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Abstract

In this paper, we introduce an SE(3) diffusion model-based point cloud registration
framework for 6D object pose estimation in real-world scenarios. Our approach
formulates the 3D registration task as a denoising diffusion process, which pro-
gressively refines the pose of the source point cloud to obtain a precise alignment
with the model point cloud. Training our framework involves two operations: An
SE(3) diffusion process and an SE(3) reverse process. The SE(3) diffusion process
gradually perturbs the optimal rigid transformation of a pair of point clouds by
continuously injecting noise (perturbation transformation). By contrast, the SE(3)
reverse process focuses on learning a denoising network that refines the noisy trans-
formation step-by-step, bringing it closer to the optimal transformation for accurate
pose estimation. Unlike standard diffusion models used in linear Euclidean spaces,
our diffusion model operates on the SE(3) manifold. This requires exploiting
the linear Lie algebra se(3) associated with SE(3) to constrain the transformation
transitions during the diffusion and reverse processes. Additionally, to effectively
train our denoising network, we derive a registration-specific variational lower
bound as the optimization objective for model learning. Furthermore, we show
that our denoising network can be constructed with a surrogate registration model,
making our approach applicable to different deep registration networks. Extensive
experiments demonstrate that our diffusion registration framework presents out-
standing pose estimation performance on the real-world TUD-L, LINEMOD, and
Occluded-LINEMOD datasets. The code is available at https://github.com/Jiang-
HB/DiffusionReg.

1 Introduction
Accurately estimating the 6D pose of an object, comprising both its spatial position and orientation, is
a critical task in the field of computer vision, and has been extensively applied in various domains such
as robotics grasping [10, 52, 68], augmented reality [32, 33], and autonomous navigation [7, 16, 58].
While substantial efforts have been dedicated to developing methods for 6D pose estimation based on
RGB or RGB-D data [26, 42, 41, 52, 38, 63, 49], the advancements of 3D sensors (such as Kinect and
LiDAR) and 3D registration techniques has promoted the emergence of point cloud registration-based
pose estimation as a promising direction.
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Nevertheless, the state-of-the-art methods for object-level 3D registration [44, 62, 15] primarily
focus on synthetic data and struggle to yield precise registration on real-world 6D pose estimation
datasets such as TUD-L [20], LINEMOD [18], and Occluded-LINEMOD [6]. Unlike the controlled
geometric structures, manually defined transformations, and artificial partial overlap present in
synthetic data, real-world pose estimation datasets present significant challenges, including large
rotations and translations, natural noise interference, and severe occlusions, considerably exacerbating
the registration difficulty. Prior attempts to tackling these challenges include [11], which introduces a
general match normalization layer to regularize the feature distribution of the source and model point
clouds thus facilitating feature matching, and [60, 48], which design RANSAC-based outlier rejection
strategy to enhance the registration robustness. While these initial attempts constitute significant
steps towards making object-level point cloud registration practical, much work remains to be done
to fully address all the aforementioned real-world challenges.

In this paper, inspired by the remarkable success of diffusion models in generative AI [19, 45, 46, 47],
we propose to adapt them to the 3D registration field, and introduce an SE(3) diffusion model-based
registration method for robust 6D object pose estimation in the real world. Our approach formulates
3D registration as a denoising diffusion process in SE(3) (special Euclidean group), aiming to
progressively refine the pose of the source point cloud to achieve a precise alignment with the model
point cloud. Training our model then involves two key operations: An SE(3) diffusion process and an
SE(3) reverse process. The SE(3) diffusion process progressively converts the optimal transformation
between the source and model point clouds into a noise one by continuously injecting perturbation
transformations. Conversely, the SE(3) reverse process learns a denoising network to gradually refine
the noise transformation to the optimal one. Our diffusion model operates on the SE(3) manifold,
which poses the challenge of extending the diffusion/reverse formulas from linear Euclidean space to
a nonlinear manifold. To address this challenge, we exploit the linear Lie algebra se(3) associated
with SE(3) to conduct linear diffusion/reverse computations and map the se(3) results to SE(3) to
obtain the desired diffused/reverse transformations.

To effectively train our denoising network, we exploit a Bayesian formalism and derive a registration-
specific variational lower bound as optimization objective for model optimization. Furthermore, we
reformulate our denoising network with a surrogate registration model, which makes our approach
applicable to different deep registration methods such as [54, 62]. During the inference stage, the
learned denoising network progressively refines an identity transformation to approach the optimal
one, given the source and model point clouds as conditioning signals.

Compared to previous registration methods, our diffusion registration framework offers the following
two advantages. First, the diffusion process generates a diverse set of poses for the source point cloud,
allowing for more comprehensive model training. This increased pose diversity facilitates the model’s
ability to handle a wider range of rotation/translation and improves its generalization capabilities.
Second, by incorporating the Bayesian posterior in the reverse process, our approach effectively
guides the update of the source point cloud pose at each reverse step. This guidance mitigates the risk
of getting trapped in local optima, leading to more robust and accurate pose estimation results. Our
empirical results provide substantial evidence supporting these two advantages.

To summarize, our main contributions are as follows: (i) We introduce a novel SE(3) diffusion
model-based 3D registration framework for robust 6D object pose estimation, where the optimal
transformation is estimated via a progressive denoising process. (ii) To train our denoising network,
we follow a Bayesian approach and establish a 3D registration-specific variational lower bound as
optimization objective for our SE(3) diffusion model. Furthermore, we reformulate the denoising
network with a surrogate registration model, enabling the integration of different deep registration
models into our framework. (iii) To the best of our knowledge, we are the first to successfully adapt
the diffusion model from linear Euclidean space to the SE(3) point cloud registration task for 6D
object pose estimation. Our extensive experiments on real-world datasets, including TUD-L [20],
LINEMOD [18] and Occluded-LINEMOD [6], confirm the effectiveness of our framework.

2 Related Work
Point Cloud Registration. Point cloud registration aims to estimate the rigid transformation between
a pair of point clouds. Existing methods can be roughly divided into optimization-based techniques
and deep learning-based ones. Iterative Closest Point (ICP) [4] alternately searches for the closest
correspondences and estimates transformation until convergence. Go-ICP [61] uses the branch-
and-bound algorithm to improve the robustness of ICP to initialization. Robust ICP [64] designs a
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Figure 1: Probabilistic graphical model of our SE(3) diffusion model-based registration framework.

Welsch’s function-based robust metric to obtain an outlier-robust alignment evaluation for optimiza-
tion. Sparse ICP [5] reformulates ICP using sparsity-inducing norms. Many other ICP variants have
been proposed, such as[8, 43, 14, 2, 17], exhibiting promising registration performance. Nevertheless,
the current main research effort focuses on deep learning models. In this context, DCP [54] constructs
pseudo correspondences for SVD-based transformation estimation using deep feature similarity.
PRNet [55] leverages keypoint identification and Gumbel softmax for establishing more reliable
correspondences. PointNetLK [1] and FMR [21] introduce the Lucas & Kanada (LK) algorithm [3]
and inverse compositional (IC) algorithm [3] into deep models for transformation refinement via
feature alignment. CEMNet [23] uses a planning-based cross-entropy method for transformation
optimization. RPMNet [62], RGM [15] and RIENet [44] leverage Sinkhorn optimization, neighbor-
hood structure consistency, and graph matching, respectively, for robust outlier removal. Many other
deep registration models such as [28, 9, 36, 30, 29, 67] have been developed and achieve impressive
registration performance. However, these registration models mainly focus on synthetic datasets,
such as ModelNet40 [56]. As shown in [11], they still yield limited precision on real-world 6D object
pose estimation datasets such as TUD-L [20], LINEMOD [18], and Occluded-LINEMOD [6].

6D Object Pose Estimation. Estimating the 6D pose (orientation and position) of objects has gained
increasing attention in recent years. Early approaches directly estimated object pose from extracted
image features through regression or classification. PoseCNN [57] decouples 6D pose estimation
into center-based translation regression and quaternion-based rotation regression. SSD-6D [24]
extends the single-shot object detector to cover the full 6D object space for pose inference. Trabelsi
et al. [51] propose a multi-attentional network for iterative pose refinement using the appearance
and flow information. DeepIM [31] and LatentFusion [37] learn pose estimation by minimizing
the error between the rendered model and the observation. More recent research has focused on
a two-stage estimation pipeline, where 2D keypoints are extracted to solve for 6D pose using the
PnP algorithm [13]. Rad et al. [42] take the predicted 2D projections of the corners of 3D bounding
boxes as the keypoints, while Zhao et al. [65] manually designate keypoints over the surface of
the object model. PVNet[41] establishes a pixel-wise voting network for keypoint estimation using
predicted pixel-wise voting vectors. Other methods [6, 40, 50, 52, 49, 52] also present promising
pose estimation performance. Recently, thanks to the advances in 3D registration techniques, the
community has witnessed a growing interest in 3D registration-based 6D object pose estimation,
which recovers the object’s 6D pose by estimating the rigid transformation between the object (source)
and the model point clouds. This is what we achieve here, but, in contrast to most existing methods
which focus on synthetic data, we tackle the challenging scenario of working with real point clouds.

3 Approach
3.1 Revisiting the Euclidean Diffusion Model
Diffusion models, as generative models, aim to generate new data by progressively denoising noisy
inputs [19, 45, 46, 47]. Their training phase involves a diffusion process and a reverse process.
The diffusion process successively injects Gaussian noise into the data sample x0 ∼ pdata (pdata
indicates the distribution of the training data) so as to gradually transform x0 into the noise data
xT ∼ N (0, I) (standard Gaussian distribution), thus forming a Markov chain x0 → x1 → · · · → xT .
As demonstrated in [19], the random variable xt ∼ q(xt | xt−1) := N (xt;

√
1− βtxt−1, βtI) can

also be expressed in a closed form xt ∼ q(xt | x0), which can be formulated as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N (0, I) , (1)
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Here, the diffusion coefficients ᾱt =
∏t

s=0 αs =
∏t

s=0(1−βs), and βs indicates the noise coefficient
determined by a linear schedule [19] or a cosine schedule [35]. Then, the reverse process learns a
denoising network, a parameterized normal distribution pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) , βtI),
to progressively denoise the noisy data xT into the clean one x0, forming a reverse Markov chain
xT → xT−1 → · · · → x0. Here, µθ (xt, t) indicates the parameterized mean of the normal
distribution. The following variational lower bound of the log likelihood over the training data is then
derived as the optimization objective for training the denoising network:

Ex0∼pdata
[log pθ(x0)] ≥ Eq[

∑
t>1

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))− log pθ (x0 | x1)] . (2)

Based on Bayes’ formula, the random variable xt−1 following the posterior distribution
q (xt−1 | xt,x0) in Eq. 2 can be represented as

xt−1 =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
β̃tε, (3)

where the random variable ε ∼ N (0, I) and the variance scale β̃t =
1−ᾱt−1

1−ᾱt
βt.

3.2 SE(3) Diffusion Registration Model for 6D Object Pose Estimation

In the context of 6D object pose estimation based on point clouds, our objective is to determine
the rigid transformation between a partially-scanned source point cloud X = {xi ∈ R3}Ni=1 and a
complete model point cloud M = {mj ∈ R3}Mj=1 so as to align their overlapping regions precisely.
This transformation encompasses a rotation matrix R ∈ SO(3) and a translation vector t ∈ R3,
representing the orientation of the object and its spatial position, respectively. To obtain a partial
source point cloud, following [11], we mask an input depth map to restrict it to the object, and convert
the resulting depth values into 3D points using the known camera intrinsic parameters. By contrast,
the model point cloud is generated by uniformly sampling a complete mesh model. We denote the
optimal transformation H0 ∈ SE(3) and the identity transformation H ∈ SE(3) as

H0 =

[
R t
0⊤ 1

]
, H =

[
I 0
0⊤ 1

]
, (4)

both of which are represented by 4× 4 homogeneous transformation matrices.

Inspired by the progressive generation of diffusion models, we adopt the concept of denoising
diffusion to tackle the point cloud registration task, specifically in the SE(3) space, and thus propose
an SE(3) diffusion model-based 3D registration framework for robust 6D object pose estimation.
While [27, 53] have introduced variations of the diffusion model on SE(3) or SO(3) manifolds, they
are not suitable for our 3D registration task. The training phase of our framework thus involves an
SE(3) diffusion process and an SE(3) reverse process. Given a pair of source and model point clouds,
the former continuously disturbs their optimal transformation by injecting noise into it, while the
latter aims to learn a denoising network to progressively convert the noisy transformation to the
optimal one. As such, during inference, the learned denoising network can be leveraged to recover the
transformation between the source and model point clouds through a progressive denoising process.
The training phase and inference phase of our algorithm are detailed in Algorithms 1 and 2. Below,
we provide a detailed explanation of our SE(3) diffusion process and SE(3) reverse process.

3.2.1 SE(3) Diffusion Process

In accordance with the standard diffusion model described in Sec. 3.1, our SE(3) diffusion process
progressively disturbs the optimal transformation H0 of point clouds X and M into a noisy trans-
formation HT by injecting perturbation transformations (noise) into it, thus forming a diffusion
Markov chain: H0 → H1 → · · · → HT . However, our SE(3) diffusion process features two critical
differences from the conventional one: (i) Our diffusion process operates on the nonlinear SE(3)
manifold, unlike the standard diffusion process which acts in linear Euclidean space. Consequently,
the linear diffusion operations provided in Eq 1 cannot be directly applied to our model. (ii) The
standard diffusion process assumes the noise variable xT ∼ N (0, I) to be centered around the zero
vector. However, in our model for 3D registration, we require the noise transformation HT to be
centered around the identity transformation H. To account for these differences while generating the
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Algorithm 1 Training phase
repeat

Sample X ,M,H0 ∼ pdata
Sample t ∼ Uniform({1, ..., T}), Ht =
Exp(γ

√
1− ᾱtε)F(

√
ᾱt;H0,H)

Register Ĥt→0 = fθ(T (X ,Ht),M)

Optimize loss Lt = loss(Ĥt→0,H0H
−1
t )

until converged

Algorithm 2 Inference phase
for t = T, ..., 1 do

Register Ĥt→0 = fθ(Xt,M), where Xt =
T (X ,Ht)

Estimate Ht−1 = Exp(λ0 Log (Ĥt→0Ht) +
λ1 Log (Ht))

end for
Return: H0

desired diffusion Markov chain, we propose to interpolate the transformations between H0 and H
on the SE(3) manifold, incorporating noise perturbations. Formally, our interpolation-based SE(3)
diffusion formula formulates Ht ∼ q(Ht | H0) at time step t (1 ≤ t ≤ T ) as

Ht = Exp(γ
√
1− ᾱtε)︸ ︷︷ ︸

Perturbation

F(
√
ᾱt;H0,H)︸ ︷︷ ︸

Interpolation

, ε ∼ N (0, I),
(5)

In essence, this formalism utilizes an interpolation function F(
√
ᾱt;H0,H) to derive an intermediate

transformation that lies between the optimal transformation H0 and the identity transformation H.
Subsequently, we augment this interpolated transformation with a randomly-sampled perturbation
transformation (noise), denoted as Exp(γ

√
1− ᾱtε), to yield the diffused transformation Ht. Below,

we will introduce these two components in detail.

Transformation Interpolation Function F(
√
ᾱt;H0,H). The interpolation function F : SE(3)×

SE(3) × [0, 1] → SE(3) aims to compute an intermediate transformation between the optimal
transformation H0 and the identity one H. Following the setting of diffusion coefficients in Eq. 1,
we set the interpolation weight on transformation H0 at time step t to

√
ᾱt and, consequently, the

interpolation weight on H is 1−√
ᾱt. As the time step t increases, the interpolation weight

√
ᾱt on

H0 decreases gradually, resulting in a transition of the interpolated transformation from H0 to H.
However, due to the non-linearity of the SE(3) manifold, direct linear interpolation methods, such as
weighted averages, cannot be applied to interpolate intermediate transformations. To address this,
we exploit the Lie algebra se(3) associated to SE(3). The Lie algebra se(3) is a linear 6D vector
space corresponding to the tangent space of SE(3) at the identity transformation. Transferring any
transformation in SE(3) to a 6D vector element in se(3) can be achieved using the logarithm map
Log : SE(3) → R6; conversely, the exponential map Exp : R6 → SE(3) transforms a 6D vector in
se(3) back to the SE(3) manifold. Therefore, we can first project the SE(3) transformation to se(3),
perform linear interpolation in this tangent space, and then convert the interpolated vector back to
SE(3) to obtain the interpolated transformation. Formally, our transformation interpolation function
F is thus expressed as

F(
√
ᾱt;H0,H) = Exp((1−√

ᾱt) · Log(HH−1
0 ))H0, (6)

which starts by calculating the relative transformation HH−1
0 from the optimal transformation H0 to

the identity transformation H, and mapping it to the linear Lie algebra se(3) through the logarithmic
map. In this linear space, we then scale the vector Log(HH−1

0 ) by the interpolation weight 1−√
ᾱt,

and map this weighted vector back into the corresponding weighted relative transformation using
the exponential map. The weighted relative transformation quantifies the offset of the interpolated
transformation relative to H0. Finally, multiplying the optimal transformation H0 by the computed
transformation offset yields the desired interpolated transformation at time step t.

Perturbation Transformation Exp(γ
√
1− ᾱtε). Following the standard diffusion formula in

Eq. 1, we introduce random noise (i.e., a perturbation transformation) into the interpolated transfor-
mation F(

√
ᾱt;H0,H) at each time step to randomize our SE(3) diffusion process. As indicated

in Eq. 1, conventional Euclidean diffusion models typically draw such noise from a Gaussian dis-
tribution in Euclidean space. However, formulating a Gaussian distribution on the SE(3) manifold
is non-trivial. To tackle this issue, we utilize the Lie algebra once more. Specifically, we randomly
sample a 6D noise vector ε ∈ R6 from N (0, I) over R6, which can be interpreted as an element in
se(3). Then, we scale the noise vector by the factor γ

√
1− ᾱt as in Eq. 1 to control the magnitude of

the perturbation at different time steps. Finally, this scaled noise vector is converted back to SE(3)
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using the exponential map to obtain the corresponding perturbation transformation. Please refer to
Appendix A for more details about our perturbation transformation.

3.2.2 SE(3) Reverse Process

With the diffusion Markov chain H0 → H1 → · · · → HT generated by the SE(3) diffusion process
in Sec. 3.2.1, the objective of the SE(3) reverse process is to train a denoising network pθ(Ht−1 |
Xt = T (X ,Ht),M)) to progressively refine the noisy transformation towards the optimal one, thus
forming a reverse Markov chain HT → HT−1 → · · · → H0. In the context of 3D registration, we
design our denoising network to predict a probability distribution over the transformation Ht−1 given
the model point cloud M and the transformed source point cloud Xt = T (X ,Ht) = {Rtxi + tt}.
Here, Rt and tt denote the rotation matrix and translation vector of transformation Ht. To effectively
train our denoising network, we derive the following registration-specific variational lower bound of
the log likelihood over the training samples as the optimization objective:

EX ,M,H0∼pdata
[ln pθ(H0 | X ,M)] ≥ E H1:T∼q

X ,M,H0∼pdata

[
ln

pθ(H0:T | X ,M)

q(H1:T | H0)

]
=E H1:T∼q

X ,M,H0∼pdata

[
ln pθ(H0 | X1,M)︸ ︷︷ ︸

Residual term

−DKL(q(HT | H0)||p(HT ))︸ ︷︷ ︸
Prior matching term

−

T∑
t=2

DKL(q(Ht−1 | Ht,H0)||pθ(Ht−1 | Xt,M))︸ ︷︷ ︸
Denoising matching term

]
,

(7)

where pdata indicates the distribution of the training data, including the pairs of source and model
point clouds and their ground-truth rigid transformations. In the following, we elaborate on each loss
term of the derived variational lower bound. Please refer to Appendix A for a detailed derivation.

Denoising Matching Term. This is the fundamental loss term for training our denoising network.
q(Ht−1 | Ht,H0) represents the posterior distribution of Ht−1 conditioned on H0 and Ht, while
pθ(Ht−1 | Xt,M) denotes the prior distribution over Ht−1 predicted by our denoising network. In
contrast to the prior distribution, the posterior has access to the optimal transformation H0, enabling
it to infer a more reliable distribution for Ht−1 through Bayes’ formula. As a result, we can treat
this posterior distribution as ground-truth signal to supervise the prior distribution prediction of
the denoising network by minimizing their Kullback-Leibler (KL) divergence. Inspired by the
Bayesian posterior in Eq. 3, the random transformation Hpost

t−1 following the posterior distribution,
Hpost

t−1 ∼ q(Ht−1 | Ht,H0), can be expressed as

Hpost
t−1 = Exp

( √
ᾱt−1βt

1− ᾱt︸ ︷︷ ︸
λ0

Log (H0) +

√
αt (1− ᾱt−1)

1− ᾱt︸ ︷︷ ︸
λ1

Log (Ht) +

√
β̃tε

)
, (8)

where we employ the logarithm map to convert the SE(3) transformations H0 and Ht to their
corresponding 6D vector representations in the linear Lie algebra se(3). This allows us to perform
a linear combination with posterior coefficients λ0 and λ1, as in Eq. 3. The randomness of Hpost

t−1

arises from the addition of a random variable ε, which follows a Gaussian distribution N (0, I)
over R6. The resulting vector is then converted back from se(3) to SE(3) using the exponential
map, yielding Hpost

t−1 . Analogously, the random transformation following the prior distribution,
Hprior

t−1 ∼ pθ(Ht−1 | Xt,M), can be represented as

Hprior
t−1 = Exp

(
Log (µθ(Xt,M)) +

√
β̃tε

)
, (9)

where µθ(Xt,M) denotes the parameterized mean of our prior distribution, and
√
β̃tε represents the

random term that is identical to that of the posterior. As such, minimizing the KL divergence between
the prior and posterior distributions is equivalent to minimizing the error between Log(µθ(Xt,M))
and λ0 Log(H0) + λ1 Log(Ht), i.e.,

Lt(θ) = loss(λ0 Log(H0) + λ1 Log(Ht),Log(µθ(Xt,M))) . (10)
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The loss function 10 indicates that, at each time step t, given the point clouds Xt = T (X ,Ht) and
M, the mean µθ(Xt,M) needs to be predicted as the transformation Exp(λ0 log(H0)+λ1 log(Ht))
rather than the relative transformation H0H

−1
t between Xt and M. Consequently, existing deep

registration models such as [54, 62] may not be directly applicable for parameterizing the mean of
our prior distribution. Moreover, designing a specific network that takes Xt and M as input but
predicts a non-relative transformation also is a non-trivial task. To handle it, we consider that the
transformation Exp(λ0 Log(H0) + λ1 log(Ht)) can be rewritten as

Exp (λ0 Log(H0) + λ1 Log(Ht)) = Exp
(
λ0 Log((H0H

−1
t )︸ ︷︷ ︸

Ht→0

Ht) + λ1 Log(Ht)
)
. (11)

This inspires us to reformulate µθ(Xt,M) using a surrogate registration model fθ(Xt,M) as

µθ(Xt,M) = Exp (λ0 Log(fθ(Xt,M)Ht) + λ1 Log(Ht)) . (12)

Then, minimizing the loss function 10 is equivalent to optimizing the surrogate registration model
fθ(Xt,M) to predict the relative transformation Ht→0 = H0H

−1
t between the point clouds Xt and

M. Therefore, different deep registration models can potentially serve as surrogate registration mod-
els in our denoising network. Finally, we optimize the surrogate registration network by minimizing
the L1 distance between the source points transformed using the ground-truth transformation Ht→0

and the predicted one Ĥt→0 = fθ(Xt,M). This is written as

Lt(θ) = loss(fθ(Xt,M),Ht→0) =
1

N

N∑
i

∥∥∥∥Ht→0

[
xt
i
1

]
− Ĥt→0

[
xt
i
1

]∥∥∥∥
1

, (13)

where t ∈ {2, ..., T} and xt
i indicates the i-th point in the transformed source point cloud Xt.

Residual and Prior Matching Terms. To maximize the probability pθ(H0 | X1,M), the mean
µθ(X1,M) = Exp (λ0 Log(fθ(X1,M)H1) + λ1 Log(H1)) should be optimized to align closely
with H0. As such, the optimization target of fθ(X1,M) is H0H

−1
1 , and the loss function can be

represented as L1(θ) in 13. In addition, as the prior matching term does not require learning any
parameters, it can be regarded as a constant and hence can be omitted.

4 Experiments

4.1 Experimental Settings

Implementation Details. We set the numbers of points in the source and model point clouds to
N = 512 and M = 1024 through random sampling. For the SE(3) diffusion process, we adopt a
cosine schedule [35] to determine the diffusion coefficients {βt}. The number of diffusion steps T
is set to 200, and the scaling coefficient γ for the perturbation transformation is set to 0.1. For the
SE(3) reverse process, the number of reverse steps in the training phase is set to 200, while that in the
inference phase is set to 5 to accelerate the inference speed of the diffusion registration. We use the
ADAM optimizer [25] with a learning rate of 0.001 to optimize the loss function 13 for 20 epochs
with a batch size of 32, and employ PyTorch [39] to implement our framework. All experiments are
conducted on a server equipped with an Intel i5 2.2 GHz CPU and one TITAN RTX GPU.

Evaluation Metrics. Following [11], we evaluate the model performance by quantifying the rotation
and translation errors between the predicted rotation and translation R̂ and t̂, and the ground-truth
ones R∗ and t∗. The evaluation metrics are defined as

RE(R̂) = arccos
Tr

(
R̂⊤R∗

)
− 1

2
, TE(t̂) =

∥∥t̂− t∗
∥∥2
2
. (14)

As in [12, 11], we summarize these errors via mean average precision (mAP) under varying thresholds.

4.2 Comparison with Existing Methods

Evaluation on TUD-L. We first evaluate our approach on the TUD-L dataset [20], a real-world
dataset comprising three household objects. The compared methods encompass four representative
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TUD-L LINEMOD Occluded-LINEMOD
Models 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm

ICP [4] 0.02 0.02 0.01 0.14 0.00 0.01 0.04 0.27 0.01 0.01 0.07 0.36
FGR [66] 0.00 0.01 0.04 0.25 0.00 0.00 0.05 0.31 0.00 0.00 0.08 0.43
TEASER [59] 0.13 0.17 0.03 0.22 0.01 0.03 0.03 0.21 0.01 0.02 0.04 0.26
S4PCS [34] 0.30 0.50 0.05 0.40 0.02 0.09 0.04 0.31 0.01 0.03 0.06 0.31
IDAM [28] 0.03 0.05 0.02 0.08 0.00 0.01 0.03 0.16 0.00 0.02 0.07 0.26
FMR [22] 0.02 0.09 0.02 0.06 0.00 0.01 0.07 0.17 0.00 0.00 0.09 0.18
RGM [15] 0.00 0.00 0.02 0.03 0.00 0.00 0.07 0.15 0.00 0.00 0.09 0.22
RIENet [44] 0.00 0.00 0.06 0.11 – – – – – – – –
MN-IDAM [11] 0.36 0.46 0.23 0.47 0.01 0.07 0.13 0.38 0.02 0.08 0.15 0.44
MN-DCP [11] 0.70 0.81 0.71 0.86 0.10 0.27 0.26 0.60 0.07 0.19 0.24 0.57
DCP [54] 0.23 0.62 0.04 0.26 0.06 0.22 0.11 0.27 0.03 0.12 0.11 0.27
Diff-DCP 0.65 0.85 0.73 0.94 0.22 0.51 0.65 0.82 0.10 0.29 0.38 0.57
Improvement ↑ 0.42 0.23 0.69 0.68 0.16 0.29 0.54 0.55 0.07 0.17 0.27 0.30

RPMNet [62] 0.73 0.97 0.89 0.94 0.05 0.18 0.22 0.45 0.03 0.13 0.22 0.40
Diff-RPMNet 0.90 0.98 0.98 0.99 0.18 0.47 0.51 0.72 0.12 0.29 0.36 0.52
Improvement ↑ 0.17 0.01 0.09 0.05 0.13 0.29 0.29 0.27 0.09 0.16 0.14 0.12

Table 1: Quantitative comparisons on TUD-L [20], LINEMOD [18], and Occluded-LINEMOD [6].

traditional approaches: ICP [4], FGR [66], TEASER [60], and S4PCS [34], alongside eight state-of-
the-art learning-based deep registration models: DCP [54], IDAM [28], FMR [22], RPMNet [62],
RGM [15], RIENet [44], MN-IDAM [11] and MN-DCP [11]. Although Sec. 3.2.2 revealed that
many deep registration models are theoretically applicable to establish our denoising network, the
empirical results in Table 1 indicate that some models such as IDAM, FMR, RGM, and RIENet fail
to produce meaningful results in real-world challenges, suggesting their limited capability in learning
a high-quality denoising network through loss function optimization (see Eq.13). Consequently,
we opt to employ DCP and RPMNet, which demonstrate promising performance, to establish our
denoising network and generate their corresponding diffusion variants: Diff-DCP and Diff-RPMNet.
Table 1 (left block) shows that the real-world challenges posed by TUD-L lead to limited performance
exhibited by the compared traditional and deep methods. In contrast, Diff-RPMNet achieves the
highest registration accuracy across all rotation and translation criteria. Furthermore, both Diff-DCP
and Diff-RPMNet outperform their respective baselines, DCP and RPMNet, by a substantial margin,
particularly impressive for the 5◦@mAP (42%↑) and 5cm@mAP (69%↑) improvements achieved by
Diff-DCP. Such superior performance can be primarily attributed to two factors: (i) The Bayesian
posterior in Eq.8 effectively orchestrates the pose change of the source point cloud at each reverse
step, mitigating premature convergence to local optima; (ii) The diffusion process generates a diverse
range of poses for the source point cloud, facilitating more comprehensive model training. Table 2
(top block) also strongly confirms these two factors: The baseline DCP model, trained using samples
generated by our diffusion process (DiffAug), presents a remarkable precision improvement (factor
(ii)). Furthermore, when equipped with the reverse process (Rev.), its performance is further enhanced
(factor (i)). Some qualitative results are provided in Fig.2. Please see Appendix B for additional
qualitative results.

Evaluation on LINEMOD and Occluded-LINEMOD. We further assess the performance of our
method on two widely-used real-world 6D object pose estimation datasets: LINEMOD [18] and
Occluded-LINEMOD [6]. The former dataset encompasses 15 texture-less household objects situated
in cluttered scenes, while the latter is a subset comprising 8 texture-less objects with varying degrees
of occlusion. As shown in Table 1 (middle and right blocks), our Diff-DCP and Diff-RPMNet
consistently outperform the compared methods across nearly all rotation and translation mAP criteria,
yielding remarkable improvements over their respective baselines, DCP and RPMNet.

5 Ablation Studies and Analysis
Diffusion Process. (1) We first test the performance variations under different noise schedules,
namely the linear schedule [19] and cosine schedule [35], using Diff-DCP for our ablation study. As
shown in Table 2 (second block), the cosine schedule tends to yield higher precision on the more
challenging LINEMOD and Occluded-LINEMOD datasets, whereas the linear schedule performs
better on the comparatively easier TUD-L dataset. We attribute this discrepancy to the fact that the
transformation denoising during reverse process in challenging datasets (e.g., LINEMOD) necessitates
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Figure 2: Qualitative comparisons on TUD-L [20], LINEMOD [18], and Occluded-LINEMOD [6].
TUD-L LINEMOD Occluded-LINEMOD

Models 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm 5◦ 10◦ 1cm 2cm

DCP 0.23 0.62 0.04 0.26 0.06 0.22 0.11 0.27 0.03 0.12 0.11 0.27
DCP+DiffAug 0.48 0.82 0.56 0.88 0.16 0.42 0.52 0.71 0.07 0.24 0.33 0.51
DCP+DiffAug+Rev.∗ 0.65 0.85 0.73 0.94 0.22 0.51 0.65 0.82 0.10 0.29 0.38 0.57
Linear schedule 0.78 0.93 0.93 0.97 0.16 0.44 0.56 0.75 0.10 0.26 0.35 0.54
Cosine schedule∗ 0.65 0.85 0.73 0.94 0.22 0.51 0.65 0.82 0.10 0.29 0.38 0.57
Random infer. 0.63 0.86 0.68 0.92 0.22 0.50 0.62 0.80 0.11 0.29 0.38 0.55
Deterministic infer.∗ 0.65 0.85 0.73 0.94 0.22 0.51 0.65 0.82 0.10 0.29 0.38 0.57
Train. steps T = 50 0.61 0.83 0.65 0.87 0.19 0.47 0.54 0.73 0.10 0.27 0.35 0.55
Train. steps T = 100 0.70 0.92 0.87 0.95 0.18 0.46 0.61 0.80 0.12 0.28 0.42 0.57
Train. steps T = 200∗ 0.65 0.85 0.73 0.94 0.22 0.51 0.65 0.82 0.10 0.29 0.38 0.57

Table 2: Ablation studies on TUD-L [20], LINEMOD [18], and Occluded-LINEMOD [6].
the rich sample diversity offered by the cosine schedule. In contrast, an abundance of sample diversity
on TUD-L would lead to reduced sample efficiency (many generated pose samples of the source
point cloud are useless), thus resulting in a degradation of model performance. (2) Additionally, we
investigate the registration precision of Diff-DCP across different training steps. Table 2 (bottom
block) illustrates that, compared to a small number of steps, such as T = 50, employing a larger
number of diffusion steps, such as 100 and 200, leads to higher precision. This observation stems
from the fact that a greater number of diffusion steps significantly enhances sample diversity. Notably,
Diff-DCP with T = 200 cannot achieve the best performance on TUD-L. This further validates our
claim that too rich sample diversity on the easier TUD-L does not bring higher performance due to
low sample efficiency.
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Figure 3: Variations in prediction
error and runtime for different time
steps during the reverse process.

Reverse Process. (1) We evaluate our model using two infer-
ence strategies: deterministic inference and random inference.
In deterministic inference, the denoised transformation at each
time step is equal to the predicted mean from Eq. 12, while in
random inference, the mean is slightly perturbed by the sampled
noise as described in Eq. 9. As shown in Table 2 (third block),
deterministic inference without noise tends to exhibit greater
stability and achieve lower estimation errors. (2) To verify the
effectiveness of the Bayesian posterior (Eq. 8) in guiding the
pose change of the source point cloud at each reverse step, we
plot the mean error changes of the estimated transformations at
different denoising time steps. Fig. 3 confirms that, scheduled
by the Bayesian posterior, the denoised transformation grad-
ually approaches to the optimal transformation. Furthermore,
the table in Fig. 3 indicates that employing a larger number of
reverse steps gradually increases the inference time. Therefore,
in our implementation, we set the inference step to 5 to improve
the registration efficiency.

6 Conclusion
In this paper, we have proposed a novel and effective SE(3) diffusion model-based point cloud
registration framework for robust 6D object pose estimation in real-world scenarios. The framework
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formulates point cloud registration as a denoising diffusion process, enabling progressive refinement
of the pose of the source point cloud for precise alignment with the model point cloud. To facilitate
the diffusion and reverse processes over the SE(3) manifold, we have introduced the Lie algebra
se(3) associated with SE(3) to constrain the transformation transitions. Furthermore, we have derived
a registration-specific variational lower bound to effectively optimize our denoising network. By
reformulating our denoising network with a surrogate registration model, different deep registration
networks can theoretically be employed within our approach. Our extensive experiments on challeng-
ing real-world datasets have validated the effectiveness of our framework. We discuss the broader
impact, limitations, and future work in Appendix C.
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