt) are as follows.

[2Su− 2tu− 2s+ te]i −αi + βi = 0;

ui ∈ [0, 1]n; αi ≥ 0,βi ≥ 0;

αiui = 0, βi(ui − 1) = 0; i = 1, . . . , n.

where α and β are multiplier vector. For u ∈ {0, 1}n, the KKT condition is equivalent to

αi = [2Su− 2tu− 2s+ te]i(1− ui) ≥ 0, βi = [2Su− 2tu− 2s+ te]iui ≤ 0.

By using (1− 2ui) ∈ {−1, 1}, we can further combine the above two inequalities, and obtain

2[Su− s]i(1− 2ui) + t ≥ 0, i = 1, . . . , n.

On the other hand, if 2[Su− s]i(1− 2ui) + t ≥ 0 holds for each i = 1, . . . , n, it is easy to check
that α ≥ 0 and β ≥ 0, which proves the first part of the proposition.

The proof of the second part is a direct result of Beck and Teboulle [2000, Theorem 2.4]. To be
specific, if u achieves a global minimum of (P), then q(u) ≤ q(u′) for any u′ ∈ {0, 1}n. Hence, we
only flip the i-th value of u, i.e., considering ui and u′

i = 1− ui, and it holds that

uTSu− 2sTu ≤ (u′)TSu′ − 2sTu′

= (uTSu− 2sTu) + 2[Su− s]i(1− 2ui) + Sii.

Rearranging the inequality, we obtain

2[Su− s]i(1− 2ui) ≥ −Sii, i = 1, . . . , n,

which completes the proof.

B Proof of Theorem 1

Proof. Notations. We use ∥ · ∥ to denote the ℓ2 norm for vectors and Frobenius norm for matrices.
We define

φ(ϕ,θ,Z,Y) := ∥Zwu +Ywv − b∥2 + α∥(Z,Y)− (fθ(X),Y)∥2 + λ∥w −w0∥2.

For the loss functions of logic programming and network training, we assume ℓ1(θ) and ℓ2(ϕ) to be
µθ and µϕ smooth, respectively. For ease of presentation, we define ∆k = fθk(X)wk

u +Ywk
v − b,

15

and let cmax be the upper bound of ∥∆k∥. Furthermore, by using the Woodbury identity formula, we
can compute

(Zk;Yk) = arg min
(Z,Y)

∥Zwk
u +Ywk

v − b∥2 + α∥(Z,Y)− (fθk(X),Y)∥2 + λ∥w −w0∥2

= (fθk(X);Y)− βk∆k(wk)T, where βk =
1

α+ ∥wk∥2
.

Let ρk := (αβk), we have

φ(ϕk,θk, fθk(X),Y)− φ(ϕk,θk,Zk,Yk) = (1− ((αβk)2 + (1− αβk)2)∥∆k∥2

= 2ρk(1− ρk)∥∆k∥2.

Update of ϕ. We consider the single rule case (multiple rules can be directly decomposed), i.e.,
ϕ = (w, b) and b = (b; . . . ; b). The update of ϕ is conducted on the loss function

ℓk2(w, b) = φ(ϕk,θk, fθk(X),Y) = ∥fθk(X)wu +Ywv − b∥2 + λ∥w −w0∥2.

The smallest and the largest eigenvalues of (fθk(X),Y)T(fθk(X),Y) + λI are denoted by σmin

and σmax, respectively.

The PPA method updates w by

wk+1 = argmin
w

ℓk2(w, b) +
1

γ
∥w −wk∥2,

which can be reduced to

wk+1 −wk = −Mkδk, δk = (fθk(X),Y)T∆ = ∇wℓk2(w, b),

where

Mk =
(
(fθk(X),Y)T(fθk(X),Y) + λI +

1

γ
I
)−1

.

The (2/γ)-strongly convexity of the proximal term implies the Polyak-Łojasiewicz (PL) inequality,
which derives that

φ(ϕk,θk,Zk,Yk) = φ(ϕk,θk, fθk(X),Y)− 2ρk(1− ρk)∥∆∥2

= ℓk2(w
k, b)− 2ρk(1− ρk)∥∆k∥2 ≥ ℓk2(w

k+1, b)− 2ρk(1− ρk)∥∆∥2 + 2

γ
∥wk+1 −wk∥2.

Plugging wk+1 −wk = −Mkδk into the inequality, we have

φ(ϕk,θk,Zk,Yk) ≥ ℓk2(w
k+1, b) +

2

γ
(δk)T(Mk)2δk − 2ρk(1− ρk)∥∆k∥2

≥ φ(ϕk+1,θk,Zk+ 1
2 ,Yk+ 1

2) +
2

γ
(δk)T(Mk)2δk − 2ρk(1− ρk)∥∆k∥2,

where

(Zk+ 1
2 ;Yk+ 1

2) = argmin(Z̄,Ȳ)∥Z̄wk+1
u + Ȳwk+1

v − b∥2 + α∥(Z̄, Ȳ)− (fθk(X),Y)∥2

= (fθk(X);Y)− βk+ 1
2∆k+ 1

2 (wk+1)T, where βk+ 1
2 =

1

α+ ∥wk+1∥2
.

Note that (Mk)2 has the smallest eigenvalue γ2/(1 + γσmax)
2, and thus we have

φ(ϕk,θk,Zk,Yk) ≥ φ(ϕk+1,θk,Zk+ 1
2 ,Yk+ 1

2)+
2γ

(1 + γσmax)2
∥∇ϕℓ2(w, b)∥2−2ρk(1−ρk)cmax.

Update of θ. The update of θ is conducted on the loss function

ℓk1(θ) = ∥Zk+ 1
2 − fθ(X)∥2.

16

By using µθ-smooth of ℓk1 , we obtain that

φ(ϕk+1,θk,Zk+ 1
2 ,Yk+ 1

2)− φ(ϕk+1,θk+1,Zk+ 1
2 ,Yk+ 1

2) = ℓk1(θ
k+1)− ℓk1(θ

k)

≥ −⟨∇θℓ
k
1(θ

k),θk+1 − θk⟩ − µθ

2
∥θk+1 − θk∥2 ≥ 1

2
η∥∇θℓ

k
1(θ

k)∥2.

Letting Zk+1 = argminZ φ(ϕk+1,θk+1,Z), we conclude

φ(ϕk+1,θk,Zk+ 1
2 ,Yk+ 1

2) ≥ φ(ϕk+1,θk+1,Zk+1,Yk+1) +
1

2
η∥∇θℓ

k
1(θ

k)∥2.

Convergent result. By combining the update of ϕ and θ, we have

φ(ϕk,θk,Zk,Yk)− φ(ϕk+1,θk+1,Zk+1,Yk+1)

≥ 1

2
η∥∇θℓ

k
1(θ

k)∥2 + 2γ

(1 + γσmax)2
∥∇ϕℓ2(ϕ

k)∥2 − 2ρk(1− ρk)cmax.

Taking a telescopic sum over k, we obtain

φ(ϕ0,θ0,Z0,Y0)− φ(ϕK ,θK ,ZK ,YK)

≥
K∑
i=1

1

2
η∥∇θℓ

k
1(θ

k)∥2 + 2γ

(1 + γσmax)2
∥∇ϕℓ2(ϕ

k)∥2 − 2ρk(1− ρk)cmax.

Since ρk(1− ρk) ≤ κρ/(K + 1)2, we have

E[∥∇θℓ
k
2(θ

k)∥2] ≤ 2

(K + 1)η

(
(φ(ϕ0,θ0,Z0,Y0)−minφ) + 2κcmax

)
,

and

E[∥∇ϕℓ2(ϕ
k)∥2] ≤ (1 + γσmax)

2

2(K + 1)

(
(φ(ϕ0,θ0,Z0,Y0)−minφ) + 2κcmax

)
.

Stochastic version. We first introduce an additional assumption: the gradient estimate is unbiased
and has bounded variance [Bottou et al., 2018, Sec. 4], i.e.,

Eξ[∇̃θℓ
k
1(θ

k)] = ∇θℓ
k
1(θ

k), Eξ[∇̃θℓ
k
2(ϕ

k)] = ∇θℓ
k
2(ϕ

k),

and
Vξ[∇̃θℓ

k
1(θ

k)] ≤ ζ + ζv∥∇θℓ
k
1(θ

k)∥2, Vξ[∇̃ϕℓ
k
1(θ

k)] ≤ ζ + ζv∥∇ϕℓ
k
2(ϕ

k)∥2.
This assumption derives the following inequalities hold for ζg = ζv + 1:

Eξ[∥∇̃θℓ
k
1(θ

k)∥2] ≤ ζ + ζg∥∇θℓ
k
1(θ

k)∥2, Eξ[∥∇̃θℓ
k
2(ϕ

k)∥2] ≤ ζ + ζg∥∇ϕℓ
k
2(ϕ

k)∥2,

For the update of θ, we have

φ(ϕk+1,θk,Zk+ 1
2 ,Yk+ 1

2)− Eξ[φ(ϕ
k+1,θk+1,Zk+1,Yk+1)] ≥ ηk

2
∥∇θℓ

k
1(θ

k)∥2 − η2kµθ

2
ζ.

For the update of ϕ, using the µϕ-smooth, and taking the total expectation:

φ(ϕk,θk,Zk,Yk)− Eξ[φ(ϕ
k+1,θk,Zk+ 1

2 ,Yk+ 1
2)] + 2ρk(1− ρk)∥∆k∥2

≥ (∇ϕℓ
k
2(ϕ

k))TMk(∇ϕℓ
k
2(ϕ

k))− µϕ

2
Eξ[∥M̃k∇̃ϕℓ

k
2(ϕ

k)∥2]

≥ 1

ϵk + σmax
∥∇ϕℓ

k
2(ϕ

k)∥2 − µϕ

2(ϵk + σmin)2
(ζ + ζg∥∇ϕℓ

k
2(ϕ

k)∥2),

where we define ϵk = 1/γk for simplicity. Now, let γ be sufficiently small (that is, satisfying
(ϵk + σmin)

2 ≥ µϕ(ϵ
k + σmax)), we obtain

φ(ϕk,θk,Zk,Yk)− Eξ[φ(ϕ
k+1,θk,Zk+ 1

2 ,Yk+ 1
2)] + 2ρk(1− ρk)∥∆k∥2

≥ 1

2(ϵk + σmax)
∥∇ϕℓ

k
2(ϕ

k)∥2 − µϕ

2(ϵk + σmin)2
ζ.

17

Putting the updates of θ and ϕ together, we have

φ(ϕk,θk,Zk,Yk)− Eξ[φ(ϕ
k+1,θk+1,Zk+1,Yk+1)] + 2ρk(1− ρk)∥∆k∥2

≥ 1

2
ηk∥∇θℓ

k
1(θ

k)∥2 − 1

2
η2kµθζ +

1

2(ϵk + σmax)
∥∇ϕℓ

k
2(ϕ

k)∥2 − µϕ

2(ϵk + σmin)2
ζ.

Now, setting ηk ≤ κθ/
√
K + 1 and γk ≤ κϕ/

√
K + 1, we can conclude

E[∥∇θℓ
k
1(θ

k)∥2] = O(
1√

K + 1
), E[∥∇ϕℓ2(ϕ

k)∥2] = O(
1√

K + 1
).

C Proof of Theorem 2

Proof. We consider the following problem,

(Pξ) min
u∈{0,1}n

qξ(u) := uT(S + λI)u− 2(s+ λξ)Tu.

For given t ≥ 0, the corresponding stationary points of (Pξ) satisfy

2[Su− s]i(1− 2ui) + 2λ(ui − ξi)(1− 2ui) + t ≥ 0, i = 1, . . . , n.

Note that

(ui − ξi)(1− 2ui) =

{
−ξi if ui = 0;
ξi − 1 if ui = 1.

For given u ∈ {0, 1}n, we denote ϱi = 2[Su− s]i(1− 2ui). Then, the probability that (Pξ) has the
stationary point u can be computed as

Pr(u) =

n∏
i=1

Pr(ϱi + 2λ(ui − ξi)(1− 2ui) + t ≥ 0),

where
Pr(2λ(ui − ξi)(1− 2ui) + ϱi + t ≥ 0) = min(

1

2λ
(t+ ϱi), 1).

Hence, for given two different u(0)
1 and u

(0)
2 , the probability that the corresponding rules can converge

to the same result u satisfying

Pr(u1 = u,u2 = u) ≤ Pr(u)2 =

n∏
i=1

min(
1

2λ
(t+ ϱi), 1)

2.

D Trust Region Method

Figure 3 illustrates the key concept of the trust region method. For simplicity, centre points
w1(0), . . . ,w4(0) of the trust region are also set as the initial points of stochastic gradient de-
scent. Stochastic gradient descent is implicitly biased to least norm solutions and finally converges to
point (0, 1) by enforcing the Boolean constraints. The trust region penalty encourages the stochastic
gradient descent to converge to different optimal solutions in different trust regions.

E Experiment Details

Computing configuration. We implemented our approach via the PyTorch DL framework. The
experiments were conducted on a GPU server with two Intel Xeon Gold 5118 CPU@2.30GHz,
400GB RAM, and 9 GeForce RTX 2080 Ti GPUs. The server ran Ubuntu 16.04 with GNU/Linux
kernel 4.4.0.

Hyperparameter tuning. Some hyperparameters are introduced in our framework. In Table 3
we summarize the (hyper-)parameters, together with their corresponding initialization or update
strategies. Most of these hyperparameters are quite stable and thus only need to be fixed to a constant
or set by standard strategies. We only discuss the selection of m, and the setting of bmin, bmax and b.

18

(0,0)

(1,1)

𝐰!(𝟎)𝐰"(𝟎)

𝐰!

𝐰" 𝐰#𝐰$
𝐰$(𝟎)

𝐰#(𝟎)
(0,0)

(1,1)

𝐰!(𝟎)𝐰"(𝟎)

𝐰!𝐰"

𝐰#

𝐰$
𝐰$(𝟎)

𝐰#(𝟎)

Figure 3: Avoid degeneracy by trust region method. In logical constraint learning, the imposition of
the Boolean constraints and the implicit bias of the stochastic gradient descent cause w1, . . . ,w4 to
converge to the same result (left figure), while the trust region constraints guarantee that they can
sufficiently indicate different rules (right figure).

(1) To ensure the sufficiency of learned constraints, we suggest initially setting a large m to estimate
the actual number of logical constraints needed, and then adjusting it for more efficient training. We
also observe that a large m does not ruins the performance of our method. For example, we set
m = 2000 in visual SudoKu solving task, while only 324 constraints are learned. (2) For the bias
term b, we recommend b to be tuned manually rather than set by PPA update, and one can gradually
increase b from 1 to n − 1 (n is the number of involved logical variables), and collect all logical
constraints as candidate constraints. For bmin and bmax, due to the prediction error, it is unreasonable
to set bmin and bmax that ensure all examples to satisfy the logical constraint. An alternative method
is to set a threshold (e.g. k%) on the training (or validation) set, and the constraint is only required to
be satisfied by at least k% examples.

Table 3: The list of (hyper-)parameters and their initialization or update strategies.
Param. Description Setting

θ Neural network parameters Updated by stochastic gradient descent

W Matrix of logical constraints Updated by stochastic PPA

b Bias term of logical constraints Pre-set or Updated by stochastic PPA

bmin/bmax Lower/Upper bound of logical constraints Estimated by training set

m Pre-set number of constraints Adaptively tuned

α Trade-off weight in symbol grounding Fixed to α = 0.5

λ Weight of trust region penalty Fixed to λ = 0.1

t1/t2 Weight of DC penalty Increased per epoch

η Learning rate of network training Adam schedule

γ Step size of constraint learning Adaptively set (γ = 0.001 by default)

F Additional Experiment Results

F.1 Chained XOR

The chained XOR, also known as the parity function, is a basic logical function, yet it has proven
challenging for neural networks to learn it explicitly [Shalev-Shwartz et al., 2017, Wang et al., 2019]
To be specific, given a sequence of length L, the parity function outputs 1 if there are an odd number
of 1’s in the sequence, and 0 otherwise. The goal of the Chained XOR task is to learn this parity
function with fixed L. Note that this task does not involve any perception task.

We compare our method with SATNet and L1R32H4. In this task, SATNet uses an implicit but strong
background knowledge that the task can be decomposed into L single XOR tasks. Neither L1R32H4

19

20 40 60 80 100 200
Sequence Length

0

20

40

60

80

100

Re
su

lts
 (%

)

F1 score
Accuracy

(a) SATNet

20 40 60 80 100 200
Sequence Length

0

20

40

60

80

100

Re
su

lts
 (%

)

F1 score
Accuracy

(b) L1R32H4

20 40 60 80 100 200
Sequence Length

0

20

40

60

80

100

Re
su

lts
 (%

)

F1 score
Accuracy

(c) Ours

Figure 4: Results (%) of chained XOR task, including accuracy and F1 score (of class 0). The
sequence length ranges from 20 to 200, showing that our method stably outperforms competitors.

nor our method uses such knowledge. For L1R32H4, we adapt the embedding layer to this task and
fix any other configuration. Regarding our method, we introduce L− 1 auxiliary variables.7

It is worth noting that these auxiliary variables essentially serve as a form of symbol grounding.
Elaborately, the learned logical constraints by our method can be formulated as follows,

w1x1 + · · ·+wLxL +wL+1z1 + · · ·+w2L−1zL−1 = b,

where wi ∈ B, i = 1, . . . , 2L − 1, xi ∈ B, i = 1, . . . , L and zi ∈ B, i = 1, . . . , L. The auxiliary
variables zi, i = 1, . . . , L have different truth assignments for different examples, indicting how the
logical constraint is satisfied by the given input. Now, combining the symbol grounding of auxiliary
variables, we revise the optimization problem (1) of our framework as

min
(W ,b)

E(x,y)∼D[∥W (x; z̄;y)− b∥2] + λ∥W −W (0)∥2,

s.t. z̄ = argminz∈Z E(x,y)∼D[∥W (x; z;y)− b∥2], W ∈ Bm×(u+v), b ∈ Nm
+ .

The symbol grounding is solely guided by logical constraints, as neural perception is not involved.

The experimental results are plotted in Figure 4. The results show that L1R32H4 is unable to learn
such a simple reasoning pattern, while SATNet often fails to converge even with sufficient iterations,
leading to unstable results. Our method consistently delivers full accuracy across all settings, thereby
demonstrating superior performance and enhanced scalability in comparison to existing state-of-the-
art methods. To further exemplify the efficacy of our method, we formulate the learned constraints
in the task of L = 20. Eliminating redundant constraints and replacing the auxiliary variables with
logical disjunctions, the final learned constraint can be expressed as

(x1 + · · ·+ x20 + y = 0) ∨ (x1 + · · ·+ x20 + y = 2) ∨ · · · ∨ (x1 + · · ·+ x20 + y = 20),

which shows that our method concludes with complete and precise logical constraints.

F.2 Nonograms

Nonograms is a logic puzzle with simple rules but challenging solutions. Given a grid of squares, the
task of nonograms is to plot a binary image, i.e., filling each grid in black or marking it by X. The
required numbers of black squares on that row (resp. column) are given beside (resp. above) each
row (resp. column) of the grid. Figure 5 gives a simple example.

In contrast to the supervised setting used in Yang et al. [2023], we evaluate our method on a weakly
supervised learning setting. Elaborately, instead of the fully solved board, only partial solutions
(i.e., only one row or one column) are observed. Note that this supervision is enough to solve the
nonograms, because the only logical rule to be learned is that the different black squares (in each row
or column) should not be connected.

For our method, we do not introduce a neural network in this task, and only aim to learn the logical
constraints. We carry out the experiments on 7 × 7 nonograms, with training data sizes ranging

7Note that the number of auxiliary variables should not exceed the number of logical variables. If so, the
logical constraints trivially converge to any result.

20

r1

r2

r3

r4

r5

c1 c2 c3 c4 c5

Empty Nonogram Solved Nonogram

Figure 5: An example of nonograms.

Data Size L1R32H4 Ours

1000 14.4 100.0
5000 62.0 100.0
9000 81.2 100.0

Table 4: Accuracy (%) of the nonograms task.

from 1,000 to 9,000. The results are given in Table 4, showing the efficacy of our logical constraint
learning. Compared to the L1R32H4 method, whose effectiveness highly depends on the training
data size, our method works well even with extremely limited data.

F.3 Visual SudoKu Solving

In the visual SudoKu task, it is worth noting that the computation of z cannot be conducted by batch
processing. This is because the index of y varies for each data point. For instance, in different
SudoKu games, the cells to be filled are different, and thus the symbol z has to be computed in a
point-wise way. To solve this issue, we introduce an auxiliary ȳ to approximate the output symbol y:

(z̄, ȳ) = argminz̄∈Z,ȳ∈Y ∥W (z̄; ȳ)− b∥2 + α∥(z̄; ȳ)− (fθ(x);y)∥2.

On the SATNet dataset, we use the recurrent transformer as the perception model [Yang et al., 2023],
because we observe that the recurrent transformer can significantly improve the perception accuracy,
and even outperforms the state-of-the-art of MNIST digit recognition model. However, we find
that its performance degrades on the more difficult dataset RRN, and thus we still use a standard
convolutional neural network model as the perception model for this dataset.

We include detailed results of board and cell accuracy in Table 5. It can be observed that our method is
consistently superior to the existing methods, and significantly outperforms the current state-of-the-art
method L1R32H4 on the RRN dataset (total board accuracy improvement exceeds 20%). Also note
that the solving accuracy of our method always performs the best, illustrating the efficacy of our
logical constraint learning.

Next, we exchange the evaluation dataset, namely, using the RRN dataset to evaluate the model
trained on the SATNet dataset, and vice versa. The results are presented in Table 6. The accurate
logical constraints and exact logical reasoning engine guarantee the best performance of our method
on transfer tasks. Notably, the performance of L1R32H4 drops significantly when transferring the
model (trained SATNet dataset) to RNN dataset, our method remains unaffected by such shift.

F.4 Self-driving Path Planning

Input Scene Neural network
Latent symbol

Symbolic reasoning
Output Path

Figure 6: A neuro-symbolic system in self-driving tasks. The neural perception detects the obstacles
from the image collected by the camera; the symbolic reasoning plans the driving path based on the
obstacle map. The neuro-symbolic learning task is to build these two modules in an end-to-end way.

The goal of the self-driving path planning task is to train the neural network for object detection and
to learn the logical constraints for path planning in an end-to-end way. As shown in Figure 6, we
construct two maps and each contains 10× 10 grids (binary variables). The neural perception detects
the obstacles from the image x and locates it in the first map, which is essentially the symbol z. Next,

21

Table 5: Detailed cell and board accuracy (%) of original visual Sudoku task.

Method
SATNet dataset RRN dataset

Perception Solving Total Perception Solving Total
board acc. board acc. board acc. board acc. board acc. board acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 72.7 75.9 67.3 75.7 0.1 0.1
L1R32H4 94.1 91.0 90.5 87.7 65.8 65.7

NTR 87.4 0.0 0.0 91.4 3.9 3.9
NDC 79.9 0.0 0.0 88.0 0.0 0.01

Ours 95.5 95.9 95.5 93.1 94.4 93.1

Perception Solving Total Perception Solving Total
cell acc. cell acc. cell acc. cell acc. cell acc. cell acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 99.1 98.6 98.8 75.7 59.7 72.0
L1R32H4 99.8 99.1 99.4 99.3 89.5 92.6

NTR 99.7 60.1 77.8 99.7 38.5 57.3
NDC 99.4 10.8 50.4 99.5 10.9 38.7

Ours 99.9 99.6 99.7 99.7 98.3 98.7

the logical reasoning computes the final path from the symbol z and tags it on the second map as the
output y.

As a detailed reference, we select some results of path planning generated by different methods and
plot them in Figure 7. We find that some correct properties are learned by our method. For example,
given the point y34 in the path, we have the following connectivity:

(y34 = s) + (y34 = e) + Adj(y34) = 2,

which means that the path point y34 should be connected by its adjacent points. In addition, some
distinct constraints are also learned, for example,

y32 + z32 + z11 + z01 = 1.

In this constraint, z11 and z01 are two noise points, and they always take the value of 0. Therefore, it
actually ensures that if z32 is an obstacle, then y32 should not be selected as a path point. However, it
is still unknown whether our neuro-symbolic framework derives all the results as expected, because
some of the learned constraints are too complex to be understood.

(a) Input scene (with labels) (b) ResNet method (c) RT method (d) Ours

Figure 7: Some results of neuro-symbolic learning methods in self-driving path planning task.

22

Table 6: Detailed cell and board accuracy (%) of transfer visual Sudoku task.

Method
SATNet → RRN RRN → SATNet

Perception Solving Total Perception Solving Total
board acc. board acc. board acc. board acc. board acc. board acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 80.8 1.4 1.4 0.0 0.0 0.0
L1R32H4 84.8 21.3 21.3 94.9 95.0 94.5

NTR 90.2 0.0 0.0 86.9 0.0 0.0
NDC 86.1 0.0 0.0 82.4 0.0 0.0

Ours 93.9 95.2 93.9 95.2 95.3 95.2

Perception Solving Total Perception Solving Total
cell acc. cell acc. cell acc. cell acc. cell acc. cell acc.

RRN 0.0 0.0 0.0 0.0 0.0 0.0
SATNet 0.0 0.0 0.0 0.0 0.0 0.0
SATNet* 99.1 66.2 76.5 65.8 53.8 59.2
L1R32H4 99.3 89.5 92.6 99.7 99.6 99.7

NTR 99.6 37.1 56.3 99.6 62.4 79.0
NDC 99.4 11.0 38.7 99.5 11.3 50.7

Ours 99.8 98.4 98.8 99.8 99.7 99.7

23

	Introduction
	Neuro-symbolic Learning Framework
	Efficient and Effective Logical Constraint Learning
	Neural Network Learning in Tandem with Constraint Learning

	Algorithms and Analysis
	Algorithms
	Theoretical Analysis

	Experiments
	Visual Sudoku Solving
	Self-driving Path Planning

	Related Work
	Limitations
	Conclusion
	Proofs of DC technique
	Proof of Proposition 1
	Proof of Proposition 2

	Proof of Theorem 1
	Proof of Theorem 2
	Trust Region Method
	Experiment Details
	Additional Experiment Results
	Chained XOR
	Nonograms
	Visual SudoKu Solving
	Self-driving Path Planning

