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Abstract

Visual Reinforcement Learning (RL) agents trained on limited views face sig-
nificant challenges in generalizing their learned abilities to unseen views. This
inherent difficulty is known as the problem of view generalization. In this work, we
systematically categorize this fundamental problem into four distinct and highly
challenging scenarios that closely resemble real-world situations. Subsequently,
we propose a straightforward yet effective approach to enable successful adaptation
of visual Model-based policies for View generalization (MoVie) during test time,
without any need for explicit reward signals and any modification during training
time. Our method demonstrates substantial advancements across all four scenarios
encompassing a total of 18 tasks sourced from DMControl, xArm, and Adroit,
with a relative improvement of 33%, 86%, and 152% respectively. The superior
results highlight the immense potential of our approach for real-world robotics
applications. Code and videos are available at yangsizhe.github.io/MoVie.
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Figure 1: View generalization results across 3 domains. Our method MoVie largely improves the
test-time view generalization ability, especially in robotic manipulation domains.

1 Introduction

Visual Reinforcement Learning (RL) has achieved great success in various applications such as video
games [17, 18], robotic manipulation [22], and robotic locomotion [34]. However, one significant
challenge for real-world deployment of visual RL agents remains: a policy trained with very limited
views (commonly one single fixed view) might not generalize to unseen views. This challenge is
especially pronounced in robotics, where a few fixed views may not adequately capture the variability
of the environment. For instance, the RoboNet dataset [3] provides diverse views across a range
of manipulation tasks, but training on such large-scale data only yields a moderate success rate
(10% ∼ 20%) for unseen views [3].

Recent efforts have focused on improving the visual generalization of RL agents [1,7,9,36]. However,
these efforts have mainly concentrated on generalizing to different appearances and backgrounds. In
contrast, view generalization presents a unique challenge as the deployment view is unknown and
may move freely in the 3D space. This might weaken the weapons such as data augmentations [12,
14, 15, 33] that are widely used in appearance generalization methods. Meanwhile, scaling up domain
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Figure 2: Overview of MoVie. During training (left), the agent is trained with the latent dynamics
loss. At test time (right), we freeze the dynamics model and modify the encoder as a spatial adaptive
encoder to adapt the agents to novel views.

randomization [19, 21, 31] to all possible views is usually unrealistic because of the large cost and the
offline nature of existing robot data. With these perspectives combined, it is difficult to apply those
common approaches to address view generalization.

In this work, we commence by explicitly formulating the test-time view generalization problem into
four challenging settings: a) novel view, where the camera changes to a fixed novel position and
orientation; b) moving view, where the camera moves continuously around the scene, c) shaking
view, where the camera experiences constant shaking, and d) novel FOV, where the field of view
(FOV) of the camera is altered initially. These settings cover a wide spectrum of scenarios when
visual RL agents are deployed to the real world. By introducing these formulations, we aim to
advance research in addressing view generalization challenges and facilitate the utilization of robot
datasets [3] and deployment on physical robotic platforms.

To address the view generalization problem, we argue that adaptation to novel views during test time
is crucial, rather than aiming for view-invariant policies. We propose MoVie, a simple yet effective
method for adapting visual Model-based policies to generalize to unseen Views. MoVie leverages
collected transitions from interactions and incorporates spatial transformer networks (STN [13]) in
shallow layers, using the learning objective of the dynamics model (DM). Notably, MoVie requires
no modifications during training and is compatible with various visual model-based RL algorithms.
It only necessitates small-scale interactions for adaptation to the deployment view.

We perform extensive experiments on 7 robotic manipulation tasks (Adroit hand [20] and xArm [7])
and 11 locomotion tasks (DMControl suite [30])), across the proposed 4 view generalization settings,
totaling 18× 4 configurations. MoVie improves the view generalization ability substantially, com-
pared to strong baselines including the inverse dynamics model (IDM [7]) and the dynamics model
(DM). Remarkably, MoVie attains a relative improvement of 86% in xArm and 152% in Adroit,
underscoring the potential of our method in robotics. We are committed to releasing our code and
testing platforms. To conclude, our contributions are three-fold:

• We formulate the problem of view generalization in visual reinforcement learning with a wide
range of tasks and settings that mimic real-world scenarios.

• We propose a simple model-based policy adaptation method for view generalization (MoVie),
which incorporates STN into the shallow layers of the visual representation with a self-supervised
dynamics prediction objective.

• We successfully showcase the effectiveness of our method through extensive experiments. The
results serve as a testament to its capability and underscore its potential for practical deployment
in robotic systems, particularly with complex camera views.

2 Related Work

Visual generalization in reinforcement learning. Agents trained by reinforcement learning (RL)
from visual observations are prone to overfitting the training scenes, making it hard to generalize to
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unseen environments with appearance differences. A large corpus of recent works has focused on
addressing this issue [7, 9, 10, 14, 15, 19, 21, 31, 33, 35, 36]. Notably, SODA [10] provides a visual
generalization benchmark to better evaluate the generalizability of policies, while they only consider
appearance changes of agents and backgrounds. Distracting control suite [26] adds both appearance
changes and camera view changes into DMControl [30], where the task diversity is limited.

View generalization in robotics. The field of robot learning has long grappled with the challenge
of training models on limited views and achieving generalization to unseen views. Previous studies,
such as RoboNet [3], have collected extensive video data encompassing various manipulation tasks.
However, even with pre-training on such large-scale datasets, success rates on unseen views have only
reached approximately 10% ∼ 20% [3]. In recent efforts to tackle this challenge, researchers have
primarily focused on third-person imitation learning [23–25] and view-invariant visual representations
[2, 4, 16, 32, 37], but these approaches are constrained by the number of available camera views. In
contrast, our work addresses a more demanding scenario where agents trained on a single fixed view
are expected to generalize to diverse unseen views and dynamic camera settings.

Test-time training. There is a line of works that train neural networks at test-time with self-supervised
learning in computer vision [5, 28, 29], robotics [27], and visual RL [7]. Specifically, PAD is the
closest to our work [7], which adds an inverse dynamics model (IDM) objective into model-free
policies for both training time and test time and gains better appearance generalization. In contrast, we
differ in a lot of aspects: (i) we focus on visual model-based policies, (ii) we require no modification
in training time, and (iii) our method is designed for view generalization specifically.

3 Preliminaries

Formulation. We model the problem as a Partially Observable Markov Decision Process (POMDP)
M = ⟨O,A, T ,R, γ⟩, where o ∈ O are observations, a ∈ A are actions, F : O × A 7→ O is a
transition function (called dynamics as well), r ∈ R are rewards, and γ ∈ [0, 1) is a discount factor.
During training time, the agent’s goal is to learn a policy π that maximizes discounted cumulative
rewards on M, i.e., maxEπ [

∑∞
t=0 γ

trt]. During test time, the reward signal from the environment
is not accessible to agents and only observations are available, which are possible to experience subtle
changes such as appearance changes and camera view changes.

Model-based reinforcement learning. TD-MPC [11] is a model-based RL algorithm that combines
model predictive control and temporal difference learning. TD-MPC learns a visual representation
z = h(o) that maps the high-dimensional observation o ∈ O into a latent state z ∈ Z and a latent
dynamics model d : Z × A 7→ Z that predicts the future latent state z′ = d(z,a) based on the
current latent state z and the action a. MoDem [8] accelerates TD-MPC with efficient utilization
of expert demonstrations D = {D1, D2, · · · , DN} to solve challenging tasks such as dexterous
manipulation [20]. In this work, we select TD-MPC and MoDem as the backbone algorithm to
train model-based agents, while our algorithm could be easily extended to most model-based RL
algorithms such as Dreamer [6].

4 Method

We propose a simple yet effective method, visual Model-based policy adaptation for View generaliza-
tion (MoVie), which can accommodate visual RL agents to novel camera views at test time.

Learning objective for the test time. Given a tuple (ot,at,ot+1), the original latent state dynamics
prediction objective can be written as

Ldynamics = ∥d(h(ot),at)− h(ot+1)∥2, (1)

where h is an image encoder that projects a high-dimensional observation from space O into a latent
space Z and d is a latent dynamics model d : Z ×A 7→ Z .

In test time, the observations under unseen views lie in a different space O′, so that their corresponding
latent space also changes to Z ′. However, the projection h learned in training time can only map
O 7→ Z while the policy π only learns the mapping Z 7→ A, thus making the policy hard to
generalize to the correct mapping function Z ′ 7→ A. Our proposal is thus to adapt the projection h
from a mapping function h : O 7→ Z to a more useful mapping function h′ : O′ 7→ Z so that the
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Figure 3: An illustration of the reason why MoVie is effective. We treat the frozen dynamics model
as the source of supervision to adapt the latent space of hSAE to that of the training views.

Figure 4: The architecture of our spatial adaptive encoder (SAE). We incorporate STNs before
the first two convolutional layers of the encoder for better adaptation of the representation h.

policy would execute the correct mapping Z 7→ A without training. A vivid illustration is provided
in Figure 3.

We freeze the latent dynamics model d, denoted as d⋆, so that the latent dynamics model is not a
training target but a supervision. We also insert STN blocks [13] into the shallow layers of h to better
adapt the projection h, so that we write h as hSAE (SAE denotes spatial adaptive encoder). Though
the objective is still the latent state dynamics prediction loss, the supervision here is superficially
identical but fundamentally different from training time. The formal objective is written as

Lview = ∥d⋆(hSAE(o),a)− hSAE(ot+1)∥2. (2)

Spatial adaptive encoder. We now describe more details about our modified encoder architecture
during test time, referred to as spatial adaptive encoder (SAE). To keep our method simple and fast to
adapt, we only insert two different STNs into the original encoder, as shown in Figure 4. We observe
in our experiments that transforming the low-level features (i.e., RGB features and shallow layer
features) is most critical for adaptation, while the benefit of adding more STNs is limited (see Table
6). An STN block consists of two parts: (i) a localisation net that predicts an affine transformation
with 6 parameters and (ii) a grid sampler that generates an affined grid and samples features from the
original feature map. The point-wise affine transformation is written as(

xs

ys

)
= Tϕ (G) = Aϕ

 xt

yt

1

 =

[
ϕ11 ϕ12 ϕ13

ϕ21 ϕ22 ϕ23

] xt

yt

1

 (3)

where G is the sampling grid, (xt
i, y

t
i) are the target coordinates of the regular grid in the output

feature map, (xs
i , y

s
i ) are the source coordinates in the input feature map that define the sample points,

and Aϕ is the affine transformation matrix.

Training strategy for SAE. We use a learning rate 1× 10−5 for STN layers and 1× 10−7 for the
encoder. We utilize a replay buffer with size 256 to store history observations and update 32 times
for each time step to heavily utilize the online data. Implementation details remain in Appendix A.

4



Figure 5: Visualization of three task domains, including DMControl [30], xArm [7], Adroit [20].

Training View Novel View Moving View Shaking View Novel FOV

Figure 6: Visualization of the training view and four view generalization settings. Trajectory
visualization for all tasks is available on our website yangsizhe.github.io/MoVie.

5 Experiments

In this section, we investigate how well an agent trained on a single fixed view generalizes to unseen
views during test time. During the evaluation, agents have no access to reward signals, presenting a
significant challenge for agents to self-supervise using online data.

5.1 Experiment Setup

Formulation of camera view variations: a) novel view, where we maintain a fixed camera target
while adjusting the camera position in both horizontal and vertical directions by a certain margin, b)
moving view, where we establish a predefined trajectory encompassing the scene and the camera
follows this trajectory, moving back and forth for each time step while focusing on the center of
the scene, c) shaking view, where we add Gaussian noise onto the original camera position at each
time step, and d) novel FOV, where the FOV of the camera is altered once, different from the
training phase. A visualization of four settings is provided in Figure 6 and videos are available
in yangsizhe.github.io/MoVie for a better understanding of our configurations. Details remain in
Appendix B.

Tasks. Our test platform consists of 18 tasks from 3 domains: 11 tasks from DMControl [30], 3 tasks
from Adroit [20], and 4 tasks from xArm [7]. A visualization of the three domains is in Figure 5.
Although the primary motivation for this study is for addressing view generalization in real-world
robot learning, which has not yet been conducted, we contend that the extensive range of tasks
tackled in our research effectively illustrates the potential of MoVie for real-world application. We
run 3 seeds per experiment with seed numbers 0, 1, 2 and run 20 episodes per seed. During these 20
episodes, the models could store the history transitions. We report cumulative rewards for DMControl
tasks and success rates for robotic manipulation tasks, averaging over episodes.

Baselines. We first train visual model-based policies with TD-MPC [11] on DMControl and xArm
environments and MoDem [8] on Adroit environments under the default configurations and then test
these policies in the view generalization setting. Since MoVie consists of two components mainly
(i.e., DM and STN), we build two test-time adaptation algorithms by replacing each module: a) DM,
which removes STN from MoVie and b) IDM+STN, which replaces DM in MoVie with IDM [7].
IDM+STN is very close to PAD [7], and we add STN for fair comparison. We keep all training
settings the same.
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Table 1: Experiment conclusion across all domains and all settings. The best method on each
setting is in bold and the relative improvement over TD-MPC is also reported.

Setting Domain TD-MPC DM IDM+STN MoVie

Novel view
DMControl 395.61 508.85 (↑29%) 378.80 (↓4%) 623.19 (↑57%)

xArm 16 36 (↑125%) 18 (↑13%) 46 (↑188%)

Adroit 8 14 (↑75%) 12 (↑50%) 34 (↑325%)

Moving view
DMControl 605.98 611.87 (↑1%) 502.34 (↓17%) 673.74 (↑11%)

xArm 20 31 (↑55%) 24 (↑20%) 42 (↑110%)

Adroit 15 20 (↑33%) 15 (↑0%) 45 (↑200%)

Shaking view
DMControl 441.79 348.26 (↓21%) 291.45 (↓26%) 558.23 (↑26%)

xArm 42 44 (↑5%) 44 (↑5%) 45 (↑7%)

Adroit 30 35 (↑17%) 26 (↓13%) 63 (↑110%)

Novel FOV
DMControl 527.47 613.74 (↑16%) 542.43 (↑3%) 770.56 (↑46%)

xArm 34 47 (↑38%) 40 (↑18%) 75 (↑121%)

Adroit 31 51 (↑65%) 31 (↑0%) 68 (↑119%)

All settings
DMControl 492.71 520.68 (↑6%) 426.76 (↓13%) 656.43 (↑33%)

xArm 28 40 (↑43%) 32 (↑14%) 52 (↑86%)

Adroit 21 30 (↑43%) 21 (↑0%) 53 (↑152%)

Table 2: Results in novel view. The best method on each task is in bold.

Novel view TD-MPC DM IDM+STN MoVie

Cheetah, run 90.13±20.38 254.43±13.89 127.76±16.16 342.39±54.95

Walker, walk 249.34±14.78 262.65±62.86 215.90±29.30 512.71±404.25

Walker, stand 568.01±16.81 635.64±13.70 508.82±15.77 679.90±23.03

Walker, run 127.07±8.06 131.65±2.20 94.49±18.72 94.49±18.87

Cup, catch 922.83±30.74 949.36±9.20 932.75±23.34 961.98±2.68

Finger, spin 137.30±4.47 750.65±9.90 141.03±37.52 892.01±1.20

Finger, turn-easy 380.80±138.54 528.91±160.25 348.00±123.84 705.36±71.98

Finger, turn-hard 261.43±72.83 312.36±134.28 306.76±181.13 331.83±18.98

Pendulum, swingup 40.65±3.72 64.51±2.17 82.46±8.19 528.76±77.51

Reacher, easy 981.25±4.80 982.30±0.83 875.31±150.91 984.66±2.78

Reacher, hard 592.91±59.96 724.91±125.84 533.50±96.90 821.03±67.89

DMControl 395.61 508.85 378.80 623.19 (↑57%)

xArm, reach 3±2 85±13 1±2 95±0

xArm, push 46±5 45±8 60±5 48±7

xArm, peg in box 5±0 5±15 3±2 6±7

xArm, hammer 10±10 10±10 8±5 36±12

xArm 16 36 18 46 (↑188%)

Adroit, door 0±0 10±5 0±0 66±7

Adroit, hammer 6±2 11±10 21±2 11±5

Adroit, pen 18±5 20±8 15±5 25±18

Adroit 8 14 12 34 (↑325%)

5.2 Main Experiment Results

Considering the extensive scale of our conducted experiments, we present an overview of our findings
in Table 1 and Figure 1. The detailed results for four configurations are provided in Table 2, Table 3,
Table 4, and Table 5 respectively. We then detail our findings below.

Superiority of MoVie across domains, especially in robotic manipulation. It is observed that
irrespective of the domain or configuration, MoVie consistently outperforms TD-MPC without
any adaptation and other methods that apply DM and IDM. This large improvement highlights the
fundamental role of our straightforward approach in addressing view generalization. Additionally,
we observe that MoVie exhibits greater suitability for robotic manipulation tasks. We observe a
significant relative improvement of 86% in xArm tasks and 152% in Adroit tasks, as opposed to a
comparatively modest improvement of only 33% in DMControl tasks; see Table 1. We attribute this
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Table 3: Results in moving view. The best method on each task is in bold.

Moving view TD-MPC DM IDM+STN MoVie

Cheetah, run 235.37±63.39 344.70±7.54 199.48±25.78 365.22±42.66

Walker, walk 632.77±15.62 707.60±26.72 373.44±30.85 810.19±7.77

Walker, stand 803.97±15.75 706.05±5.75 576.87±44.69 712.48±11.67

Walker, run 295.54±4.39 250.84±7.02 190.02±2.61 281.43±33.34

Cup, catch 887.20±3.67 910.51±4.12 915.16±7.31 951.26±10.68

Finger, spin 636.91±3.91 697.11±8.67 532.90±3.25 896.00±21.65

Finger, turn-easy 715.45±19.23 728.93±180.26 683.85±112.64 744.45±16.54

Finger, turn-hard 593.46±48.22 454.58±88.50 559.20±121.35 558.26±25.64

Pendulum, swingup 26.23±1.85 83.88±10.55 47.20±4.39 236.81±50.23

Reacher, easy 984.10±4.38 981.78±0.60 695.03±236.91 982.58±1.39

Reacher, hard 854.76±31.64 864.55±556.37 752.55±83.55 872.46±51.30

DMControl 605.98 611.87 502.34 673.74 (↑11%)

xArm, reach 15±5 71±2 21±2 80±21

xArm, push 58±5 52±10 55±5 73±5

xArm, peg in box 0±0 0±0 1±2 5±8

xArm, hammer 8±7 0±0 10±5 8±7

xArm 20 31 24 42 (↑110%)

Adroit, door 0±0 10±5 0±0 66±7

Adroit, hammer 25±8 31±12 28±02 43±18

Adroit, pen 20±0 20±10 18±14 26±2

Adroit 15 20 15 45 (↑200%)

Table 4: Results in shaking view. The best method on each task is in bold.

Shaking view TD-MPC DM IDM+STN MoVie

Cheetah, run 381.04±39.31 317.66±9.57 212.31±19.74 493.54±56.80

Walker, walk 662.13±57.71 627.77±21.47 340.48±36.92 835.99±14.98

Walker, stand 834.70±1.71 604.55±16.20 471.30±69.19 687.96±9.11

Walker, run 251.58±13.69 186.83±3.75 128.31±9.19 291.39±7.94

Cup, catch 752.86±41.81 835.16±32.91 648.75±12.77 951.20±21.01

Finger, spin 89.55±4.72 88.56±5.86 145.68±2.93 284.05±473.73

Finger, turn-easy 717.60±40.93 449.10±20.48 656.23±50.35 694.20±91.02

Finger, turn-hard 411.41±40.28 383.96±32.94 132.40±34.25 629.20±110.57

Pendulum, swingup 23.73±9.24 57.41±4.50 27.30±2.38 48.23±30.25

Reacher, easy 529.58±65.05 225.08±31.02 299.11±59.00 771.38±150.60

Reacher, hard 205.53±25.16 54.80±32.45 144.11±5.60 453.48±381.60

DMControl 441.79 348.26 291.45 558.23 (↑26%)

xArm, reach 76±2 76±7 83±2 88±20

xArm, push 64±3 55±10 61±5 57±13

xArm, peg in box 3±2 15±13 3±2 5±5

xArm, hammer 25±5 28±7 28±12 30±13

xArm 42 44 44 45 (↑7%)

Adroit, door 1±2 10±0 5±5 83±2

Adroit, hammer 58±12 65±18 55±20 70±27

Adroit, pen 30±5 30±8 18±5 35±0

Adroit 30 35 26 63 (↑110%)

disparity to two factors: a) the inherent complexity of robotic manipulation tasks and b) the pressing
need for effective view generalization in this domain.

Challenges in handling shaking view. Despite improvements of MoVie in various settings, we
have identified a relative weakness in addressing the shaking view scenario. For instance, in xArm
tasks, the success rate of MoVie is only 45%, which is close to the 42% success rate of TD-MPC
without adaptation. Other baselines such as DM and IDM+STN also experience performance drops.
We acknowledge the inherent difficulty of the shaking view scenario, while it is worth noting that
in real-world robotic manipulation applications, cameras often exhibit smoother movements or are
positioned in fixed views, partially mitigating the impact of shaking view.
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Table 5: Novel FOV. The best method on each task is in bold.

Novel FOV TD-MPC DM IDM+STN MoVie

Cheetah, run 128.55±6.57 379.01±10.90 299.02±88.47 532.94±19.74

Walker, walk 239.54±129.47 882.21±12.75 579.58±47.87 920.18±8.76

Walker, stand 679.70±21.21 732.07±14.77 678.46±55.32 785.52±24.45

Walker, run 184.28±1.39 337.28±11.40 295.99±10.00 482.03±13.84

Cup, catch 940.20±28.21 912.70±34.54 964.83±10.45 973.60±1.94

Finger, spin 675.81±4.99 886.63±4.54 414.83±79.20 917.21±1.71

Finger, turn-easy 792.26±145.24 690.61±140.88 805.63±54.95 845.35±35.52

Finger, turn-hard 591.43±109.84 393.18±118.38 449.88±121.99 640.21±183.23

Pendulum, swingup 216.90±78.56 184.33±83.99 253.36±78.26 699.90±50.64

Reacher, easy 929.40±12.35 931.56±12.69 937.20±45.97 971.48±11.07

Reacher, hard 424.11±83.74 421.56±94.93 287.96±6.33 707.75±86.05

DMControl 527.47 613.74 542.43 770.56 (↑46%)

xArm, reach 53±12 98±2 85±5 100±0

xArm, push 60±13 71±5 60±5 81±2

xArm, peg in box 20±5 13±10 6±11 63±11

xArm, hammer 3±2 6±5 8±2 55±5

xArm 34 47 40 75 (↑121%)

Adroit, door 1±2 58±10 3±5 81±12

Adroit, hammer 66±7 75±18 76±10 81±10

Adroit, pen 26±10 20±8 15±5 41±7

Adroit 31 51 31 68 (↑119%)

Effective adaptation in novel view, moving view, and novel FOV scenarios. In addition to the
shaking view setting, MoVie consistently outperforms TD-MPC without adaptation by 2× ∼ 4× in
robotic manipulation tasks across the other three settings. It is worth noting that these three settings
are among the most common scenarios encountered in real-world applications.

Real-world implications. Our findings have important implications for real-world deployment of
robots. Previous methods, relying on domain randomization and extensive data augmentation during
training, often hinder the learning process. Our proposed method enables direct deployment of offline
or simulation-trained agents, improving success rates with minimal interactions.

5.3 Ablations

To validate the rationale behind several choices of MoVie and our test platform, we perform a
comprehensive set of ablation experiments.

Integration of STN with low-level features. To enhance view generalization, we incorporate two
STN blocks [13], following the image observation and the initial convolutional layer of the feature
encoder. This integration is intended to align the low-level features with the training view, thereby
preserving the similarity of deep semantic features to the training view. As shown in Table 6, by
progressively adding more layers to the feature encoder, we observe that deeper layers do not provide
significant additional benefits, supporting our intuition for view generalization.

Table 6: Ablation on applying different numbers of STNs from shallow to deep. The best method
on each setting is in bold.

Cheetah-run 0 1 2 (MoVie) 3 4

Novel View 254.42±13.89 259.64±32.01 342.39±54.95 309.25±33.19 327.39±10.44

Moving View 344.70±7.54 360.29±13.64 365.22±42.66 361.28±6.78 357.29±31.24

Shaking View 317.66±9.57 491.96±20.07 493.54±56.80 454.82±19.57 472.57±8.49

Novel FOV 379.01±10.90 512.69±17.67 532.94±19.74 505.65±12.02 492.79±21.66

Different novel views. We classify novel views into three levels of difficulty, with our main
experiments employing the medium difficulty level by default. Table 7 presents additional results for
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the easy and hard difficulty levels. As the difficulty level increases, we observe a consistent decrease
in the performance of all the methods.

Table 7: Ablation on different novel views. The best method on each setting is in bold.

Cheetah-run TD-MPC DM IDM+STN MoVie

Easy 265.90±7.94 441.61±14.00 349.86±55.82 466.67±58.94

Medium 90.13±20.38 254.43±13.89 127.76±16.16 342.39±54.95

Hard 48.64±13.20 112.39±8.36 59.64±5.35 215.36±62.03

Table 8: Ablation on IDM with and without STN. The best method is in bold.

Task Setting IDM IDM+STN

xArm, push

Novel view 40±5 60±5

Moving view 46±2 55±5

Shaking view 60±10 61±5

Novel FOV 58±2 60±5

All settings 51 59

xArm, hammer

Novel view 6±5 8±5

Moving view 5±0 10±5

Shaking view 35±8 28±12

Novel FOV 6±7 8±2

All settings 13 14

Cup, catch

Novel view 867.87±3.14 932.75±23.34

Moving view 912.85±10.22 915.16±7.31

Shaking view 435.40±87.32 648.75±12.77

Novel FOV 815.27±34.61 964.83±10.45

All settings 757.84 865.37

Finger, spin

Novel view 177.26±2.49 141.03±37.52

Moving view 332.90±0.28 532.90±3.25

Shaking view 106.72±7.11 145.68±2.93

Novel FOV 311.66±8.55 414.83±79.20

All settings 232.13 301.86

Cheetah, run

Novel view 111.73±18.98 127.76±16.16

Moving view 205.19±25.45 199.48±25.78

Shaking view 210.06±27.99 212.32±19.74

Novel FOV 262.76±62.17 299.03±88.47

All settings 197.43 209.43

The efficacy of STN in conjunction with IDM. Curious readers might be concerned about our
direct utilization of IDM+STN in the main experiments, suggesting that STN could potentially
be detrimental to IDM. However, Table 8 shows that STN not only benefits our method but also
improves the performance of IDM, thereby demonstrating effectiveness of SAE for adaptation of the
representation and validating our baseline selection.

Finetune or freeze the DM. In our approach, we employ the frozen DM as a form of supervision to
guide the adaptation process of the encoder. However, it remains unverified for the readers whether
end-to-end finetuning of both the DM and the encoder would yield similar benefits. The results
presented in Table 9 demonstrate that simplistic end-to-end finetuning does not outperform MoVie,
thereby reinforcing the positive results obtained by MoVie.
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Table 9: Ablation on whether to finetune the DM. The best method is in bold.

Task Setting Finetune DM MoVie

xArm, push

Novel view 51±2 48±7

Moving view 48±7 73±5

Shaking view 45±5 57±13

Novel FOV 68±5 81±2

All settings 53 64

xArm, hammer

Novel view 10±5 36±12

Moving view 0±0 8±7

Shaking view 5±5 30±13

Novel FOV 11±2 55±5

All settings 6 32

Cup, catch

Novel view 648.90±25.668 961.98±2.68

Moving view 676.05±79.69 951.26±10.68

Shaking view 228.20±7.84 951.20±21.01

Novel FOV 658.50±8.48 973.60±1.94

All settings 552.91 959.51

Finger, spin

Novel view 278.57±26.34 892.01±1.20

Moving view 192.95±72.76 896.00±21.65

Shaking view 1.50±0.70 284.05±473.73

Novel FOV 372.82±51.63 917.21±1.71

All settings 211.46 747.31

Cheetah, run

Novel view 273.01±11.29 342.39±54.95

Moving view 331.55±22.22 365.22±42.66

Shaking view 476.25±30.25 493.54±56.80

Novel FOV 561.94±37.73 532.94±19.74

All settings 410.68 433.52

6 Conclusion

In this study, we present MoVie, a method for adapting visual model-based policies to achieve view
generalization. MoVie mainly finetunes a spatial adaptive image encoder using the objective of the
latent state dynamics model during test time. Notably, we maintain the dynamics model in a frozen
state, allowing it to function as a form of self-supervision. Furthermore, we categorize the view
generalization problem into four distinct settings: novel view, moving view, shaking view, and novel
FOV. Through a systematic evaluation of MoVie on 18 tasks across these four settings, totaling 64
different configurations, we demonstrate its general and remarkable effectiveness.

One limitation of our work is the lack of real robot experiments, while our focus is on addressing
view generalization in robot datasets and deploying visual reinforcement learning agents in real-world
scenarios. In our future work, we would evaluate MoVie on real-world robotic tasks.
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Appendix

A Implementation Details

In this section, we describe the implementation details of our algorithm for training on the training
view and test time training in view generalization settings on the DMControl [30], xArm [7], and
Adroit [20] environments. We utilize the official implementation of TD-MPC [11] and MoDem [8]
which are available at github.com/nicklashansen/tdmpc and github.com/facebookresearch/modem as
the model-based reinforcement learning codebase. During training time, we use the default hyperpa-
rameters in official implementation of TD-MPC and MoDem. We present relevant hyperparameters
during both training and test time in Table 10 and Table 11. One seed of our experiments could be
run on a single 3090 GPU with fewer than 2GB and it takes ∼ 1 hours for test-time training.

Training time setup. We train visual model-based policies with TD-MPC on DMControl and xArm
environments, and MoDem on Adroit environments, We employ identical network architecture and
hyperparameters as original TD-MPC and MoDem during training time.

The network architecture of the encoder in original TD-MPC is composed of a stack of 4 convolutional
layers, each with 32 filters, no padding, stride of 2, 7 × 7 kernels for the first one, 5 × 5 kernels for
the second one and 3 × 3 kernels for all others, yielding a final feature map of dimension 3 × 3 × 32
(inputs whose framestack is 3 have dimension 84 × 84 × 9). After the convolutional layers, a fully
connected layer with an input size of 288 performs a linear transformation on the input and generates
a 50-dimensional vector as the final output.

The network architecture of the encoder in original Modem is composed of a stack of 6 convolutional
layers, each with 32 filters, no padding, stride of 2, 7 × 7 kernels for the first one, 5 × 5 kernels for
the second one and 3 × 3 kernels for all others, yielding a final feature map of dimension 2 × 2 × 32
(inputs whose framestack is 2 have dimension 224 × 224 × 6). After the convolutional layers, a fully
connected layer with an input size of 128 performs a linear transformation on the input and generates
a 50-dimensional vector as the final output.

Test time training setup. During test time, we train spatial adaptive encoder (SAE) to adapt to view
changes. We insert STN blocks before and after the first convolutional layer of the original encoders
in TD-MPC and MoDem. The original encoders are augmented by inserting STN blocks, resulting in
the formation of SAE. Particularly, for the STN block inserted before the first convolutional layer, the
input is a single frame. This means that when the frame stack size is N, N individual frames are fed
into this STN block. This is done to apply different transformations to different frames in cases of
moving and shaking view.

To update the SAE, we collect online data using a buffer with a size of 256. For each update, we
randomly sample 32 (observation, action, next_observation) tuples from the buffer as a batch. The
optimization objective is to minimize the loss in predicting the dynamics of the latent states, as
defined in Equation 2.

During testing on each task, we run 20 consecutive episodes, although typically only a few or even
less than one episode is needed for the test-time training to converge. To make efficient use of the
data collected with minimal interactions, we employ a multi-update strategy. After each interaction
with the environment, the SAE is updated 32 times.

The following is the network architecture of the first STN block inserted into the encoder of TD-MPC.

STN_Block_0_TDMPC(
(localization): Sequential(
# By default, each image consists of three channels. Each frame in the

↪→ observation is treated as an independent input to the STN.
(0): Conv2d(in_channels=3, out_channels=8, kernel_size=7, stride=1)
(1): MaxPool2d(kernel_size=4, stride=4, padding=0)
(2): ReLU()
(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=1)
(4): MaxPool2d(kernel_size=4, stride=4, padding=0)
(5): ReLU()

)
(fc_loc): Sequential(
(0): Linear(in_dim=90, out_dim=32)
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(1): ReLU()
(2): Linear(in_dim=32, out_dim=6)

)
)

The following is the network architecture of the second STN block inserted into the encoder of
TD-MPC.
STN_Block_1_TDMPC(
(localization): Sequential(
(0): Conv2d(in_channels=32, out_channels=8, kernel_size=7, stride=1)
(1): MaxPool2d(kernel_size=3, stride=3, padding=0)
(2): ReLU()
(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=1)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0)
(5): ReLU()

)
(fc_loc): Sequential(
(0): Linear(in_dim=90, out_dim=32)
(1): ReLU()
(2): Linear(in_dim=32, out_dim=6)

)
)

The following is the network architecture of the first STN block inserted into the encoder of MoDem.
STN_Block_0_MoDem(
(localization): Sequential(
# By default, each image consists of three channels. Each frame in the

↪→ observation is treated as an independent input to the STN.
(0): Conv2d(in_channels=3, out_channels=5, kernel_size=7, stride=2)
(1): MaxPool2d(kernel_size=4, stride=4, padding=0)
(2): ReLU()
(3): Conv2d(in_channels=5, out_channels=10, kernel_size=5, stride=2)
(4): MaxPool2d(kernel_size=4, stride=4, padding=0)
(5): ReLU()

)
(fc_loc): Sequential(
(0): Linear(in_dim=90, out_dim=32)
(1): ReLU()
(2): Linear(in_dim=32, out_dim=6)

)
)

The following is the network architecture of the second STN block inserted into the encoder of
MoDem.
STN_Block_1_MoDem(
(localization): Sequential(
(0): Conv2d(in_channels=32, out_channels=8, kernel_size=7, stride=2)
(1): MaxPool2d(kernel_size=3, stride=3, padding=0)
(2): ReLU()
(3): Conv2d(in_channels=8, out_channels=10, kernel_size=5, stride=2)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0)
(5): ReLU()

)
(fc_loc): Sequential(
(0): Linear(in_dim=90, out_dim=32)
(1): ReLU()
(2): Linear(in_dim=32, out_dim=6)

)
)

B Environment Details

We categorize the view generalization problem into four distinct settings: novel view, moving view,
shaking view, and novel FOV. In this section, we provide descriptions of the implementation details for
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Table 10: Hyperparameters for training time.

Hyperparameter Value

Discount factor 0.99
Image size 84 × 84 (TD-MPC)

224 × 224 (MoDem)
Frame stack 3 (TD-MPC)

2 (MoDem)
Action repeat 1 (xArm)

2 (Adroit, Finger, and Walker in DMControl)
4 (otherwise)

Data augmentation ±4 pixel image shifts (TD-MPC)
±10 pixel image shifts (MoDem)

Seed steps 5000
Replay buffer size Unlimited
Sampling technique PER (α = 0.6, β = 0.4)
Planning horizon 5
Latent dimension 50
Learning rate 1e-3 (TD-MPC)

3e-4 (MoDem)
Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)
Batch size 256
Number of demos 5 (MoDem only)

Table 11: Hyperparameters for test time training.

Hyperparameter Value

Buffer size 256
Batch size 32
Multi-update times 32
Learning rate for encoder 1e-6 (xArm)

1e-7 (otherwise)
Learning rate for STN blocks 1e-5

each setting. The detailed camera settings can be referred to in the code of the environments that we
are committed to releasing or in the visualization available on our website yangsizhe.github.io/MoVie.

Novel view. In this setting, for locomotion tasks (cheetah-run, walker-stand, walker-walk, and
walker-run), the camera always faces the moving agent, while for other tasks, the camera always
faces a fixed point in the environment. Therefore, as we change the camera position, the camera
orientation also changes accordingly.

Moving view. Similar to the previous setting, the camera also always faces the moving agent or a
fixed point in the environment. The camera position varies continuously.

Shaking view. To simulate camera shake, we applied Gaussian noise to the camera position (XYZ
coordinates in meters) at each time step. For DMControl and Adroit, the mean of the distribution
is 0, the standard deviation is 0.04, and we constrain the noise within the range of -0.07 to +0.07.
For xArm, the mean of the distribution is 0, the standard deviation is 0.4, and we constrain the noise
within the range of -0.07 to +0.07.

Novel FOV. We experiment with a larger FOV. For DMControl, we modify the FOV from 45 to 53.
For xArm, we modify the FOV from 50 to 60. For Adroit, we modify the FOV from 45 to 50. We
also experiment with a smaller FOV and results are presented in Appendix F.

C Visualization of Feature Maps from Shallow to Deep Layers

We incorporate STN in the first two layers of the visual encoder for all tasks. After visualizing the
features of different layers (as shown in Figure 7), we found that the features of shallow layers contain
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more information about the spatial relationship. Therefore transforming the features of shallow layers
for view generalization is reasonable.

Figure 7: Visualization of features from shallow to deep layers. The features of shallow layers
contain more information about the spatial relationship.

D Visualization of Feature Map Transformation

We visualize the first layer feature map of the image encoder from TD-MPC and MoVie in Figure 8.
It is observed that the feature map from MoVie on the novel view exhibits a closer resemblance to
that on the training view.

Training View

Novel View

TD-MPC Ours

Figure 8: Visualization of the first layer feature maps of the original encoder on the training
view and on the novel view, and the learned SAE on the novel view.

E Extended Description of Baselines

TD-MPC. We test the agent trained on training view without any adaptation in the view generalization
settings.

DM. This is derived from MoVie by removing STN blocks, which just adapts encoder during test
time.

IDM+STN. This is derived from MoVie by replacing the dynamics model with the inverse dynamics
model which predicts the action in between based on the latent states before and after transition. The
inverse dynamics model is finetuned together with the encoder and STN blocks during testing.

F Ablation on Different FOVs

In our main experiments, we consider the novel FOV as a FOV larger than the original. In Table
12, we present results for both smaller and larger FOV scenarios. Our method demonstrates the
successful handling of both cases.

Table 12: Ablation on different FOVs. The best method on each setting is in bold.

Cheetah-run TD-MPC DM IDM+STN MoVie

Small FOV 104.85±4.59 398.75±17.52 75.92±8.76 530.37±12.84

Large FOV 128.55±6.57 379.01±10.90 299.02±88.47 532.94±19.74
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G Comparison with Other Visual RL Generalization Algorithms

In addition to baselines in the main paper, we also compare MoVie with state-of-the-art methods
that focus on visual generalization or data augmentation in visual RL, i.e., DrQ-v2 [35], SVEA [9],
PIE-G [36], SGQN [1] and PAD [7]. Results on DMControl environments are shown in Table 13.
And the training performance is shown in Table 14. It is observed that MoVie still outperforms these
two methods that do not adapt in test time, while PIE-G could also achieve reasonable returns under
the view perturbation. This may indicate that fusing the pre-trained networks from PIE-G into MoVie
might lead to better results, which we leave as future work. Note that unlike MoVie, other methods
need strong data augmentation or modification during training time.

Table 13: Comparison with other visual RL generalization algorithms. The best method is in
bold.

Task Setting DrQ-v2 SVEA SGQN PIE-G PAD MoVie

Cup, catch
Novel view 857.05±27.27 743.50±70.973 776.26±123.63 834.10±23.20 854.51±150.78 961.98±2.68

Moving view 911.20±1.626 843.80±28.17 971.08±9.30 809.43±19.12 699.34±24.31 951.26±10.68

Shaking view 638.51±39.98 501.56±66.76 943.08±7.23 869.86±14.93 870.06±21.72 951.20±21.01

Novel FOV 919.83±12.76 534.36±61.09 803.00±55.15 927.26±15.36 928.87±28.75 973.60±1.94

All settings 831.64 655.80 873.35 860.16 838.19 959.51

Finger, spin
Novel view 518.75±14.63 312.38±117.76 383.78±6.82 680.10±37.47 233.60±48.93 892.01±1.20

Moving view 706.91±7.69 596.56±156.00 543.23±1.00 828.60±16.47 547.98±3.22 896.00±21.65

Shaking view 39.13±6.37 101.56±67.03 168.60±4.26 551.83±7.52 209.30±7.30 284.05±473.73

Novel FOV 793.70±0.65 505.03±278.99 553.26±1.38 755.86±48.25 82.08±23.4 917.21±1.71

All settings 514.77 378.88 412.21 704.09 215.91 747.31

Table 14: The performance of DrQ-v2, SVEA, SGQN, PIE-G, PAD and MoVie under the
training view on 2 DMControl tasks.

Task DrQ-v2 SVEA SGQN PIE-G PAD MoVie

Cup, catch 953.61±1.57 971.55±0.06 970.58±3.72 959.98±8.92 974.75±5.33 980.56±4.33

Finger, spin 822.4±1.02 840.33±32.08 603.10±1.17 884.96±4.30 710.26±10.92 985.20±2.25

H Results of Original Models on Training View

The performance of the original agents without any adaptation under the training view is reported
in Table 15, 16, and 17 for reference. In the context of view generalization, it is evident that the
performance of agents without adaptation significantly deteriorates.

Table 15: Training Result on DMControl.

Task Cheetah, run Walker, walk Walker, stand Walker, run Cup, catch Finger, spin

Reward 658.10±9.98 944.99±21.71 983.53±5.34 697.75±11.35 980.56±4.33 985.20±2.25

Task Finger, turn-easy Finger, turn-hard Pendulum, swingup Reacher, easy Reacher, hard

Reward 756.16±150.76 616.96±149.44 827.26±61.72 983.8±0.34 937.43±54.59

Table 16: Training Result on xArm.

Task Reach Push Peg in box Hammer

Success rate (%) 96±5 90±17 80±10 83±20

Table 17: Training Result on Adroit.

Task Door Hammer Pen

Success rate (%) 96±3 78±7 48±15
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