
Appendix1

A.1 List of Datasets2

semantic instance panoptic grounding part training # images
ADE-150 ✓ ✓ ✓ 2000

Pascal VOC ✓ 1449
Pascal Context-59 ✓ 5105

Pascal-Panoptic-Parts ✓ ✓ ✓ ✓ * 10103
COCO ✓ ✓ ✓ ✓ 121408

RefCOCO ✓ ✓ 19994
RefCOCO+ ✓ ✓ 19992
RefCOCOg ✓ ✓ 26711

Table A1: List of the dataset used. The checkmarks denote whether a dataset has a particular type of annotation
and whether the dataset is used in the training process. * Because of a data leak between Pascal-Panoptic-Parts
and other Pascal datasets, we use weights trained without Pascal-Panoptic-Parts in those evaluations unless
otherwise specified.

We report the statistics of datasets used in training and evaluation in table Table A1. Additionally, we3

further evaluate our model on 35 object detection datasets and 25 segmentation datasets in Sec. A.3.2.4

In total, we benchmarked our model on around 70 datasets. These benchmarks show our model can5

adapt to many different scenarios and retain a reasonable performance in a zero-shot manner.6

A.2 Experiment Setup7

A.2.1 Implementation Details8

For loss functions in Eq. (3), we have λcls = 2.0, λmask = 5.0, λbox = 5.0, λce = 1.0, λdice =9

1.0, λL1 = 1.0, λgiou = 0.2. For λ in Eq. (4), we use λ = 0.2 for seen classes during the training10

and λ = 0.45 for novel classes. In close-set evaluation, we set λ = 0.0 and do not use CLIP. We also11

do not use CLIP for PAS-21 evaluation (whose classes are mostly covered by COCO) because we12

find it degrades the performance. We use 800 and 1024-resolution images during the training. For13

evaluations, we use 1024-resolution images.14

A.2.2 Training Process15

Stage Task Dataset Batch Size Max Iter Step

I OD&IS Objects365 64 340741 312346

II OD&IS COCO 32 91990 76658REC&RIS RefCOCO/g/+ 32

III
PanoS COCO 32

150000 100000,135000REC&RIS RefCOCO/g/+ 32
PartS Pascal-Panoptic-Parts 32

Table A2: Training Process. Following UNINEXT [61], We first pretrain our model for object detection on Ob-
ject365 for 340k iteration (Stage I). Then we fine-tune our model jointly on COCO for object detection, instance
segmentation, referring expression comprehension (REC), and referring segmentation (RIS) for 92k iteration
(Stage II). We further jointly train our model on Panoptic Segmentation, REC, RIS, and Part Segmentation for
150k iteration (Stage III)

We train all our models on NVIDIA-A100 GPUs with a batch size of 2 per GPU using AdamW [41]16

optimizer. We use a base learning rate of 0.0001 and a weight decay of 0.01. The learning rate of17

the backbone is further multiplied by 0.1. Following UNINEXT [61], We first pretrain our model18

for object detection on Object365 for 340k iteration (Stage I). Then we fine-tune our model jointly19

on COCO for object detection, instance segmentation, referring expression comprehension (REC),20
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and referring segmentation (RIS) for 91k iteration (Stage II). We further jointly train our model on21

Panoptic Segmentation, REC, RIS, and Part Segmentation for 150k iteration (Stage III). In Stage I,22

the learning rate is dropped by a factor of 10 after 312k iterations. In stage II, the learning rate is23

dropped by a factor of 10 after 77k iterations. In Stage III, the learning rate is dropped by a factor of24

10 after 100k and 135k iterations. In all stages, we sample uniformly across datasets when there are25

multiple datasets. The global batch size is 64 in Stage I and 32 in Stage II and III. Notably, our stage26

I and II is identical to the setup of UNINEXT. For ablation studies, we train stage III only and reduce27

the schedule to 90k iterations. The learning rate schedule is also scaled accordingly. The details of28

training recipe is shown in Table A2.29

A.3 Additional Evaluations30

A.3.1 Referring Expression Comprehension31

Method Backbone RefCOCO RefCOCO+ RefCOCOg
oIoU P@0.5 oIoU P@0.5 oIoU P@0.5

MAttNet [63] RN101 56.5 76.7 46.7 65.3 47.6 66.6
VLT [9] Dark56 65.7 76.2 55.5 64.2 53.0 61.0
RefTR [43] RN101 74.3 85.7 66.8 77.6 64.7 82.7
UNINEXT [61] RN50 77.9 89.7 66.2 79.7 70.0 84.0
UNINEXT [61] ViT-H 82.2 92.6 72.5 85.2 74.7 88.7
HIPIE RN50 78.3 90.1 66.2 80.0 69.8 83.6
HIPIE ViT-H 82.6 93.0 73.0 85.5 75.3 88.9
vs. prev. SOTA +0.4 +0.4 +0.5 +0.3 +0.6 +0.2

Table A3: Comparison on the referring expression comprehension (REC), and referring image segmentation
(RIS) tasks. The evaluation is carried out on the validation sets of RefCOCO, RefCOCO+, and RefCOCOg
datasets using Precision@0.5 and overall IoU (oIoU) metrics for REC and RIS, respectively.

In addition to Referring Segmentation reported in Table 6, we further report results on Referring32

Expression Comprehension (REC). We establish new state-of-the-art performance by an average of33

+0.3 P@0.5 and +0.5 oIoU across three datasets.34

A.3.2 Object Detection and Segmentation in the Wild35

To further examine the open-vocabulary capability of our model, we evaluate it on the Segmentation36

in the Wild (SeginW) [69] consisting of 25 diverse segmentation datasets and Object Detection37

in the Wild (OdinW) [32] Benchmark consisting of 35 diverse detection datasets. Since OdinW38

benchmark contains Pascal VOC and some of the classes in SeginW benchmark are covered by39

Pascal-Panoptic-Parts, we use a version of our model that is not trained on Pascal-Panoptic-Parts for40

both benchmarks for a fair comparison.41

We report the results in Table A6 and Table A7. Notably, our method establishes a new state-of-the-art42

of SeginW benchmark by an average of +8.9 mAP across 25 datasets. We achieve comparable43

performance under similar settings. In particular, our ResNet-50 baseline outperforms GLIP-T44

by +3.1 mAP. We note that other methods such as GroundingDINO [39] achieve better absolute45

performance by introducing more grounding data, which can be critical in datasets whose classes are46

not common objects. (For example, the classes of Boggle Boards are letters, the classes of UnoCards47

are numbers, and the classes of websiteScreenshots are UI elements).48

A.4 Other Ablation Studies49

We provide further ablations on a few design choices in this section.50

Text Encoder. We experiment with replacing the BERT text encoder in UNINEXT with a pre-trained51

CLIP encoder. Additionally, following practices of ODISE [59], we prompt each label to a sentence52

"a photo of <label>". For RIS and REC tasks, the language expression remains unchanged. We report53

the result in Table A4. We find that while CLIP and BERT achieve similar performance on panoptic54
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COCO RefCOCO
PQ APMask oIoU

CLIP 51.5 44.3 48.7
BERT 51.3 44.4 77.3

Table A4: Ablation Studies on the choice of Text Encoder. We find that while CLIP and BERT achieve similar
performance on panoptic and instance segmentation, BERT performs significantly better on Referring Instance
Segmentation (+28.6 oIoU).

COCO RefCOCO
PQ APMask oIoU

w/o OTA 50.9 43.6 76.3
w/ OTA 51.3 44.4 77.3

Table A5: Ablation Studies on the SimOTA matching process. Introducing SimOTA leads to performance
improvement in all evaluation metrics.

and instance segmentation, BERT performs significantly better on referring instance segmentation55

(+28.6 oIoU). We hypothesize that this may be caused by the lack of explicit language-focused56

training which can help achieve a better understanding of referring expression.57

SimOTA.Following UNINEXT [61] we adopted simOTA in the matching process for "thing" classes58

during the training. We experiment with removing simOTA matching and use standard one-to-one59

matching instead. We report the result in Table A5. We find that simOTA improves the performance60

on both panoptic segmentation and referring instance segmentation.61

A.5 Limitations62

We’ve showcased experimental evidence supporting our method across a diverse set of tasks, including63

open vocabulary panoptic and semantic segmentation, instance and referring segmentation, and object64

detection. However, it will be crucial for future work to test our methodology on video-related tasks,65

such as object tracking and segmentation, to draw comparisons with other universal models like66

UNINEXT [61]. Furthermore, it’s worth considering additional pretraining of our vision encoder on67

newer, more complex datasets that encompass a vast amount of masks and information. For instance,68

SA-1B [27], which includes over 1 billion masks, would serve as an ideal training ground. Lastly,69

it would be advantageous to measure the change in performance when training on supplementary70

hierarchical datasets. Such an approach will allow us to demonstrate more varied object part71

segmentations, thereby expanding the capabilities and versatility of our model.72

A.6 Broader Impact73

Our research introduces a potent approach to hierarchical and universal open vocabulary image74

segmentation, aiming to address the ever-increasing demand for more data and advanced model75

architectures. As the demand increases, practical methodologies such as universal segmentation are76

projected to play a vital role in constructing and training foundational models. Our model, HIPIE,77

shows promise for fostering progress in a multitude of fields where hierarchical data are critical,78

including self-driving cars, manufacturing, and medicine. However, it’s imperative to acknowledge79

potential limitations. Given that our model is trained on human annotations and feedback, it can80

inadvertently replicate any errors or biases present in the datasets. The architecture’s complexity is81

further enhanced when multiple models are integrated, which, in turn, compromises the explainability82

of the final predictions. Therefore, as with the introduction of any novel technology, it’s crucial to83

implement safety protocols to mitigate misuse. This includes mechanisms for ensuring the accuracy84

of inputs and establishing procedures to comprehend the criteria the model employs for predictions.85

By doing so, we can improve the model’s reliability and mitigate potential issues.86
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A.7 Qualitative Results87

A.7.1 More Visualizations88

We provide more visualizations of panoptic segmentation, part segmentation and referring segmenta-89

tion in Figs. A1 to A3.90

A.7.2 Combining with SAM91

We integrate our model with the mask outputs generated by the ViT-H Image encoder from Segment92

Anything (SAM) [27]. The encoder is trained on SA-1B which encompasses a broad spectrum of93

objects and masks within each image, enabling us to enhance our segmentation output by utilizing94

the high-quality masks from the SAM encoder to generate finer, more detailed masks.95

To elaborate, in the context of panoptic segmentation, we implement a voting scheme between our96

pixel-wise annotations and the masks from Segment Anything (SAM), enriching these masks with97

our labels. For objects where our model demonstrates a strong understanding of hierarchy, such as98

"person" or "bird", we substitute the SAM masks with ours. This approach enables us to optimize99

hierarchical outcomes in the face of highly complex images.100

Based on our observations from the figures, it’s evident that Grounding DINO generates instance101

segmentation bounding boxes and subsequently uses SAM for the application of the segmentation102

masks. While this method proves effective for most datasets, SA-1B is a highly complex set featuring103

a vast array of whole objects, parts and subparts. Our qualitative findings suggest that the a single104

granularity instance segmentation model may fail to fully capture all objects/parts within an image105

or may incorrectly identify them. This consequently leads to SAM receiving sub-optimal bounding106

boxes for segmentation, resulting in fewer and less accurate masks (see third columns in Figs. A4107

to A8). In contrast, our methodology (see last columns in Figs. A4 to A8) integrates the SAM encoder108

masks with our annotations and hierarchical masks wherever feasible. This results in a significantly109

more fine-grained and accurate output, proving superior in handling complex datasets such as SA-1B.110

A.7.3 Combining with Stable Diffusion111

As an interesting experiment, we combined our model with image generation model Stable-112

Diffusion[49] in Fig. A9. Given a source expression and target prompt, we first use HIPIE’s113

segmentation capability to find the corresponding masks, which are then used for image inpainting.114

Notably, our model can uniquely achieve fine-grained control over object parts by providing part115

segmentation masks.116
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HIPIE (H) X-Decoder(L)[69]
Mean 41.2 32.3

Median 45.1 22.3
Airplane-Parts 14.0 13.1

Bottles 45.1 42.1
Brain-Tumor 1.9 2.2

Chicken 46.5 8.6
Cows 50.1 44.9

Electric-Shaver 76.1 7.5
Elephants 68.6 66.0

Fruits 61.1 79.2
Garbage 31.2 33.0

Ginger-Garlic 24.3 11.6
Hand 94.2 75.9

Hand-Metal 64.0 42.1
House-Parts 6.8 7.0

HouseHold-Items 53.4 53.0
Nutterfly-Squireel 79.7 68.4

Phones 7.0 15.6
Poles 6.7 20.1

Puppies 64.6 59.0
Rail 2.2 2.3

Salmon-Fillet 41.8 19.0
Strawberry 81.5 67.1

Tablets 8.8 22.5
Toolkits 17.9 9.9

Trash 31.2 22.3
Watermelon 50.6 13.8

Table A6: Segmentation Result on SeginW benchmark across 25 datasets. We report mAP. We outperform
X-Decoder by a large margin (+8.9)
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HIPIE GLIP-T [32] MDETR[24]
ViT-H R50 Swin-T EffNet-B5

Pretraining Data O365,COCO,RefCOCO O365 GOLDG,RefCOCO
Mean 17.9 14.5 11.4 10.7
Median 5.5 3.9 1.6 3.0
AerialMaritimeDrone_large 10.9 5.2 8.3 0.6
AerialMaritimeDrone_tiled 16.6 9.6 17.1 5.4
AmericanSignLanguageLetters 2.8 2.9 0.1 0.3
Aquarium 18.3 8.6 16.0 1.7
BCCD 8.0 6.0 1.7 6.7
boggleBoards 0.1 0.0 0.0 0.0
brackishUnderwater 2.7 0.9 1.7 0.7
ChessPieces 5.5 3.8 0.0 3.0
CottontailRabbits 75.7 69.5 57.0 66.5
dice_mediumColor 0.3 0.5 0.5 0.0
DroneControl 1.6 0.7 0.1 3.8
EgoHands_generic 6.6 5.8 1.1 5.9
EgoHands_specific 0.5 0.2 0.1 3.5
HardHatWorkers 1.8 1.4 2.7 0.4
MaskWearing 1.1 0.8 0.6 0.4
MountainDewCommercial 8.5 37.7 15.3 3.0
NorthAmericaMushrooms 42.7 27.4 5.9 39.8
openPoetryVision 0.0 0.0 0.0 0.0
OxfordPets_by-breed 7.2 7.8 0.3 0.0
OxfordPets_by-species 2.7 2.5 1.6 0.7
Packages 56.2 68.1 58.3 63.6
Pascal VOC 66.0 58.6 51.2 5.6
Pistols 66.8 36.4 31.6 15.9
PKLot 2.6 1.1 0.0 0.0
plantdoc 3.6 3.7 1.6 0.5
Pothole 2.9 3.9 1.6 12.7
Raccoon 49.7 33.4 6.2 50.6
selfdrivingCar_fixedLarge_export_ 7.3 5.3 7.4 2.8
ShellfishOpenImages 49.6 27.5 15.9 8.1
ThermalCheetah 0.3 0.5 0.2 4.5
thermalDogsAndPeople 53.3 24.5 38.7 42.8
UnoCards 0.0 0.0 0.0 0.0
Vehicles-OpenImages 53.5 53.9 55.0 13.4
websiteScreenshots 0.4 0.3 0.3 0.7
WildfireSmoke 0.3 0.0 0.0 12.5

Table A7: Object Detection Result in OdinW benchmark. We report mAP. We achieve comparable performance
under similar settings. In particular, our ResNet-50 baseline outperforms GLIP-T by +3.1.
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Panoptic Segment Part Segment Subpart Segment Referring Segment

Figure A1: More visualizations showcasing panoptic segmentation, part segmentation, subpart segmentation,
and referring segmentation results on RefCOCO. It is recommended to view the results in color and zoom in for
better detail.
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Panoptic Segment Part Segment Subpart Segment Referring Segment

Figure A2: More visualizations showcasing panoptic segmentation, part segmentation, subpart segmentation,
and referring segmentation results on RefCOCO. It is recommended to view the results in color and zoom in for
better detail.
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Panoptic Segment Part Segment Subpart Segment Referring Segment

Figure A3: More visualizations showcasing panoptic segmentation, part segmentation, subpart segmentation,
and referring segmentation results on RefCOCO. It is recommended to view the results in color and zoom in for
better detail.
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Raw Image SAM Mask GDINO+SAM HIPPIE+SAM

Figure A4: Results of merging HIPIE with SAM for hierarchical segmentation. By integrating the part masks
from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed mask outputs.
Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B dataset compared to
the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating between intra-class
objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPPIE+SAM

Figure A5: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPPIE+SAM

Figure A6: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPPIE+SAM

Figure A7: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Raw Image SAM Mask GDINO+SAM HIPPIE+SAM

Figure A8: Additional results of merging HIPIE with SAM for hierarchical segmentation. By integrating the
part masks from our model and conducting a vote among SAM’s panoptic masks, we generate finely detailed
mask outputs. Our method demonstrates fewer misclassifications and overlooked masks across the SA-1B
dataset compared to the Grounding DINO + SAM approach. Furthermore, our technique excels in differentiating
between intra-class objects and identifying distinct object parts.
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Figure A9: Results of combining HIPIE with Stable Diffusion for Image inpainting. We leverage our segmenta-
tion model to generate masks for the redrawing process. Our model can uniquely achieve fine-grained control by
providing part segmentation masks.
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