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Abstract

Learnt deep neural networks for image super-resolution fail easily if the assumed
degradation model in training mismatches that of the real degradation source at
the inference stage. Instead of attempting to exhaust all degradation variants in
simulation, which is unwieldy and impractical, we propose a novel adversarial
neural degradation (AND) model that can, when trained in conjunction with a
deep restoration neural network under a minmax criterion, generate a wide range
of highly nonlinear complex degradation effects without any explicit supervision.
The AND model has a unique advantage over the current state of the art in that
it can generalize much better to unseen degradation variants and hence deliver
significantly improved restoration performance on real-world images.

1 Introduction

Deep learning has made great strides in the applications of image restoration. It has demonstrated
superior performances over traditional methods on almost all common image restoration tasks,
including super-resolution [8], denoising [52], compression artifacts removal [6], deblurring [38], etc.
But the margin of performance gains made by deep learning methods of image restoration decreases
sharply if the degradation processes assumed in training mismatch those of the real world images
at inference stage [3]. It is well known that, for any real-world problems, the efficacy of a machine
learning technique relies not only on the design of the technique itself but also, sometimes even more
critically, on the statistical agreement between the training and test data [42].

In reality, it is either intractable or highly expensive to obtain both degraded images and the corre-
sponding latent images (ground truth). The most common practice in literature is to use a degradation
model to generate paired degraded and ground truth images for training the restoration network-
s [51, 43, 26, 24]. This synthesis approach cannot accurately simulate the realistic digital imaging
pipeline that is affected by multiple complex and compounded degradation sources; for instances,
insufficient sampling rate, color demosaicing errors, sensor noises, camera jitters, compression
distortions and etc. In this paper, we focus on the task of super-resolution, namely assuming that the
dominant degradation cause is insufficient sampling rate, which is compounded by other degradation
sources in the imaging pipeline. The said complex nonlinear phenomena often defy explicit analytical
modeling. A brute force approach may be to build multiple simpler parametric degradation models,
one for each type of degradation (e.g., downsampling, noises, compression, motion, etc.) and apply
them in different combinations, orders and parameter setting to generate training data, in hope to
simulate as wide a range of degradations encountered in practice as possible. This amounts, however,
to fighting a losing battle because it is impossible to exhaust all degradation variants, many of which
are not even known or understood.
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Figure 1: We observe two properties in most image degradations. Firstly, almost all types of
image degradation could find a corresponding operation in a standard convolutional neural network.
Secondly, almost all moderate image degradations could be considered as small deviations from the
identity transformation. The neural degradation prior proposed for our real-world super-resolution
method is inspired by these observations.

This work represents a fundamental departure from the current ways of coping with mismatches
between the simulated training and real-world image data. Instead of attempting to exhaust all
degradation types in simulation, we propose a novel adversarial neural degradation (AND) model
that can, when trained in conjunction with a deep restoration neural network under a minmax
criterion, generate a wide range of highly nonlinear complex degradation effects without any explicit
supervision. Adversarial attack and defense (training) [12, 32] is a proven learning strategy to
vaccinate neural network models of signal classification against being misled by imperceptible
disturbances in input signals. Previous research in adversarial learning for image restoration tasks [49]
only borrows the earlier research in adversarial training for image classification tasks, but does not
account for the differences between the classification and restoration tasks. The AND model, the main
contribution of this paper, demonstrates for the first time how adversarial learning can effectively
boost the robustness of deep networks for signal restoration. In particular, we adopt the minmax
optimization criterion when training the AND model, aiming to withstand the attacks by the most
difficult but nuance degradations that otherwise defy modeling. As a result, the AND model enjoys a
unique advantage over the current state of the art in being generic in terms of degradation types. It
can generalize much better to unseen degradation types and variants and hence deliver significantly
improved restoration performance on real-world images.

Our insight of the AND model comes from the following observations. We observe two properties in
most image degradations, as shown in Fig. 1. Firstly, almost all types of image degradation could find
a corresponding operation in a standard convolutional neural network. For example, blur and ringing
could correspond to a convolution layer, downsampling could correspond to a pooling layer, color
fading and posterization [35] could correspond to a non-linear activation layer, sensor noise and film
grain could correspond to a noise injection layer [19]. Secondly, most moderate image degradations
could be considered as small deviations from the identity transformation. For example, blur, noise and
lossy image compression all obviously tend to the identity transformation pointwise as the degradation
level approaches the slightest level. As the degradation level get higher, those degradations gradually
deviate from the identity transformation. Inspired by the two observations of image degradations, we
initialize untrained convolutional neural networks to the identity transformation, make parameters of
these networks slightly deviated from the start, and take them as prior for various real-world image
degradations. When we train a SR model with HR and LR image pairs constructed by the proposed
degradation prior, we adversarially search small deviations which could make the SR model perform
the worst, and optimize the SR model based on the worst degradation case to achieve a good lower
performance bound for various real-world image degradations.
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2 Related Work

Single Image Super-Resolution. The first convolutional neural network for single image super-
resolution is proposed by Dong et al. [7] called SRCNN, and it achieved superior performance against
previous works. Since that the field has witnessed a variety of developments. Shi et al. [36] firstly
proposed a real-time super-resolution algorithm ESPCN by proposing the sub-pixel convolution layer.
Lim et al. [27] removed batch normalization layers in the residual blocks, and greatly improved the
SR effect. Zhang et al. [56] introduced the residual channel attention to the SR framework. To achieve
photo-realistic results with detailed textures, Ledig et al. [22] introduced the generative adversarial
network [11] into the SR framework, and employed it as loss supervisions to push the SR solutions
closer to the natural manifold. Wang et al. [44] later improved the GAN based SR method, and
achieved better SR visual quality with more realistic and natural textures.

Blind Image Super-Resolution. The field is also named as real-world image super-resolution.
Different from the classical SR field which assumes that the image degradation model is an ideal
bicubic downsampling, the blind SR field aims to solve SR problems with unknown degradation.
Researchers tried to solve the problem by implicitly or explicitly estimating the degradation model.
Gu et al. [13] proposed a method to iteratively estimate the blur kernel. Kligler et al. [2] introduced
KernelGAN, which trains solely on the LR test image at test time, and learns its internal distribution
of patches. Researchers also built complex models for image degradation, to augment the robustness
of the SR model. Zhang et al. [51] designed a complex degradation model that consists of randomly
shuffled blur, downsampling and noise degradations. Wang et al. [43] used a high-order degradation
model to better simulate complex real-world degradations.

Zhang et al. [55] indicated that when the degradation distribution during both training and testing
perfectly matches, the SR model exhibits favorable generalization and achieves high performance
simultaneously. The binning method is utilized to adjust the joint distribution of the three parameters
of a widely-used image degradation model, helping the training degradation distribution to better
match the testing distribution. Both their work and our work aim to align degradation distributions to
achieve good performance and generalization. However, they concentrate on aligning the distributions
of degradation parameters within a given model, while we focus on developing a more suitable family
of degradation functions.

Adversarial Training. Adversarial training improves the model robustness by training on adversarial
examples generated by gradient-based method [12]. Madry et al. [32] studied the adversarial
robustness of neural networks through the lens of robust optimization. Tramer et al. [41] proposed an
ensemble adversarial training on adversarial examples generated from a number of pretrained models.
Kolter and Wong [47] developed a provable robust model that minimizes worst-case loss over a
convex outer region. Athalye et al. [1] demonstrated that adversarial training on PGD adversarial
examples was to be the state-of-of-art defense model. Yue et al. [49] and Castillo et al. [4] both
used adversarial examples during training to improve SR model’s capacity to process noisy inputs,
which is different with our method because they only considered adversarial noise rather than general
real-world degradations.

Domain Generalization. Domain generalization aims to achieve out-of-distribution generalization
by using only source data for model learning. Most existing approaches belong to the category of
domain alignment [34], where the central idea is to minimize the difference among source domains
for learning domain-invariant representations. Meta-learning [9] are also used to solve domain
generalization by exposing a model to domain shift during training with a hope that the model
can better deal with domain shift in unseen domains. In the context of domain generalization, the
work most related to ours is RandConv [48]. It is based on the idea of using randomly initialized,
single-layer convolutional neural network to transform the input images to novel domains. Since
the weights are randomly sampled from a Gaussian distribution at each iteration and no learning is
performed, the transformed images mainly contain random color distortions, which do not contain
meaningful variations and are best to be mixed with the original images before passing to the task
network.

Identity Mapping in Deep Learning. Identity mappings are widely used in deep learning methods,
typically as network layers rather than degradation priors. Sun et al. [14] used identity mappings
as the skip connections and after-addition activation, to make the training easier and improves
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Figure 2: Illustration of the training procedure of our real-world super-resolution method with the
proposed adversarial neural degradation model. Every single optimization step of the whole network
can be divided into four sub-steps, and we highlight the internal state of the degradation network in
the first two sub-steps.

model generalization. Zhang et al. [50] used an identity mapping task to study memorization and
generalization of overparameterized networks in the extreme cases.

3 Adversarial Neural Degradation for Blind Super-Resolution

Before discussing our new robust real-world SR method, we would like to emphasize once again
that the degradation prior employed in our approach is inspired by the following two observations of
image degradations.

1. Almost all types of image degradation could find a corresponding operation in a standard
convolutional neural network.

2. Almost all moderate image degradations could be considered as small deviations from the
identity transformation.

Once we identify the commonalities among various image degradations, we can naturally propose
a simple and elegant degradation prior that encompasses all of these degradations. That is, we
take slightly deviated identity convolutional neural networks as prior for various real-world image
degradations.

We illustrate the entire training procedure of our SR method with the proposed degradation prior
in Fig. 2. The entire neural network can be divided into three parts: a degradation network, a
restoration network, and an optional discriminator network. A single optimization step of the entire
network can be further divided into the following four sub-steps. First, we initialize the degradation
network to the identity transformation. Next, we adversarially search for a small deviation of the
initialized degradation network that would cause the restoration network to perform the worst. Then,
we optimize the restoration network based on the identified degradation case. Finally, we upgrade the
discriminator network to distinguish restoration outputs from real images. We repeat the optimization
steps of the entire network multiple times during training. Once the training is complete, we can
discard the degradation network and the discriminator network, and only use the trained restoration
network for inference.

In the following subsections, we will first describe the degradation network architecture and the
reason why it can function as a prior to incorporate various image degradations. Then, we will explain
the method used to initialize the degradation network to the identity transformation. Next, we will
discuss the approach to perturb the degradation network, enabling it to represent complex image
degradations. Subsequently, we will outline the adversarial training procedure of the SR model.
Finally, we will analyze the training and inference efficiency of the method.
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3.1 Degradation Network Architecture

Since we argue that almost all types of image degradation could find a corresponding operation in a
standard convolutional neural network, the degradation network does not need much design for its
architecture to work as a prior to include various image degradations. We can simply concatenate
common convolutional neural network layers which could represent these image degradations.

Convolution layer, which is the most common layer type, is used in the degradation network to
represent filter related degradations, like blur and ringing. These degradation types are also very
common in the real world. Blur can be caused by camera movement or out of focus, and ringing can
be caused by image compression or image sharpening technique.

Non-linear activation layer is used in the degradation network to represent global non-linear color
changes, like color fading and posterization [35]. Color fading can be caused by inaccurate color
response of old films, and posterization can be caused by color quantization in image compression.

Both convolution layer and activation layer can only represent spatially homogeneous image degrada-
tions, and their abilities are limited by the space invariant property of normal convolutional neural
network. To represent spatially heterogeneous degradations like block artifacts in compressed images
or dust spots in old images, we need to use a relatively less common layer called noise injection
layer [19], which adds noise to its input in a pixel-wise manner. Combined with other layers, noise
injection layer makes the degradation network able to represent complex spatially heterogeneous
degradations.

Pooling layer is the last layer type we would like to discuss, and it can directly represent a downsam-
pling process. We use anti-aliased average pooling layer [53] rather than a normal average pooling
layer to avoid aliasing in the downsampling process.

For convolution, activation and noise layer, we would like to use multiple layers of the same type
in the degradation network, to make the network able to represent complicated and higher order
degradations. But only one pooling layer is used in the degradation network, since it is hard to
break one pooling layer with integer downsampling factor down into multiple ones with non-integer
factor. We combine a 3× 3 convolution layer, a LeakyReLU activation layer [31] and a noise layer to
form our basic block, put 5 basic blocks before and after an average pooling layer, and put a 3× 3
convolution layer at the end. Number of channels in the degradation network are all 64, except for
the input channels of the first convolution layer and the output channels of the last convolution layer,
which are both 3 to take RGB images as input and output of the degradation network.

3.2 Identity Degradation Network Initialization

Due to overparameterization of neural networks, there are infinitely many parameter solutions to
make a network represent the identity transformation, even if the network architecture is fixed [50].
However, two different parameter solutions, which could identically represent the same function,
may have totally different behaviors of functions in their own parameter neighbourhood. We take
slightly deviated identity neural networks as prior for various real-world image degradations. If all
these networks are deviated from one or a few parameter solutions, their behaviors would be severely
biased and cannot cover a variety of image degradations. Therefore, we need a fast initialization
method to generate a lot of identity neural networks with different parameters.

The most straightforward initialization method, which trains networks on the identity mapping task
by minimizing error using gradient descent, is way too slow for our SR model training. We propose a
fast method that can initialize the degradation network to the identity transformation. Our method
only takes a few small matrix multiplications and one singular value decomposition, while the most
straightforward initialization method takes millions of training steps.

Before discussing our method to initialize the degradation network to the identity transformation, we
would like to first clarify the meaning of the identity transformation in this work. For convolution,
activation and noise layer in our degradation network, the definition of the identity transformation
is strictly applicable, since the size of their input is the same as the size of their output. But for the
pooling layer, the input feature is downsampled by a scale factor, so the strictly defined identity
transformation no longer exists. In this work, we treat the ideal downsampling operation as a visually

5



identity transformation2, and use the anti-aliased average pooling layer [53] as an approximation
of the ideal downsampling. This interpretation is reasonable, because an image and its ideally
downsampled counterpart are very similar from the perspective of the human visual system.

To make the degradation network represent the identity transformation, it must first be linear. So
first we remove all nonlinearities in the network, by setting the negative slopes of all LeakyReLU
activation layers [31] to one. And we set all additive noises in all noise injection layers to zero. An
output pixel of an identity network can only be affected by the counterpart pixel of the input. So
then we only fill the center slices of all convolution kernels with nontrivial values, and set all other
values of all convolution kernels to zero. By this way, we essentially simulate 1 × 1 convolutions
with 3× 3 convolutions. We initialize the center slices of all but the last convolution kernels with
Xavier Initialization [10] of 1 × 1 convolutional fan mode, to make all layers of the degradation
network have a stable variance of responses. To finalize the identity network initialization, we merge
all but the last 1× 1 convolutions into one 1× 1 convolution, by multiply center slices of convolution
kernels as matrices. We compute the Moore-Penrose pseudoinverse of the merged matrix, and fill the
result into the center slice of the last 3× 3 convolution kernel.

We did not mention the anti-aliased average pooling layer in our initialization method. That is because
it is a strictly defined linear operator, and we already claim it as a visually identity transformation.
As long as the remaining part of the network is a strictly defined identity transformation, the
whole network would be a visually identity transformation, or in another word, would be the ideal
downsampling.

3.3 Adversarial Degradation Perturbation

Once we initialize the degradation network to the identity transformation, we are at the starting point
to various image degradations. The next thing we need to do is to perturb the identity degradation
network, and the slightly deviated identity degradation network would represent a real-world image
degradation case. We can use the network to quickly generate abundant perfectly aligned HR and LR
image pairs, by taking HR images as input of the degradation network and collecting the outputs. And
finally, we can train a SR model with the collected HR and LR image pairs. Since the degradation prior
includes various real-world image degradations, the SR model trained by this way could reconstruct
various real-world degraded images well.

So how do we perturb the identity degradation network? The most straightforward way is to add
small random numbers to all parameters of the degradation network, and that means to take a small
random step from the original identity transformation on the degradation space. A lot of degradation
networks which are independently perturbed by this way would cover a neighbourhood of the identity
transformation on the degradation space. If we train a SR model with HR and LR image pairs
constructed by many of those networks, the trained model would have a good average performance
on the covered degradation set.

However, instead of having a good average performance for regular degradations, we want our
real-world SR model to be as robust as possible. In other word, we want our SR model to have a good
worst-case performance. That is because the real-world situation is always more complicated than
laboratory situations. We want our real-world SR model to keep having a satisfactory performance,
even for images might have been suffered from rare or unpredictable real-world degradations.

To achieve such a goal, we perturb the identity degradation network adversarially instead of randomly.
That means, we adversarially search small perturbations on all parameters of the degradation network,
which could make the SR model perform the worst on HR and LR image pairs constructed by the
degradation network. During SR model training, we keep searching those worst cases dynamically,
and keep optimizing the SR model based on the worst degradation case for the moment. By this way,
the worst-case performance of the SR model would be gradually improved, and will finally converge
to the robust model with the highest lower bound.

2More formally, a function f is a visually identity transformation if for every image X , there exists a scale
factor s such that f(X) = D(X; s), where D is the ideal downsampling function.
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3.4 Super-Resolution Model Training

To better show the advantage of the proposed neural degradation prior and the adversarial degradation
training, we adopt the ESRGAN [44] as our SR model. The SR model training procedure solves the
following optimization problem:

min
θG
{EIHR [max

θF∈S
Lcont(I

HR; θG, θF )]

+ λmax
θD

EIHR [max
θF∈S

LGAN (IHR; θG, θD, θF )]}
(1)

where S = {θ|‖θ − θid‖2 < ε, and Fθid is the identity transformation}. G and D are generator
(restoration network) and discriminator of the SR model respectively. F is the degradation network.
θ stands for parameter of network. IHR represents the high-resolution images. Lcont and LGAN are
the content loss and the GAN loss [22] respectively. λ is the coefficient to balance the two loss terms.
The content loss Lcont is the sum of the 1-norm loss and the VGG loss [17]:

Lcont(I
HR; θG, θF ) =‖IHR −GθG(FθF (IHR))‖1

+
∑
j

cj‖φj(IHR)− φj(GθG(FθF (IHR)))‖22 (2)

where φj is the feature map of jth convolution layer of the VGG network [37], and cj is the coefficient
for term of the jth layer. The GAN loss LGAN is:

LGAN (IHR; θG, θD, θF ) = logDθD (I
HR)

− logDθD (GθG(FθF (I
HR)))

(3)

The optimization problem in Equation 1 is more complicated than the ordinary two-player minimax
problem in previous GAN-based SR methods [22, 44, 43]. There are three networks involved in the
optimization, and each network tries to compete or cooperate with other two networks. The restoration
network (i.e., generator) takes LR output of the degradation network as its input, generates SR images
with realistic and natural texture, and tries to fool the discriminator network into believing the
generated SR images are actually natural HR images. The discriminator network tries to distinguish
SR output of the restoration network from natural HR images. The degradation network takes natural
HR images as its input, generates LR images with moderate but also complicated image degradations,
tries to make the restoration network to generate unsatisfying results and to make it easier for the
discriminator network to distinguish. The optimization procedure drives the restoration network to
improve, until it is robust enough and can keep generating perceptually satisfying SR results, even if
its LR input images are suffered from complicated real-world degradations.

3.5 Training and Inference Efficiency

Compared with previous SR methods, our SR model needs to cost more time during training phase.
When we train our GAN-based SR method with adversarial neural degradation, we need to perturb the
identity degradation network, optimize the restoration network and the discriminator network, in an
alternating manner. The adversarial perturbation of the identity degradation network is done by taking
gradient steps. In this work, before each operation step of the SR model, we use 5 gradient steps
for adversarial degradation perturbation. That requires additionally 5 forward and backward passes
through the whole network, including the degradation network and the SR model. Thankfully, the
degradation network is much smaller than the SR model. That is reasonable because degradation is
much easier than restoration, which is a general property for all inverse problems. So the degradation
network itself does not cost much, most of the additional training cost is due to the adversarial training
procedure. As we mentioned before, we adopt the ESRGAN as our SR model. It would cost 8.92
TFLOPs for one training step of ESRGAN on a training batch, while would cost 57.85 TFLOPs for
our SR model training with the same training setting. So our method need an increase in training
time of a factor of 6.49.

However, what is more important for our real-world SR method is inference efficiency. That is because
once we finish the training, the robust SR model we get would not need retraining or finetune for
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Table 1: Quantitative comparison with state-of-the-art methods on real-world blind image super-
resolution benchmarks. The best and second best results are highlighted in red and blue, respectively.

Method RealSR(×4) [3] DRealSR(×4) [46] SupER(×4) [21] ImgPairs(×2) [18]
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

KernelGAN [2] 25.13 0.3349 28.56 0.3978 25.65 0.3445 26.74 0.3340
DAN [16] 27.80 0.4114 30.59 0.4111 32.19 0.2064 28.56 0.2802

BSRNet [51] 27.35 0.3084 29.49 0.3411 32.11 0.2532 28.59 0.3915
BSRGAN [51] 26.51 0.2685 28.35 0.2929 29.18 0.2181 28.13 0.3346

Real-ESRNet [43] 26.79 0.2939 28.50 0.3257 30.89 0.2496 28.34 0.3858
Real-ESRGAN [43] 25.85 0.2728 27.92 0.2818 27.55 0.2046 28.12 0.3679
SwinIR-Real [26] 26.43 0.2515 28.29 0.2739 28.27 0.1889 28.11 0.3464

DCLS [29] 27.83 0.4080 28.32 0.4760 32.71 0.1985 28.64 0.2844
PDM-SRGAN [28] 21.96 0.3717 24.32 0.3668 25.31 0.2710 26.11 0.3788

FeMaSR [5] 25.42 0.2937 26.59 0.3374 25.45 0.2419 27.03 0.3400
DASR [25] 27.18 0.3113 29.72 0.2962 29.73 0.1476 28.34 0.3412

ReDegNet [23] 24.77 0.2800 26.24 0.2995 26.60 0.1785 27.06 0.3930
ANDNet (ours) 28.47 0.2599 30.97 0.3381 32.96 0.2125 28.75 0.2786

ANDGAN (ours) 26.34 0.2326 28.95 0.2610 29.85 0.1372 27.78 0.2598

unpredicted image degradations. Once the training is done, we can discard the degradation network
and the discriminator network, and only use the trained restoration network for inference. That means,
compared with previous SR methods, our SR method does not need additional computational and
storage cost during inference phase.

4 Experiments

4.1 Datasets

Widely used datasets for SR evaluation, like Urban100 [15] and DIV2K [39], are not suitable for
the study of real-world SR, because they only contain HR images and their LR counterpart need to
be generated by bicubic downsampling. We perform experiments on four datasets constructed for
real-world SR evaluation: RealSR [3], DRealSR [46], SupER [21], and ImagePairs [18]. RealSR and
DRealSR are datasets containing HR and LR image pairs captured on the same scene by adjusting
the focal length of digital cameras. SupER includes HR and LR image pairs constructed by camera
hardware binning, which aggregates adjacent pixels on the sensor array. ImagePairs includes HR and
LR image pairs captured by a HR camera and a LR camera, which are aligned and mounted on a
rig with a beam splitter. These datesets are constructed in different ways, so they could provide a
comprehensive evaluation for real-world SR methods.

4.2 Quantitative Metrics

We use four quantitative metrics for quality assessment of SR images: PSNR, SSIM [45], LPIPS [54],
and NIQE [33]. PSNR and SSIM are calculated on Y channel of transformed YCbCr space for fair
comparison [40]. They are more focused on low-level pixel-wise image differences, and they are
metrics suitable for PSNR-oriented SR models. LPIPS is a learned metric for full-reference image
quality assessment. We could use the preceding three full-reference metrics, since all datasets we used
in the experiments have pixel-wise aligned HR and LR image pairs. Considering that GAN-based SR
methods may generate detailed textures, which is although realistic but different from the ground truth,
we also use NIQE, a no-reference metric for image quality evaluation. Both LPIPS and NIQE agree
better with human visual perception, and they are metrics suitable for perceptual quality-oriented SR
models.

4.3 Training Details

We use DIV2K [39], Flickr2K [27] and WED [30] as HR image datasets for training. The training
HR patch size is set to 256 and the batch size is set to 48. Following BSRGAN [51] and Real-
ESRGAN [43], we train two SR models with our method: a PSNR-oriented model noted as ANDNet,
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Canon_042 (4×)

HR Bicubic KernelGAN [2] DAN [16] BSRGAN [51]

SwinIR-Real [26] DCLS [29] FeMaSR [5] DASR [25] ANDGAN

Nikon_012 (4×)

HR Bicubic KernelGAN [2] DAN [16] BSRGAN [51]

SwinIR-Real [26] DCLS [29] FeMaSR [5] DASR [25] ANDGAN

Figure 3: Qualitative comparisons on real-world images from RealSR [3] dataset with scale factor 4.

and a perceptual quality-oriented model noted as ANDGAN. First, we train ANDNet with the L1
loss only, for 1× 106 iterations with 1× 10−4 learning rate. Then we use the trained ANDNet as an
initialization for the generator of the ANDGAN, and train the whole ANDGAN model with both the
content loss and the GAN loss in Equation 1, which are balanced by λ = 0.1, for 5× 105 iterations
with 1 × 10−4 learning rate. We use Adam optimizer [20] for both generator and discriminator
training.

We use projected gradient descent method [32] to adversarially search a small deviation of the
identity degradation network. Before every training step for the restoration network, we initialize
the degradation network to the identity transformation, and run 5 iterations of projected gradient
descent with step size of 6 and perturbation size ε = 20. We also need to balance the weights
for convolutional degradation, noise and nonlinearity, to make their respective intensity close to
real-world degradation. When we calculate the L2 norm ‖θ − θid‖2 to determine the perturbation
set S in Equation 1, we use scale factors of 1, 10, 50 for term of convolutional degradation, noise
and nonlinearity respectively. Note that a larger scale factor means a stronger suppression for the
degradation type.

4.4 Comparisons with Prior Works

We compare both our PSNR-oriented model and the perceptual quality-oriented model with several
state-of-the-art methods. Quantitative results are shown in Table 1, and visual comparison between
different methods are shown in Fig. 3. Due to limited space, we can only provide most relevant
results here. More detailed results can be found in the supplementary material.

4.5 Ablation Study

In order to study the effects of each component in the proposed blind SR method, we gradually
modify the AND model and compare their quantitative performances. The comparisons are shown
in Table 2. For cases where neural degradation is removed, we either use an additive noise model
for adversarial training or employ bicubic downsampling for non-adversarial training. In situations
where identity initialization is eliminated, we randomly initialize all 3× 3 convolution kernels in the
degradation network using Xavier Initialization. We can observe that all three major components,
namely adversarial perturbation, neural degradation, and identity initialization, are necessary.

The first column of Table 2, labeled as "Configuration", is a name and an explanation for a particular
ablation setting. If we do not use adversarial perturbation and neural degradation at all, our method
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Table 2: Comparisons showing the effects of each component in the AND model, tested on the
RealSR [3] dataset with a scale factor of 4.

Configuration Adversarial
Perturbation

Neural
Degradation

Identity
Initialization

PSNR↑ of
ANDNet

LPIPS↓ of
ANDGAN

Classical SR training 7 7 - 26.53 0.4245
Adversarial noise training 3 7 - 26.60 0.4194

Synthetic data augmentation 7 3 3 27.31 0.3089
Severe random style shift 3 3 7 11.84 -

Complete AND model 3 3 3 28.47 0.2326

would become a classical SR training method [8, 27, 56], which assumes that the image degradation
model is an ideal bicubic downsampling. If we retain solely the adversarial perturbation without
inducing neural degradation, it implies the utilization of an adversarial noise training method similar
to [4, 49]. If we employ neural degradation with identity initialization but without adversarial
perturbation, our method becomes similar to SR training with synthetic data augmentation [51, 43]. If
we only remove the identity initialization from our method, the generated LR patches would no longer
be visually similar to the HR patches. While the skeleton of the LR patches would remain unaffected,
their color and texture would undergo a dramatic change [48]. We can observe that all three major
components, namely adversarial perturbation, neural degradation, and identity initialization, are
necessary.

5 Conclusions

We propose a neural degradation prior that encompasses various image degradations in the real world.
Specifically, an untrained convolutional neural network, which deviates slightly from the identity
transformation, can serve as a prior for various real-world image degradations. We employ adversarial
searches to find small deviations in the degradation network during the training of the SR model.
This approach allows the restoration model to continuously optimize itself on the worst degradation
case, thus achieving robustness.
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