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Abstract

Depth estimation from monocular images is pivotal for real-world visual perception
systems. While current learning-based depth estimation models train and test on
meticulously curated data, they often overlook out-of-distribution (OoD) situations.
Yet, in practical settings – especially safety-critical ones like autonomous driv-
ing – common corruptions can arise. Addressing this oversight, we introduce a
comprehensive robustness test suite, RoboDepth, encompassing 18 corruptions
spanning three categories: i) weather and lighting conditions; ii) sensor failures
and movement; and iii) data processing anomalies. We subsequently benchmark 42
depth estimation models across indoor and outdoor scenes to assess their resilience
to these corruptions. Our findings underscore that, in the absence of a dedicated
robustness evaluation framework, many leading depth estimation models may be
susceptible to typical corruptions. We delve into design considerations for crafting
more robust depth estimation models, touching upon pre-training, augmentation,
modality, model capacity, and learning paradigms. We anticipate our benchmark
will establish a foundational platform for advancing robust OoD depth estimation.

1 Introduction

Monocular depth estimation (MDE) involves predicting a scene’s depth information from monocular
images, without relying on data acquired from more sophisticated sensors [11, 28, 25, 37]. These
images are predominantly captured using RGB cameras mounted on diverse platforms like drones,
mobile robots, and vehicles [65, 41, 9, 30]. As an instrumental facet of visual perception, precise
MDE paves the way for a broad array of applications. Bolstered by the rise of learning-based
paradigms, numerous MDE algorithms have emerged, demonstrating remarkable depth estimation
performances on standard benchmark datasets [14, 52, 49, 8, 47].

However, the resilience of existing MDE models to out-of-distribution (OoD) challenges is yet to
be thoroughly explored, especially under the lens of real-world corruptions such as adverse weather
[19, 46] and sensor malfunctions [29]. The prevailing learning-based visual perception models often
display heightened sensitivity to nuances in lighting, noise, texture variations, among other factors,
which are compromising the accuracy of depth predictions [18, 23]. The ability to generalize across
new scenes, objects, and backgrounds, especially when they have not been part of the training data, is
another pivotal challenge [40].

Despite the strides achieved on relatively pristine datasets [14, 49, 8], a lacuna exists: a robustness
benchmark tailored to foster the evolution of resilient and scalable MDE systems. In light of these
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challenges, models dedicated to MDE often inadvertently embed systematic errors, stemming from
real-world image imperfections like altered lighting, motion blur, shadows, and data compression,
which the current MDE solutions rarely address effectively [4, 34].

Seeking to bridge this gap, our contribution charts the inaugural path towards robust and reliable
MDE, unveiling the KITTI-C, NYUDepth2-C, and KITTI-S benchmarks. Contrasting prior works that
merged datasets for cross-domain MDE [44, 33, 62] or devised adversarial patches to subvert MDE
models [7, 4], our benchmarks meticulously simulate commonplace corruptions that are intrinsic to
real-world settings. As delineated in Fig. 2, we structure eighteen corruption varieties across three
cardinal categories: i) weather and lighting conditions, ii) sensor malfunctions and movements, and
iii) data processing complications. Further stratified by diverse severity, these corruptions encapsulate
a gamut of scenarios fostering image distortions, texture shifts, or degraded visuals [18, 40].

Figure 1: The depth estimation robustness (in terms of depth
estimation error (DEE) defined in Sec. 3.3) under 18 corrup-
tions in radar charts. Different MDE models exhibit diverse
strengths and weaknesses against different corruptions that
occur in the real world.

Given that MDE models intrinsically
depend on lucid visual cues for depth
inference, the aforementioned corrup-
tions naturally impose significant hur-
dles. Our preliminary analysis, visu-
alized in Fig.1, showcases a spectrum
of responses from distinct MDE model
architectures when faced with diverse
corruptions. Penetrating into these dy-
namics is quintessential to understand-
ing the underlying causes of perfor-
mance faltering, enabling us to archi-
tect MDE models that are both robust
and reliable. Pursuing this vision, we
undertake a meticulous benchmarking
of extant MDE models on these new
datasets, embarking on an exhaustive
study of their robustness vis-a-vis the
spectrum of corruptions. We probe
queries about the resilience of MDE
models to real-world corruptions, the
influence of training input modalities,
and learning paradigms – addressed in
Sec.4.2. Concurrently, we assess the fi-
delity of our simulated corruptions and
delve into the impact of texture-shift
corruptions (style alterations) on gaug-
ing MDE model resilience.

From our benchmark findings, we dis-
till several intriguing insights and prof-
fer recommendations to amplify robust-
ness – focusing on strategies like model pre-training, input resolution tuning, model sizing, complexity
modulation, and corrupt-image fine-tuning (Sec. 4.3).

To encapsulate, our work offers the following seminal contributions:

⋄ We introduce RoboDepth, the first systematically designed robustness evaluation suite for MDE
under data corruptions, sensor failure, and style shifts. See our repository at this link for more details.

⋄ We benchmark 42 state-of-the-art MDE models from indoor and outdoor scenes, on their robustness
against corruptions, via three newly established datasets: KITTI-C, NYUDepth2-C, and KITTI-S. The
corruption simulation toolkit has been open-sourced to facilitate future development.

⋄ Based on our observations, we draw in-depth discussion and analysis on the design considerations
of building more robust MDE models for reliable, scalable, and practical applications.

⋄ Furthermore, we initiated the RoboDepth Challenge [27], which garnered participation from
over one hundred teams, underscoring the community’s interest and the challenge’s relevance.
Comprehensive details about the competition can be accessed on our competition website at this link.
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Figure 2: Corruption taxonomy. We break down common corruptions in depth estimation scenarios
into three categories: i) Weather and lighting conditions, such as sunny, low-light, fog, frost, snow,
and contrast conditions. ii) Sensor failure and movement, such as potential blurs (defocus, glass,
motion, zoom) caused by motion. iii) Data processing issues, such as noises (Gaussian, impulse, ISO)
happen due to hardware malfunctions. Examples shown are from the proposed KITTI-C benchmark.

2 Related Work

Monocular Depth Estimation (MDE). Since the pioneering works [10, 12, 68, 16] first adopted
deep neural networks to perform monocular depth estimation, significant progress has been made in
many aspects. Notable innovations include network architectures [31, 43, 66, 63, 21], optimization
functions [17, 64, 6], internal constraints [60, 67], multi-task learning [55, 22], geometry constraint
[56, 51], and various sources of supervisions [44, 50, 33]. Based on the learning paradigm, most
MDE methods can be split into supervised or self-supervised models. The former mainly focuses on
indoor scenes and uses ground truth from RGB-D cameras or LiDAR sensors to train a regression
model [1, 35]; while the latter formulates MDE as a novel view synthesis task to minimize the
photometric loss between stereo pairs or from monocular video frames [68]. Although promising
results have been achieved, the robustness of MDE models under adverse scenarios is still unknown.
Due to the lack of relevant datasets, existing models are at risk of being vulnerable to corruptions. In
this work, we fill in this gap by establishing comprehensive evaluation benchmarks and testing 42
MDE models from both indoor and outdoor environments to analyze their OoD robustness.

Figure 3: Corruption severity level. We create versatile
corruption sets with different levels of severity. Examples
shown are from the proposed NYUDepth2-C benchmark.

Robust MDE. To the best of our knowl-
edge, only a few works targeted robust
learning of MDE and they focused on dif-
ferent aspects. Ranftl et al. [44] proposed
a unified objective for merging multiple
datasets with different depth scales and
ranges for training robust models. Simi-
lar works [58, 33, 53, 5, 62] resort to web
stereo data or 3D movies to train MDE
models and adapt them to unseen datasets.
Kopf et al. [29] estimate stable camera tra-
jectories for hand-held cellphone videos.
SC-DepthV3 [50] generates pseudo-depth
to refine depth details for scenes with dy-
namic objects. Li et al. [32] proposed an
attention module to choose scene-specific
features for MDE on both indoor and outdoor scenes. SeasonDepth [19] contributed a dataset with
depth maps under sunny, cloudy, and foliage weather. Most recently, there are works [7, 4] design
adversarial patches to attack MDE models. Conversely, we aim to test the MDE robustness to
corruptions that occur in real-world environments. We establish the first benchmark of this kind and
incorporate an ample number of MDE models for in-depth analysis.

Corruption Robustness. ImageNet-C [18] is the pioneering work in this line of research which bench-
marks classical image classification models to common corruptions and perturbations. Follow-up
studies extend on the aspect to other visual perception tasks, e.g., object detection [40], segmenta-
tion [23, 26, 38], navigation [3], video classification [61], and pose estimation [54]. The essentiality
of evaluating model robustness has been repeatedly validated. Since we are targeting a different task,
i.e., MDE, most of the well-studied corruption types become less realistic or suitable for such a data
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format. This motivates us to explore a new taxonomy for defining more proper corruption types for
MDE. In this work, we contribute new datasets and benchmarks for probing the MDE robustness.

3 The RoboDepth Benchmark

In this section, we first introduce the taxonomy of corruptions included in our benchmarks (Sec. 3.1).
We then elaborate on more details of the proposed datasets (Sec. 3.2) and corresponding robustness
evaluation metrics (Sec. 3.3). Examples from our datasets are shown in Fig. 2, Fig. 3, and this page.

3.1 Corruption Definition

Weather & Lighting Condition. The cameras on drones or vehicles operating under different weather
and times of day capture distribution-shifted images which are rare or lacking in current MDE datasets
[14, 49]. To probe the robustness of MDE models under adverse weather and lighting conditions,
we simulate six corruptions, i.e., ‘brightness’, ‘dark’, ‘fog’, ‘frost’, ‘snow’, and ‘contrast’, which
commonly occur in the real-world environment. Compared to clean images, these corruptions tend
to affect the intensity and color of the light source, leading to hazy, blurry, and noise-contaminated
images, which increase the difficulties for the MDE model to make accurate depth predictions.

(a) KITTI-C (b) NYUDepth2-C

Figure 4: Benchmarking results of 42 MDE models on KITTI-
C and NYUDepth2-C. Figures from top to bottom: the depth
estimation error (DEE) vs. [1st row] mean corruption error
(mCE), [2nd row] mean resilience rate (mRR), and [3rd row]
sensitivity analysis among different corruption types.

Sensor Failure & Movement. An
MDE system must behave robustly
against motion perturbation and
sensor failure to maintain safety
requirements for practical appli-
cations. To achieve this pursuit,
we mimic four motion-related cor-
ruptions, i.e., ‘defocus’, ‘glass’,
‘motion’, and ‘zoom’ blurs; we
also generate images under ‘elastic
transformation’ and ‘color quanti-
zation’, which happen during sen-
sor malfunction. These corrup-
tion types are often associated with
issues including edge distortions,
contrast loss, and pattern shifts.

Data & Processing Issue. Data
collection and transmission are in-
evitably associated with various
sources of noise and potential loss
of information. We include four
such random variations, i.e., ‘Gaus-
sian’, ‘impulse’, ‘shot’, and ‘ISO’
noises. In addition, we investigate
the degradation caused by ‘pixelate’
and ‘JPEG compression’ which are
common corruptions in handling
image data. Compared to clean im-
ages, the noise-contaminated data
introduce errors in the intensity val-
ues of pixels, leading to a grainy or
speckled appearance. The pixelation and lossy compression tend to lead to a loss of detail and clarity
in the image and can result in visible artifacts, such as blockiness or blurring.

3.2 Benchmark Establishment

KITTI-C. Based on the KITTI Vision Suite [14], we establish a robustness benchmark for outdoor
MDE. We simulate the defined 18 corruptions using data from the KITTI val set under Eigen’s split.
Similar to [18], we design five severity levels for each corruption to further consolidate the evaluation
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of robustness changes. As a result, this robustness probing dataset has a total number of 62, 730 RGB
images with a resolution of 192× 640. We also include the high-resolution version (320× 1024) for
evaluating the robustness of MDE models which take larger images as the input.

NYUDepth2-C. We construct a benchmark for robust indoor MDE based on NYU Depth V2 [49].
15 of the defined corruptions are used, excluding ‘fog’, ‘frost’, and ‘snow’ which rarely occur in the
indoor scenes. Since the indoor environments are less variant than outdoor ones, we only include four
severity levels for each corruption. To sum up, this dataset contains 39, 240 images of size 480× 640,
which cover 23 different types of indoor scenes, such as basement, bathroom, bedroom, study, etc.

KITTI-S. Style changes, consisting mostly of texture shifts, have proven helpful for analyzing model
robustness [18]. To further investigate the root cause of MDE robustness degradation, we form
another collection based on KITTI [14] with stylized images via the style transfer model AdaIn [20].
This dataset has 8, 364 images from 12 styles, including ‘cartoon’, ‘digital art’, ‘ink painting’, ‘kids’
drawing’, ‘murals’, ‘oil painting’, ‘penciling’, ‘shadow play’, ‘sketch’, ‘stained glass’, ‘relief’, and
‘water color’. Due to space limitations, please refer to Appendix or this page for additional examples.

Simulation Toolkit. To facilitate a similar study on other MDE datasets, we have open-sourced the
code at this link for simulating corruptions and style shifts given arbitrary “clean” images.

3.3 Evaluation Metrics

Depth Estimation Error (DEE). We combine Abs Rel (error rate) and δ1 (accuracy), the two main
measures defined in [10, 36], into a unified metric as DEE = Abs Rel−δ1+1

2 , which is constantly used as
the indicator of depth estimation error in our benchmark. See Appendix for more formal definitions.

Corruption Error (CE). We follow [18] and use the mean CE (mCE) as the primary metric in
comparing models’ robustness. To normalize the severity effects, we choose MonoDepth2 [17] and
AdaBins [1] as the baseline models for the KITTI-C and NYUDepth2-C benchmarks, respectively.
The CE across L levels of severity and mCE across N corruption types can be calculated as follows:

CEi =

∑L
l=1(DEEi,l)∑L

l=1(DEEbaseline
i,l )

, mCE =
1

N

N∑
i=1

CEi . (1)

Resilience Rate (RR). We define mean RR (mRR) as the relative robustness indicator for measuring
how much accuracy can an MDE model retain when evaluated under the corruption scenarios, i.e.,

RRi =

∑L
l=1(1− DEEi,l)

L× (1− DEEclean)
, mRR =

1

N

N∑
i=1

RRi , (2)

where DEEclean denotes the task-specific accuracy (or error rate) score on the “clean” evaluation set.

4 Experiments

4.1 Benchmark Configuration

Depth Estimation Models. We benchmark 42 depth estimation models and model variants, which
cover most of the open-source MDE models so far. 32 of them are for outdoor MDE and the remaining
10 are for indoor MDE. More detailed descriptions of these models are attached in the Appendix.

Datasets. All benchmarked depth estimation models have been trained on the official training splits
of the KITTI [14] (for outdoor MDE) or NYU-Depth V2 [49] (for indoor MDE) datasets, and are
tested accordingly on the official val splits and also our proposed KITTI-C, NYUDepth2-C, and
KITTI-S datasets. Additionally, we resort to the real-world ACDC [45], nuScenes [2], Cityscapes
[8], and Foggy-Cityscapes [46] datasets for validating the fidelity of our simulated corruptions. Our
datasets and model evaluation toolkit can be downloaded from this page.

Evaluation Protocols. To avoid any unfairness in the MDE robustness comparison, we unify the
common configurations among different candidate models, such as backbones, data augmentations,
and post-processing. We use public checkpoints whenever possible and reproduce the reported results
based on official settings. More details on this aspect are included in the Appendix.
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Table 1: Self-Supervised MDE Robustness Benchmark consisting of 32 models on KITTI-C. The
mCE and mRR scores are given in percentage (%). Blocks from top to bottom: [1st]: The baseline
MonoDepth2 R18 [17]; [2nd]: Methods w/ monocular inputs; [3rd]: Methods w/ stereo inputs; [4th]:
Methods w/ monocular + stereo inputs. Bold: Best in column. Underline: Second best in column.
The best score of each metric across three categories is shaded in color.

Method Overall Robustness Weather & Lightning Sensor & Movement Data & Processing
mCE mRR mDEE mCE mRR mDEE mCE mRR mDEE mCE mRR mDEE

MonoDepth2 R18 [17] 100.00 84.46 0.256 100.00 84.37 0.257 100.00 90.33 0.204 100.00 78.66 0.307

MonoDepth2 nopt [17] 119.75 82.50 0.294 146.17 78.58 0.327 103.28 92.45 0.209 109.80 76.48 0.345
MonoDepth2 HR [17] 106.06 82.44 0.270 109.95 80.38 0.288 115.99 85.59 0.242 92.25 81.36 0.279
MonoDepth2 R50 [17] 113.43 80.59 0.288 104.53 83.28 0.265 128.68 82.45 0.272 107.07 76.05 0.329

MaskOcc R18 [48] 104.05 82.97 0.267 100.98 84.13 0.257 108.85 87.67 0.226 102.30 77.12 0.319
DNet R18 [59] 104.71 83.34 0.265 103.04 83.56 0.263 115.56 86.07 0.241 95.53 80.39 0.291

CADepth [60] 110.11 80.07 0.286 102.59 82.04 0.268 119.67 83.91 0.252 108.06 74.25 0.338
HR-Depth [39] 103.73 82.93 0.264 100.41 83.82 0.256 116.01 85.32 0.242 94.76 79.64 0.293

DIFFNet [67] 94.96 85.41 0.233 79.33 89.53 0.196 124.69 81.68 0.267 80.86 85.00 0.237
ManyDepth R18 [56] 105.41 83.11 0.271 104.97 84.15 0.262 102.57 90.06 0.210 108.70 75.10 0.341

FSRE-Depth [22] 99.05 83.86 0.253 89.12 87.39 0.221 101.36 88.65 0.210 106.66 75.53 0.327
MonoViT [66] 79.33 89.15 0.197 72.92 91.16 0.179 81.62 92.67 0.165 83.47 83.61 0.247

MonoViT HR [66] 74.95 89.72 0.187 72.24 90.78 0.177 74.60 93.86 0.150 78.02 84.51 0.234
DynaDepth R18 [64] 110.38 81.50 0.280 102.92 83.45 0.263 131.29 81.67 0.279 96.95 79.39 0.299
DynaDepth R50 [64] 119.99 77.98 0.308 105.81 81.70 0.275 143.38 78.09 0.307 110.79 74.15 0.342

RA-Depth [42] 112.73 78.79 0.288 89.39 85.34 0.229 137.47 78.19 0.293 111.32 72.82 0.342
TriDepth R18 [6] 109.26 81.56 0.280 115.07 80.79 0.287 104.61 88.79 0.216 108.10 75.10 0.337

Lite-Mono Tiny [63] 92.92 86.69 0.233 90.57 88.31 0.219 95.47 90.87 0.196 92.71 80.90 0.284
Lite-Mono Small [63] 100.34 84.67 0.251 98.98 85.52 0.243 109.87 87.12 0.229 92.16 81.37 0.280
Lite-Mono Base [63] 93.16 85.99 0.235 89.20 87.49 0.221 96.71 90.22 0.197 93.59 80.26 0.286

Lite-Mono Large [63] 90.75 85.54 0.232 83.91 87.23 0.217 91.97 90.42 0.188 96.38 78.95 0.291

MonoDepth2 R18 [17] 117.69 79.05 0.307 111.08 81.79 0.283 121.92 84.95 0.255 120.08 70.41 0.383
MonoDepth2 nopt [17] 128.98 79.20 0.327 145.57 77.96 0.337 110.41 91.45 0.223 130.97 68.20 0.420
MonoDepth2 HR [17] 111.46 81.65 0.279 111.73 81.03 0.284 127.51 82.96 0.268 95.16 80.96 0.285

DepthHints [57] 111.41 80.08 0.290 99.81 83.22 0.262 122.07 83.78 0.257 112.36 73.22 0.351
DepthHints nopt [57] 141.61 73.18 0.366 155.51 73.52 0.363 121.71 86.47 0.251 147.60 59.57 0.484
DepthHints HR [57] 112.02 79.53 0.287 98.36 83.30 0.254 133.82 79.89 0.284 103.88 75.41 0.324

MonoDepth2 R18 [17] 124.31 75.36 0.334 109.43 80.86 0.285 127.18 82.75 0.269 136.34 62.46 0.448
MonoDepth2 nopt [17] 136.25 76.72 0.345 165.90 72.79 0.378 106.08 92.17 0.213 136.77 65.20 0.443
MonoDepth2 HR [17] 106.06 82.44 0.270 109.95 80.38 0.288 115.99 85.59 0.242 92.25 81.36 0.279

CADepth [60] 118.29 76.68 0.318 103.66 81.40 0.276 119.87 83.99 0.253 131.33 64.64 0.425
MonoViT [66] 75.39 90.49 0.184 72.54 91.83 0.172 78.42 93.29 0.159 75.21 86.35 0.221

Figure 5: The depth estimation robustness comparisons among different input modalities. Mono:
monocular images; Stereo: stereo pairs; and Mono+Stereo: both monocular and stereo images.

4.2 MDE Robustness Probing

In this section, based on our benchmark, we aim to understand the corruption robustness among
different MDE models by answering the following representative questions.

Q-1: “Are existing MDE models robust under real-world corruptions?” A: No, to a certain extent.
Our benchmark results in Fig. 4 reveal that state-of-the-art MDE models are at risk of being vulnerable
to corruptions. Existing MDE models, either from indoor or outdoor scenes, show a flattened or even
inverse relationship between the DEE scores and robustness metrics. Due to the lack of a suitable
robustness evaluation suite, current MDE models are over-fitted on “clean” sets while ignoring the
OoD scenarios that are likely to occur in the real world. Nevertheless, we observe varying behaviors
of different MDE models under different corruption types (see Fig. 1), caused by different design
choices on model architecture. The results from Tab. 1 and Tab. 2 further show that the Transformers-
based MDE models exhibit better robustness compared to conventional CNNs. Diving deeper, we
can observe from the per-severity error rates in Fig. 9 that the above conclusion holds true for most
corruption types under different severity levels. The qualitative results shown in Fig. 10 also validate
that models with long-range receptive fields, such as MonoViT [66] (74.95% mCE) and Lite-Mono
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Table 2: Supervised MDE Robustness Benchmark consisting of 10 models on the NYUDepth2-C
dataset. The mCE and mRR scores are given in percentage (%). Bold: Best in column. Underline:
Second best in column. The best score of each metric across three categories is shaded in color.

Method Overall Robustness Weather & Lightning Sensor & Movement Data & Processing
mCE mRR mDEE mCE mRR mDEE mCE mRR mDEE mCE mRR mDEE

AdaBins EB5 [1] 100.00 85.83 0.238 100.00 92.42 0.179 100.00 87.97 0.219 100.00 80.41 0.286

BTS R50 [31] 122.78 80.63 0.292 125.51 87.97 0.228 121.86 84.21 0.261 122.34 73.39 0.356
AdaBins R50 [1] 134.69 81.62 0.313 140.99 88.64 0.254 131.88 85.63 0.279 134.37 74.11 0.376

DPT ViT-B [43] 83.22 95.25 0.177 93.66 96.57 0.166 81.82 96.24 0.168 79.41 93.60 0.191
SimIPU nopt [34] 200.17 92.52 0.419 241.79 92.20 0.421 201.63 94.96 0.404 177.90 90.23 0.433

SimIPU ImageNet [34] 163.06 85.01 0.357 190.62 87.52 0.338 166.90 86.97 0.343 145.45 81.79 0.382
SimIPU KITTI [34] 173.78 91.64 0.370 210.25 91.81 0.368 170.75 95.37 0.344 158.56 87.81 0.396

SimIPU WaymoOpen [34] 159.46 85.73 0.351 190.30 87.41 0.338 158.90 88.77 0.328 144.59 81.86 0.380
DepthFormer SwinT-1k [35] 106.34 87.25 0.237 122.01 89.10 0.220 107.22 88.80 0.223 97.64 84.78 0.258

DepthFormer SwinT-22k [35] 63.47 94.19 0.139 70.11 95.84 0.124 69.32 93.25 0.148 54.29 94.29 0.138

Figure 6: Depth estimation robustness of MonoDepth2 [17] under different training configurations.
[top]: Different pre-training techniques. [bottom]: Different resolutions of the input images.

[63] (90.75% mCE), can better maintain accurate depth predictions under corruptions coped with
texture shift, edge distortion, and noise contamination.

Q-2: “Which MDE modality is the most robust against corruptions?” A: MDE models trained
with purely monocular images rather than stereo pairs as input have better robustness, as shown in
Fig. 5. Here we analyze the robustness of MonoDepth2 [17] variants trained with different input
modalities and observe that using stereo or a mix of monocular and stereo images leads to robustness
degradation. MDE models trained with stereo pairs may rely more on the scene structural consistency
between left-right pairs, which could be destroyed when dealing with corrupted data. Such constraints,
however, could be relaxed if the depth estimation model is trained only on monocular sequences.

Q-3: “Which learning paradigm is better in terms of corruption robustness?” A: We find different
sensitivities between the supervised and self-supervised MDE paradigms. From the third row of Fig. 4
we can observe that the self-supervised MDE models are less sensitive to lighting changes (texture
shift) and motion blurs (local distortion), compared to the supervised models. On the other hand,
both models suffer from noise perturbation and behave robustly against lossy image compression.

Q-4: “Are simulated corruptions realistic enough to mimic real-world scenarios?” A: Yes, to
a certain extent. We verify this statement by augmenting MDE models via fine-tuning with our
corruptions. Fig. 7 (right) shows that the generated corruptions are helpful for closing the distribution
gap between the clean training set and real-world datasets [2, 8, 46], especially for the weather
contaminated data in the Foggy-Cityscapes dataset [46]. This supports that our datasets are of
high fidelity and scalability. Additionally, we show in the Appendix that the simulated corruptions,
especially for the types that are related to weather and lighting changes, are of good quality compared
to some real-world corrupted data [2, 45, 8].

Q-5: “Are MDE models robust against style changes?” A: We resort to the KITTI-S dataset (see
Tab. 3) for probing model characteristics and find that most MDE models perform worse on this
stylized dataset than on KITTI-C. We conjecture that the loss of texture cues for objects (e.g. car and
building) for KITTI-S data causes the main impediment. We also observe that MDE models with
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Figure 7: MDE robustness comparisons based on [left]: Model size (# of parameters) and [middle]:
Model complexity (FLOPs); and [right]: Corruption fidelity verification by fine-tuning MonoDepth2
[17] with our corruptions on KITTI and testing it on the official val splits of nuScenes [2] (including
its validation set and the nighttime split of the validation set) and Foggy-Cityscapes [46].

Table 3: The Depth Estimation Error (DEE) of 18 models on KITTI-S. Bold: Best in column.
Underline: 2nd best in column. Blue : Best in row. Red : 2nd best in row. Green : Worst in row.

Method mDEE Cart Digit Ink Kids Mural Oil Pencil Shadow Sketch Glass Relief Water

MonoDepth2 R18 [17] .365 .324 .434 .351 .259 .326 .328 .418 .388 .416 .566 .255 .317
MonoDepth2 nopt [17] .378 .279 .289 .589 .235 .412 .249 .290 .589 .288 .596 .259 .464

MaskOcc R18 [48] .368 .358 .356 .260 .265 .358 .375 .333 .314 .576 .554 .288 .384
DNet R18 [59] .400 .444 .381 .293 .280 .389 .336 .422 .290 .608 .553 .290 .516

CADepth [60] .406 .446 .380 .379 .250 .421 .413 .470 .317 .585 .543 .242 .401
HR-Depth [39] .324 .318 .332 .238 .228 .299 .306 .337 .316 .388 .531 .265 .331

DIFFNet [67] .310 .227 .351 .206 .206 .386 .244 .276 .289 .385 .502 .294 .360
ManyDepth [56] .323 .251 .373 .212 .205 .344 .300 .360 .343 .331 .553 .310 .300
FSREDepth [22] .293 .275 .277 .294 .221 .310 .220 .270 .301 .318 .417 .261 .352

MonoViT [66] .238 .179 .229 .252 .196 .240 .203 .237 .208 .325 .356 .205 .221
DynaDepth R18 [64] .371 .349 .358 .291 .264 .288 .293 .338 .363 .492 .534 .298 .585
DynaDepth R50 [64] .447 .502 .408 .259 .287 .398 .437 .492 .372 .595 .565 .460 .589

RA-Depth [42] .365 .304 .335 .354 .262 .340 .310 .342 .425 .372 .476 .379 .475
TriDepth R18 [6] .379 .304 .403 .256 .217 .440 .352 .480 .318 .517 .573 .249 .436

Lite-Mono Tiny [63] .280 .236 .310 .251 .221 .254 .283 .285 .232 .356 .446 .237 .252
Lite-Mono Small [63] .303 .210 .346 .218 .210 .224 .238 .374 .307 .445 .435 .295 .336
Lite-Mono Base [63] .288 .234 .313 .262 .218 .231 .241 .291 .240 .459 .476 .229 .264

Lite-Mono Large [63] .323 .208 .435 .249 .306 .348 .258 .363 .210 .458 .507 .263 .266

global awareness, e.g. Lite-Mono [63] and MonoViT [66], suffer less degradation in this case. Due to
the page limit, kindly refer to the Appendix for more detailed findings on this style-shifted dataset.

4.3 MDE Robustness Enhancement

Pertaining strategy tends to help improve MDE robustness. We observe that transferring knowl-
edge from other tasks, such as classification and segmentation, brings both strengths and weaknesses
to MDE robustness. Fig. 6 (top) highlights that MDE models pre-trained on object-centric datasets,
e.g. ImageNet, are more robust against weather and lighting changes (except for ‘snow’) and data
processing noises, which are mostly texture-shifted corruptions. Motion and sensor corruptions,
however, contain more edge and object distortions and could be eased by models without ImageNet
pre-training. More concrete results in Tab. 1 imply that the CNN-based MDE models like Mon-
oDepth2 [17] could become more shape-biased when pre-trained on object-centric datasets. More
evidence from the KITTI-S benchmark (see Tab. 3) further verifies this finding, where the stylized
data (texture-biased) are causing severe degradation for models with ImageNet pre-training.

Training on high-resolution images yields more robust MDE models. From Fig. 6 (bottom)
we observe that MDE models trained with higher resolution inputs will likely yield more robust
feature learning (relative 30% better) on noise-contaminated corruptions (Gaussian, impulse, shot,
ISO noises). Since these noise contamination types mainly affect the global pixel distribution instead
of the local ones, the CNN-based MDE models trained with high-resolution images are likely to
capture more fine-grained information to suppress the degradation caused by noises. For more details,
kindly refer to the per-corruption scores of benchmarked models in the Appendix.

Larger model size might not lead to better MDE robustness. It is often intuitive that larger
models are likely to learn more general representations and lead to better performance on unseen
data. However, we observe from Fig. 7 (left) that MDE models with more trainable parameters are
getting less robust, mainly because they are deliberately tuned towards clean distribution and thus
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Figure 8: The Per-Corruption Error scores of MonoDepth2 [17] fine-tuned with typical corruption
as data augmentations and tested on each of the corruption types. For each column (corruption) in
this figure: The darker the color, the lower the Abs Rel score (better robustness), and vice versa.

Figure 9: The Per-Severity Error Rate of eight typical MDE models [17, 39, 22, 42, 60, 67, 66, 63]
trained on the clean KITTI dataset [14] and tested on each of the corruption set in KITTI-C. For each
subfigure (corruption) in this figure: The horizontal axis denotes severity levels from one to five. The
vertical axis denotes the depth estimation error (Abs Rel). Best viewed in color.

losing generalizability. Our results suggest that a moderate-sized model with suitable corruption
suppression modules is likely to yield the best possible trade-off between robustness and efficiency.

Model complexity shows a direct correlation with MDE robustness. Based on Fig. 7 (middle) we
reveal that higher training complexity tends to lead to better robustness. This is mainly because exist-
ing MDE models with high FLOPs per parameter are either trained with high-resolution monocular
inputs or contain the computationally intensive self-attention mechanism and yield more stable depth
predictions (as analyzed in previous discussions) but cause heavier training overhead.

Training with corrupted images does not always enhance model robustness. The robust fine-
tuning study in Fig. 8 shows that overfitting the evaluation distribution (e.g. train and test on the same

9



Figure 10: Qualitative results of representative MDE models [17, 67, 42, 63, 66] under defined
corruptions in the KITTI-C benchmark. Best viewed in color and zoom-ed in for details.

corruption) may help improve MDE robustness for this specific type of corruption, as shown from the
darker-colored cell in the diagonal. However, those corruptions with severe perturbations (weather
and movement) will likely lead to sub-par performance on other tested corruptions and even hurt the
overall robustness. This indicates that sophisticated considerations, e.g. case study, must be made
before applying corruptions as data augmentations to the training stage.

5 Discussion & Conclusion

Throughout this research, we introduced the RoboDepth benchmark, a dedicated tool tailored for
probing the OoD robustness of MDE models under a range of corruptions. By crafting three distinct
datasets (KITTI-C, NYUDepth2-C, and KITTI-S) coupled with two metrics (mCE and mRR), we
offered a comprehensive landscape for gauging both indoor and outdoor MDE robustness. Our
findings underscore the imperative nature of robustness evaluation in the realm of depth estimation.
Moreover, by dissecting various influential factors – encompassing architecture, modality, pre-training
approaches, resolution, and model capacity – we provided insights to fortify model resilience against
corruptions. In essence, our endeavors serve as a compass directing the evolution of robust MDE
methodologies. As we navigate forward, our ambition is to augment the breadth and granularity of
our benchmark, aiming to encompass a wider spectrum of MDE models and corruption variants.

Potential Limitations. Despite our extensive evaluation of diverse MDE models across expansive
corruption sets, and validating the authenticity of our simulated corruptions, certain avenues remain
uncharted. Notably, our current framework does not accommodate scenarios wherein multiple
corruptions manifest simultaneously. Additionally, evolving from rigidly defined five severity levels
to a more nuanced, continuous scale might offer deeper insights into MDE robustness. These
unexplored terrains present intriguing prospects for subsequent research endeavors.
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Appendix

In this appendix, we supplement the following materials to support the findings and conclusions
drawn in the main body of this paper:

• Sec. A documents necessary information about the proposed datasets and benchmarks.

• Sec. B elaborates on more details in terms of benchmark definitions and implementations,
as well as the details of data collection, organization, licensing, and access.

• Sec. C introduces The RoboDepth Challenge, an academic competition held based on the
datasets and benchmarks constructed in this work.

• Sec. D provides the complete quantitative results of different monocular depth estimation
models in the established KITTI-C, NYUDepth2-C, and KITTI-S benchmarks.

• Sec. E contains additional qualitative results of different monocular depth estimation models
under out-of-distribution corruption scenarios.

• Sec. F acknowledges the public resources used during the course of this work.

A Datasheets

In this section, we follow Gebru et al. [13] to document necessary information about the proposed
datasets and benchmarks.

A.1 Motivation

The questions in this section are primarily intended to encourage dataset creators to clearly articulate
their reasons for creating the dataset and to promote transparency about funding interests. The latter
may be particularly relevant for datasets created for research purposes.

1. “For what purpose was the dataset created?” A: The dataset was created to facilitate relevant
research in the area of depth estimation robustness under out-of-distribution corruptions.

2. “Who created the dataset (e.g., which team, research group) and on behalf of which entity
(e.g., company, institution, organization)?” A: The dataset was created by Lingdong
Kong (National University of Singapore), Shaoyuan Xie (Huazhong University of Science
and Technology), Hanjiang Hu (Carnegie Mellon University), Lai Xing Ng (Institute for
Infocomm Research, A*STAR), Benoit Cottereau (CNRS), and Wei Tsang Ooi (National
University of Singapore).

3. “Who funded the creation of the dataset?” A: The creation of the dataset is funded by
related affiliations of the authors in this work, as listed in the above item.

4. “Any other comments?” A: N/A.

A.2 Composition

Most of the questions in this section are intended to provide dataset consumers with the information
they need to make informed decisions about using the dataset for their chosen tasks. Some of the
questions are designed to elicit information about compliance with the EU’s General Data Protection
Regulation (GDPR) or comparable regulations in other jurisdictions. Questions that apply only to
datasets that relate to people are grouped together at the end of the section. We recommend taking a
broad interpretation of whether a dataset relates to people. For example, any dataset containing text
that was written by people relates to people.

1. “What do the instances that comprise our datasets represent (e.g., documents, photos,
people, countries)?” A: The instances that comprise the dataset are mainly images captured
by camera sensors, providing visual representations of indoor and outdoor scenes observed.

2. “How many instances are there in total (of each type, if appropriate)?” A: The KITTI-C
dataset contains a total number of 62, 730 RGB images from 18 corruption types, with a
resolution of 192 × 640. The NYUDepth2-C dataset contains a total number of 39, 240
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RGB images from 15 corruption types, with a resolution of 480× 640. The KITTI-S dataset
contains a total number of 8, 364 RGB images from 12 style type, with a resolution of
192× 640. Each image in these three datasets is associated with a single-channel depth map
of the same size as the image.

3. “Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set?” A: Yes, our datasets contain all possible instances that have
been collected so far.

4. “Is there a label or target associated with each instance?” A: Yes, each instance in our
datasets is associated with a single-channel depth map of the same size as the image.

5. “Is any information missing from individual instances?” A: No.

6. “Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)?” A: Yes, the relationship between individual instances is explicit.

7. “Are there recommended data splits (e.g., training, development/validation, testing)?” A:
Yes, we provide detailed data splits for our datasets.

8. “Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)?” A: Yes, our datasets are self-contained.

9. “Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)?” A: No, all data are clearly licensed.

10. “Does the dataset contain data that, if viewed directly, might be offensive, insulting, threat-
ening, or might otherwise cause anxiety?” A: No.

11. “Any other comments?” A: N/A.

A.3 Collection Process

In addition to the goals outlined in the previous section, the questions in this section are designed to
elicit information that may help researchers and practitioners create alternative datasets with similar
characteristics. Again, questions that apply only to datasets that relate to people are grouped together
at the end of the section.

1. “How was the data associated with each instance acquired?” A: Please refer to the details
listed in Section B.

2. “What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses
or sensors, manual human curation, software programs, software APIs)?” A: Please refer
to the details listed in Section B.

3. “If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deter-
ministic, probabilistic with specific sampling probabilities)?” A: Please refer to the details
listed in Section B.

A.4 Preprocessing, Cleaning, and Labeling

The questions in this section are intended to provide dataset consumers with the information they
need to determine whether the “raw” data has been processed in ways that are compatible with their
chosen tasks. For example, text that has been converted into a “bag-of-words" is not suitable for tasks
involving word order.

1. “Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)?” A: Yes, we preprocessed and cleaned data in our datasets.

2. “Was the ‘raw’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)?” A: Yes, raw data is accessible.

3. “Is the software that was used to preprocess/clean/label the data available?” A: Yes, the
necessary software used to preprocess and clean the data is publicly available.

4. “Any other comments?” A: N/A.
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A.5 Uses

The questions in this section are intended to encourage dataset creators to reflect on tasks for which
the dataset should and should not be used. By explicitly highlighting these tasks, dataset creators can
help dataset consumers make informed decisions, thereby avoiding potential risks or harms.

1. “Has the dataset been used for any tasks already?” A: No.

2. “Is there a repository that links to any or all papers or systems that use the dataset?” A:
Yes, we provide such links in our GitHub repository.

3. “What (other) tasks could the dataset be used for?” A: The dataset could be used for
relevant perception, tracking, and planning tasks based on camera sensors.

4. “Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?” A: N/A.

5. “Are there tasks for which the dataset should not be used?” A: N/A.

6. “Any other comments?” A: N/A.

A.6 Distribution

Dataset creators should provide answers to these questions prior to distributing the dataset either
internally within the entity on behalf of which the dataset was created or externally to third parties.

1. “Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created?” A: No.

2. “How will the dataset be distributed (e.g., tarball on website, API, GitHub)?” A: Very
likely to be distributed by website, API, and GitHub repository.

3. “When will the dataset be distributed?” A: The datasets are publicly accessible.

4. “Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)?” A: Yes, the dataset is under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

5. “Have any third parties imposed IP-based or other restrictions on the data associated with
the instances?” A: No.

6. “Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances?” A: No.

7. “Any other comments?” A: N/A.

A.7 Maintenance

As with the questions in the previous section, dataset creators should provide answers to these
questions prior to distributing the dataset. The questions in this section are intended to encourage
dataset creators to plan for dataset maintenance and communicate this plan to dataset consumers.

1. “Who will be supporting/hosting/maintaining the dataset?” A: The authors of this work
serve for supporting, hosting, and maintaining the datasets.

2. “How can the owner/curator/manager of the dataset be contacted (e.g., email address)?”
A: The curators can be contacted via emails as follows:

- Lingdong Kong (lingdong@comp.nus.edu.sg);
- Shaoyuan Xie (shaoyuanxie@hust.edu.cn);
- Hanjiang Hu (hanjianghu@cmu.edu);
- Lai Xing Ng (ng_lai_xing@i2r.a-star.edu.sg);
- Benoit Cottereau (benoit.cottereau@cnrs.fr);
- Wei Tsang Ooi (ooiwt@comp.nus.edu.sg).

3. “Is there an erratum?” A: There is no explicit erratum; updates and known errors will be
specified in future versions.
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Figure A: The 18 corruption types from three main categories defined in the RoboDepth benchmark.
Examples shown are from the proposed KITTI-C benchmark.

4. “Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?” A: No, for the current version. Future updates (if any) will be posted on the
dataset website.

5. “Will older versions of the dataset continue to be supported/hosted/maintained?” A: Yes.
This is the first version of the release; future updates will be posted and older versions will
be replaced.

6. “If others want to extend/augment/build on/contribute to the dataset, is there a mechanism
for them to do so?” A: Yes, we provide detailed instructions for future extensions.

7. “Any other comments?” A: N/A.

B Datasets and Benchmarks

In this section, we first provide the detailed definitions of different corruption types in the RoboDepth
benchmark (Sec. B.1), we then elaborate on the data collection process (Sec. B.2), the license of our
datasets (Sec. B.3), and the procedures for downloading these datasets (Sec. B.4). Lastly, we attach
the summary of technical contributions and implementation details for the benchmarked monocular
depth estimation methods (Sec. B.5). An overview of the 18 corruption types is shown in Fig. A. The
histogram of pixel values under each corruption is shown in Fig. B.

B.1 Corruption Definition

• Brightness refers to the level of lightness or darkness in an image. It is affected by the
intensity and color of the light source, as well as the reflectivity of the objects in the scene.
Images captured under different lighting conditions may have varying levels of brightness,
which can affect the visibility and depth estimation quality.

• Dark images can result from low-lighting conditions or underexposure. These images
can have low contrast and low visibility, making it difficult to distinguish the objects and
backgrounds in the scene. Dark images can also suffer from increased electronic noise and
color distortion.

• Fog is a type of atmospheric scattering that can reduce the contrast and visibility of objects
and backgrounds in a scene. It occurs when water droplets or ice crystals in the air scatter
and absorb light, leading to a hazy or blurry appearance.

• Frost forms when lenses or windows are coated with ice crystals, leading to image distortion
and inaccuracies in depth estimation. Frost can be modeled as a convolution of the image
with a non-uniform kernel that depends on the shape and size of the ice crystals. It can affect
the accuracy of depth estimation by reducing the contrast of the image and distorting the
edges of objects.
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Figure B: The histogram of pixel values under each of the 18 corruption types in KITTI-C. Note that
the horizontal axis of each subfigure is scaled, shifted, and centered to fit the window. The numerical
range is at the scale of 1e6. Zoomed-in for more details.

• Snow is a visually obstructive form of precipitation that can obscure objects and backgrounds
in the image and make it difficult to estimate accurate depth. It can be modeled as a random
distribution of white pixels with a high probability of occurrence. Snow can affect the
accuracy of depth estimation by introducing errors in the intensity values of pixels and
obscuring the edges of objects.

• Contrast is the difference in luminance or color between different parts of an image. High-
contrast images have large differences between light and dark areas, while low-contrast
images have more similar levels of brightness. Contrast can be affected by lighting conditions
and the color and texture of the objects and backgrounds in the scene.
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Figure C: Illustrative examples of each corruption type across the five severity levels (level 1 is the
lightest and level 5 is the hardest) in the KITTI-C benchmark. Best viewed in color. Zoomed-in for
more details.

• Defocus blur occurs when an image is out of focus, causing objects and backgrounds in the
image to appear blurred. It can be modeled as a convolution of the image with a Gaussian
kernel, where the blur size depends on the distance between the camera and the object.
Defocus blur can affect the accuracy of depth estimation by reducing the contrast of the
image and distorting the edges of objects.

• Glass blur is a type of image distortion that appears with glass windows or panels. It can
lead to inaccuracies in depth estimation due to the opaque and irregular nature of the glass.
Glass blur can be modeled as a convolution of the image with a non-uniform kernel that
depends on the shape and thickness of the glass.

• Motion blur appears when a camera is moving quickly, causing objects and backgrounds in
the image to appear blurred. It can be modeled as a convolution of the image with a motion
kernel that depends on the direction and speed of the camera movement.

• Zoom blur occurs when a camera moves toward an object rapidly, causing the image to
appear blurred. It can be modeled as a convolution of the image with a non-uniform kernel
that depends on the zoom factor and the distance between the camera and the object. Zoom
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blur can affect the accuracy of depth estimation by distorting the edges of objects and
reducing the contrast of the image.

• Elastic transformations are spatial transformations that deform small regions of an image
while preserving the overall structure. They are commonly used in data augmentation
techniques for deep learning models to increase the robustness of the model to deformations
and variations in the input images.

• Color quantization is the process of reducing the number of colors in an image while
preserving its overall visual appearance. This technique is commonly used to reduce the
storage and processing requirements for digital images. However, this process can result in
a loss of detail and color accuracy in the image, particularly in areas with complex color
gradients or patterns.

• Gaussian noise is a type of noise that appears in low-light conditions and can cause random
fluctuations in image intensity. It is modeled as additive white Gaussian noise and has a
normal distribution with zero mean and a standard deviation that represents the noise level.
Gaussian noise can affect the accuracy of depth estimation by reducing the contrast of the
image and introducing errors in intensity values.

• Impulse noise is a type of noise that can be caused by bit errors and appears as isolated
pixels with incorrect intensity values. It can be modeled as a random distribution of black
and white pixels with a low probability of occurrence. It can affect the accuracy of depth
estimation by introducing errors in the intensity values of pixels and distorting the image.

• Shot noise, also called Poisson noise, is electronic noise caused by the discrete nature of
light itself. It occurs when photons hit a sensor and is modeled as a Poisson distribution.
Shot noise can lead to irregularities in image intensity and affect the accuracy of depth
estimation, especially in low-light conditions.

• ISO noise is a type of noise that can appear in digital images captured with high ISO settings.
ISO refers to the sensitivity of the camera’s sensor to light, with higher ISO values resulting
in brighter images. However, increasing the ISO setting can also introduce additional
electronic noise into the image, leading to a grainy or speckled appearance. This type of
noise can be particularly challenging to remove without losing important image details.

• Pixelation occurs when an image is displayed or printed at a low resolution, resulting in
individual pixels becoming visible. This can lead to a loss of detail and clarity in the image,
bringing extra challenges for depth estimation models.

• JPEG is a lossy image compression format commonly used for storing and sharing digital
images. JPEG compression reduces the file size of an image by removing some of the image
data that is deemed less important or less noticeable to the human eye. Such compression
can result in visible artifacts, such as blockiness or blurring, in the compressed image.

B.2 Corruption Simulation

The corruption simulation tools are from two resources. We use the imagecorruptions tool1 from
Michaelis et al. [40] to simulate ‘brightness’, ‘fog’, ‘frost’, ‘snow’, ‘contrast’, ‘defocus blur’, ‘glass
blur’, ‘motion blur’, ‘zoom blur’, ‘elastic transform’, ‘Gaussian noise’, ‘impulse noise’, ‘shot noise’,
‘pixelate’, and ‘JPEG compression’. Additionally, We use the 3DCC tool2 by Kar et al. [24] to
simulate ‘dark’, ‘color quantization’, and ‘ISO noise’.

We follow Hendrycks and Dietterich [18] to split each corruption simulation into five severity
levels for KITTI-C and four severity levels for NYUDepth2-C. The split strategy is the same as the
ImageNet-C paper [18]. Illustrative examples of different severity levels in KITTI-C are shown in
Fig. C. Illustrative examples of different severity levels in NYUDepth2-C are shown in Fig. D, Fig. E,
and Fig. F.

We provide a comprehensive corruption simulation toolkit that can be used to generate the defined
18 corruption types on any image dataset. This toolkit is publicly accessible at: https://github.
com/ldkong1205/RoboDepth/blob/main/docs/CREATE.md. Refer to this page for more details
and the code implementations of corruption simulations.

1More details at: https://github.com/bethgelab/imagecorruptions.
2More details at: https://github.com/EPFL-VILAB/3DCommonCorruptions.
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Figure D: Illustrative examples of each of the five corruption types (‘brightness’, ‘dark’, ‘contrast’,
‘defocus blur’, and ‘glass blur’) across four severity levels (level 1 is the lightest and level 4 is the
hardest) in the NYUDepth2-C benchmark. Best viewed in color. Zoomed-in for more details.

To validate the simulated corruptions are of high fidelity, especially for the types that are related
to weather and lighting changes, we conduct a study on the pixel distributions. Assuming that a
corruption simulation is realistic enough to reflect real-world situations, the distribution of a corrupted
“clean" set should be similar to that of the real-world corruption set. We validate this using ACDC
[45], nuScenes [2], Cityscapes [8], and Foggy-Cityscapes [46], since these datasets contain: i) real-
world corruption data; and ii) clean data collected by the same sensor types from the same physical
locations.

We simulate corruptions using “clean" images and compare the distribution patterns with their
corresponding real-world corrupted data. We do this to ensure that there is no extra distribution
shift from aspects like sensor difference (e.g. FOVs and resolutions) and location discrepancy (e.g.
environmental and semantic changes). The results are shown in this paper: https://github.com/
ldkong1205/RoboDepth/blob/main/docs/VALIDITY.md.

What is more, we follow Geirhos et al. [15] and use AdaIn [20] to generate stylized images in KITTI-S.
AdaIn is a classical style transfer model that takes a pair of two images (a reference image and a style
image) as input and outputs a stylized image. The checkpoint of this style transfer model can be down-
loaded at: https://github.com/naoto0804/pytorch-AdaIN. The detailed procedures for gen-
erating stylized images are attached at: https://github.com/rgeirhos/Stylized-ImageNet.
Illustrative examples of different styles in KITTI-S are shown in Fig. G.

B.3 License

Our datasets and benchmark toolkit are released under the Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0) license3, under the following terms:

3More details at: https://creativecommons.org/licenses/by-nc-sa/4.0.
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Figure E: Illustrative examples of each of the five corruption types (‘motion blur’, ‘zoom blur’,
‘elastic transform’, ‘color quantization’, and ‘Gaussian noise’) across four severity levels (level 1
is the lightest and level 4 is the hardest) in the NYUDepth2-C benchmark. Best viewed in color.
Zoomed-in for more details.

• Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• NonCommercial — You may not use the material for commercial purposes.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

B.4 Download

Our datasets and benchmark toolkit are publicly accessible. We provide detailed procedures for
accessing and downloading them. Please refer to the following pages for more details:

• GitHub Repo: https://github.com/ldkong1205/RoboDepth.

• Installation & Environment: https://github.com/ldkong1205/RoboDepth/blob/
main/docs/INSTALL.md.

• Data Preparation: https://github.com/ldkong1205/RoboDepth/blob/main/docs/
DATA_PREPARE.md.

• Benchmark Details: https://github.com/ldkong1205/RoboDepth#benchmark.

• Corruption Simulation Tool: https://github.com/ldkong1205/RoboDepth/blob/
main/docs/CREATE.md.
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Figure F: Illustrative examples of each of the five corruption types (‘impulse noise’, ‘shot noise’,
‘ISO noise’, ‘pixelate’, and ‘JPEG compression’) across four severity levels (level 1 is the lightest
and level 4 is the hardest) in the NYUDepth2-C benchmark. Best viewed in color. Zoomed-in for
more details.

B.5 Benchmarked Methods

• MonoDepth2 [17]: A seminar work in the field of MDE which proposed a series of
improvements on top of prior works, including a per-pixel minimum re-projection loss, an
auto-masking strategy, and a multi-scale estimation framework. We evaluate three versions
of this model, under the Mono, Stereo, and Mono+Stereo settings, respectively. We also test
this model with different backbones (ResNet-18 and ResNet-50) and pretraining strategies.
The code is accessible at: https://github.com/nianticlabs/monodepth2.

• DepthHints [57]: A stereo model that makes use of depth hints, which are small but
informative cues about the scenes and can be extracted from the image itself. These hints are
then used to guide the network during training, allowing the model to learn a better depth
estimation representation without requiring any explicit ground truth depth information. The
code is accessible at: https://github.com/nianticlabs/depth-hints.

• MaskOcc [48]: A monocular model takes into account occlusion in depth estimation. The
occlusions occur when objects in the scene block each other from view. The proposed
method masks out occluded regions in the input image during training, allowing the model
to focus on learning from only the visible parts of the scene. This approach results in more
accurate depth estimation, especially in regions with occlusion. The code is accessible at:
https://github.com/schelv/monodepth2.

• DNet [59]: A monocular model consists of a coarse-to-fine depth estimation pipeline,
where a deep neural network is trained to predict absolute depth maps from a single input
image. This model is built upon the MonoDepth2 baseline. The code is accessible at:
https://github.com/TJ-IPLab/DNet.
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Figure G: Illustrative examples of 12 different styles in the KITTI-S benchmark. Best viewed in color.
Zoomed-in for more details.

• CADepth [60]: A new network architecture that employs attention mechanisms to selec-
tively attend to certain image regions, which helps to improve the accuracy of the depth esti-
mation. The code is accessible at: https://github.com/kamiLight/CADepth-master.

• HR-Depth [39]: A new depth estimation model that can generate high-resolution depth
maps from a single input image. The main contribution of the work is the introduction
of a hierarchical residual pyramid network architecture that leverages multi-scale features
to produce accurate depth estimates. The code is accessible at: https://github.com/
shawLyu/HR-Depth.

• DIFFNet [67]: A monocular model based on a deep neural network architecture that uses
an internal feature fusion mechanism to combine information from different layers of the
network. Such a mechanism used in the network helps to capture global and local features of
the input images, which improves the accuracy of the depth estimates. The code is accessible
at: https://github.com/brandleyzhou/DIFFNet.

• ManyDepth [56]: A multi-monocular model that leverages temporal consistency between
adjacent frames in a video sequence to estimate accurate depth maps. The proposed
framework consists of a network that takes as input multiple frames of a video sequence
and outputs a corresponding depth map for each frame. The code is accessible at: https:
//github.com/nianticlabs/manydepth.

• FSRE-Depth [22]: A monocular model consists of a two-stage network architecture that
enhances the representation of the input image by incorporating fine-grained semantic
information. The first stage of the network uses a semantic segmentation module to extract
semantic information from the input image. The second stage of the network utilizes a
depth refinement module to refine the initial depth prediction and generate the final depth
estimation. The code is accessible at: https://github.com/hyBlue/FSRE-Depth.

• MonoViT [66]: A monocular model that consists of a novel training scheme that leverages
the spatial and semantic representations learned by the Vision Transformers to predict depth
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from a single RGB image. The code is accessible at: https://github.com/zxcqlf/
MonoViT.

• DynaDepth [64]: A monocular model that incorporates the motion dynamics data from
an inertial measurement unit (IMU) to improve the accuracy and robustness of the depth
estimation in challenging conditions. The proposed method is able to estimate the scale
of the scene, which is a major challenge in monocular depth estimation, and is also more
robust to illumination changes and dynamic scenes. The code is accessible at: https:
//github.com/SenZHANG-GitHub/ekf-imu-depth.

• RA-Depth [42]: A monocular model that can adaptively adjust the output resolution based
on the input image resolution. This is achieved through a two-stage architecture that first
generates a coarse depth map and then refines it to the desired output resolution using
a depth super-resolution network. The code is accessible at: https://github.com/
hmhemu/RA-Depth.

• TriDepth [6]: A monocular model with a new depth estimation loss function that incorpo-
rates a scale-invariant gradient term. This allows the model to learn to predict sharper edges
and finer details in the depth map, which is critical for accurate depth estimation. The code
is accessible at: https://github.com/xingyuuchen/tri-depth.

• Lite-Mono [63]: A monocular model with a lightweight convolution backbone and
transformer architecture for self-supervised monocular depth estimation. The authors
propose a hybrid approach that combines the strengths of both CNNs and transform-
ers to achieve state-of-the-art performance on several benchmarks while using signif-
icantly fewer parameters compared to existing methods. The code is accessible at:
https://github.com/noahzn/Lite-Mono.

• BTS [31]: A monocular model involves detecting and utilizing local planar structures in
the image at multiple scales to improve depth estimation accuracy. Specifically, the authors
propose a novel deep neural network architecture that incorporates a local planar guidance
module at each scale of a feature pyramid. This module predicts a set of local planar patches
in the image and uses them to provide guidance for the depth estimation module. The code
is accessible at: https://github.com/cleinc/bts.

• AdaBins [1]: A monocular model with an adaptive binning scheme that dynamically adjusts
the bin sizes of the network to better capture the distribution of depth values in the scene.
In traditional binning schemes, fixed bin sizes are used, which can lead to under or over-
representation of certain depth values. AdaBins overcomes this limitation by adapting the
bin sizes based on the distribution of depth values in the input image. The code is accessible
at: https://github.com/shariqfarooq123/AdaBins.

• DPT [43]: A monocular model that leverages Vision Transformers in place of CNNs
as the backbone for dense prediction tasks including MDE. Several new techniques are
proposed to facilitate dense predictions using self-attention. The code is accessible at:
https://github.com/isl-org/DPT.

• SimIPU [34]: A multi-modal contrastive learning framework consists of a simple pertaining
strategy that leverages the spatial perception module to learn a spatial-aware representation
from images and point clouds. The code is accessible at: https://github.com/zhyever/
SimIPU.

• DepthFormer [35]: A monocular model that is tailored to facilitate the long-range correla-
tion for accurate MDE. The backbone is adopted from Vision Transformers, where a hierar-
chical aggregation and heterogeneous interaction module is proposed to enhance the features
via element-wise interaction. The code is accessible at: https://github.com/zhyever/
Monocular-Depth-Estimation-Toolbox/tree/main/configs/depthformer.

B.6 Depth Estimation Metrics

In our benchmark, we adopt the conventional reporting of Abs Rel (error rate) and δ1 (accuracy) for
measuring the depth estimation performance.
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Figure H: We successfully hosted The RoboDepth Challenge [27] at ICRA 2023, which is an academic
competition established based on the datasets and benchmarking toolkit proposed in this work. More
details of this competition can be found at: https://robodepth.github.io.

(a) Track 1 (b) Track 2

Figure I: The submission and scoring statistics for the two tracks in the RoboDepth competition.

Abs Rel measures the absolute relative difference between the ground-truth (gt) and the prediction
(pred), as calculated via the following equation:

Abs Rel =
1

|D|
∑

pred∈D

|gt− pred|
gt

. (3)

The δ metric is the depth estimation accuracy given the threshold:

δt =
1

|D|
|{ pred ∈ D|max (

gt

pred
,
pred

gt
) < 1.25t}| × 100% , (4)

where δ1 = δ < 1.25, δ2 = δ < 1.252, δ3 = δ < 1.253 are the three conventionally used accuracy
scores in prior works.

We combine Abs Rel and δ1, the two main measures, into a unified metric as DEE = Abs Rel−δ1+1
2 ,

which is constantly used as the indicator of depth estimation error in our benchmark.

C The RoboDepth Challenge

In this section, we introduce The RoboDepth Challenge – an academic competition that is established
based on the datasets and benchmarks proposed in this work.

C.1 Competition Overview

The RoboDepth Challenge [27] aims to facilitate relevant research in the area of robust monocular
depth estimation. It is hosted by the 40th IEEE Conference on Robotics and Automation (ICRA
2023). More materials on this competition are provided in the following links:
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Table A: The top-ten performing teams on the leaderboard of Track 1 in the RoboDepth competition.

Team Name Abs Rel ↓ Sq Rel ↓ RMSE ↓ log RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

OpenSpaceAI 0.121 0.919 4.981 0.200 0.861 0.953 0.980
USTC-IAT-United 0.123 0.932 4.873 0.202 0.861 0.954 0.979

YYQ 0.123 0.885 4.983 0.201 0.848 0.950 0.979
zs_dlut 0.124 0.899 4.938 0.203 0.852 0.950 0.979
UMCV 0.124 0.845 4.883 0.202 0.847 0.950 0.980

THU_ZS 0.124 0.892 4.928 0.203 0.851 0.951 0.980
THU_Chen 0.125 0.865 4.924 0.203 0.846 0.950 0.980

seesee 0.126 0.990 4.979 0.206 0.857 0.952 0.978
namename 0.126 0.994 4.950 0.204 0.860 0.953 0.979

USTCxNetEaseFuxi 0.129 0.973 5.100 0.208 0.846 0.948 0.978

MonoDepth2 [17] 0.221 1.988 7.117 0.312 0.654 0.859 0.938

• Competition Page: https://robodepth.github.io.
• Competition Report: https://arxiv.org/abs/2307.15061.
• Toolkit: https://github.com/ldkong1205/RoboDepth/tree/main/competition.
• Workshop Recordings: https://www.youtube.com/watch?v=mYhdTGiIGCY&list=
PLxxrIfcH-qBGZ6x_e1AT2_YnAxiHIKtkB.

• Server for Track 1: https://codalab.lisn.upsaclay.fr/competitions/9418.
• Server for Track 2: https://codalab.lisn.upsaclay.fr/competitions/9821.

C.2 Statistics

The RoboDepth Challenge started on January 1, 2023, and ended on May 25, 2023. There are two
tracks in this competition: a self-supervised learning track for robust outdoor depth estimation and a
supervised learning track for robust indoor depth estimation.

This competition attracted a lot of participants from around the world. Specifically, 226 teams
registered at our evaluation servers. Among them, 66 teams made a total number of 1137 valid
submissions. The detailed statistics in terms of submission and scoring are shown in Fig. I. The
top-three performing teams of Track 1 achieved the Abs Rel scores of 0.121, 0.123, and 0.123,
respectively. The top-three performing teams of Track 2 achieved the a1 scores of 0.940, 0.928, and
0.898. More results are attached to our evaluation servers and competition homepage.

For more details, please refer to our competition page at: https://github.com/ldkong1205/
RoboDepth/tree/main/competition.

C.3 Workshop

We hosted The RoboDepth Workshop at ICRA on June 02, 2023. The video recordings of this
workshop are publicly available at: https://www.youtube.com/watch?v=mYhdTGiIGCY&list=
PLxxrIfcH-qBGZ6x_e1AT2_YnAxiHIKtkB.

The slides of this workshop can be downloaded from https://ldkong.com/talks/icra23_
robodepth.pdf.

C.4 Leaderboards

The results of the top-ten teams from each of the two tracks are shown in Table A and Table B,
respectively. For more details, please refer to our competition page at: https://github.com/
ldkong1205/RoboDepth/tree/main/competition.

D Additional Quantitative Result

In this section, we provide the complete results of different monocular depth estimation models in the
established KITTI-C, NYUDepth2-C, and KITTI-S benchmarks.
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Table B: The top-ten performing teams on the leaderboard of Track 2 in the RoboDepth competition.

Team Name Abs Rel ↓ Sq Rel ↓ RMSE ↓ log RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

USTCxNetEaseFuxi 0.088 0.046 0.347 0.115 0.940 0.985 0.996
OpenSpaceAI 0.095 0.045 0.341 0.117 0.928 0.990 0.998

GANCV 0.104 0.060 0.391 0.131 0.898 0.982 0.995
shinonomei 0.123 0.080 0.450 0.153 0.861 0.975 0.993

YYQ 0.125 0.085 0.470 0.159 0.851 0.970 0.989
Hyq 0.124 0.089 0.474 0.158 0.851 0.967 0.990

DepthSquad 0.137 0.085 0.462 0.158 0.845 0.976 0.996
kinda 0.146 0.095 0.480 0.165 0.831 0.973 0.993
dx3 0.131 0.095 0.507 0.170 0.825 0.963 0.989
uuht 0.150 0.100 0.492 0.168 0.822 0.973 0.993

DepthFormer [35] 0.190 0.179 0.717 0.248 0.655 0.898 0.970

D.1 KITTI-C

The clean performances of 32 MDE models under the standard KITTI Eigen split are shown in
Table C.

The per-corruption DEE scores, CE scores, and RR scores of 32 MDE models in the KITTI-C
benchmark are shown in Table D, Table E, and Table F, respectively.

D.2 NYUDepth2-C

The per-corruption DEE scores, CE scores, and RR scores of 10 MDE models in the NYUDepth2-C
benchmark are shown in Table G, Table H, and Table I, respectively.

D.3 KITTI-S

The per-corruption DEE scores of 32 MDE models in the KITTI-S benchmark are shown in Table J.

E Additional Qualitative Result

In this section, we provide additional qualitative results of different monocular depth estimation
models under out-of-distribution corruption scenarios.

Specifically, the qualitative results of MonoDepth2 [17], Lite-Mono [63], and MonoViT [66] under
each of the 18 corruption types across five severity levels in our benchmark are shown in Fig. J,
Fig. K, and Fig. L, respectively.

The qualitative results of MonoDepth2 [17], DIFFNet [67], RA-Depth [42], Lite-Mono [63], and
MonoViT [66], under each of the 18 corruption types in our benchmark are shown in Fig. M and
Fig. N.

The qualitative results of MonoDepth2 [17], DIFFNet [67], RA-Depth [42], Lite-Mono [63], and
MonoViT [66], under each of the 12 styles in our benchmark are shown in Fig. O.
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Figure J: Qualitative results of MonoDepth2 [17] under each corruption type across five severity
levels. We show examples from the third level in the first column. The lighter regions correspond to
near distances and vice versa. Best viewed in color. Zoomed-in for more details.
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Figure K: Qualitative results of Lite-Mono [63] under each corruption type across five severity levels.
We show examples from the third level in the first column. The lighter regions correspond to near
distances and vice versa. Best viewed in color. Zoomed-in for more details.
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Figure L: Qualitative results of MonoViT [66] under each corruption type across five severity levels.
We show examples from the third level in the first column. The lighter regions correspond to near
distances and vice versa. Best viewed in color. Zoomed-in for more details.
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Figure M: Qualitative results of five monocular depth estimation models in the KITTI-C benchmark,
including MonoDepth2 [17], DIFFNet [67], RA-Depth [42], Lite-Mono [63], and MonoViT [66].
The lighter regions correspond to near distances and vice versa. Best viewed in color. Zoomed-in for
more details.
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Figure N: Qualitative results of five monocular depth estimation models in the KITTI-C benchmark,
including MonoDepth2 [17], DIFFNet [67], RA-Depth [42], Lite-Mono [63], and MonoViT [66].
The lighter regions correspond to near distances and vice versa. Best viewed in color. Zoomed-in for
more details.
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Figure O: Qualitative results of five monocular depth estimation models in the KITTI-S benchmark,
including MonoDepth2 [17], DIFFNet [67], RA-Depth [42], Lite-Mono [63], and MonoViT [66].
The lighter regions correspond to near distances and vice versa. Best viewed in color. Zoomed-in for
more details.
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F Public Resources Used

In this section, we acknowledge the use of public resources, during the course of this work:

• KITTI Vision Benchmark4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0

• NYU Depth Dataset V25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• nuScenes6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• nuScenes-devkit7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0

• Cityscapes8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom Cityscapes License

• Foggy-Cityscapes9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom Foggy-Cityscapes License

• ACDC10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom ACDC License

• SeasonDepth Benchmark Toolkit11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

• Make3D12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom Make3D License

• MonoDepth213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom MonoDepth2 License

• DepthHints14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom DepthHints License

• MaskOcc15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom MonoDepth2 License

• DNet16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom MonoDepth2 License

• CADepth17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• HR-Depth18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• DIFFNet19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• ManyDepth20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Custom ManyDepth License

• FSRE-Depth21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

• MonoViT22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License

• DynaDepth23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• RA-Depth24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown

• TriDepth25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License v3.0

• Lite-Mono26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Unknown
4https://www.cvlibs.net/datasets/kitti.
5https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html.
6https://www.nuscenes.org/nuscenes.
7https://github.com/nutonomy/nuscenes-devkit.
8https://github.com/mcordts/cityscapesScripts.
9https://github.com/sakaridis/fog_simulation-SFSU_synthetic.

10https://acdc.vision.ee.ethz.ch.
11https://github.com/SeasonDepth/SeasonDepth.
12http://make3d.cs.cornell.edu/data.html.
13https://github.com/nianticlabs/monodepth2.
14https://github.com/nianticlabs/depth-hints.
15https://github.com/schelv/monodepth2.
16https://github.com/TJ-IPLab/DNet.
17https://github.com/kamiLight/CADepth-master.
18https://github.com/shawLyu/HR-Depth.
19https://github.com/brandleyzhou/DIFFNet.
20https://github.com/nianticlabs/manydepth.
21https://github.com/hyBlue/FSRE-Depth.
22https://github.com/zxcqlf/MonoViT.
23https://github.com/SenZHANG-GitHub/ekf-imu-depth.
24https://github.com/hmhemu/RA-Depth.
25https://github.com/xingyuuchen/tri-depth.
26https://github.com/noahzn/Lite-Mono.
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• Monocular-Depth-Estimation-Toolbox27 . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• BTS28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License v3.0
• AdaBins29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU General Public License v3.0
• DPT30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• SimIPU31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• DepthFormer32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• ImageCorruptions33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• 3DCC34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Attribution-NC 4.0 International
• ImageNet-C35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• StylizeDatasets36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .MIT License
• PyTorch-AdaIN37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License

27https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox.
28https://github.com/cleinc/bts.
29https://github.com/shariqfarooq123/AdaBins.
30https://github.com/isl-org/DPT.
31https://github.com/zhyever/SimIPU.
32https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox/tree/main/configs/

depthformer.
33https://github.com/bethgelab/imagecorruptions.
34https://github.com/EPFL-VILAB/3DCommonCorruptions.
35https://github.com/hendrycks/robustness.
36https://github.com/bethgelab/stylize-datasets.
37https://github.com/naoto0804/pytorch-AdaIN.
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