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Abstract

Designing efficient algorithms to compute a Nash Equilibrium (NE) in multiplayer1

games is still an open challenge. In this paper, we focus on computing an NE2

that optimizes a given objective function. For example, when there is a team of3

players independently playing against an adversary in a game (e.g., several groups4

in a forest trying to interdict illegal loggers in green security games), these team5

members may need to find an NE minimizing the adversary’s utility. Finding an6

optimal NE in multiplayer games can be formulated as a mixed-integer bilinear7

program by introducing auxiliary variables to represent bilinear terms, leading8

to a huge number of bilinear terms, making it hard to solve. To overcome this9

challenge, we first propose a general framework for this formulation based on a set10

of correlation plans. We then develop a novel algorithm called CRM based on this11

framework, which uses Correlation plans with their Relations to restrict the feasible12

solution space after the convex relaxation of bilinear terms while Minimizing the13

number of correlation plans to reduce the number of bilinear terms. We show14

that our techniques can significantly reduce the time complexity, and CRM can be15

several orders of magnitude faster than the state-of-the-art baseline.16

1 Introduction17

One of the important problems in artificial intelligence is the design of algorithms for agents to make18

decisions in interactive environments [31]. To this day, many results have been achieved in two-player19

non-cooperative environments, for example, security games [37], the game of Go [36], and poker20

games [6]. One of the most important solution concepts behind these results is the well-known21

Nash Equilibrium (NE) [28]. Indeed, there are many efficient algorithms, e.g., algorithms based22

on linear programs [40, 41, 35, 44, 45] or counterfactual regret minimization [50, 5], to compute23

Nash equilibria (NEs) in two-player zero-sum games. However, there are fewer results on efficient24

algorithms for NEs with theoretical guarantees in multiplayer games (see the discussion in [4]),25

and most of these results are for games with particular structures (e.g., polymatrix games [7, 10]).26

The main reason is that finding NEs in multiplayer games is hard — it is PPAD-complete even for27

zero-sum three-player games [8]. Designing efficient algorithms to compute NEs in multiplayer28

games is thus still an open challenge.29

In this paper, we focus on computing an optimal NE that optimizes a specific objective over the30

space of NEs. In the real world, we may need to optimize our objective over the space of NEs [32].31

Possible objectives [9] could be maximizing social welfare (the sum of the players’ expected utilities),32

maximizing the expected utilities of one player or several players, maximizing the minimum utility33

among players, minimizing the support sizes of the NE strategies, and so on. In addition, when there34

is a team of players in a game, team members need to consider finding an equilibrium that optimizes35

some objective [43, 12]. For example, in green security games where several heterogeneous groups36

(e.g., local police, the Madagascar National Parks, NGOs, and community volunteers) try to protect37
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forests from illegal logging [24], the groups involved may need to find an NE that minimizes the38

adversary’s utility1.39

Unfortunately, the problems mentioned above are NP-hard [14, 9]. In two-player games, finding an40

optimal NE can be formulated as a mixed-integer linear program [32]. In this formulation, finding an41

optimal solution means optimizing an objective over the space of NEs, and this space is modeled42

as the feasible solution space of the mixed-integer linear program. We can directly extend this43

two-player formulation to find an optimal NE in multiplayer games by representing the space of NEs44

as the feasible solution space of a mixed-integer bilinear program transformed from a multilinear45

program by using auxiliary variables to represent bilinear terms. Then finding an optimal NE requires46

solving a non-convex program. Unfortunately, such a formulation is not efficient because there47

are exponentially many bilinear terms in the program. There are other approaches (e.g., [4]) that48

guarantee finding an NE in multiplayer games. However, these approaches need to enumerate all49

NEs to find an optimal NE, which is very inefficient [32] (see our experimental results) because there50

can be exponentially many NEs [42].51

To tackle this challenge, we first propose a general framework for transforming a multilinear program52

for computing optimal NEs into a bilinear program based on a set of correlation plans, where each53

correlation plan (i.e., a probability distribution over joint actions) corresponds to a set of auxiliary54

variables representing a set of bilinear terms. We then develop a novel algorithm called CRM55

based on this framework, which uses Correlation plans with their Relations to strictly reduce the56

feasible solution space after the convex relaxation of bilinear terms while Minimizing the number57

of correlation plans to reduce the number of bilinear terms. We show that our techniques can58

significantly reduce the time complexity, and CRM can be several orders of magnitude faster than the59

state-of-the-art baseline. To our best knowledge, CRM is the first algorithm to use a minimum set of60

correlation plans to reformulate the program for computing optimal NEs in multiplayer games.61

2 Preliminaries62

Consider a normal-form game2 G = (N,A, u) [35]. We denote the set of players as N = {1, . . . , n};63

the set of all players’ joint actions is A = ×i∈NAi, where Ai is the finite set of player i’s pure64

strategies (actions) with ai ∈ Ai; and the set of all players’ payoff functions is u = (u1, . . . , un),65

where ui : A→ R is player i’s payoff function. Let Umax = maxi∈N maxa∈A ui(a), and Umin =66

mini∈N mina∈A ui(a). In addition, the set of (joint) mixed strategy profiles X = ×i∈NXi, where67

Xi = ∆(Ai) (i.e., the set of probability distributions over Ai) is the set of mixed strategies of68

player i, and xi(ai) is the probability that any action ai ∈ Ai is played. Let −i be the set of69

all players excluding player i, i.e., −i = N \ {i}, and A−i be ×j∈N\{i}Aj . Generally, given70

N ′ ⊆ N , aN ′ ∈ AN ′ = ×i∈N ′Ai, aN ′(i) is the action of player i ∈ N ′ in the joint action71

aN ′ . For example, if aN ′ = (a1, a3, a5) with N ′ = {1, 3, 5}, aN ′(3) = a3. If N ′ = N , we72

ignore the subscript, i.e., a = aN and A = AN . For each x ∈ X , player i’s expected payoff is73

ui(x) =
∑

a∈A ui(a)
∏

j∈N xj(a(j)) and ui(ai, x−i) =
∑

a−i∈A−i
ui(ai, a−i)

∏
j∈−i xj(a−i(j))74

if player i plays ai. In this paper, we consider multiplayer games, i.e., n > 2.75

A Nash Equilibrium (NE, and NEs for Nash Equilibria) [28] is a stable strategy profile in which76

no player has an incentive to change her strategy given other players’ strategies and always exists.77

Formally, a strategy profile x∗ is an NE if, for each player i, x∗
i is a best response to x∗

−i, i.e.,78

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i),∀xi ∈ Xi, which is equivalent to ui(x

∗
i , x

∗
−i) ≥ ui(ai, x

∗
−i),∀ai ∈ Ai.79

With the above condition of NEs, we could use a multilinear program to represent the space of NEs,80

but it will involve the product of strategies in ui(x), whose degree is n and is higher than the product81

of strategies in ui(ai, x−i). To reduce the degree of the program representing the space of NEs from82

n to n− 1 (i.e., only the product of strategies in ui(ai, x−i) is required), in two-player games, the83

previous work [32] exploited the following NE’s property, which can be used in multiplayer games84

as well. For each strategy profile x ∈ X , the regret of an action ai is the difference in player i’s85

expected utility between playing xi in x and playing ai, i.e., ui(x) − ui(ai, x−i). Obviously, a86

1Here, if all team members play strategies according to an NE minimizing the adversary’s utility, the
adversary cannot deviate from the equilibrium strategy to obtain a higher utility.

2Our methods mostly apply to normal-form games including green security games mentioned in Section
1. Extensive-form games can be first converted to normal-form games to be solved, and exploiting their game
structure is the future work.
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strategy profile x ∈ X is an NE if and only if every action either has the regret 0, or is played with87

the probability 0 in x. Then the space of NEs of a game can be formulated as the feasible solution88

space of a mixed-integer program by using a binary variable bai
to represent that any action ai either89

has the regret 0, or is played with the probability 0:90

ui(ai, x−i) =
∑

a−i∈A−i

ui(ai, a−i)
∏
j∈−i

xj(a−i(j)) ∀i, ai ∈ Ai (1a)

∑
ai∈Ai

xi(ai) = 1 ∀i ∈ N (1b)

1− bai ≥ xi(ai) ∀i ∈ N, ai ∈ Ai (1c)
ui(x) ≥ ui(ai, x−i) ∀i ∈ N, ai ∈ Ai (1d)
ui(x)− ui(ai, x−i) ≤ bai(Umax − Umin) ∀i ∈ N, ai ∈ Ai, (1e)
ui(ai, x−i) ∈ [Umin, Umax], ui(x) ∈ [Umin, Umax] ∀i ∈ N, ai ∈ Ai, (1f)
xi(ai) ∈ [0, 1], bai ∈ {0, 1}, ∀i ∈ N, ai ∈ Ai, (1g)

where we use the notations of utility functions ui(x) and ui(ai, x−i) to represent the corresponding91

variables in the program. Eq.(1c) ensures that binary variable bai
is set to 0 when xi(ai) > 0 and92

can be set to 1 only when xi(ai) = 0; and Eq.(1e) ensures that the regret of action ai equals 0 (i.e.,93

ui(x) = ui(ai, x−i)), unless bai = 1 where the constraint ui(x) − ui(ai, x−i) ≤ (Umax − Umin)94

always holds.95

An optimal NE is an NE optimizing an objective function g(x) over the space of NEs, where g(x)96

is a linear objective function3 and could be maximizing social welfare, maximizing the expected97

utilities of one player or several players, maximizing the minimum utility among players, minimizing98

the support sizes of the NE strategies, and so on. Unfortunately, finding an optimal NE optimizing99

the above objectives is NP-hard [9].100

3 Computing Optimal Nash Equilibria101

The problem of finding an optimal NE in multiplayer games requires optimizing an objective over102

the space of NEs. This space is represented by Eq.(1), which involves nonlinear terms in Eq.(1a)103

to represent the strategies of players in −i, which is bilinear when n = 3 and is multilinear when104

n ≥ 4. The multilinear program is usually transformed into a bilinear program to make the program105

solvable using global optimization solvers, e.g., Gurobi [19]. Here, we propose a general framework106

for this transformation based on a set of correlation plans for any binary collection of subsets of107

players, where each set in this collection is divided into two disjoint sets, and each correlation plan108

corresponds to a set of auxiliary variables representing a set of bilinear terms. However, there are two109

challenges for solving this bilinear program: 1) this bilinear program usually involves a large number110

of bilinear terms, and 2) an important step used by state-of-the-art algorithms to solve such bilinear111

programs is to use convex relaxation to replace each bilinear term in the program [15, 18], which112

significantly enlarges the feasible solution space. To overcome these challenges, we develop a novel113

algorithm called CRM that uses Correlation plans with their Relations to strictly reduce the feasible114

solution space after the convex relaxation while Minimizing the number of correlation plans to reduce115

the number of bilinear terms. Section 3.4 shows that our techniques can significantly reduce the time116

complexity. The procedure of CRM is shown in Algorithm 2, which is illustrated in Appendix A.117

3.1 A General Transformation Framework118

A correlation plan is a probability distribution over the joint action space of a subset of players, and119

we focus on correlation plans for certain special collections of subsets of players, which can be used120

to transform a multilinear program for computing optimal NEs into a bilinear program.121

Definition 1. A collection N of subsets of players is a binary collection if: 1. {−i | i ∈ N} ⊆ N ;122

2. for each N ′ ∈ N , N ′ ⊂ N with |N ′| ≥ 2; and123

3. for each N ′ ∈ N , there are two disjoint children N ′
l and N ′

r in {{i} | i ∈ N} ∪ N such124

that N ′
l ∩N ′

r = ∅ and N ′ = N ′
l ∪N ′

r, i.e., N ′ is divided into two disjoint sets.125

3If g(x) is nonlinear, we can use a variable (i.e., a linear function) v as the new objective with the constraint
such that v = g(x).
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Let N ′
l and N ′

r be the left child and the right child of N ′ ∈ N , respectively. For each N ′ in any126

binary collection N , a correlation plan of N ′ is a probability distribution xN ′ over AN ′: given127

xN ′(aN ′) ∈ [0, 1] (∀aN ′ ∈ AN ′ , N ′ ∈ N ),128 ∑
aN′∈AN′

xN′(aN′) = 1 ∀N ′ ∈ N . (2)

For simplification, let i be equivalent to {i} for each i ∈ N . That is, xi is a special correlation plan129

x{i} (i.e., xi = x{i}), ai ∈ Ai is a special joint action a{i} ∈ A{i} (i.e., ai = a{i}). Each element130

N ′ in a binary collectionN has the binary division, i.e., it is divided into two disjoint sets N ′
l and N ′

r.131

Based on this binary division, any joint action aN ′ ∈ AN ′ can be divided into two sub-joint actions132

aN ′
l
∈ AN ′

l
and aN ′

r
∈ AN ′

r
such that aN ′ = (aN ′

l
, aN ′

r
). Then we can use this binary division to133

ensure that
∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for the correlation plan xN ′ , as shown in Example 1.134

Example 1. {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {3, 4}, {2, 4}} is135

a binary collection for a four-player game. For N ′ = {1, 2, 3} in this collection with N ′
l = {1, 2}136

(having two children {1} and {2}) and N ′
r = {3}, we have aN ′ = (a1, a2, a3) = (a{1,2}, a3) ∈ AN ′137

and a{1,2} = (a1, a2) ∈ A{1,2}. Then we can have a chain of bilinear constraints (equalities):138

xN ′(aN ′) = x{1,2}(a{1,2})x3(a3) and x{1,2}(a{1,2}) = x1(a1)x2(a2), which guarantees that139

xN ′(aN ′) = x1(a1)x2(a2)x3(a3). In other words, we use x{1,2}(a{1,2}) and xN ′(aN ′) as the140

auxiliary variables to represent bilinear terms x1(a1)x2(a2) and x{1,2}(a{1,2})x3(a3), respectively.141

This property of correlation plans of a binary collection N can be used to transform the multilinear142

Program (1) into a bilinear program. First, we use the binary division of each element N ′ in N to143

connect correlation plans, i.e., for any N ′ ∈ N with its children N ′
l and N ′

r:144

xN′(aN′)=xN′
l
(aN′

l
)xN′

r
(aN′

r
) ∀aN′=(aN′

l
, aN′

r
)∈AN′ (3a)

xN′(aN′) ∈ [0, 1] ∀aN′ ∈ AN′ . (3b)

Second, we replace
∏

j∈−i xj(a−i(j)) in Eq.(1a) with x−i(a−i):145

ui(ai, x−i)=
∑

a−i∈A−i

ui(ai, a−i)x−i(a−i) ∀i ∈ N, ai ∈ Ai. (4)

In the above transformation, each correlation plan corresponds to a set of auxiliary variables (e.g.,146

xN ′(aN ′)) representing a set of bilinear terms (e.g., xN ′
l
(aN ′

l
)xN ′

r
(aN ′

r
)). Eq.(3) guarantees that147 ∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′), and then the feasible solution space of Eqs.(1b)-(1g), (3), and (4)148

represents the space of NEs.149

Theorem 1. The feasible solution space of mixed strategies (i.e., xi(ai) for each i ∈ N , ai ∈ Ai) in150

Eqs.(1b)-(1g), (3), and (4) is the space of NEs. (Proofs are in Appendix B.)151

We can then compute an optimal NE by solving the following mixed-integer bilinear program152

according to any binary collection N :153

max
x

g(x) (5a)

s.t. Eqs.(1b)− (1g), (3), (4). (5b)

It is straightforward to solve Program (5) by using the vanilla binary collection N that includes all154

non-singleton proper subsets of N , i.e., N = {N ′ | N ′ ⊂ N, |N ′| ≥ 2}, where, for each N ′ ∈ N ,155

N ′
l is N ′ \ {j} and N ′

r is {j = maxi∈N ′ i}. Example 1 provides an example of N .156

3.2 Exploit Correlation Plans with Their Relations157

In this section, we use correlation plans with their relations to restrict the feasible solution space after158

the convex relaxation. The common convex relaxation technique [25, 33, 18] before searching for the159

optimal solution is: each bilinear term xN ′(aN ′) = y1y2 with y1, y2 ∈ [0, 1] is represented by the160

following constraints including four linear constraints:161

max{0, y1 + y2 − 1} ≤ xN′(aN′) ≤min{y1, y2}, (6)

which significantly enlarges the feasible solution space. We now show the motivation to use correlation162

plans with their relations to reduce this feasible solution space.163
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Example 2. Given N ′ = {2, 4} ⊂ N with two actions for each player (i.e., Ai = {ai, a′i}) in a game164

G, by Eq.(6), bilinear terms (e.g., xN ′(a2, a4) = x2(a2)x4(a4)) are relaxed according to Eq.(6), e.g.,165

max{0, x2(a2) + x4(a4)− 1} ≤ xN ′(a2, a4) ≤min{x2(a2), x4(a4)}. With additional constraints166

by Eq.(1b) (e.g., x4(a4) + x4(a
′
4) = 1), the following assignment could be a feasible solution:167

xN′(a2, a4)=xN′(a′
2, a4)=xN′(a2, a

′
4)=xN′(a′

2, a
′
4)=x2(a2)=x2(a

′
2)=x4(a4)=x4(a

′
4)=0.5. (7)

Obviously, in Eq.(7), xN ′(a2, a4) is not equal to x2(a2)x4(a4). In fact, based on Eq.(2), we have:168

xN′(a2,a4)+xN′(a′
2,a4)+xN′(a2,a

′
4)+xN′(a′

2,a
′
4)=1, (8)

which will make the solution in Eq.(7) infeasible. Moreover, the following assignment is a feasible169

solution after the relaxation and satisfies Eq.(8):170

xN′(a2, a4)= xN′(a′
2, a4)= xN′(a2, a

′
4)= 0.2, xN′(a′

2, a
′
4)= 0.4, x2(a2)= x4(a4)= 0.5. (9)

However, in Eq.(9), xN ′(a2, a4) is still not equal to x2(a2)x4(a4). Actually, we have:171

xN′(a2, a4) + xN′(a′
2, a4) = x4(a4), xN′(a2, a

′
4) + xN′(a′

2, a
′
4) = x4(a

′
4), (10)

which will make the solution in Eq.(9) infeasible.172

This above example shows that we can use the definition of a correlation plan (i.e., Eq.(2)) and the173

relation of correlation plans to reduce the feasible solution space after the relaxation.174

Each element N ′ in any binary collection N is defined by N ′
l and N ′

r, which actually defines175

relations between correlation plans for elements in {{i} | i ∈ N} ∪ N . In Example 2, Eq.(10)176

actually represents a relation between the correlation plan xN ′ and the mixed strategy x4 (i.e., the177

special correlation plan x{4}). Formally, for any N ′ ∈ N and i ∈ N ′:178 ∑
aN′∈AN′ ,aN′ (i)=ai

xN′(aN′)= xi(ai) ∀ai ∈ Ai, (11)

where aN ′(i) is the action of player i ∈ N ′ in the joint action aN ′ . Similarly, let aN ′(N ′′) be the179

sub-joint action of player N ′′ ⊂ N ′ in the joint action aN ′ . Then, for any N ′ ∈ N with its children180

N ′
l and N ′

r, and N ′′ ∈ {N ′
l , N

′
r}:181 ∑

aN′∈AN′ ,aN′ (N′′)=aN′′

xN′(aN′)= xN′′(aN′′) ∀aN′′ ∈AN′′ (12)

where we could add |N ′′| > 1 to ensure that Eq.(11) and Eq.(12) do not generate the same constraints.182

Appendix A shows some examples of these constraints. Eq.(11) represents the relation between the183

correlation plan xN ′ and the mixed strategy xi (i.e., the special correlation plan x{i}) for each i ∈ N ′,184

and Eq.(12) represents the relation between the correlation plan xN ′ and the correlation plan xN ′
l

or185

xN ′
r
. Equivalently, Eqs.(2), (11), and (12) represent the marginalization constraints that independent186

probability distributions ought to obey, where xN ′ is the joint distribution (represented by Eq.(2)) of187

independent distributions xi for all i ∈ N ′ (represented by Eq.(11)) or independent distributions xN ′
r

188

and xN ′
l

(represented by Eq.(12)).189

We now show the effectiveness of our correlation plans by showing our method strictly reduces190

the feasible solution space after the relaxation. Reducing the feasible solution space will make the191

program efficiently solvable, as shown in the experiments. LetM be the original feasible solution192

space for the original multilinear program that is transformed into a bilinear program according to N ,193

i.e.,M is particularly constrained by Eqs.(1b), (3a), and (3b). We define the convex relaxation space194

R as using Eq.(6) to represent each bilinear term in Eq.(3a), i.e., R is particularly constrained by195

Eqs.(1b), (6), and (3b). We define our tight relaxation space T based on our correlation plans, i.e., T196

is particularly constrained by Eqs.(1b), (2), (11), (12), and (3b). (Proofs are in Appendix B.)197

Theorem 2. M⊂ T ⊂ R, i.e., T is strictly smaller thanR but still includesM.198

The propertyM⊂ T ⊂ R means that: i) we can use T to strictly reduce the feasible solution space199

after the relaxation, and ii) restricting the feasible solution space to T does not reduce the space of200

NEs and then guarantees optimality for the original program. We now explicitly restrict the feasible201

solution space to T by adding Eqs.(2), (11), and (12) to Program (5) for any binary collection N :202

max
x

g(x) (13a)

s.t. Eqs.(1b)− (1g), (2), (3), (4), (11), (12). (13b)
Theorem 3. The optimal solution of Program (13) maximizes g(x) over the space of NEs.203

Using the bilinear constraint Eq.(3a) in Program (13) is necessary for computing an optimal NE by204

solving Program (13) becauseM ≠ T . Appendix C shows that, after removing Eq.(3a) in Program205

(13), the inefficiency can be arbitrarily large, and the resulting strategy profile may not be an NE.206
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Algorithm 1 Generate N
1: Build a full binary tree T−n with the height ⌈log2(n − 1)⌉ for
−n with the set of internal nodesNT−n and |NT−n | = n− 2

2: for each i in {1, . . . , n− 1} do
3: Search T−n to replace i with n in each node including i to

form a binary tree T−i with the set of internal nodesNT−i

4: end for
5: N ← ∪i∈NNT−i .

for −n and then replace i with n in the nodes of T−n to
obtain T−i for each i ∈ −n = {1, . . . , n − 1}. That creates
n full binary trees for {−i | i ∈ N}. This procedure is
shown in Algorithm 1 (details are shown in Appendix C),
generating our minimum binary collection N including all
internal nodes in these trees. For example, Figure 1(a) builds
a binary tree T−5, and Figure 1(b) obtains T−3 by replacing
3 with 5 in T−5. Generally, we only need to create at most
⌈log2(n− 1)⌉ new internal nodes to build a minimum-height
binary tree for each −i with i ∈ −n. Then |N | is at most
n− 2 + (n− 1)⌈log2(n− 1)⌉, i.e., O(n log n).

Theorem 4. N generated by Algorithm 1 is a binary collec-315

tion, and O(n log n) for the size of N is the minimum size of316

all binary collections of a game G.317

|N | only grows sub-quadratically with n and is much318

smaller than |N | = 2n − (n + 2) for N . Then N requires319

fewer bilinear terms than N when n > 3. For example, in a320

seven-player game with two actions for each player, by using321

N with |N | = 21 correlation plans, the number of bilinear322

terms is 564, which is much smaller than 2044 by using N323

with |N | = 119 correlation plans. Table 3 of Appendix E324

shows more examples. Note that Algorithm 1 cannot reduce325

the number of internal nodes when n = 3 because each ele-326

ment in {−i | i ∈ N} includes only two elements in three-327

player games. Our algorithm, CRM, is solving Program (13)328

based onN , which is shown in Algorithm 2 and is illustrated329

in Appendix D.330

3.4 Complexity331

The problem of finding an optimal NE is NP-hard [Conitzer332

and Sandholm, 2003], and our algorithm, CRM, i.e., Pro-333

gram (13) based onN generated by Algorithm 1, is a mixed-334

integer bilinear program, whose scalability is mainly affected335

by the number of bilinear terms and integer variables. Gen-336

erally, the problem of solving a linear integer program is337

NP-hard, and the time complexity is O(I2(EC2)2E+3) [Pa-338

padimitriou, 1981], where I is the number of integer vari-339

ables, E is the number of constraints containing integer vari-340

ables, and C is the maximum value among constants and341

the range of integer variables in these constraints. Theo-342

retically, each bilinear term can be represented by a mixed-343

integer linear program by introducing a new set of constraints344

and binary integer variables [Kolodziej et al., 2013]. Sup-345

pose each bilinear term introduces I ′ integer variables and346

E′ constraints, and each player has m actions. Program (5)347

based onN has
∑

N ′∈N
∏

i∈N ′ |Ai| ≤ (2n−n−2)mn−1 ≤348

2nmn−1 bilinear terms and mn binary integer variables with349

mn constraints. Then the time complexity for solving the350

Algorithm 2 CRM
1: Input: A game G = (N,A, u) and an objective function g(x)
2: A binary collectionN ← The output of Algorithm 1
3: Create Eqs.(1b)-(1g)
4: Create Eqs.(3), (2), (4), (11), and (12) according toN
5: x∗ ←An optimal solution by solving Program (13) based onN ,

i.e., maxx g(x) s.t. Eqs.(1b)− (1g), (2), (3), (4), (11), (12)
6: Output: An optimal NE x∗.

Program (5) based on N is O(I21 (E1C
2)2E1+3) where I1 = 351

2nmn−1I ′ + mn and E1 = 2nmn−1E′ + mn. Program 352

(13) based on N has
∑

N ′∈N
∏

i∈N ′ |Ai| ≤ |N |mn−1, i.e., 353

O((n log n)mn−1) bilinear terms (this size is the minimum 354

because O(n log n) is the minimum size of binary collec- 355

tions by Theorem 4) and mn binary integer variables with 356

mn constraints. Then the time complexity for solving Pro- 357

gram (13) based on N is O(I22 (E2C
2)2E2+3) where I2 = 358

(n log n)mn−1I ′ +mn and E2 = (n log n)mn−1E′ +mn, 359

and thus O(n log n) of Algorithm 1 can be ignored. There- 360

fore, CRM dramatically reduces the time complexity (i.e., the 361

term 2n in I1 and E1 is changed to the term n log n in I2 and 362

E2) after reducing the number of bilinear terms. Adding lin- 363

ear constraints for correlation plans may not affect the time 364

complexity result in the worst case because these constraints 365

do not include integer variables, but it significantly improves 366

the scalability in practice shown in experiments. 367

4 Experiments 368

Following prior work on algorithms for finding NEs [Sand- 369

holm et al., 2005; Berg and Sandholm, 2017; Ganzfried, 370

2021], we evaluate our approach on two sets of games: ran- 371

domly generated games and games that are generated by 372

GAMUT [Nudelman et al., 2004]. Payoffs are generated 373

from the interval between 0 and 100 (other ranges (e.g., [0, 1]) 374

do not affect the result). We vary the number of players (i.e., 375

n) and the number of actions (i.e., m) for each player for 376

random games (i.e., (n,m)). For GAMUT games, we use 377

the variants with six players and three actions (i.e., the game 378

(6, 3)), which are much larger than the three-player three- 379

action games (i.e., the game (3, 3)) used in prior work [Berg 380

and Sandholm, 2017; Ganzfried, 2021]. We show the game 381

size in terms of the number of bilinear terms and integer vari- 382

ables in Appendix E, e.g., the number of bilinear terms in the 383

game (9, 2) is 19152 based on N but is 2512 based on N . 384

For each setting, we generated 30 games, where the seeds are 385

i ∈ {1, . . . , 30} for the GAMUT games and 20201125+i ·10 386

for random games. Results in this section are hence averaged 387

over 30 cases. 388

Baselines: We compare our CRM shown in Algorithm 389

2, i.e., solving Program (13) based on our N , to the state- 390

of-the-art algorithms: i) MIBP [Sandholm et al., 2005; 391

Ganzfried, 2021]: solving Program (5) based on N ; ii) 392

EXCLUSION [Berg and Sandholm, 2017]: the first im- 393

plemented algorithm guarantees to converge to an NE by 394

using a tree-search based method by splitting the continu- 395

ous probability space of the solution; and iii) ENUMPOLY 396

[McKelvey et al., 2014]: an algorithm in the well-known 397

3.3 Minimum-Height Binary Trees207

In Program (13), we need to add a set of linear constraints and bilinear constraints for each correlation208

plan corresponding to each element in any binary collection N . The size of the vanilla binary209

collection N is 2n − (n+ 2), which grows exponentially with the number of players. In this section,210

we propose building minimum-height binary trees to obtain a minimum binary collection. Our binary211

collection gives us a minimum set of correlation plans, which requires significantly fewer bilinear212

terms than N .213

There are different ways to divide a subset of players, which determines different binary collections.214

For example, N ′ = {1, 2, 3, 4} can be divided into {1, 2} and {3, 4} or {1} and {2, 3, 4}, which will215

lead to different binary collections. Therefore, for obtaining a minimum binary collection N , the216

challenge is how to effectively divide each element in N .217

{3,4}

{1} {2} {3} {4}
(a)

{1,2}

{1,2,3,4}

{5,4}

{1} {2} {5} {4}
(b)

{1,2}

{1,2,5,4}

Figure 1: Binary trees for −5 and −3
218

To overcome this challenge, we propose building a219

minimum-height binary tree for each element in {−i | i ∈220

N} and ensuring that the number of internal nodes in these221

binary trees is the minimum. The binary division for each222

element in a binary collection N creates a binary tree for223

each element in {−i | i ∈ N}. For example, Figure 1(a) is a binary tree for −5 = {1, 2, 3, 4}, and224

Figure 1(b) is a binary tree for−3 = {1, 2, 5, 4} in five-player games. Each binary tree for−i is a full225

binary tree, i.e., each internal node has two children, with n− 2 internal nodes and n− 1 leaf nodes,226

where the height is the number of internal nodes on the longest path from the root to a leaf (e.g., the227

height in Figure 1(a) is 2). Details for these binary trees are shown in Appendix D. We can then build228

a full binary tree T−n with the minimum height ⌈log2(n−1)⌉ for−n and then replace i with n in the229

nodes of T−n to obtain T−i for each i ∈ −n = {1, . . . , n− 1}. That creates n full binary trees for230

{−i | i ∈ N}. This procedure is shown in Algorithm 1 (details are shown in Appendix D), generating231

our minimum binary collection N including all internal nodes in these trees. For example, Figure232

1(a) builds a binary tree T−5, and Figure 1(b) obtains T−3 by replacing 3 with 5 in T−5. Generally,233

we only need to create at most ⌈log2(n− 1)⌉ new internal nodes to build a minimum-height binary234

tree for each −i with i ∈ −n. Then |N | is at most n− 2 + (n− 1)⌈log2(n− 1)⌉, i.e., O(n log n).235

Theorem 4. N generated by Algorithm 1 is a binary collection, and O(n log n) for the size of N is236

the minimum size of all binary collections of a game G. (Proofs are in Appendix B.)237

|N | only grows sub-quadratically with n and is much smaller than |N | = 2n − (n+ 2) for N . Then238

N requires fewer bilinear terms than N when n > 3. For example, in a seven-player game with two239

actions for each player, by using N with |N | = 21 correlation plans, the number of bilinear terms240

is 564, which is much smaller than 2044 by using N with |N | = 119 correlation plans. Table 3 of241

Appendix G shows more examples. Note that Algorithm 1 cannot reduce the number of internal242

nodes when n = 3 because each element in {−i | i ∈ N} includes only two players in three-player243

games. Our algorithm, CRM, is solving Program (13) based on N , which is shown in Algorithm 2244

and is illustrated in Appendix A.245

3.4 Complexity246

The problem of finding an optimal NE is NP-hard [9], and our algorithm, CRM, i.e., Program (13)247

based on N generated by Algorithm 1, is a mixed-integer bilinear program, whose scalability is248

mainly affected by the number of bilinear terms and integer variables. Generally, the problem of249

solving a linear integer program is NP-hard, and the time complexity is O(I2(EC2)2E+3) [30],250

where I is the number of integer variables, E is the number of constraints containing integer variables,251

and C is the maximum value among constants and the range of integer variables in these constraints.252
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Table 1: Part of experimental results (more results are in Tables 4 and 5 of Appendix H). The format is:
Average Runtime ± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit) (Utility
Gap). Note that the unit of the runtime is second, the case that all games have been solved with the time limit
should be (0%) and is omitted, we only need to care about the utility gap (a larger gap means losing more) for
EXCLUSION, and the utility gap∞ represents EXCLUSION cannot return a solution within the time limit.

Random Game Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Vary (n,m) CRM MIBP ENUMPOLY EXCLUSION

n
(3, 2) 0.01 ± 0 0.02 ± 0 0.03 ± 0.01 31 ± 41 (gap:15%)
(5, 2) 0.2 ± 0.1 0.5 ± 0.4 11 ± 4 753 ± 148 (73%) (gap:64%)
(7, 2) 25 ± 17 429 ± 131 (20%) 1000 ± 0 (97%) 835 ± 119 (80%) (gap:53%)

m
(3, 5) 0.2 ± 0.03 0.3 ±0.1 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:67%)
(3, 8) 4 ± 3 247 ± 140 (17%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 10) 9 ± 9 334 ± 167 (30%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 13) 38 ± 21 342 ± 151 (27%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)

GAMUT Game CRM MIBP ENUMPOLY EXCLUSION
Random LEG 2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 27 (97%) (gap:11%)

Random graphical 0.1 ± 0.1 803 ± 140 (83%) 50 ± 30 971 ± 55 (97%) (gap:32%)
Uniform LEG 2.2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 26 (97%) (gap:11%)

Table 2: Ablation study (more results are in Table 6 of Appendix H). Note thatN (in CR and C) andN (in CRM,
CM, and M) result in the same bilinear terms in three-player games because each element in {−i | i ∈ {1, 2, 3}}
includes only two players such that Algorithm 1 cannot reduce the number of internal nodes to reduce the
number of bilinear terms, and then CR and CRM (or C and CM) have the same performance. The unit of the
runtime is second.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game CRM CR CM C M
(8, 2) 156± 83 (3%) 612± 129 (33%) 190 ± 102 (7%) 763 ± 120 (60%) 1000 ± 0 (100%)
(7, 2) 25 ± 17 89 ± 51 36 ± 28 408 ± 157 (30%) 488 ± 111 (10%)
(3, 15) 167± 86 (3%) 167 ± 86 (3%) 317 ± 137 (17%) 317 ± 137 (17%) 558 ± 150 (40%)
(3, 17) 231±122 (10%) 231 ±122 (10%) 326 ± 134 (20%) 326 ± 134 (20%) 784 ± 102 (53%)
Random graphical 0.1 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.6 ± 0.4 814 ± 134 (80%)
Uniform LEG 2.2 ± 1 5 ± 4 2.5 ± 2 5 ± 5 999 ± 2 (97%)

Theoretically, each bilinear term can be represented by a mixed-integer linear program by introducing253

a new set of constraints and binary integer variables [21]. Suppose each bilinear term introduces254

I ′ integer variables and E′ constraints, and each player has m actions. Program (5) based on N255

has
∑

N ′∈N
∏

i∈N ′ |Ai| ≤ (2n − n − 2)mn−1 ≤ 2nmn−1 bilinear terms and mn binary integer256

variables with mn constraints. Then the time complexity for solving the Program (5) based on N is257

O(I21 (E1C
2)2E1+3) where I1 = 2nmn−1I ′+mn and E1 = 2nmn−1E′+mn. Program (13) based258

on N has
∑

N ′∈N
∏

i∈N ′ |Ai| ≤ |N |mn−1, i.e., O((n log n)mn−1) bilinear terms (this size is the259

minimum because O(n log n) is the minimum size of binary collections by Theorem 4) and mn binary260

integer variables with mn constraints. Then the time complexity for solving Program (13) based on261

N is O(I22 (E2C
2)2E2+3) where I2 = (n log n)mn−1I ′ +mn and E2 = (n log n)mn−1E′ +mn,262

and thus O(n log n) of Algorithm 1 can be ignored. Therefore, CRM dramatically reduces the time263

complexity (i.e., the term 2n in I1 and E1 is changed to the term n log n in I2 and E2).264

4 Experiments265

Following prior work for NEs [32, 4, 13], we evaluate our approach on two sets of games: randomly266

generated games (i.e., (n,m) with n players and m actions for each player) and six-player three-267

action games that are generated by GAMUT [29]. Payoffs are generated from the interval between 0268

and 100 (other ranges (e.g., [0, 1]) do not affect the result). Details are shown in Appendix F. We269

show the game size in terms of the number of bilinear terms and integer variables in Appendix G,270

e.g., the number of bilinear terms in the game (9, 2) is 19152 based on N but is 2512 based on N .271

Baselines: We compare our CRM shown in Algorithm 2, i.e., solving Program (13) based on our272

N , to the state-of-the-art algorithms: i) MIBP [32, 13]: the equivalent of solving Program (5) based273

on N ; ii) EXCLUSION [4]: the first implemented algorithm guarantees to converge to an NE274

by using a tree-search based method by splitting the continuous probability space of the solution;275

and iii) ENUMPOLY [26]: an algorithm in the well-known game-solving package Gambit which276

tries to find all NEs by enumerating all the supports which could be the support of an NE and then277
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searching for an equilibrium on that support. They represent approaches to solving a nonlinear278

program, finding an NE, and enumerating all Nash equilibria, respectively. There are some other279

algorithms in Gambit [26] for finding an NE in a multiplayer game, including: i) GNM [16]: a global280

Newton method approach; ii) IPA [17]: an iterated polymatrix approximation approach; iii) LIAP:281

a function minimization approach; iv) SIMPDIV [39]: a simplicial subdivision approach; and v)282

LOGIT [27, 38]: a quantal response method. However, they cannot guarantee finding an NE [4].283

Therefore, they are not suitable for finding an optimal NE. In fact, we show in Appendix I that all of284

them fail to solve many games and even run significantly slower than CRM in many games. Note285

that these Gambit algorithms only achieve some NE if the game is solved, which may not be optimal.286

Algorithm Setting and Metric: We set a time limit of 1000 seconds for each case unless stated287

otherwise. Our optimality gap for EXCLUSION is significantly smaller than 0.001 in [4] (we verified288

that, with the same optimality gap, our result for EXCLUSION is almost the same as the one in [4]).289

We mainly use the runtime and the percentage of games that are not solved within the time limit to290

measure the performance of our approach. Details are shown in Appendix F (also caption of Table 1).291

Result: Part of results are shown in Table 1, and more results are in Tables 4 and 5 of Appendix292

H. They show that the runtime of our CRM steadily increases with the game size. Note that the293

runtime of CRM includes the runtime for our Algorithm 1, which is extremely small (see Appendix294

E). Moreover, CRM is significantly faster than the baselines and is two or three orders of magnitude295

faster than the state-of-art baselines MIBP, ENUMPOLY, and EXCLUSION in most games. The296

reasons are that: 1) MIBP with too many bilinear terms and large feasible solution space after the297

relaxation cannot perform well without CRM’s novel techniques in Section 3, where each of these298

techniques significantly boosts the performance (see the ablation study); and 2) the exponentially299

many NEs and the large search space caused by splitting the continuous probability space make300

ENUMPOLY and EXCLUSION, respectively, hard to scale up. EXCLUSION always has large utility301

gaps, which means that we will lose large utilities if we use EXCLUSION for our problem. The result302

that CRM runs significantly faster than EXCLUSION means that CRM is a faster algorithm not only303

for computing an optimal NE but also for just computing an NE. Furthermore, the gap between CRM304

and any of the baselines increases with the number of players or actions. In games with a large gap305

between CRM and baselines, the real gap should be larger because these baselines have not solved all306

of them within the time limit, while CRM solved all of them. Overall, CRM significantly overcomes307

the limitation of baselines.308

Ablation Study: We evaluate each component of CRM by using the following variants: i) CR:309

solving Program (13) based on N ; ii) CM: solving Program (13) based on N without the relation310

constraints Eqs.(11) and (12); iii) C: solving Program (13) based onN without the relation constraints311

Eqs.(11) and (12); and iv) M: solving Program (5) based onN . Part of results are in Table 2, and more312

results are in Table 6 of Appendix H. We can see that each component of our approach significantly313

boosts its performance.314

5 Related Work315

Existing works define a correlation plan as a probability distribution over the joint action space of316

all players, and use it to formulate constraints for a correlated equilibrium [35, 1]. However, the317

constraints for the space of correlated equilibria cannot be used in our program due to the following318

two reasons. First, there are no correlation plans for coordinating all players in our program after the319

convex relaxation because our formulation based on [32] has reduced the degree of the multilinear320

program for the space of NEs in order to significantly reduce the number of bilinear terms. Second,321

our correlation plans are different from the correlation plan for correlated equilibria because our322

correlation plans are only for subsets of the players. Recently, the correlation plan [46] based on a323

decomposition of the extensive-form game into public states has been used to compute correlated324

equilibria. However, their approach is not suitable for our problem because our game is not extensive-325

form and then does not have the property of their problem. Then our approach exploiting the relations326

of correlation plans and minimizing the number of correlation plans is novel.327

Several recent efforts have developed relatively efficient algorithms to find an NE that maximizes the328

utility of a team of players in zero-sum games [43, 47, 48, 11, 49]. However, these algorithms cannot329

be used in games where team members have different utility functions. Existing works transforming330

multilinear terms into bilinear terms only focus on special cases. For example, the transformation in331
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[13] is equivalent to our transformation based onN , which is only a special case of our transformation332

framework. They [13] then directly solves the bilinear program based on this special transformation333

for finding an NE, which is equivalent to our baseline MIBP. Experiments show that our approach334

with novel techniques in Section 3 significantly outperforms [13]. Similar to the formulation in [32],335

there are other formulations [2, 3] for finding an optimal NE for two players under the problem of336

computing a leader-follower (Stackelberg) equilibrium for a single leader and two followers after a337

mixed strategy is committed by the leader. These formulations are different from ours because of the338

difference between the NE and the Stackelberg equilibrium. For example, the leader will commit a339

strategy to the followers in a Stackelberg equilibrium, i.e., the followers know the leader’s strategy,340

but this cannot happen in an NE as all players move simultaneously. Moreover, after dropping the341

dependences of the followers to the leader’s strategies in these bilinear programming formulations,342

the problem boils down to computing an optimal NE in two-player games because they only consider343

two followers in their formulations, which results in the same two-player formulation of [32].344

For the existing general optimization techniques, e.g., Reformulation-Linearization Technique (RLT)345

[33, 23, 34], they add linear constraints by multiplying linear constraints with a single variable to346

reduce the feasible solution space of the convex relaxation and the number of bilinear terms if they347

can be represented by linear constraints (i.e., variants of original linear constraints). However, these348

operations are not very effective for our problem because the bilinear terms cannot be represented by349

those linear constraints (i.e., variants of original linear constraints), and simply multiplying linear350

constraints with a single variable cannot effectively represent the relation between auxiliary variables351

and nonlinear terms. Indeed, RLT is implemented in Gurobi [18, 19], but its performance (see MIBP352

in Table 1) is not good enough for large games in experiments. Moreover, our approach significantly353

outperforms the state-of-the-art optimization solver Gurobi (see results for CRM versus MIBP in354

Table 1) in experiments.355

6 Limitations356

Similarly to the previous literature [32, 4, 13], to efficiently evaluate the algorithms, we set a time357

limit of 1000 seconds for each case unless stated otherwise. It means that we may need 30,000358

seconds (almost 8 hours) to run an algorithm for each game setting (e.g., the game (6, 3)) with 30359

cases. We totally run 13 algorithms for 21 different game settings, whose total runtime is more than360

2,000 hours if each algorithm needs 30,000 seconds for each game setting. A higher time limit means361

more runtime. For example, if the time limit is 10,000s, we may need 20, 000 hours (more than 800362

days), which is not reasonable for a personal computer. Increasing the game size will cause a similar363

problem as well. Our goal is only to show that our proposed algorithm runs faster than baselines.364

Therefore, as a proof of concept, our time limit and game size are reasonable and practical.365

Our algorithm CRM is significantly faster than the state-of-the-art baseline, and it can solve many366

real-world games: e.g., (1) multiplayer hand games using only the hands of the players (https:367

//en.m.wikipedia.org/wiki/Hand_game), including the rock-paper-scissors games, Morra games, and368

their variants; and (2) the matching pennies game with several players and only two actions for each369

player. However, we cannot handle extremely large games now because we are handling a very hard370

problem, and then it is unrealistic to expect that our exact algorithm CRM could run very fast in371

large games. Our algorithm is an attempt to make this computation of optimal NEs feasible, and our372

algorithm framework can be built on by further innovative heuristics to improve the computation of373

optimal NEs. That is, for games with more players or actions, we can exploit the auxiliary speed-up374

techniques: the multiagent learning framework—Policy-Spaced Response Oracles (PSRO) [22], the375

abstraction techniques [44], or only considering approximate NEs. Specifically, our algorithm CRM376

could be used as the meta-solver in PSRO.377

7 Conclusion378

This paper proposes a novel algorithm (CRM) for computing optimal NEs based on our transformation379

framework. CRM uses correlation plans with their relations to strictly reduce the feasible solution380

space after the convex relaxation while minimizing the number of correlation plans to significantly381

reduce the number of bilinear terms. Experiments show that CRM significantly outperforms baselines.382
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Appendix494

A Illustration of CRM495

In four-player games,N = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2}, {1, 3}, {2, 3}, {1, 4}, {3, 4}, {2, 4}}.496

By Algorithm 1 in CRM, we haveN = {{1, 2, 3}, {4, 2, 3}, {1, 4, 3}, {1, 2, 4}, {1, 2}, {4, 2}, {1, 4}},497

i.e., N = {−4, −1,−2,−3, {1, 2}, {2, 4}, {1, 4}}. To obtain this set, we first have a full binary498

tree T−4 with the set of internal nodes NT−4
= {{1, 2, 3}, {1, 2}}. Then, for each element in499

NT−4
, we replace 1 with 4 to obtain NT−1

= {{4, 2, 3}, {4, 2}}; replace 2 with 4 to obtain500

NT−2
= {{1, 4, 3}, {1, 4}}; and replace 3 with 4 to obtain NT−3

= {{1, 2, 4}, {1, 2}}. Then501

N = NT−1
∪NT−2

∪NT−3
∪NT−4

.502

In three-player games, Algorithm 1 cannot reduce the number of internal nodes because each element503

in {−i | i ∈ {1, 2, 3}} includes only two players. Then N = N = {{1, 2}, {1, 3}, {2, 3}}, which504

means that N and N will result in the same set of bilinear terms in three-player games.505

To be simplified, we show how to formulate the program according to Algorithm 2 (i.e., CRM) in506

a three-player game G = (N,A, u) with N = {1, 2, 3}, Ai = {ai, a′i} first. In three-player games,507

−1 = {2, 3}, and N = {−1,−2,−3} = {{2, 3}, {1, 3}, {1, 2}}.508

Note that A−1 = A2,3 = A2 × A3 = {(a2, a3), (a2, a′3), (a′2, a3), (a′2, a′3)} with N ′ = −1 =509

{2, 3}, N ′
l = {2}, N ′

r = {3}. We show the constraints related to player 1 here: We first show player510

1’s constraints in the Nash equilibria space based on Eqs.(1b)-(1e):511

x1(a1) + x1(a
′
1) = 1 (based on Eqs.(1b))

1− ba1
≥ x1(a1), 1− ba′

1
≥ x1(a

′
1) (based on Eq.(1c))

u1(x)≥u1(a1, x−1), u1(x)−u1(a1, x−1)≤ba1(Umax − Umin) (based on Eqs.(1d)) and (1e))
u1(x)≥u1(a

′
1, x−1), u1(x)−u1(a

′
1, x−1)≤ba′

1
(Umax − Umin) (based on Eqs.(1d) and (1e))

The above constraints include player 1’s expected utility variables u1(a1, x−1) and u1(a
′
1, x−1),512

which are represented by the following constraints based on Eq.(4):513

u1(a1, x−1) = u1(a1, a2, a3)x−1(a2, a3) + u1(a1, a2, a
′
3)x−1(a2, a

′
3)

+ u1(a1, a
′
2, a3)x−1(a

′
2, a3) + u1(a1, a

′
2, a

′
3)x−1(a

′
2, a

′
3) (based on Eq.(4))

u1(a
′
1, x−1) = u1(a

′
1, a2, a3)x−1(a2, a3) + u1(a

′
1, a2, a

′
3)x−1(a2, a

′
3)

+ u1(a
′
1, a

′
2, a3)x−1(a

′
2, a3) + u1(a

′
1, a

′
2, a

′
3)x−1(a

′
2, a

′
3) (based on Eq.(4)) ,

where the correlation plan x−1 of −1 over A−1, based on Eq.(2), is defined by:514

x−1(a2, a3) + x−1(a2, a
′
3) + x−1(a

′
2, a3) + x−1(a2, a

′
3) = 1 (the correlation plan of −1 based on Eq.(2)).

In the above correlation plan x−1, x−1(a2, a3), x−1(a2, a
′
3), x−1(a

′
2, a3), x−1(a

′
2, a

′
3) represent the515

following four bilinear terms (constraints):516

x−1(a2, a3) = x2(a2)x3(a3) (the bilinear constraint based on Eq.(3a)) with
a−1 = (a2, a3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a2), aN ′

r
= (a3)

x−1(a2, a
′
3) = x2(a2)x3(a

′
3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a2, a
′
3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a2), aN ′

r
= (a′3)

x−1(a
′
2, a3) = x2(a

′
2)x3(a3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a′2, a3) = (aN ′
l
, aN ′

r
), aN ′

l
= (a′2), aN ′

r
= (a3)

x−1(a
′
2, a

′
3) = x2(a

′
2)x3(a

′
3) (the bilinear constraint based on Eq.(3a)) with

a−1 = (a′2, a
′
3) = (aN ′

l
, aN ′

r
), aN ′

l
= (a′2), aN ′

r
= (a′3),

where, based on the binary division in N , any joint action aN ′ ∈ AN ′ can be divided into two517

sub-joint actions aN ′
l
∈ AN ′

l
and aN ′

r
∈ AN ′

r
such that aN ′ = (aN ′

l
, aN ′

r
). Note that x2 and x3 are518

special correlation plans with that 2 is set to be equivalent to {2} and 3 is set to be equivalent to {3}519

13



for simplification. Correlation plans x−1 and x2 (or x3) have the following relation:520

x−1(a2, a3) + x−1(a2, a
′
3) = x2(a2) (the relation of correlation plans x−1 and x2 based on Eq.(11)) with

∀aN ′ ∈ {(a2, a3), (a2, a′3)} ⊆ A−1, aN ′(2) = a2, i.e., a2 is player 2’s action in aN ′

x−1(a
′
2, a3) + x−1(a

′
2, a

′
3) = x2(a

′
2) (the relation of correlation plans x−1 and x2 based on Eq.(11)) with

∀aN ′ ∈ {(a′2, a3), (a′2, a′3)} ⊆ A−1, aN ′(2) = a′2, i.e., a′2 is player 2’s action in aN ′

x−1(a2, a3) + x−1(a
′
2, a3) = x3(a3) (the relation of correlation plans x−1 and x3 based on Eq.(11)) with

∀aN ′ ∈ {(a2, a3), (a′2, a3)} ⊆ A−1, aN ′(3) = a3, i.e., a3 is player 3’s action in aN ′

x−1(a2, a
′
3) + x−1(a

′
2, a

′
3) = x3(a

′
3) (the relation of correlation plans x−1 and x3 based on Eq.(11)) with

∀aN ′ ∈ {(a2, a′3), (a′2, a′3)} ⊆ A−1, aN ′(3) = a′3, i.e., a′3 is player 3’s action in aN ′

Constraints related to other players are created similarly. As shown in Algorithm 2 (i.e., CRM), after521

creating all of these constraints in the bilinear program for the Nash equilibria space, we can solve522

the program to optimize an objective function by using a global optimization solver, e.g., Gurobi.523

In three-player games, x−1(a−1) just represents a bilinear term, and then a chain of bilinear con-524

straints (equalities) to transform a multilinear term into bilinear terms is not explicit. In four-player525

games, a chain of bilinear constraints (equalities) to transform a multilinear term into bilinear terms526

is more explicit. For example, in a game G = (N,A, u) with N = {1, 2, 3, 4}, Ai = {ai, a′i}, and527

N = {−4, −1,−2,−3, {1, 2}, {2, 4}, {1, 4}}, based on Eq.(3a), we have:528

x−1(a2, a3, a4) = x2,4(a2, a4)x3(a3), x2,4(a2, a4) = x2(a2)x4(a4) (a chain of bilinear constraints),

where N ′ = −1 = {2, 3, 4}, N ′
l = {2, 4} and N ′

r = {3} based onN . That is, a−1 = (a2, a3, a4) =529

(aN ′
l
, aN ′

r
) with aN ′

l
= (a2, a4), aN ′

r
= (a3) (i.e., joint action a−1 is divided into two sub-joint530

actions aN ′
l

and aN ′
r

such that a−1 = (aN ′
l
, aN ′

r
)) based on N , and then we can have the above531

chain of bilinear constraints for it. Each joint action in A−1 = A2 × A3 × A4 = AN ′
l
× AN ′

r
=532

{(a2, a3, a4), (a2, a3, a′4), (a2, a′3, a4), (a2, a′3, a′4), (a′2, a3, a4), (a′2, a3, a′4), (a′2, a′3, a4), (a′2, a′3, a′4)}533

is divided into two disjoint sets similarly, and then we can have a chain of bilinear constraints for it.534

In three-player games, each element in {−i | i ∈ {1, 2, 3}} includes only two players, and then535

the resulting program does not include the constraints for the relation of correlation plans based on536

Eq.(12). To show the constraints based on Eq.(12), we consider four-player games. The following537

constraints are player 1’s constraints based on Eq.(12) for solving a game G = (N,A, u) with538

N = {1, 2, 3, 4}, Ai = {ai, a′i}:539

x−1(a2, a3, a4)+x−1(a2, a
′
3, a4)=x2,4(a2, a4) (based on Eq.(12)) with aN ′

l
= (a2, a4) with

∀aN ′ ∈ {(a2, a3, a4), (a2, a′3, a4)} ⊆ A−1, aN ′(N ′
l ) = (a2, a4), i.e., (a2, a4) is N ′

l ’s sub-joint action in aN ′

x−1(a2, a3, a
′
4)+x−1(a2, a

′
3, a

′
4)=x2,4(a2, a

′
4) (based on Eq.(12)) with aN ′

l
= (a2, a

′
4) with

∀aN ′ ∈ {(a2, a3, a′4), (a2, a′3, a′4)} ⊆ A−1, aN ′(N ′
l ) = (a2, a

′
4), i.e., (a2, a4) is N ′

l ’s sub-joint action in aN ′

x−1(a
′
2, a3, a4)+x−1(a

′
2, a

′
3, a4)=x2,4(a

′
2, a4) (based on Eq.(12)) with aN ′

l
= (a′2, a4) with

∀aN ′ ∈ {(a′2, a3, a4), (a′2, a′3, a4)} ⊆ A−1, aN ′(N ′
l ) = (a′2, a4), i.e., (a2, a4) is N ′

l ’s sub-joint action in aN ′

x−1(a
′
2, a3, a

′
4)+x−1(a

′
2, a

′
3, a

′
4)=x2,4(a

′
2, a

′
4) (based on Eq.(12)) with aN ′

l
= (a′2, a

′
4) with

∀aN ′ ∈ {(a′2, a3, a′4), (a′2, a′3, a′4)} ⊆ A−1, aN ′(N ′
l ) = (a′2, a

′
4), i.e., (a′2, a

′
4) is N ′

l ’s sub-joint action in aN ′ ,

where N ′ = −1 = {2, 3, 4}, N ′
l = {2, 4} and N ′

r = {3} based on N . The we can divide the540

joint actions in A−1, e.g., a−1 = (a2, a3, a4) = (aN ′
l
, aN ′

r
) with aN ′

l
= (a2, a4), aN ′

r
= (a3). For541

elements in {N ′
l , N

′
r}, we only consider constraints based on Eq.(12) for N ′

l because |N ′
l | = 2 > 1542

and |N ′
r| = 1. We could use Eq.(11) to generate constraints for N ′

r = {3} for the relation between543

x−1 and x3, e.g., for a3 ∈ A3,544

x−1(a2, a3, a4) + x−1(a
′
2, a3, a4) + x−1(a2, a3, a

′
4) + x−1(a

′
2, a3, a

′
4) = x3(a3),

where, for each aN ′ ∈ {(a2, a3, a4), (a′2, a3, a4), (a2, a3, a′4), (a′2, a3, a′4)} ⊆ A−1, aN ′(3) = a3,545

i.e., a3 is player 3’s action in aN ′ .546

Other constraints for four-player games are created similarly to the above creation of constraints for547

three-player games.548
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B Proofs549

Theorem 1. The feasible solution space of mixed strategies (i.e., xi(ai) for each i ∈ N , ai ∈ Ai) in550

Eqs.(1b)-(1g), (3), and (4) is the space of NEs.551

Proof. Eq.(1) describing the space of NEs and Eqs.(1b)-(1g), (3), and (4) both include Eqs.(1b)-(1g),552

which describe the condition of NEs. Then we only need to show that Eq.(4) is equivalent to Eq.(1a).553

That is, we need to show
∏

j∈−i xj(a−i(j)) = x−i(a−i) for each i ∈ N and a−i ∈ A−i. To554

achieve this result, we show
∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each N ′ ∈ N and aN ′ ∈ AN ′ . We555

show that this statement holds by induction. For any N ′ ∈ N with |N ′| = 2, we obviously have556 ∏
j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each aN ′ ∈ AN ′ by Eq.(3). Suppose, for any N ′ ∈ N with557

|N ′| = k ≥ 2, the statement holds. Now for any N ′ ∈ N with |N ′| = k + 1 and its two children N ′
l558

and N ′
r, we have: for any aN ′ ∈ AN ′ ,559

xN ′(aN ′) = xN ′
l
(aN ′

l
)xN ′

r
(aN ′

r
)

=
∏

i∈N ′
l

xi(aN ′
l
(i))

∏

j∈N ′
r

xj(aN ′
r
(j))

=
∏

j∈N ′

xj(aN ′(j)),

where the second “=" is based on the assumption that, for any N ′ ∈ N with |N ′| = k ≥ 2, the560

statement holds. Then
∏

j∈N ′ xj(aN ′(j)) = xN ′(aN ′) for each N ′ ∈ N and aN ′ ∈ AN ′ . Therefore,561

the theorem holds.562

Theorem 2. M⊂ T ⊂ R, i.e., T is strictly smaller thanR but still includesM.563

Proof. (i) We first show that T ⊂ R. Given any x{i,j}(ai, aj) = xi(ai)xj(aj), in T , we have564

x{i,j}(ai, aj) ≤ min{xi(ai), xj(aj)} according to Eq.(11). Suppose xi(ai) + xj(aj) − 1 >565

x{i,j}(ai, aj). According to Eqs.(11) and (1b), we have the following contradiction:566

xi(ai)

=
∑

a′
j∈Aj

x{i,j}(ai, a
′
j)

< xi(ai) + xj(aj)− 1 +
∑

a′
j∈Aj ,a′

j ̸=aj

x{i,j}(ai, a
′
j)

≤ xi(ai)− 1 +
∑

aj∈Aj

xj(aj)

= xi(ai),

where the first “=” is according to Eq.(11), “<” is according to the assumption, “≤” is according567

to Eq.(11), and the last “=” is according to Eq.(1b). This contradiction implies that xi(ai) +568

xj(aj)− 1 ≤ x{i,j}(ai, aj), i.e., max{0, xi(ai) + xj(aj)− 1} ≤ x{i,j}(ai, aj). Similarly, for any569

xN ′(aN ′) = xN ′
l
(aN ′

l
)xN ′

r
(aN ′

r
) with two children N ′

l and N ′
r of N ′, in T , we have:570

max{xN ′
l
(aN ′

l
) + xN ′

r
(aN ′

r
)− 1, 0}

≤xN ′(aN ′)

≤min{xN ′
l
(aN ′

l
), xN ′

r
(aN ′

r
)}.

Therefore, T ⊆ R.571

Given any x{i,j}(a1, a2) = x1(a1)x2(a2) and x{i,j}(a′1, a2) = x1(a
′
1)x2(a2), by Eq.(6), we can572

have a feasible solution such that:573

x{i,j}(a1, a2) = min{x1(a1), x2(a2)}
x{i,j}(a

′
1, a2) = min{x1(a

′
1), x2(a2)}.

15



Then x{i,j}(a1, a2) + x{i,j}(a′1, a2) > x2(a2) when 0 < x2(a2) < min{x1(a1), x1(a
′
1)} < 1.

However, in T ,
x{i,j}(a1, a2) + x{i,j}(a

′
1, a2) ≤ x2(a2).

ThenR ⊈ T . Therefore, T ⊂ R, i.e., T is strictly smaller thanR.574

(ii) Now we show thatM⊂ T . InM, for each aN ′ ∈ AN ′ , N ′ ∈ N with two children N ′
l and N ′

r
of N ′, there is a bilinear constraint xN ′(aN ′) = xN ′

l
(aN ′

l
)xN ′

r
(aN ′

r
) based on aN ′ = (aN ′

l
, aN ′

r
),

where xN ′(aN ′) = xi(ai) for N ′ = {i}. We first showM ⊆ T for Eq.(2) by induction. For any
N ′ = (i, j) ∈ N , byM, we have:

∑

(ai,aj)∈A{i,j}

x{i,j}(ai, aj) =
∑

ai∈Ai

xi(ai)
∑

aj∈Aj

xj(aj) = 1.

Suppose, for any N ′ ∈ N with |N ′| = k and k ≥ 2,
∑

aN′∈AN′

xN ′(aN ′) = 1.

Now for any N ′ ∈ N with |N ′| = k + 1, with two children N ′
l and N ′

r of N ′, by M and the575

assumption of Nk, we have:576

∑

aN′∈AN′

xN ′(aN ′) =
∑

aN′
l
∈AN′

l

xN ′
l
(aN ′

l
)

∑

aN′
r
∈AN′

r

xN ′
r
(aN ′

r
)

= 1.

Therefore, Eq.(2) is implied byM. Similarly, for each N ′ ⊂ N , we have
∑

aN′∈AN′ xN ′(aN ′) = 1.577

For any N ′ = (i, j) ∈ N , byM, we have: for any ai ∈ Ai,578

∑

aj∈Aj

x{i,j}(ai, aj) = xi(ai)
∑

aj∈Aj

xj(aj) = xi(ai);

and for any aj ∈ Aj ,
∑

ai∈Ai
x{i,j}(ai, aj) = xj(aj)

∑
ai∈Ai

xi(ai) = xj(aj). For any N ′ ∈ N579

with |N ′| > 2, byM, we have: for any i ∈ N ′, and ai ∈ Ai, with Nk = N ′ \ {i},580

∑

aN′∈AN′ ,aN′ (i)=ai

xN ′(aN ′) = xi(ai)
∑

aNk
∈ANk

xNk
(aNk

)

= xi(ai).

Therefore, Eq.(11) is implied byM.581

Now for any N ′ ∈ N , with two children N ′
l and N ′

r of N ′, byM, for each aN ′
l
∈ AN ′

l
, we have:582

∑

aN′=(aN′
l
,aN′

r
)∈AN′

xN ′(aN ′)

= xN ′
l
(aN ′

l
)

∑

aN′
r
∈AN′

r

xN ′
r
(aN ′

r
)

= xN ′
l
(aN ′

l
),

where the condition aN ′ = (aN ′
l
, aN ′

r
) ∈ AN ′ represents that aN ′ ∈ AN ′ , aN ′(N ′

l ) = aN ′
l
. For each583

aN ′
r
∈ AN ′

r
, we have:584

∑

aN′=(aN′
l
,aN′

r
)∈AN′

xN ′(aN ′)

= xN ′
r
(aN ′

r
)

∑

aN′
l
∈AN′

l

xN ′
l
(aN ′

l
)

= xN ′
r
(aN ′

r
).
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Therefore, Eq.(12) is implied byM. ThenM⊆ T .585

Given any four bilinear terms:586

x{1,2}(a1, a2) = x1(a1)x2(a2)

x{1,2}(a
′
1, a2) = x1(a

′
1)x2(a2)

x{1,2}(a1, a
′
2) = x1(a1)x2(a

′
2)

x{1,2}(a
′
1, a

′
2) = x1(a

′
1)x2(a

′
2).

The following solution is in T :587

x{1,2}(a1, a2) = 0

x{1,2}(a
′
1, a2) = 2/3

x{1,2}(a1, a
′
2) = 1/3

x{1,2}(a
′
1, a

′
2) = 0

x1(a1) = 1/3, x1(a
′
1) = 2/3

x2(a2) = 2/3, x2(a
′
2)=1/3.

However, the above solution is not in M because: x1(a1) = 1/3 and x2(a2) = 2/3 imply that588

x{1,2}(a1, a2) = 2/9, which contradicts x{1,2}(a1, a2) = 0 in the above solution. Therefore,589

T ̸⊆ M. That is,M⊂ T .590

Theorem 3. The optimal solution of Program (13) maximizes g(x) over the space of NEs.591

Proof. By Theorem 2, T includesM, i.e., T does not reduce the space of NEs. Program (13) is592

obtained after we explicitly restrict the feasible solution space to T by adding Eqs.(2), (11), and (12)593

to Program (5). The optimization solver will search this feasible solution space after the relaxation to594

find the optimal solution for the original bilinear program. Therefore, by solving Program (13), we595

obtain an optimal NE.596

Theorem 4. N generated by Algorithm 1 is a binary collection, and O(n log n) for the size of N is597

the minimum size of all binary collections of a game G.598

Proof. First, it is clear that N generated by Algorithm 1 is a binary collection of G. Then {−i | i ∈599

N} ⊆ N .600

The number of internal nodes in each binary tree with n− 1 leaves of −i for each i ∈ N is n− 2601

[20]. To obtain the minimum number of internal nodes in these binary trees for {−i | i ∈ N}, we602

can minimize the difference between binary trees. Given a binary tree T−n for −n and a binary tree603

T−i for −i with i ∈ −n, the difference between T−n and T−i at least includes the path from the604

root to the node {i} in T−n and the path from the root to the node {n} in T−i. Then the number of605

different internal nodes (i.e., nodes that are not in T−n) in these binary trees for {−i | i ∈ N} is at606

least equal to the total path length in T−n. Algorithm 1 ensures that the number of different internal607

nodes in these binary trees for {−i | i ∈ N} is equal to the total path length in T−n, and the total608

path length in T−n by Algorithm 1 is at most (n− 1)⌈log2(n− 1)⌉. Given a binary tree with k − 1609

internal nodes, the minimum total path length is O(k log k) [20]. Therefore, O(n log n) for the size610

of N is the minimum size of all binary collections of G.611

C The Necessity of Eq.(3a) in Program (13)612

Now we show the necessity of Eq.(3a) in Program (13). We denote Program T as the resulting613

program after removing Eq.(3a) in Program (13). We use the optimization gap between the optimal614

objective value g∗ in Program (13) and the objective value g obtained from the players’ strategies615

after solving Program T (i.e., g is the real objective value after playing the strategies obtained from616

solving Program T) to measure the inefficiency of Program T, i.e., g∗ − g. Note that, by Theorem 2,617

the optimal objective value of Program T is just an upper bound of the optimal objective value of618

Program (13), which may not be achieved by playing the strategies obtained from solving Program619

T. The following theorem shows that g∗ − g can be arbitrarily large, i.e., Program T is not suitable620
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Algorithm 1 Generate N : full details of Algorithm 1

1: Build(−n)
2: for each i in {1, . . . , n− 1} do
3: −i: replace i with n in −n
4: N ′ ← −n
5: N ← N ∪ {−i}
6: while |N ′| > 2 do
7: {N1, N2} ← Ch(N ′) with i ∈ N1

8: N ′′: replace i with n in N ′ ;
9: N ′

1: replace i with n in N1

10: Ch(N ′′)← {N ′
1, N2}

11: if |N1| > 1 then
12: N ← N ∪ {N ′

1}
13: end if
14: N ′ ← N1

15: end while
16: end for

to be used for computing optimal NEs. In addition, the resulting strategy profile by solving Program621

T may not be an NE.4622

Theorem 5. g∗ − g can be arbitrarily large, and the resulting strategy profile x′ by solving Program623

T may not be an NE.624

Proof. Consider a game with three players, A1 = {a1, a′1}, A2 = {a2, a′2} and A3 = {a3, a′3, a′′3},625

and the following utility function for three players, respectively, with k ≥ 1:626

u = (u1, u2, u3) : (a1, a2, a3)→ (0.5k, 0.5k,−k);
u = (u1, u2, u3) : (a

′
1, a

′
2, a

′
3)→ (0.5k, 0.5k,−k);

u = (u1, u2, u3) : (a1, a
′
2, a3)→ (0.125k, 0.125k,−0.25k);

u = (u1, u2, u3) : (a1, a
′
2, a

′
3)→ (0.125k, 0.125k,−0.25k);

u = (u1, u2, u3) : (a1, a
′
2, a

′′
3)→ (0.1k, 0.15k,−0.25k);

u = (u1, u2, u3) : other joint actions→ (0, 0, 0).

The objective function is g = u1(x1, x2, x3) + u2(x1, x2, x3). By solving Program T, we obtain627

x′
1 with x′

1(a1) = 2/3 and x′
1(a

′
1) = 1/3, x′

2 with x′
2(a2) = 1/3 and x′

2(a
′
2) = 2/3, and x′

3628

with x′
3(a3) = 1/2 = x′

3(a
′
3), and x′

3(a
′′
3) = 0. If players 1 and 2 play x′

1 and x′
2, respectively,629

u3(x
′
1, x

′
2, a3) = −k/3 = u3(x

′
1, x

′
2, a

′
3), and u3(x

′
1, x

′
2, a

′′
3) = −k/9. That is, player 3 will play630

the pure strategy a′′3 to respond to x′
1 and x′

2, which will result in g = k/9. Then the resulting strategy631

profile x′ is not an NE.632

It is clear that (x∗
1, x

∗
2, x

∗
3) with x∗

1(a1) = 1, x∗
2(a

′
2) = 1, and x∗

3(a
′′
3) = 1 is an NE, which also is an633

output of solving Program (13) with the objective value g∗ = k/4.634

Therefore, g∗ − g = 5k/36, which is arbitrarily large when k is arbitrarily large.635

D Binary Trees and Details of Algorithm 1636

We consider a special binary tree (full binary tree), which includes two kinds of nodes: nodes with637

two children (internal nodes) and nodes without children (leaf nodes). A binary tree TN ′ of N ′ ⊆ N638

with |N ′| ≥ 2 is that: 1) its root is N ′; 2) its nodes are {N ′′ | N ′′ ⊆ N ′}; 3) each of its leaf nodes is639

4To find an optimal NE, this paper only considers programs guaranteeing exact NEs, and designing programs
with approximate NEs is the future work.

18



Algorithm 2 Build(N ′): Build a minimum-height binary tree for N ′

1: h← ⌈log(|N ′|)⌉
2: if 2h = |N ′| then
3: Lower set N ′

1 ← {{i} | i ∈ N ′}
4: for k ∈ {1, . . . , ⌈log(|N ′|)⌉} do
5: Upper set N ′

2 ← ∅
6: for j ∈ {1, . . . , |N ′

1|/2} do
7: N1 ← N ′

1[j × 2 − 1] ∪ N ′
1[j × 2]: the union of the (j × 2 − 1)-th element and the

(j × 2)-th element in N ′
1.

8: N ′
2 ← N ′

2 ∪ {N1}
9: Ch(N1)← {N ′

1[j × 2− 1],N ′
1[j × 2]}

10: end for
11: Lower set N ′

1 ← N ′
2

12: N ← N ∪N ′
2

13: end for
14: else
15: N ′

1 ← {N ′[1], . . . , N ′[2h−1]}
16: N ′

2 ← N ′ \N ′
1

17: if 3× 2h−2 <= |N ′| then
18: Lower set N ′

1 ← {{i} | i ∈ N ′
1}

19: for k ∈ {1, . . . , ⌈log(|N ′
1|)⌉} do

20: Repeat Lines 5-12.
21: end for
22: Build(N ′

2)
23: N ← N ∪ {N ′}
24: Ch(N ′)← {N ′

1, N
′
2}

25: else
26: Lower set N ′

1 ← {{i} | i ∈ N ′
1}

27: for k ∈ {1, . . . , ⌈log(|N ′
1|)⌉ − 1} do

28: Repeat Lines 5-12.
29: end for
30: Build(N ′

2)
31: N1 ← N ′

1[2] ∪N ′
2

32: N ← N ∪ {N1}
33: Ch(N1)← {N ′

1[2], N
′
2}

34: N ← N ∪ {N ′}
35: Ch(N ′)← {N ′

1[1], N1}
36: end if
37: end if

a singleton; and 4) each of its internal nodes N ′′ has two children N ′′
l and N ′′

r with N ′′
l ∩N ′′

r = ∅640

and N ′′ = N ′′
l ∪N ′′

r , i.e., N ′′ is divided into two disjoint sets. Let Ch(N ′′) = {N ′′
l , N

′′
r } be the set641

of N ′′’s children in TN ′ , and Ch(N ′′) = ∅ if N ′′ is a singleton. LetNTN′ be the set of internal nodes642

in TN ′ .643

Our binary tree for −i is a full binary tree, i.e., each internal node has two children, which has k − 1644

internal nodes if there are k leaf nodes [20]. For example, Figure 1(a) has 3 internal nodes and 4 leaf645

nodes. The length of the path from the root to a leaf is the number of internal nodes on this path in a646

binary tree. The height of a binary tree is the maximum path length, and the total path length is the647

sum of the lengths of the paths from the root to each leaf node in a binary tree. For example, the path648

length from the root to each leaf node in Figure 1(a) is 2, the height is 2, and the total path length is649

2× 4 = 8.650

To obtain the minimum number of internal nodes in these binary trees for {−i | i ∈ N}, we can651

minimize the difference between binary trees. Given the binary tree T−n for −n and the binary tree652

T−i for −i with i ∈ −n, the difference between T−n and T−i at least includes the path from the653

root to the leaf node {i} in T−n and the path from the root to the leaf node {n} in T−i. Then the654

number of different internal nodes (i.e., internal nodes that are not in T−n) in these binary trees for655
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{−i | i ∈ N} is at least equal to the total path length in T−n. Now we propose an algorithm ensuring656

that the number of different internal nodes in these binary trees for {−i | i ∈ N} is equal to the total657

path length in T−n, which is the minimum total path length. To do that, we first build a binary tree658

for −n with the minimum height (a full binary tree with the minimum height may not be balanced).659

Note that there are at most 2h leaf nodes in a binary tree with the height h, and there are n− 1 leaf660

nodes and n − 2 internal nodes in a binary tree for −n. Then we can build a full binary tree T−n661

with the height ⌈log2(n− 1)⌉ for −n and then replace i with n in the nodes of T−n to obtain T−i for662

each i ∈ −n = {1, . . . , n− 1}. That creates n full binary trees for {−i | i ∈ N}. This procedure is663

shown in Algorithm 1, generating our minimum binary collection N . Figure 1(a) builds a binary tree664

T−5, and Figure 1(a) obtains T−3 by replacing 3 with 5 in T−5.665

The full details of Algorithm 1 are shown in Algorithm 1. Line 1 builds a binary tree with the height666

⌈log2(n− 1)⌉ for −n = {1, . . . , n− 1}, whose details are shown in Algorithm 2. At Lines 2-16, for667

each i in {1, . . . , n− 1}, we search the binary tree for −n from the root and replace i with n in each668

node including i to form a new tree for −i. And we only need to add new internal nodes to N .669

Algorithm 2 builds a binary tree with the height ⌈log2(|N ′|)⌉ for N ′. If the size of N ′ is 2⌈log2(|N ′|)⌉670

(note that each element in N ′ corresponds to a leaf node, and there are at most 2h leaf nodes in a binary671

tree with the height h), then we can build a complete binary tree, where all leaf nodes are at the lowest672

level. That is, we combine two nodes at the lower level to form a node at the upper level, as shown at673

Lines 3-12. If the size of N ′ is not 2⌈log2(|N ′|)⌉, and it is larger than 3×2⌈log2(|N ′|)⌉−2, then we build674

a complete binary tree for the subset N ′
1 (Line 15) with the height ⌈log2(|N ′

1|)⌉ = ⌈log2(|N ′|)⌉ − 1675

(Lines 18-20) and then build a binary tree for the remaining subset (Line 22). Finally, we combine676

both binary trees together to form a binary tree for N ′ (Line 24). If the size of N ′ is not 2⌈log2(|N ′|)⌉,677

and it is less than 3 × 2⌈log2(|N ′|)⌉−2, we build a complete binary tree for the subset N ′
1 (Line 28)678

with the height ⌈log2(|N ′
1|)⌉ = ⌈log2(|N ′|)⌉−1. However, at the last step of building the binary tree679

for N ′
1, we do not combine two nodes to form a root. We keep both two nodes within N ′

1 by setting680

k ≤ ⌈log(|N ′
1|)⌉ − 1 = ⌈log(|N ′|)⌉ − 2 at Line 26. Then we build a binary tree for the remaining681

subset N ′
2 (Line 30). After that, we combine the root of the binary tree for N ′

2 and two nodes in N ′
1682

to form a binary tree for N ′ (Line 31-35). This step is to try to reduce the total path length because683

the number of nodes in the binary tree for N ′
2 is less than the number of nodes of the binary tree for684

any node in N ′
1, and we can reduce the total path length by combining the root of the binary tree for685

N ′
2 and any node in N ′

1 to form a node first.686

Table 3: Game size and runtime of Algorithm 1.

Integer variables Bilinear terms Correlation Plans Algorithm 1
(n,m) Size Based onN Based onN |N| |N | Runtime
(3, 2) 6 12 12 3 3 <0.0001s
(5, 2) 10 200 104 25 11 0.0001s
(7, 2) 14 2044 564 119 21 0.0002s
(3, 3) 9 27 27 3 3 <0.0001s
(4, 3) 12 162 135 10 7 <0.0001s
(5, 3) 15 765 459 25 11 0.0001s
(4, 2) 8 56 44 10 7 <0.0001s
(4, 3) 12 162 135 10 7 <0.0001s
(4, 4) 16 352 304 10 7 <0.0001s
(4, 5) 20 650 575 10 7 <0.0001s
(3, 5) 15 75 75 3 3 <0.0001s
(3, 8) 24 24 24 3 3 <0.0001s
(3, 10) 30 300 300 3 3 <0.0001s
(3, 13) 39 507 507 3 3 <0.0001s
(3, 15) 45 675 675 3 3 <0.0001s
(3, 17) 51 867 867 3 3 <0.0001s
(6, 3) 18 3348 1620 56 16 0.0001s
(8, 2) 16 6288 1172 246 26 0.0003s
(9, 2) 18 19152 2512 501 31 0.0003s
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Table 4: Results for random games: (n,m) represents the game with n players and m = |Ai| actions for each
player. The format for each result is: Average Runtime ± 95% Confidence Interval (Percentage of Games not
Solved within the Time Limit) (Utility Gap). Note that the unit of the runtime is second, and the case that all
games have been solved with the time limit should be (0%) and is omitted, we only need to care about the utility
gap for EXCLUSION, and the utility gap∞ represents EXCLUSION cannot return a solution within the time
limit. For example, for the random games (7, 2), CRM solves 100% of them by using 25s with a 95% interval
17s, but 80% of them are not solved by EXCLUSION within the time limit, and EXCLUSION has a utility gap
53%.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Vary (n,m) CRM MIBP ENUMPOLY EXCLUSION

n
(3, 2) 0.01 ± 0 0.02 ± 0 0.03 ± 0.01 31 ± 41 (gap:15%)
(5, 2) 0.2 ± 0.1 0.5 ± 0.4 11 ± 4 753 ± 148 (73%) (gap:64%)
(7, 2) 25 ± 17 429 ± 131 (20%) 1000 ± 0 (97%) 835 ± 119 (80%) (gap:53%)

n
(3, 3) 0.1 ± 0 0.1 ± 0 51 ± 59 252 ± 140 (20%) (gap:34%)
(4, 3) 0.3 ± 0.1 1 ± 0.3 1000 ± 0 (100%) 773 ± 125 (67%) (gap:58%)
(5, 3) 22 ± 9 239 ± 87 (7%) 1000 ± 0 (100%) 974 ± 50 (97%) (gap:62%)

m
(4, 2) 0.1 ± 0.01 0.1 ± 0.01 0.2 ± 0.1 246 ± 126 (13%) (gap:23%)
(4, 3) 0.3 ± 0.1 1 ± 0.3 1000 ± 0 (100%) 773 ± 125 (67%) (gap:58%)
(4, 4) 2.8 ± 1 42 ± 12 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:73%)
(4, 5) 64 ± 42 862 ± 91 (77%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:75%)

m
(3, 5) 0.2 ± 0.03 0.3 ±0.1 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:67%)
(3, 8) 4 ± 3 247 ± 140 (17%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 10) 9 ± 9 334 ± 167 (30%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)
(3, 13) 38 ± 21 342 ± 151 (27%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:∞)

Table 5: Results for six-player three-action GAMUT games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved) (Utility Gap)
Game CRM MIBP ENUMPOLY EXCLUSION
Bidirectional LEG 1.6 ± 1 972 ± 54 (97%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:13%)
Collaboration 1 ± 0.2 967 ± 63 (97%) 1000 ± 0 (100%) 1000 ± 0 (100%) (gap:81%)
Covariant r = 0.5 5 ± 6 1000 ± 0 (100%) 1000 ± 0 (100%) 963 ± 59 (93%) (gap:73%)
PolyMatrix 26 ± 44 194 ± 74 (3%) 867 ± 116 (87%) 1000 ± 0 (100%) (gap:17%)
Random LEG 2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100%) 986 ± 27 (97%) (gap:11%)
Random graphical 0.1 ± 0.1 803 ± 140(83%) 50 ± 30 971 ± 55 (97%) (gap:32%)
Uniform LEG 2.2 ± 1 1000 ± 0 (100%) 1000 ± 0 (100) 986 ± 26 (97%) (gap:11%)

E Runtime for Algorithm 1687

Table 3 shows the runtime of Algorithm 1, which is extremely small and then can be ignored,688

compared to the runtime of CRM shown in Tables 4 and 5.689

F Experiment Setting690

Games: we evaluate our approach on two sets of games: randomly generated games and games that691

are generated by GAMUT [29]. Payoffs are generated from the interval between 0 and 100 (other692

ranges (e.g., [0, 1]) do not affect the result). We vary the number of players (i.e., n) and the number693

of actions (i.e., m) for each player for random games (i.e., (n,m)). For GAMUT games, we use694

the variants with six players and three actions (i.e., the game (6, 3)), which are much larger than695

the three-player three-action games (i.e., the game (3, 3)) used in prior work [4, 13]. We show the696

game size in terms of the number of bilinear terms and integer variables in Appendix G, e.g., the697

number of bilinear terms in the game (9, 2) is 19152 based on N but is 2512 based on N . For each698

setting, we generated 30 games, where the seeds are i ∈ {1, . . . , 30} for the GAMUT games and699

20201125 + i · 10 for random games. Results in this section are hence averaged over 30 cases.700

Algorithm Setting: The objective function used in the experiments maximizes the expected utility of701

player n. We verified that results for optimizing other objectives (e.g., maximizing social welfare) are702

similar. We use the non-convex solver of Gurobi 9.5 to solve all mixed-integer bilinear programs with703

the optimality gap set to 0.0001 (the default setting). EXCLUSION uses this optimality gap as well,704

which is significantly smaller than 0.001 in [4] (we verified that, with the same optimality gap, our705
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Table 6: Ablation study. No time limit for CRM, CR, and CM in games (8, 2). We can see that each component
of our approach significantly boosts its performance. Note thatN (in CR, C, and MIBP) andN (in CRM, CM,
and M) result in the same bilinear terms in three-player games because each element in {−i | i ∈ {1, 2, 3}}
includes only two elements such that Algorithm 1 cannot reduce the number of internal nodes to reduce the
number of bilinear terms, where CR and CRM (or C and CM, or MIBP and M) have the same performance. For
one case in the game (9, 2), which CRM and CM cannot solve within 1000s, after removing the time limit for it,
CRM solves it by using 1198s, but CM solves it by using 12751s. The unit of the runtime is second.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game CRM CR CM C M MIBP
(9, 2) 658±128 (50%) 988 ± 23 (97%) 782±113 (63%) 1000± 0 (100%) 1000 ± 0 (100%) 1000 ± 0 (100%)
(8, 2) 166± 97 2334± 1742 278± 207 763 ± 120 (60%) 1000 ± 0 (100%) 1000 ± 0 (100%)
(7, 2) 25 ± 17 89 ± 51 36 ± 28 408 ± 157 (30%) 488 ± 111 (10%) 429 ± 131 (20%)
(3, 15) 167± 86 (3%) 167 ± 86 (3%) 317± 137 (17%) 317 ± 137 (17%) 558 ± 150 (40%) 558 ± 150 (40%)
(3, 17) 231±122 (10%) 231 ±122 (10%) 326± 134 (20%) 326 ± 134 (20%) 784 ± 102 (53%) 784 ± 102 (53%)
Bidirectional LEG 1.6 ± 1 5.4 ± 4 2.2 ± 2 86 ± 3 991 ± 18 (97%) 972 ± 54 (97%)
Collaboration 1 ± 0.2 2 ± 0.2 1 ± 0.1 2 ± 0.4 867 ± 122 (87%) 967 ± 63 (97%)
Covariant r = 0.5 5 ± 6 12 ± 10 5 ± 6 18 ± 18 1000 ± 0 (100%) 1000 ± 0 (100%)
PolyMatrix 26 ± 44 33 ± 25 36 ± 64 (3%) 17 ± 21 267 ± 97 (10%) 194 ± 74 (3%)
Random LEG 2 ± 1 6 ± 5 2.5 ± 2 5 ± 5 1000 ± 0 (100%) 1000 ± 0 (100%)
Random graphical 0.1 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.6 ± 0.4 814 ± 134(80%) 803 ± 140(83%)
Uniform LEG 2.2 ± 1 5 ± 4 2.5 ± 2 5 ± 5 999 ± 2 (97%) 1000 ± 0 (100%)

result for EXCLUSION is almost the same as the one in [4]). Experiments are run on an eight-core706

Intel Core I9 machine at 2.3 GHz with 16GB of RAM. Similarly to the previous literature [32, 4, 13],707

to efficiently evaluate the algorithms, we set a time limit of 1000 seconds for each case unless stated708

otherwise.709

Metric: We use the runtime and the percentage of games that are not solved within the time limit710

to measure the performance of our approach. In addition to the average runtime, we show a 95%711

confidence interval. CRM and MIBP guarantee finding an optimal NE. For algorithms that can712

enumerate all NEs, we can choose an optimal NE from the output for all NEs. We then compare713

ENUMPOLY to our approach only in the runtime. For algorithms that only guarantee to converge to714

an NE, we may need to use them to enumerate all NEs. However, it is unclear whether algorithms715

like EXCLUSION can enumerate all NEs. Therefore, we compare EXCLUSION to our approach in716

the runtime and the utility gap. The utility gap is the relative distance between the optimal objective717

value (g∗) in our problem (returned by CRM) and the objective value (g0) in the Nash equilibrium718

returned by EXCLUSION, i.e., |g∗ − g0|/|g0| × 100%. In some cases, a solution is returned even719

if it has not reached the given accuracy within the time limit, which is still used as a solution of720

EXCLUSION. A larger gap means that we will lose more while using EXCLUSION.721

G Game Size722

Table 3 shows the number of integer variables, bilinear terms, and correlation plans for the games we723

used in experiments. Note that the used GAMUT games have six players and three actions. Also,724

note that we do not reduce the number of bilinear terms and correlation plans in games with only725

three players.726

H Details of Experimental Results727

The details of experimental results are in Tables 4, 5, and 6.728

Specially, CR is solving Program (13) based on N , and CRM is solving Program (13) based on N .729

We discussed the difference between N and N in Section 3.3. Basically, N and N are the same in730

3-player games, so CR and CRM have the same performance in 3-player games shown in Table 6.731

When the number of players increases, the size of N is larger and larger than N , and then CRM’s732

advantage over CR is more significant. This statement is verified by our result: game (7, 2): CRM733

with 25 ± 17 and CR with 89 ± 51; and game (8, 2): CRM with 156 ± 83 (3%) and CR with 612 ±734

129 (33%) (see Table 2). However, from the game (7, 2) to the game (8, 2), the trend that CRM’s735

advantage over CR is more significant is not very clear based on the above data due to the time limit736

in the game (8, 2). To show this trend clearly, we remove the time limit for CRM and CR in the game737

(8, 2) and obtain: CRM with 166 ± 97 and CR with 2334± 1742, which is shown in Table 6. Then738
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Table 7: Results on more Gambit algorithms for random games. The format for each result is: Average Runtime
± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit). Note that, these Gambit
algorithms only achieve some NE if the game is solved, which may not be optimal. Even so, these algorithms
fail to solve many games, and even run significantly slower than our CRM (see Table 4) in many games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
(n,m) GNM IPA LIAP SIMPDIV LOGIT
(3, 2) 0.03 ± 0.02 567 ± 177 (57%) 0.06 ± 0.02 (77%) 0.07 ± 0.06 0.04 ± 0.02 (100%)
(5, 2) 0.04 ± 0.01 (3%) 867 ± 122 (87%) 0.45 ± 0.04 (100%) 1000 ± 0 (100%) 0.02 ± 0 (100%)
(7, 2) 333 ± 169 (53%) 400 ± 175 (37%) 6 ± 0.4 (100%) 79.4 ± 78.6 0.05 ± 0.05 (100%)
(3, 3) 0.03 ± 0 (3%) 933 ± 89 (93%) 0.16 ± 0.02 (100%) 300 ± 163 (30%) 0.04 ± 0.02 (100%)
(4, 3) 0.17 ± 0.11 (3%) 500 ± 179 (50%) 0.76 ± 0.08 (100%) 500 ± 179 (50%) 0.02 ± 0 (100%)
(5, 3) 0.15 ± 0.03 (30%) 773 ± 158 (73%) 6.3 ± 0.3 (100%) 900 ± 107 (90%) 0.02 ± 0.01 (100%)
(4, 2) 0.03 ± 0.01 (3%) 667 ± 169 (63%) 0.13 ± 0.02 (97%) 733 ± 158 (73%) 0.02 ± 0 (100%)
(4, 3) 0.17 ± 0.11 (3%) 500 ± 179 (50%) 0.76 ± 0.08 (100%) 500 ± 179 (50%) 0.02 ± 0 (100%)
(4, 4) 800 ± 143 (80%) 367 ± 172 (33%) 4.9 ± 0.4 (100%) 867 ± 121 (87%) 0.07 ± 0.07 (100%)
(4, 5) 0.33 ± 0.07 (37%) 833 ± 133 (83%) 16 ± 1 (100%) 900 ± 107 (90%) 0.04 ± 0.03 (100%)
(3, 5) 600 ± 175 (63%) 767 ± 151 (77%) 1.5 ± 0.1 (100%) 933 ± 89 (93%) 0.06 ± 0.09 (100%)
(3, 8) 0.76 ± 0.26 (17%) 506 ± 177 (50%) 11 ± 0.7 (100%) 867 ± 122 (87%) 0.02 ± 0 (100%)
(3, 10) 334 ± 168 (53%) 767 ± 153 (77%) 37 ± 3 (100%) 867 ± 121 (87%) 0.02 ± 0 (100%)
(3, 13) 3.8 ± 1.1 (47%) 1000 ± 0 (100%) 132 ± 11 (100%) 805 ± 140 (80%) 0.03 ± 0 (100%)

Table 8: Results on more Gambit algorithms for six-player three-action GAMUT games. The format for each
result is: Average Runtime ± 95% Confidence Interval (Percentage of Games not Solved within the Time Limit).
Note that, these Gambit algorithms only achieve some NE if the game is solved, which may not be optimal.
Even so, these algorithms fail to solve many games, and even run significantly slower than our CRM (see Table
5) in many games.

Runtime ± 95% Confidence Interval (Percentage of Games not Solved)
Game GNM IPA LIAP SIMPDIV LOGIT
Bidirectional LEG 167 ± 133 (63%) 10 ± 17 8 ± 0.6 (100%) 667 ± 169 (67%) 0.03 ± 0 (100%)
Collaboration 34 ± 64 (3%) 0.03 ± 0 24 ± 2 (100%) 0.03 ± 0 0.03 ± 0 (100%)
Covariant r = 0.5 100 ± 107 (17%) 0.04 ± 0 21 ± 2 (100%) 367 ± 172 (37%) 0.04 ± 0.03 (100%)
PolyMatrix 0.13 ± 0.03 (7%) 8.3 ± 8 9 ± 0.8 (100%) 24 ± 27 0.05 ± 0.05 (100%)
Random LEG 0.19 ± 0.04 (47%) 0.04 ± 0 7.5 ± 0.6 (100%) 777 ± 146 (77%) 0.03 ± 0 (100%)
Random graphical 0.05 ± 0 (3%) 1000 ± 0 (100%) 9 ± 1 (100%) 0.05 ± 0.03 0.04 ± 0.02 (100%)
Uniform LEG 0.16 ± 0.04 (47%) 0.04 ± 0 7.3 ± 0.6 (100%) 776 ± 146 (77%) 0.02 ± 0 (100%)

from the game (7, 2), where CRM is about 3 times faster than CR, to the game (8, 2), where CRM is739

about 13 times faster than CR, we can clearly see the trend that CRM’s advantage over CR is more740

significant when the number of players increases. The difference between N and N also explains741

that CR is slower than CM in the game (8, 2).742

I Results on More Gambit Algorithms743

Results in Tables 7 and 8 show that Gambit algorithms, i.e., GNM, IPA, LIAP, SIMPDIV, and LOGIT,744

cannot guarantee finding an NE, i.e., fail to solve many games, and even run significantly slower than745

our CRM (see Tables 4 and 5) in many games:746

• GNM fails to solve many large games: GNM stops without output in some of these cases,747

and cannot stop within the time limit in other cases. GNM runs significantly slower than our748

CRM in many games, e.g., random games (7, 2), (4, 4), (3, 5), (3, 10), and GAMUT games749

Bidirecttional LEG, Collaboration, Covariant.750

• IPA fails to solve many large games: IPA cannot stop within the time limit in most of751

these games. IPA runs significantly slower than our CRM in most random games, and the752

GAMUT game Random graphical.753

• LIAP can only solve several games in small random games (3, 2) and (4, 2), and fails to754

solve all of the other games: LIAP stops without output in these games. Even so, LIAP runs755

significantly slower than our CRM in most games.756

• SIMPDIV fails to solve many large games: SIMPDIV cannot stop within the time limit757

in almost all of these games. SIMPDIV runs significantly slower than our CRM in most758

games.759
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• LOGIT fails to solve all of these games: LOGIT stops without output in all of these games.760

LOGIT may not work properly in this latest GAMBIT version. Even so, LOGIT runs761

significantly slower than our CRM in the random game (3, 2).762
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