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Abstract

The analysis and use of egocentric videos for robotic tasks is made challenging
by occlusion due to the hand and the visual mismatch between the human hand
and a robot end-effector. In this sense, the human hand presents a nuisance.
However, often hands also provide a valuable signal, e.g. the hand pose may
suggest what kind of object is being held. In this work, we propose to extract a
factored representation of the scene that separates the agent (human hand) and the
environment. This alleviates both occlusion and mismatch while preserving the
signal, thereby easing the design of models for downstream robotics tasks. At the
heart of this factorization is our proposed Video Inpainting via Diffusion Model
(VIDM) that leverages both a prior on real-world images (through a large-scale
pre-trained diffusion model) and the appearance of the object in earlier frames of
the video (through attention). Our experiments demonstrate the effectiveness of
VIDM at improving inpainting quality on egocentric videos and the power of our
factored representation for numerous tasks: object detection, 3D reconstruction of
manipulated objects, and learning of reward functions, policies, and affordances
from videos.

1 Introduction

Observations of humans interacting with their environments, as in egocentric video datasets [12, 20],
hold the potential to scale up robotic policy learning. Such videos offer the possibility of learning
affordances [2, 19], reward functions [1] and object trajectories [57]. However, a key bottleneck in
these applications is the mismatch in the visual appearance of the robot and human hand, and the
occlusion caused by the hand.

Human hands can often be a nuisance. They occlude objects of interaction and induce a domain gap
between the data available for learning (egocentric videos) and the data seen by the robot at execution
time. Consequently, past work has focused on removing hands from the scene by masking [19] or
inpainting [1]. However, hands also provide a valuable signal for learning. The hand pose may reveal
object affordances, and the approach of the hand toward objects can define dense reward functions
for learning policies.

In this work, we propose the use of a factored agent and environment representation. The agent
representation is obtained by segmenting out the hand, while the environment representation is
obtained by inpainting the hand out of the image (Fig. 1). We argue that such a factored representation
removes the nuisance, but at the same time preserves the signal for learning. Furthermore, the
factorization allows independent manipulation of the representation as necessary. E.g., the agent
representation could be converted to a form that is agnostic to the embodiment for better transfer
across agents. This enables applications in 2D/3D visual perception and robot learning (see Fig. 2).

Project website with code, video, and models: https://matthewchang.github.io/vidm.
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Figure 1: Agent-Environment Factorization of Egocentric Videos. Occlusion and the visual
mismatch between humans and robots, make it difficult to use egocentric videos for robotic tasks. We
propose a pixel-space factorization of egocentric videos into agent and environment representations
(AEF, Sec. 3). An agent representation Iagent

t is obtained using a model to segment out the agent.
The environment representation Ienv

t is obtained by inpainting out the agent from the original image
using VIDM, a novel Video Inpainting Diffusion Model (Sec. 4). AEF enables many different visual
perception and robotics tasks (Fig. 2 and Sec. 5).
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Figure 2: Agent-Environment Factored (AEF) representations enable many applications. (a) For
visual perception tasks (Sec. 5.2 and 5.3), the unoccluded environment in Ienv

t can be used in addition
to the original image. (b) For affordance learning tasks (Sec. 5.4), the unoccluded environment Ienv

t

can be used to predict relevant desirable aspects of the agent in Iagent
t . (c) For reward learning tasks

(Sec. 5.5 and 5.6) agent representations can be transformed into agent-agnostic formats for more
effective transfer across embodiments.

But how do we obtain such a factored representation from raw egocentric videos? While detection &
segmentation of hands are well-studied [13,70, 103], our focus is on inpainting. Here, rather than just
relying on a generic prior over images, we observe that the past frames may already have revealed
the true appearance of the scene occluded by the hand in the current time-step. We develop a video
inpainting model that leverages both these cues. We use a large-scale pre-trained diffusion model
for the former and an attention-based lookup of information from the past frames for the latter. We
refer to it as Video Inpainting via Diffusion (VIDM). Our approach outperforms DLFormer [62], the
previous state-of-the-art for video inpainting, by a large margin (Tab. 1) and is 8× faster at test time.

Next, we demonstrate the ability of the factored representation across tasks spanning 2D/3D visual
perception to robot learning. Specifically, we adopt 5 existing benchmark tasks: a) 2D detection of
objects of interaction [13], b) 3D reconstruction of hand-held objects [59, 95], c) learning affordances
(where to interact and how) from egocentric videos [19], d) learning reward functions, and e) their
use for interactive policy learning [1]. We show how selectively choosing and modifying aspects
of the factored representation improves performance across all of these tasks compared to existing
approaches. We believe the advances presented in this paper will enable the use of egocentric videos
for learning policies for robots.

2 Related Work

Robot Learning from Hand-Object Interaction Data. Many past works have sought to use
human-object interaction data for robotic tasks. Researchers have used videos to predict: regions of
interactions [19,50], grasps / hand pose afforded by objects [19,96], and post-grasp trajectories [2,42].
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Figure 3: Video Inpainting Diffusion Models (VIDM). We extend pre-trained single-frame inpaint-
ing diffusion models [63] to videos. Features from context frames (It−h, . . . , It−1) are introduced as
additional inputs into the Attention Block A. We repeat the multi-frame attention block 8 times (4 to
encode and 4 to decode) to construct the U-Net [66] that conducts 1 step of denoising. The U-Net
operates in the VQ encoder latent space [63].

[59, 95] predict 3D shapes for hand-held objects. [1, 8, 69] learn reward functions from videos
for learning real-world policies. Others use human-object interaction videos to pre-train feature
representations for robotic policies [51, 60, 91]. While some papers ignore the gap between the
hand and the robot end-effector [51, 60, 91], others adopt ways to be agnostic to the hand by
masking it out [19], inpainting it [1], converting human pixels to robot pixels [73, 92], or learn
embodiment invariant representations [8, 69, 100]. Instead, we pursue a factored representation that
allows downstream applications to choose how to use the agent and the environment representations.
Different from [103], we remove only the hand and retain the object of interaction.

Diffusion Models have been successful at unconditional [28,74,77] and conditional [15,55,63] image
synthesis for several applications, e.g. text-to-image generation [3, 54, 61], image editing [27, 43, 48],
video generation [21, 30, 86], video prediction and infilling [31] (similar to video inpainting, but
focused on generating entire frames), 3D shape synthesis [45,101,106], self-driving applications [72,
107]. While diffusion models produce impressive results, they are computationally expensive due to
the iterative nature of the generative process. To mitigate this limitation, several improvements have
been proposed, e.g. distillation [44, 68], faster sampling [16, 75, 88], cascaded [29] and latent [63, 83]
diffusion models. Among these, latent diffusion models (LDM) are the most commonly used variant.
LDMs use an autoencoder to compress the high-dimensional image inputs to a lower-dimension
latent space and train diffusion models in this latent space. In our work, we build off LDMs.

Inpainting requires reasoning about the local and global structure of the image to perform image
synthesis. While earlier approaches focus on preserving local structure [4, 11, 17, 23], they are
unable to capture complex geometries or large missing areas. Recent works alleviate these issues
using neural networks [38, 40, 47, 58] to incorporate large receptive fields [46, 80], intermediate
representations (e.g. edges [52,93], segmentation maps [78]), adversarial learning [33,78,97,99,104].
With advancements in generative modeling, diffusion models have also been very effective on this
task [43, 54, 63, 67, 96]. These approaches operate by learning expressive generative priors. An
alternative is to utilize videos [36,41,62,90] to reason about temporal consistency [32,53,87], leverage
optical flow [79, 94], utilize neural radiance fields [81, 82], or extract context about the missing
parts from the previous frames [35–37, 87]. Recent video-based inpainting methods incorporate
transformers [41, 62, 102], cycle-consistency [90] & discrete latent space [62] to achieve state-of-the-
art results. While existing approaches inpaint the entire video, we focus on inpainting a specific frame
(previous frames are used as context) as required by downstream tasks. Our work adopts diffusion
models for video-based inpainting to learn factored agent-environment representations, specifically,
building on the single-frame inpainting model from [63].

3 Agent-Environment Factored (AEF) Representations

Motivated by the recent success of generative models, we develop our factorization directly in the
pixel space. Given an image It from an egocentric video, our factored representation decomposes
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it into Iagent
t and Ienv

t . Here, Ienv
t shows the environment without the agent, while Iagent

t shows the
agent (Fig. 1) without the environment. These two images together constitute our Agent-Environment
Factored (AEF) Representation.

Using the Factorization. This factorization enables the independent use of agent / environment
information as applicable. For example, when hands are a source of nuisance (e.g. when object
detectors are pre-trained on non-egocentric data without hands in Fig. 2a), we can use Ienv

t in addition
to It to get a better view of the scene. In other situations, it may be desirable to predict agent
properties afforded by different parts of the environments (Fig. 2b). In such a situation, Ienv

t can
be used to predict the necessary aspects of Iagent

t . In yet other situations, while the location of the
agent provides useful information, its appearance may be a nuisance (e.g. when learning dense
reward functions from egocentric videos for finetuning policies for robots in Fig. 2c). In such a
situation, models could be trained on Ienv

t and g(Iagent
t ), where the function g generates the necessary

abstractions of the agent image.

Extracting the Factorization from Egocentric Videos. For Iagent
t , we employ segmentation models

to produce masks for the agent in It. For egocentric videos, we use the state-of-the-art VISOR
models [13] to segment out the hand. When the depicted agent is a robot, we use DeepLabV3 [9] pre-
trained on MS-COCO [39] and fine-tuned using manually annotated robot end-effector frames. Robot
end-effectors have a distinctive appearance and limited variety, hence we can train a high-performing
model with only a small amount of training data. We denote the agent segmentation in It by magent

t .

Extracting Ienv
t is more challenging because of significant scene occlusion induced by the agent in

a given frame. Naively extracting Ienv
t by just masking out the agent leaves artifacts in the image.

Thus, we inpaint the image to obtain Ienv
t . We condition this inpainting on the current frame It and

previous frames from the video, i.e. {It−h, . . . , It−1} since occluded parts of the scene in It may
actually be visible in earlier frames. This simplifies the inpainting model, which can steal pixels from
earlier frames rather than only relying on a generic generative image prior. We denote the inpainting
function as p(It,m

agent
t , {magent

t−h , . . . ,m
agent
t−1 }, {It−h, . . . , It−1}), and describe it next.

4 Video Inpainting via Diffusion Models (VIDM)

The inpainting function p(It,m
agent
t , {magent

t−h , . . . ,m
agent
t−1 }, {It−h, . . . , It−1}) inpaints the mask magent

t
in image It using information in images It−h through It. The function p is realized through a neural
model that uses attention [85] to extract information from the previous frames. We train this neural
network using latent diffusion [63], which employs denoising diffusion [28] in the latent space
obtained from a pre-trained vector quantization (VQ) encoder [18, 84].

Model Architecture. We follow prior work [63] and train a model ϵθ(zu, u, c), where zu is the noisy
version of the diffusion target z at diffusion timestep u, and c is the conditioning (note we denote
diffusion timesteps as u to avoid conflict with t, which refers to video timesteps). For each diffusion
timestep u, this model predicts the noise ϵ added to z. This prediction is done in the latent space
of the VQ encoder, and the diffusion model is implemented using a U-Net architecture [66] with
interleaving attention layers [85] to incorporate conditioning on past frames. The use of attention
enables learning of where to steal pixels from, eliminating the need for explicit tracking. Furthermore,
this allows us to condition on previous frames while reusing the weights from diffusion models
pre-trained on large-scale image datasets.

We work with 256 × 256 images. The VQ encoder reduces the spatial dimension to 64 × 64, the
resolution at which the denoising model is trained. The commonly used input for single-frame
inpainting with a U-Net diffusion model is to simply concatenate the masked image, mask, and
noisy target image along the channel dimension [63]. This gives an input shape of (2d+ 1, 64, 64)
where d is the dimension of the latent VQ codes. This U-Net model stacks blocks of convolutions,
followed by self-attention within the spatial features. VIDM also concatenates the noisy target zu
with conditioning c (i.e. the context images, It−h, . . . , It, and masks, magent

t−h , . . . , magent
t ) however,

we stack context frames (i.e. t−h through t− 1) along a new dimension. As such, our U-Net accepts
a (2d + 1, h + 1, 64, 64) tensor, where h is the number of additional context frames. We perform
convolutions on the h+ 1 sets of spatial features in parallel but allow attention across all frames at
attention blocks. Consequently, we can re-use the weights of an inpainting diffusion model trained on

4



Table 1: In-painting evaluation on held-out clips from Epic-Kitchens [12]. Use of strong generative
priors and past frames allows our model to outperform past works that use only one or the other.

Inpainting Method PSNR↑ SSIM↑ FID↓ Runtime ↓
Latent Diffusion [63] 28.29 0.931 27.29 12.5s / image
Latent Diffusion (fine-tuned) 28.27 0.931 27.50 12.5s / image
DLFormer [62] 26.98 0.922 51.74 106.4s / image
VIDM (Ours) 32.26 0.956 10.37 13.6s / image
VIDM trained with hands visible 31.81 0.953 11.04 13.6s / image

single images. The final spatial features are combined using a (h+ 1)× 1× 1 convolution to form
the final spatial prediction. Following prior work, the loss is Ez,c,ϵ∼N (0,1),u

[
∥ϵ− ϵθ(zu, u, c)∥1

]
.

Training Dataset. The data for training the model is extracted from Epic-Kitchens [12] and a subset
of Ego4D [20] (kitchen videos). Crucially, we don’t have real ground truth (i.e. videos with and
without human hands) for training this model. We synthetically generate training data by masking
out hand-shaped regions from videos and asking the model to inpaint these regions. We use hand
segment sequences from VISOR [13] as the pool of hand-shaped masks. In addition, we also generate
synthetic masks using the scheme from [63, 104]. We use a 3-frame history (i.e. h = 3). Context
images are drawn to be approximately 0.75s apart. We found it important to not have actual human
hands as prediction targets for the diffusion model. Thus, we omit frames containing hands from
Ego4D (using hand detector from [70]) and do not back-propagate loss on patches that overlap a
hand in Epic-Kitchens (we use ground truth hand annotations on Epic-Kitchens frames from VISOR).
We end up with 1.5 million training frames in total.

Model Training. We initialize our networks using pre-trained models. Specifically, we use the pre-
trained VQ encoder-decoder from [63] which is kept fixed. The latent diffusion model is pre-trained
for single-frame inpainting on the Places [105] dataset and is finetuned for our multi-frame inpainting
task. We train with a batch size of 48 for 600k iterations on 8 A40 GPUs for 12 days. At inference
time we use 200 denoising steps to generate images.

Our overall model realizes the two desiderata in the design of a video inpainting model. First,
conditioning on previous frames allows occluded regions to be filled using the appearance from
earlier frames directly (if available). Second, the use of a strong data-driven generative prior (by
virtue of starting from a diffusion model pre-trained on a large dataset) allows speculation of the
content of the masked regions from the surrounding context.

5 Experiments

We design experiments to test the inpainting abilities of VIDM (Sec. 5.1), and the utility of our
factorized representation for different visual perception and robot learning tasks (Sec. 5.2 to Sec. 5.6).
For the former, we assess the contribution of using a rich generative prior and conditioning on past
frames. For the latter, we explore 5 benchmark tasks: object detection, 3D object reconstruction,
affordance prediction, learning reward functions, and learning policies using learned rewards. We
compare to alternate representations, specifically ones used in past papers for the respective tasks.

5.1 Reconstruction Quality Evaluation

We start by assessing the quality of our proposed inpainting model, VIDM. Following recent litera-
ture [36, 41, 62], we evaluate the PSNR, SSIM and FID scores of inpainted frames against ground
truth images.

Evaluation Dataset. We select 33 video clips that do not contain any hands from the 7 held-out
participants from the Epic-Kitchens dataset [12]. These clips are on average 3.5 seconds long and
span a total of 5811 frames. For each clip, we mask out a sequence of hand-shaped masks mined from
the VISOR dataset [13]. The prediction problem for inpainting models is to reproduce the regions
underneath the hand-shaped masks. This procedure simulates occlusion patterns that models will
need to inpaint at test time, while also providing access to ground truth pixels for evaluation.
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a) Original Image b) LatentDiffusion FT [63] c) DLFormer [62] d) VIDM (Ours)

Figure 4: Our approach (VIDM) is able to correctly steal background information from past frames
(top row, oranges on the bottom right) and also correctly reconstructs the wok handle using strong
object appearance priors (bottom row).

Table 2: Average recall of detections from a COCO-trained Mask RCNN [24] on active objects (i.e.
objects undergoing interaction) from VISOR [13]. See Sec. 5.2 for more details.
Image Used ARall@1 ARall@5 ARall@10 AR0.5@1 AR0.5@5 AR0.5@10

Raw Image (i.e. It) 0.137 0.263 0.272 0.265 0.530 0.551
Masked Image (i.e. It with magent

t blacked out) 0.131 0.236 0.245 0.266 0.474 0.495
Ienv
t inpainted using Latent Diffusion [63] 0.149 0.259 0.270 0.299 0.517 0.541
Ienv
t inpainted using Latent Diffusion (finetuned) 0.154 0.262 0.271 0.305 0.519 0.540
Ienv
t inpainted using VIDM (Ours w/o factorization) 0.163 0.268 0.277 0.317 0.521 0.543
It and Ienv

t inpainted using VIDM (Ours w/ factorization) 0.170 0.379 0.411 0.334 0.681 0.735

Baselines. We compare against 3 baseline models: a) the single-frame latent diffusion inpainting
model [63] trained on the Places [105] dataset that we initialize from, b) this model but finetuned on
single images from the same Epic-Kitchens dataset that we use for our training, c) DLFormer [62], the
current state-of-the-art video inpainting model. DLFormer trains one model per clip and sees every
frame in the test clip, unlike our model which only sees the previous 3 frames for each prediction.
Finally, we include one ablation: VIDM trained with hands visible in the training objective (i.e.
gradients propagate to all pixels) instead of the objective used in VIDM (stop-gradient on pixels with
hands, see Section 3 for details).

Results. Tab. 1 reports the results. We can see our model outperforms all baselines. Processing
context frames with attention allows our model to improve upon single-frame diffusion baselines.
Training with multiple frames and hands visible improves performance, but this training procedure
requires the model to output hands during training. Consequently, inpainted regions sometimes
include hands at test time (see Figure S5). Our model also outperforms DLFormer [62], while being
8× faster and using only 3 frames of history. Fig. 4 shows example visualizations of inpainting
results.

5.2 Application 1: Object Detection

The detection and recognition of objects being interacted with (by humans or robots) is made
challenging due to occlusion caused by the hand / end-effector. While existing object detection
datasets may include objects held and occluded by human hands, objects may be occluded in ways
outside of the training distribution (e.g. when running COCO-trained detectors on egocentric videos).
Furthermore, very few object detection datasets include examples of occlusion by a robot end-effector.
We hypothesize that by removing the agent from the scene, off-the-shelf detectors may work better
without requiring any additional training.

Protocol. We evaluate this hypothesis by testing COCO [39]-trained Mask RCNN detectors [24] on
egocentric frames showing hand-object interaction from VISOR [13]. We only evaluate on object
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Table 3: Average Precision on the Region-of-Interaction task and mAP for Grasps Afforded by
Objects task from [19]. Using our model to remove the hands improves performance vs. placing a
square mask over hands as done in [19]. See Sec. 5.4 for more details.

Image Used Region of Interaction (RoI) Grasps Afforded
0% Slack 1% Slack by Objects (GAO)

Masked image (It with magent
t blacked out) [19] 47.50 ± 2.77 54.03 ± 3.27 35.53 ± 3.67

Ienv
t (inpainted using VIDM) (Ours) 50.77 ± 0.81 57.10 ± 1.01 41.00 ± 3.99

classes that appear in both COCO and VISOR. VISOR [13] only annotates the active object and
background objects have not been annotated. Thus, we measure performance using Average Recall
(AR) as opposed to Average Precision. Specifically, we predict k (= 1, 5, 10 in our experiments)
boxes per class per image and report box-level Average Recall at 0.5 box overlap (AR0.5) and
integrated over box overlap thresholds {0.5, 0.55, . . . , 0.95} (ARall).

Results. Tab. 2 reports the average recall when using different images as input to the COCO-trained
Mask RCNN detector. We compare against a) just using the raw image (i.e. It) as would typically
be done, b) using a masked image (i.e. It with magent

t blacked out) a naive way to remove the hand,
c) different methods for inpainting the agent pixels (pre-trained and finetuned single-frame Latent
Diffusion Model [63] and our inpainting scheme, VIDM), and d) using both the original image and
the inpainted image (i.e. both It and Ienv

t ) as enabled by AEF. When using both images, we run the
pre-trained detector on each image, merge the predictions, and return the top-k.

Naive masking introduces artifacts and hurts performance. Inpainting using a single-frame model
helps but not consistently. Our video-based inpainter leads to more consistent gains over the raw
image baseline, outperforming other inpainting methods. Our full formulation leads to the strongest
performance achieving a 24%-51% relative improvement over the raw image baseline.

5.3 Application 2: 3D Reconstruction of Hand-Held Objects

Past work has tackled the problem of 3D reconstruction of hand-held objects [22, 34, 59, 95]. Here
again, the human hand creates occlusion and hence nuisance, yet it provides valuable cues for the
object shape [95]. Similar to Sec. 5.2, we hypothesize that the complete appearance of the object,
behind the hand, may provide more signal to a 3D reconstruction model.

Protocol. We adopt the state-of-the-art approach from Ye et al. [95]. They design a custom neural
network architecture that is trained with full supervision on the ObMan dataset [22]. Their model just
accepts It as input. To test whether the complete appearance of the object is helpful, we additionally
input Ienv

t to their model. As ObMan is a synthetic dataset, we use ground-truth Ienv
t images obtained

by rendering the object without the hand. This evaluation thus only measures the impact of the
proposed factorization. We use the standard metrics: F1 score at 5 & 10 mm, and chamfer distance.

Results. Using It and ground truth Ienv
t improves upon just using the raw image (as used in [95])

across all metrics: the F1 score at 5mm increases from 0.41 to 0.48, the F1 score at 10mm increases
from 0.62 to 0.68, and the chamfer distance improves from 1.23 to 1.06. As we are using ground
truth Ienv

t here, this is not surprising. But, it does show the effectiveness of our proposal of using
factorized agent-environment representations.

5.4 Application 3: Affordance Prediction

Past works [19] have used videos to learn models for labeling images with regions of interaction
and afforded grasps. While egocentric videos directly show both these aspects, learning is made
challenging because a) the image already contains the answer (the location and grasp type exhibited
by the hand), and b) the image patch for which the prediction needs to be made is occluded by the
hand. Goyal et al. [19] mask out the hand and train models to predict the hand pixels from the
surrounding context. This addresses the first problem but makes the second problem worse. After
masking there is even more occlusion. This application can be tackled using our AEF framework,
where we use inpainted images Ienv

t to predict aspects of the agent shown in Iagent
t .
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Table 4: Spearman’s rank correlations of reward functions learned on Epic-Kitchens [12] when
evaluated on robotic gripper sequences for opening drawer, cupboard, and fridge tasks. Our factored
representation achieves better performance than raw images or environment-only representation.

Input Representation Drawer Cupboard Fridge Overall

Raw Imges (i.e. It) 0.507 0.507 0.660 0.558
Inpainted only (i.e. Ienv

t as proposed in [1]) 0.574 0.570 0.671 0.605
AEF (Ienv

t and g(Iagent
t )) (Ours) 0.585 0.582 0.676 0.614

Protocol. We adopt the training scheme from [19] (current state-of-the-art on this benchmark), but
instead of using masked images as input to the model, we use images inpainted using our VIDM
model. We adopt the same metrics and testing data as used in [19] and report performance on both
the Region of Interaction (RoI) and Grasps Afforded by Objects (GAO) tasks. We test in a small data
regime and only use 1000 images for training the affordance prediction models from [19]. We report
mean and standard deviation across 3 trainings.

Results. Tab. 3 presents the metrics. Across both tasks, the use of our inpainted images leads to
improved performance vs. using masked-out images.

5.5 Application 4: Learning Reward Functions from Videos

Difficulty in manually specifying reward functions for policy learning in the real world has motivated
previous work to learn reward functions from human video demonstrations [1, 6, 9, 71]. The visual
mismatch between the human hand and robot end-effector is an issue. Past work [1] employs
inpainting to circumvent this but consequently loses the important signal that the hand motion
provides. Our factored representation in AEF provides a more complete solution and, as we will show,
leads to improved performance over just using the raw data [9, 71] and inpainting out the hand [1].

Protocol. We train a reward predictor on video clips from Epic-Kitchens [12] and assess the quality
of the reward predictor on trajectories from a robotic end-effector. Specifically, we consider three
tasks: opening a drawer, opening a cabinet, and opening a refrigerator. We use the action annotations
from [12] to find video segments showing these tasks to obtain 348, 419, and 261 clips respectively.
The reward function is trained to predict the task progress (0 at clip start and 1 at clip end) from a
single image. The learned function is used to rank frames from trajectories of a robotic end-effector,
specifically the reacher-grabber assistive tool from [76, 98] captured using a head-mounted GoPro
HERO7. We collected 10, 10, and 5 trajectories respectively for drawers, cupboards, and refrigerators.
These robotic trajectories represent a large visual domain gap from the human-handed training
demonstrations and test how well the learned reward functions generalize. Following [7], we measure
Spearman’s rank correlation between the rewards predicted by the learned reward function and the
ground truth reward (using frame ordering) on the pseudo-robotic demonstrations. The Spearman’s
rank correlation only measures the relative ordering and ignores the absolute magnitude.

Results. Tab. 4 reports the Spearman’s rank correlations for the different tasks. We compare the use of
different representations for learning these reward functions: a) raw images (i.e. It), b) just inpainting
(i.e. Ienv

t ), and c) our factored representation (i.e. Ienv
t and Iagent

t ). For our factored representation,
we map Iagent

t through a function g to an agent-agnostic representation by simply placing a green
dot at the highest point on the end-effector mask (human hand or robot gripper) in the image plane
(see Fig. 5), thus retaining information about where the hand is in relation to the scene. Our factored
model, AEF, correlates the best with ground truth. Just painting out the end-effector loses important
information about where the end-effector is in relation to objects in the scene. Raw frames maintain
this information but suffer from the visual domain gap.

5.6 Application 5: Real-World Policy Learning using Learned Rewards

Motivated by the success of the offline evaluations in Sec. 5.5, we use the learned reward function for
opening drawers to learn a drawer opening policy in the real world using a Stretch RE2 robot (see
Fig. 5 (left)).
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Figure 5: Real-world experiment setup and results. (left) Raw views from camera, (center)
Inpainted image with agent-agnostic representation (green dot at top-pixel of end-effector). (right)
Success rate as a function of CEM iterations.

Protocol. We position the robot base at a fixed distance from the target drawer. We use a 1D action
space that specifies how far from the base the hand should extend to execute a grasp, before retracting.
The drawer opens if the robot is able to correctly grasp the handle. We use a GoPro camera to capture
RGB images for reward computation. The total reward for each trial is the sum of the predicted
reward at the point of attempted grasp, and after the arm has been retracted. We use the Cross-Entropy
Method (CEM) [14] to train the policy. We collect 20 trials in each CEM iteration and use the top-7
as elite samples. Actions for the next CEM iteration are sampled from a Gaussian fit over these elite
samples. We use the success rate at the different CEM iterations as the metric.

Results. Similar to Sec. 5.5, we compare against a) raw images (i.e. It), b) inpainted images (i.e.
just Ienv

t as per proposal in [1]), and c) our factored representation, AEF. As before, we use a dot
at the end-effector location as the agent-agnostic representation of Iagent

t . We use our VIDM for
inpainting images for all methods. We finetune a DeepLabV3 [9] semantic segmentation model (on
100 manually annotated images) to segment out the Stretch RE2 end-effector. Fig. 5 (right) shows the
success rate as a function of CEM iterations. Reward functions learned using our AEF representation
outperform baselines that just use the raw image or don’t use the factorization.

6 Discussion

Our experiments have demonstrated the effectiveness of our inpainting model. Specifically, the use of
strong priors from large-scale pre-trained inpainting diffusion models and the ability to steal content
from previous frames allows VIDM to outperform past methods that only use one or the other cue
(pre-trained LDM [63] and DLFormer [62] respectively). This is reflected in qualitative metrics in
Tab. 1 and also in qualitative visualizations in Fig. 4.

Our powerful video inpainting model (along with semantic segmentation models that can segment out
the agent) enables the extraction of our proposed Agent-Environment Factored (AEF) representation
from egocentric video frames in pixel space. This allows intuitive and independent manipulation of
the agent and environment representations, enabling a number of downstream visual perception and
robotics applications. Specifically, we demonstrated results on 5 benchmarks spanning 3 categories.
For visual perception tasks (object detection and 3D reconstruction of hand-held objects), we
found additionally using the environment representation, which has the agent removed, improved
performance. For affordance prediction tasks (region of interaction and grasps afforded by objects),
we found that using the inpainted environment representation to be more effective at predicting
relevant aspects of the agent representation than naive masking of the agent as used in past work. For
robotic tasks (learning rewards from videos), the factored representation allowed easy conversion of
the agent representation into an agent-agnostic form. This led to better transfer of reward functions
across embodiments than practices adopted in past work (using the original agent representation and
ignoring the agent altogether) both in offline evaluations and online learning on a physical platform.

Given that all information comes from the masked input frames, one might wonder, what addi-
tional value does the proposed inpainting add? First, it provides the practical advantage that each
downstream application doesn’t need to separately pay the implicit training cost for interpreting
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masked-out images. Inpainted images are like real images, allowing ready re-use of the off-the-shelf
models. Furthermore, the data complexity of learning a concept under heavy occlusion may be much
higher than without. A foundation inpainting model can leverage pre-training on large-scale datasets,
to inpaint the occlusion. This may be a more data-efficient way to learn concepts as our experiments
have also shown.

7 Limitations and Broader Impact

As with most work with diffusion models, inference time for our method is 13.6 seconds which
renders real-time use in robotic applications infeasible. AEF only inpaints out the hand to recover the
unoccluded environment. There may be situations where the environment might occlude the agent
and it may be useful to explore if similar inpainting could be done for agent occlusion.

At a broader level, while our use of the video inpainting model was for robotic applications, the
VIDM model can also be thought of a general-purpose video inpainting model. This inherits the
uncertain societal implications of generative AI models.
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S1 VIDM Training Details

For an overview of the VIDM model architecture, see Section 4. In each block, the CNN layers are
implemented as residual blocks [25] with SiLU non-linearities [26] and each attention layer does
self-attention across all token from all input images using 32-channel GroupNorm normalization.
Following [63], upsampling and downsampling operations are both implemented using residual CNN
blocks with either an internal nearest mode 2× upsampling operation or internal 2× downsampling
via average pooling. An initial convolution brings the feature dimension to 256, which is raised
to a maximum of 1024 at the center of the U-Net. At the highest spatial resolution of 64× 64 the
self-attention layer is omitted, as attention with 16384 (= 64× 64× 4) tokens is computationally
intractable for our available hardware. The largest attention layer occurs at a spatial resolution of
32× 32 across four images for a total of 4096 tokens.

We trained VIDM using target images from Ego4D [20] and VISOR [13] (see Section 4). Since no
evaluation was done on Ego4D, no Ego4D data was held out. For VISOR, all data from participants
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P37, P35, P29, P05, and P07 was held-out from training. This held-out data from these participants
was used for reconstruction quality evaluation (Section 5.1) and object detection (Section 5.2)
experiments. Table S1 lists hyper-parameters. Figure S3 shows sample training batches.

Table S1: VIDM Model and Training Hyper-parameters.

Hyper-parameter Value

Learning Rate 4.8× 10−5

Batch Size 48
Optimizer Adam
Diffusion Steps (training) 1000
Latent image Size 64× 64
Number of VQ Embedding Tokens 8192
VQ Embedding Dimension 3
Diffusion Steps (inference) 200
Attention Heads 8

S2 Downstream Task Experimental Details

S2.1 Detection

We used off-the-shelf Mask R-CNN R_101_FPN_3x from Detectron2 [24, 89] trained on the COCO
dataset [39] for evaluation. We used overlapping classes between the VISOR [13] annotations and
COCO for evaluation. These were: apple, banana, bottle, bowl, broccoli, cake, carrot, chair, cup,
fork, knife, microwave, oven, pizza, refrigerator, sandwich, scissors, sink, spoon, toaster.

S2.2 Affordance Prediction

Dataset: We experiment on EPIC-ROI and GAO tasks from Goyal et al. [19]. EPIC-ROI uses the
EPIC-KITCHENS dataset [12] and GAO uses YCB-Affordance [10] dataset. We consider a low data
regime in our work and sample 1K images from these datasets to train the different models. For
EPIC-ROI, we sample images with a probability inversely proportional to the length of the video. For
GAO, we sample randomly. We use the same evaluation setting from [19].

Model: We use the same architecture from ACP [19] and replace the EPIC-ROI input images
with images produced by our inpainting model (with hands removed) to incorporate our factorized
representation. While ACP [19] masks out a patch at the bottom center of the image to hide the hand,
we do not need any mask (neither for training nor for testing) since the hands have been removed via
inpainting. The input is processed by ResNet-50 followed by different decoders for EPIC-ROI and
GAO tasks.

Training: We train separate models for EPIC-ROI and GAO using the loss function and hyperparam-
eters from ACP [19]. While it is possible to train a single model in multitask manner, we observe that
the two tasks are not complementary to each other. We train using 3 seeds for each task and report
the mean and standard deviation in the metrics.

S2.3 3D Reconstruction of Hand-held Objects

Dataset: We use ObMan [22] dataset which consists of 2.5K synthetic objects from ShapeNet [5].
We use the train and test splits provided by Ye et al. [95]. We divide the train split into train and val
set. The train set consists of 134K, val set 7K and test set 6.2K images. The dataset provides 3D
CAD models for each object, which we use for training hand-held object reconstruction model from
Ye et al. [95].
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Input NeuralDiff VIDM Input NeuralDiff VIDM

Figure S1: The environment factorization obtained by NeuralDiff contains artifacts, e.g. (left) region
around banana, (right) partial hand. Our VIDM model produces more realistic results.

Model: We use the architecture from Ye et al. [95]. It uses FrankMocap [65] to extract hand
articulation features from a single image using MANO [64] hand parameterization. These hand
features are used as conditioning to a DeepSDF [56] model which predicts the object shape using
implicit representation. This model also takes in pixel-aligned features and global image features
along with hand features. To incorporate our factorized representation, we also extract global image
features and pixel-aligned features from ObMan images showing only objects (with hands removed).
These features are concatenated with the features from the input ObMan images and fed as input to
the DeepSDF [56] decoder.

Training: Following [95], we use a normalized hand coordinate frame for sampling points and
predicting SDFs. We sample 8192 points in [−1, 1]3 for training, out of which half of them lie inside
and the rest lie outside the object. At test time, 643 points are sampled uniformly in [−1, 1]3. We
train the model in a supervised manner using 3D ground truth from ObMan [22] for 200 epochs with
a learning rate of 1e− 5. Other hyper-parameters are used directly from [95].

S3 Additional Results

S3.1 NERF Comparison

Neural radiance fields [49] represent an alternative path to producing agent-environment factorizations.
We compare against NeuralDiff [82] as a representative method. We can only compare on the
EPIC-Kitchens P05_01 sequence since it is the only one model released from that project that is
common with our test set. We focus on frames that include a hand, and use their static and transient
reconstruction as the prediction for Ienv

. We contrast it with the prediction for from our model.

Figure S1 shows qualitative comparisons. On these images, our model achieves superior FID scores
- 186.79 for VIDM vs 215.90 for NeuralDiff. Note that FIDs are overall higher than usual, but for
good reason. There is no hand-removed image set (ie. objects floating in air) to use as reference to
compute FID. As a proxy reference set, we use images that don’t contain hands as reference and thus
FID scores for both models are higher than usual.

S3.2 Robot Learning: Pick-Up-Plate

To demonstrate that our method can work on tasks beyond opening, we followed the same protocol
as in Table 4 for a fourth task of picking up a plate. In epic kitchens, there are less than 1

3 as many
sequences for this task as for opening drawers, and the quality is worse (clips having the plate out of
frame, annotation timing being off etc.). This lack of data and low quality hurts generalization for
all methods, but we still see a positive trend where using VIDM inpainted images with factorization
gives Spearman’s correlation of 0.139, while raw images and non-factorized inpainting give 0.118
and 0.083 respectively. We note that many other cross embodiment learning techniques may be used
with our factored representation to explore more complex or multi-stage tasks (e.g [1, 7]) which we
leave to future work.

S3.3 Average Precision for Object Detection

In addition to the recall results reported in Table 2 we performed an small experiment to access
our methods effect on object detection precision. To this end we took the class with the fewest
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It−3 It−2 It−1 It It in-painted (output)

Figure S2: When the oranges are occluded by the hand, but visible in the previous frame, VIDM
is able to reconstruct the oranges using this information (first row). When the oranges in previous
frames are covered by either black or red masks, the model fails to reconstruct the oranges and
inpaints red or black pixels instead (second and third rows). This suggests that the model does refer
to content from the context frames for in-painting.

false positives (which happened to be ‘scissors’) when using raw images, and manually labeled all
instances which were indeed true positives (adding missing detections to the ground truth labels). For
this class with labels updated, using raw images only achieves an AP of 0.738, while using images in
painted with VIDM achieves an AP of 0.762.

S4 Visualizations

In Figure S3, we include a visualization of a training batch for our method, showcasing supervision
and generated masks. In Figure S4, we include additional visualizations of the predictions made by
our method and baselines.

In Figure S2 we visualize how VIDM responds to corruptions in the input images to highlight VIDM’s
ability to copy information from the context images. For this visualization we use a sequence of
images where the region occluded by the hand is visible in the context frames. We manually corrupt
the context frames by masking out (with both black and red boxes) the region from which the model
needs to draw information to inpaint properly. We see that when presented with corrupted context
frames, VIDM copies the corrupted pixels (black or red) to represent the occluded region, while it
properly inpaints the region when using the uncorrupted frames.

Qualitative visualizations in Figure S5 exhibit the failure mode of training with hands visible. Because
this training procedure requires the model to output hands some of the time, it sometimes paints the
hand like pixels back into the image.
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Figure S3: An example batch for training VIDM. Columns 1-4: Input images to the network. Column
5: target image for reconstruction. Column 6: Masked regions on the target image. Column 7: Pixels
with loss propagated (white pixels have loss, gray pixels have no loss). Note that hands that are
masked in the target image (column 5) have no loss on them. See Section 4for details.
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a) Original Image b) LatentDiffusion FT [63] c) DLFormer [62] d) VIDM (Ours)

Figure S4: Additional visualizations of predictions from our method and baselines.
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Training /w hands VIDM Latent Diffusion

Figure S5: Training while propagating loss from pixels containing the hand, the model learns to
reconstruct hands in occluded regions (left). This behavior does not occur with our training procedure,
which does not apply loss on pixels with hands (center), and does not appear in base single-image
model that has no egocentric specific finetuning (right).

21


