
A Appendix399

A.1 Message Passing in SyncTREE400

As the message passing process in Figure 8, information from leaves, sub-branches, and the whole401

global structure is first collected following the bottom-up propagation by GATbu. Then, the final node402

representations of GATbu are applied to each layer of GATtd to jointly update the node attributes of403

the corresponding top-down tree with the node embeddings of its previous layer. As the example404

shown in Figure 8, by designing this two-pass message-passing mechanism, the node features will405

incorporate the information from different levels and become more expressive. Furthermore, in the406

top-down tree, the root node can only be updated with synchronized hL
bu since it doesn’t have any407

incoming connection, it ensures that information injection at the source of the top-down tree is fixed408

which can help to maintain differentiable feature embeddings without over-smoothing.
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Figure 8: Illustration of our two-pass message-passing mechanism.

409

A.2 Synthetic and RISC-V Dataset Preparation410

Our dataset is composed of artificially generated and practical RC trees and the golden timing results411

at sinks (leaf nodes of each RC tree) obtained by SPICE simulation. On the one hand, we follow the412

pipeline in Figure 9 to generate the synthetic dataset. To be specific, we first adopt Algorithm 1 to413

generate RC-trees with random typologies and then convert them to artificial IC interconnects for414

further SPICE timing measurement. On the other hand, we directly extract RC trees from practical415

RISC-V circuit designs to compose the RISC-V dataset. The statistics of both datasets are shown in416

Figure 10 and Figure 11.417

Algorithm 1 Generate artificial RC-trees

Require: vd ∈ [vmin, vmax], R ∈ [Rmin, Rmax], C ∈ [Cmin, Cmax]
Initialize voltage vd of driving cell, edge type (rising or falling), depth D of RC tree
parent set = list[drivingcell]
parent← randomly pick one element from parent set
while depth ≤ D do

randomly choose R, C
generate child, add child into parent set
the Rchild of the edge from child to the parent← R
the Cchild of child to the ground← C
parent← randomly pick one element from parent set
D = D + 1

end while
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Figure 9: Pipeline for the synthetic dataset generation.

(a) Circuit size distribution (b) Delay distribution (c) Slew distribution

Figure 10: Synthetic dataset statistics.

(a) Circuit size distribution (b) Delay distribution (c) Slew distribution

Figure 11: RISC-V dataset statistics.

A.3 Baselines’s Implementation418

The GNNs of all the baseline models are set with 32/128 hidden dimensions separately for the419

synthetic dataset/RISC-V dataset. For GraphTrans, the dimension of the feedforward full-connection420

layers in the Transformer of GraphTrans is set to 256 with 0.1 dropout probability between layers, the421

number of attention heads is set to 4, and the max input sequence length is set to the maximum circuit422

size. It should be noted that we only made a little modification to the GraphTrans model. GraphTrans423

is originally designed for node classification tasks, it takes CLS token from Transformer output as the424

representation of the whole graph and applies a linear module followed by softmax to implement425

prediction. In order to incorporate global information into node features, in our experiments, we426

concatenate the CLS token with node embeddings and then feed it into MLP to get the final output.427

For NTREE, we set GAT as its basic block with a 0.2 dropout probability between layers. We follow428

the original junction-tree-based algorithm in [10] to compose H-trees from our RC circuits with the429

same radius setting for extracting subgraphs in the paper.430

A.4 Analysis of TContrast Loss431

(a) Epoch=1 (b) Epoch=20 (c) Epoch=40 (d) Epoch=60

Figure 12: The distribution of similarity pairs with training epochs.
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(a) Delay on S (b) Slew on S (c) Delay on R (d) Slew on R

Figure 13: Mean Average Error difference after applying TContrast loss on the synthetic dataset (S)
and RISC-V dataset (R). (Negative values indicate that TC-loss-guided SyncTREE has a lower MAE
error than vanilla SyncTREE)

To visualize the converging process during training, we plot the distribution of similarity pairs in432

space at different epochs in Figure 12. It obviously shows that our model approaches the optimization433

goal with a more concentrated similarity distribution after enough training with the guidance of434

TContrast loss. In Figure 13, we show the MAE difference of timing results obtained by vanilla435

SyncTREE and TC-loss guided SyncTREE. As shown in the results, after being combined with TC436

loss, our SyncTREE model has smaller errors for most types of RC trees which can effectively prove437

the validity of TC loss.438
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