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Abstract

The interaction decoder utilized in prevalent Transformer-based HOI detectors
typically accepts pre-composed human-object pairs as inputs. Though achieving
remarkable performance, such paradigm lacks feasibility and cannot explore novel
combinations over entities during decoding. We present LOGICHOI, a new HOI
detector that leverages neural-logic reasoning and Transformer to infer feasible
interactionsbetweenentities.Specifically, wemodify theself-attention mechanism in
vanilla Transformer, enabling it to reason over the ⟨human, action, object⟩ triplet
and constitute novel interactions. Meanwhile, such reasoning process is guided by
two crucial properties for understanding HOI: affordances (the potential actions
an object can facilitate) and proxemics (the spatial relations between humans and
objects). We formulate these two properties in first-order logic and ground them
into continuous space to constrain the learning process of our approach, leading
to improved performance and zero-shot generalization capabilities. We evaluate
LOGICHOI on V-COCO and HICO-DET under both normal and zero-shot setups,
achieving significant improvements over existing methods.

1 Introduction

The main purpose of human-object interaction (HOI) detection is to interpret the intricate relationships
between human and other objects within a given scene[1]. Rather than traditional visual perception
tasks that focus on the recognition of objects or individual actions, HOI detection places a greater
emphasis on reasoning over entities[2], and can thus benefit a wide range of scene understanding
tasks, including image synthesis[3], visual question answering[4,5], and caption generation[6,7], etc.

Current top-leading HOI detection methods typically adopt a Transformer [8]-based architecture,
wherein the ultimate predictions are delivered by an interaction decoder. Such decoder takes consoli-
dated embeddings of predetermined human-object pairs[9–20] as inputs, and it solely needs to infer
the action or interaction categories of given entity pairs. Though achieving remarkable performance over
CNN-based work, such paradigm suffers from several limitations: first, the principal focus of them
is to optimize the samples with known concepts, ignoring a large number of feasible combinations
that were never encountered within the training dataset, resulting in poor zero-shot generalization
ability[21]. Second, the human-object pairs are usually proposed by a simple MLP layer[2,22–37] or
simultaneously constructed when predicting humans and objects[10–17], without explicit modeling
of the complex relationships among subjects, objects, and the ongoing interactions that happened
between them. Third, existing methods lack the reasoning ability, caused by ignoring the key nature
of HOI detection, i.e., the interaction should be mined between entities, but not pre-given pairs.

In light of the above, we propose to solve HOI detection via the integration of Transformer and
logic-induced HOI relation learning, resulting in LOGICHOI, which enjoys the advantage of robust
distributed representation of entities as well as principled symbolic reasoning [38, 39]. Though
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Figure 1: Left: self-attention aggregates information across pre-composed interaction ( ) queries. Middle: in
contrast, our proposed triplet-reasoning attention traverses over human ( ), action ( ), and object ( ) queries
to propose plausible interactions. Right: logic-induced affordances and proxemics knowledge learning.

it was claimed that Seq2Seq models (e.g., Transformer) are inefficient to tackle visual reasoning
problem[40, 41], models based on Transformer with improved architectures and training strategies
have already been applied to tasks that require strong reasoning ability such as Sudoku[42], Raven’s
Progressive Matrices[43], compositional semantic parsing[44], spatial relation recognition[45], to
name a few, and achieve remarkable improvements. Given the above success, we would like to argue
that “Transformers are non-trivial symbolic reasoners, with only slight architecture changes and
appropriate learning guidances”, where the later imposes additional constraints for the learning and
reasoning of modification. Specifically, for architecture changes, we modify the attention mechanism
in interaction decoder that sequentially associates each counterpart of the current query individually
(Fig.1: left), but encourage it to operate in a triplet manner where states are updated by combining
⟨human, action, object⟩ three elements together, leading to triplet-reasoning attention (Fig. 1:
middle). This allows our model to directly reason over entity and the interaction they potentially
constituted, therefore enhancing the ability to capture the complex interplay between humans and
objects. To appropriately guide the learning process of such triplet reasoning in Transformer, we
explore two HOI relations, affordances and proxemics. The former refers to that an object facilitates
only a partial number of interactions, and objects allowing for executing a particular action is
predetermined. For instance, the human observation of a kite may give rise to imagined interactions
such as launch or fly, while other actions such as repair, throw are not considered plausible
within this context. In contrast, proxemics concerns the spatial relationships between humans and
objects, e.g., when a human is positioned below something, the candidate actions are restricted
to airplane, kite, etc. This two kind of properties are stated in first-order logical formulae and
serve as optimization objectives of the outputs of Transformer. After multiple layers of reasoning,
the results are expected to adhere to the aforementioned semantics and spatial knowledge, thereby
compelling the model to explore and learn the reciprocal relations between objects and actions,
eventually producing more robust and logical sound predictions. The integration of logic-guided
knowledge learning serves as a valuable complement to triplet-reasoning attention, as it constrains
triplet-reasoning attention to focus on rule-satisfied triplets and discard unpractical combinations,
enabling more effective and efficient learning, as well as faster convergence.

By enabling reasoning over entities in Transformer and explicitly accommodating the goal of pro-
moting such ability through logic-induced learning, our method holds several appealing facets: first,
accompanying reasoning-oriented architectural design, we embed affordances and proxemics knowl-
edge into Transformer in a logic-induced manner. In this way, our approach is simultaneously a
continuous neural computer and a discrete symbolic reasoner (albeit only implicitly), which meets
the formulation of human cognition[46, 47]. Second, compared to neuro-symbolic methods solely
driven by loss constraints [48–50], which are prone to be over-fitting on supervised learning [42]
and disregard reasoning at inference stage, we supplement it with task-specific architecture changes
to facilitate more flexible inference (i.e., triplet-reasoning attention). Additionally, the constraints
are tailored to guide the learning of interaction decoders rather than the entire model, to prevent
“cheating”. Third, our method does not rely on any discrete symbolic reasoners (e.g., MLN[51] or
ProbLog[52]) which increases the complexity of the model and cannot be jointly optimized with
neural networks. Fourth, entities fed into Transformer are composed into interactions by the model
automatically, such a compositional manner contributes to improved zero-shot generalization ability.

To the best of our knowledge, we are the first that leverages Transformer as the interaction reasoner.
To comprehensively evaluate our method, we experiment it on two gold-standard HOI datasets (i.e.,
V-COCO[53] and HICO-DET[54]), where we achieve 35.47% and 65.0% overall mAP score, setting
new state-of-the-arts. We also study the performance under the zero-shot setup from four different
perspectives. As expected, our algorithm consistently delivers remarkable improvements, up to
+5.16% mAP under the unseen object setup, outperforming all competitors by a large margin.
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2 Related Work

HOI Detection. Early CNN-based solutions for HOI detection can be broadly classified into two
paradigms: two-stage and one-stage. The two-stage methods[2, 23–37, 55, 56] first detect entities by
leveraging off-the-shelf detectors (e.g., Faster R-CNN[57]) and then determine the dense relationships
among all possible human-object pairs. Though effective, they suffer from expensive computation due
to the sequential inference architecture[17], and are highly dependent on prior detection results. In
contrast, the one-stage methods[58–61] jointly detect human-object pairs and classify the interactions
in an end-to-end manner by associating humans and objects with predefined anchors, which can be
union boxes[58, 61] or interaction points[59, 60]. Despite featuring fast inference, they heavily rely
on hand-crafted post-processing to associate interactions with object detection results[10]. Inspired
by the advance of DETR[62], recent work[9–20] typically adopts a Transformer-based architecture to
predict interactions between humans and objects, which eliminates complicated post-processing and
generally demonstrates better speed-accuracy trade-off. To learn more effective HOI representations,
several studies [17, 19, 63–66] also seek to transfer knowledge from visual-linguistic pre-trained
models (e.g., CLIP[67]), which also enhances the zero-shot discovery capacity of models.

Although promising results have been achieved, they typically directly feed the pre-composed union
representation of human-object pairs to the Transformer to get the final prediction, lacking reasoning
over different entities to formulate novel combinations, therefore struggling with long-tailed distribu-
tion and adapting to unseen interactions. In our method, we handle HOI detection by triplet-reasoning
within Transformer, where the inputs are entities. Such reasoning process is also guided by logic-
induced affordances and proxemics properties learning with respect to the semantic and spatial rules,
so as to discard unfeasible HOI combinations, and enhance zero-shot generalization abilities.

Neural-Symbolic Computing (NSC) is a burgeoning research area that seeks to seamlessly integrate
the symbolic and statisticalparadigmsofartificial intelligence,while effectively inheriting the desirable
characteristics of both[39]. Although the roots of NSC can be traced back to the seminal work of
McCulloch and Pitts in 1943[68], it did not gain a systematic study until the 2000s, when a renewed
interest in combining neural networks with symbolic reasoning emerged [51, 69–73]. These early
methods often reveal limitations when attempting to handle large-scale and noisy data [74], as the
effectiveness is impeded by highly hand-crafted rules and architectures. Recently, driven by both
theoretical and practical perspectives, NSC has garnered increasing attention in holding the potential
to model human cognition[38, 47, 75], combine modern numerical connectionist with logic reasoning
over abstract knowledge [48, 76–81], so as to address the challenges of data efficiency [82, 83],
explainability[84–87], and compositional generalization[88, 89] in purely data-driven AI systems.

In this work, we address neuro-symbolic computing from two perspectives, first, we employ Trans-
former as the symbolic reasoner but with slight architectural changes, i.e., modifying the self-attention
to triplet-reasoning attention and the inputs are changed from interaction pairs to human, action,
and object entities, so as to empower the Transformer with strong reasoning ability for handling
such relation interpretation task. Second, we condense affordances and proxemics properties into
logical rules, which are further served to constrain the learning and reasoning of the aforementioned
Transformer reasoner, making the optimization goal less ambiguous and knowledge-informed.

Compositional Generalization, which pertains to the ability to understand and generate a potentially
boundless range of novel conceptual structures comprised of similar constituents[90], has long been
thought to be the cornerstone of human intelligence[91]. For example, human can grasp the meaning
of dax twice or dax and sing by learning the term dax[40], which allows for strong generalizations
from limited data. In natural language processing, several efforts[92–100] have been made to endow
neural networks with this kind of zero-shot generalization ability. Notably, the task proposed in [40],
referred to as SCAN, involves translating commands presented in simplified natural language (e.g., dax
twice) into a sequence of navigation actions (e.g., I_DAX, I_DAX). Active investigations into visual
compositional learning also undergo in the fields of image caption[6, 7, 101, 102] and visual question
answering[4,5,103,104]. For instance, to effectively and explicitly ground entities, [102] first creates
a template with slots for images and then fills them with objects proposed by open-set detectors.

Though there has already been work[21, 31, 32, 105–107] rethinking HOI detection from the perspec-
tive of compositional learning, they are, i) restricted to scenes with single object[105], ii) utilizing
compositionality for data augmentation [31, 106] or representation learning [32], without general-
ization during learning nor relation reasoning. A key difference in our work is that our method
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arbitrarily constitute interactions as final predictions during decoding. This compositional learning
and inference manner benefit the generalization to unseen interactions. Moreover, the affordances
and proxemics properties can be combined, i.e., it is natural for us to infer that when a human is
above a horse, the viable interactions options can only be sit_on and ride.

3 Methodology

In this section, we first review Transformer-based HOI detection methods and the self-attention
mechanism (§3.1). Then, we elaborate the pipeline of our method and the proposed triplet-reasoning
attention blocks (§3.2), which is guided by the logic-induced learning approach utilizing both
affordances and proxemics properties (§3.3). Finally, we provide the implementation details (§3.4).

3.1 Preliminary: Transformer-based HOI Detection

Enlightened by the success of DETR[62], recent state-of-the-arts[9–20] for HOI detection typically
adopt the encoder-decoder architecture based on Transformer. The key motivation shared across all
of the above methods is that Transformer can effectively capture the long range dependencies and
exploit the contextual relationships between human-object pairs[10, 12] by means of self-attention.
Specifically, an interaction or action decoder is adopted, of which the query, key, value embeddings
F q, F k, F v ∈RN×D are constructed from the unified embedding of human-object pair Qh-o by:

F q = (X+Qh-o)·W q, F k= (X+Qh-o)·W k, F v = (X+Qh-o)·W v, (1)

where X is the input matrix, W q, W k, W v ∈RD×D are parameter matrices and Qh-o can be derived
from the feature of union bounding box of human-object[22] or simply concatenating the embeddings
of human and object together[17]. Then X is updated through a self-attention layer by:

X ′
i = W v′

·
∑N

n=1 softmax(F q
i ·F k

n/
√

D)·F v
n. (2)

Here we adopt the single-head variant for simplification. Note that under this scheme, the attention is
imposed over action or interaction embeddings, which has already been formulated before being fed
into the action or interaction decoder. This raises two concerns i) may discard positive human- object
pair and ii) cannot present novel combinations over entities during decoding.

3.2 HOI Detection via Triplet-Reasoning Attention

In contrast to the above, we aim to facilitate the attention over three key elements to formulate
an interaction (i.e., human, action, object, therefore referring to triplet-reasoning attention), by
leveraging the Transformer architecture. The feasible ⟨human, action, object⟩ tuples are combined
and filtered through the layer-wise inference within the Transformer. Towards this goal, we first
adopt a visual encoder which consists of a CNN backbone and a Transformer encoder E to extract
visual features V . Then, the learnable human queries Qh ∈RNh×D, action queries Qa ∈RNa×D,
and object queries Qo∈RNo×D are fed into three parallel Transformer decoders Dh, Da, Do to get
the human, action, and object embeddings respectively by:

Qh= Dh(V ,Qh), Qa= Da(V ,Qa), Qo= Do(V ,Qo). (3)

Here, Nh = Na = No and the superscripts are kept for improved clarity. All of the three query
embeddings are then processed by linear layers to get the final predictions. For human and object
queries, we supervise it with the class and bounding box annotations, while for the action queries,
we only supervise them with image-level categories, i.e., what kinds of actions are happened in this
image. After that, we adopt an interaction decoder Dp composed by multiple Transformer layers
in which the self-attention is replace by our proposed triplet-reasoning attention, so as to empower
Transformer with the reasoning ability. Specifically, in contrast to Eq.1, given Qh, Qa, Qo, the input
query, key, value embeddings F q, F k, F v for triplet-reasoning attention are computed as:

F q = (X +Qh+Qa)·W q ∈RNh×Na×D,

F k= (X+Qa+Qo)·W k ∈RNa×No×D,

F v = W v
h · (X+Qh+Qa)⊙ (X+Qa+Qo) ·W v

o ∈RNh×Na×No×D,

(4)
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Figure 2: Overview of LOGICHOI. We first retrieve human, action, and object queries by Dh, Da, and
Do, respectively. Then Dp take them as input, reasoning over entities and combining potential interaction
triplets. Finally, such process is guided by affordances and proxemics properties, to be more efficient and
knowledge-informed.

where ⊙ is the element-wise production. Note that we omit the dimension expanding operation for
better visual presentation. Concretely, for F q = (X+Qh+Qa)·W q, the human queries Qh∈RNh×D

and action queries Qa ∈ RNa×D are expanded to RNh×1×D and R1×Na×D, respectively. In this
manner, Qh+Qa associates each human and action entity, resulting in Nh×Na human-action
pairs in total. Na×No viable action-object pairs are risen by Qa+Qo in the same way. For the
value embedding F v, it encodes the representation of all Nh×Na×No potential interactions. Given
a specific element in F v, for instance, F v

inj , it is composed from F q
in and F k

nj , corresponding to a
feasible interaction of embeddings Qh

i , Q
a
n, and Qo

j . Then each element in inputs X is updated by:

X ′
ij = W v′

·
∑Na

n=1 softmax(F q
in ·F k

nj/
√

D)·F v
inj , (5)

where X ′ denotes the output of triplet-reasoning attention. In contrast to self-attention (cf ., Eq.2),
our proposed triplet-reasoning attention (cf ., Eq.5) stretches edges between every human-action
and action-object pairs sharing the identical action query. By aggregating information from the
relation between human-action and action-object, it learns to capture the feasibility of tuple
⟨human, action, object⟩ in a compositional learning manner, simultaneously facilitating reasoning
over entities. The final output Y of Dp is given by:

Y = Dp(V ,Qh,Qa,Qo) ∈RNh×No×D, (6)

which delivers the interaction prediction for Nh×No human-object pairs in total. We set Nh, Na,
No to a relatively small number (e.g., 32) which is enough to capture the entities in a single image,
and larger number of queries will exacerbate the imbalance between positive and negative samples.
Additionally, for efficiency, we keep only half the number of human, object and action queries by
filtering the low-scoring ones before sending them into the interaction decoder Dp.

3.3 Logic-Guided Learning for Transformer-based Reasoner

In this section, we aim to guide the learning and reasoning of LOGICHOI with the affordances and
proxemics properties. Though there has already been several works concerning about these two prop-
erties[15, 33, 63], they typically analyze affordances from the statistical perspective, i.e., computing
the distribution of co-occurrence of actions and objects so as to reformulate the predictions [33],
simply integrate positional encodings into network features[15, 22], or proposing a two-path feature
generator [63] which introduces additional parameters. In contrast, we implement them from the
perspective that the constrained subset is the logical consequence of pre-given objects or actions.

Concretely, we first state these two kinds of properties as logical formulas, and then ground them into
continuous space to instruct the learning and reasoning of our Transformer reasoner (i.e., interaction
decoder Dp). For proxemics, we define five relative positional relationships with human as the
reference frame, which are above (e.g., kite above human), below (e.g., skateboard below human),
around (e.g., giraffe around human), within (e.g., handbag within human), containing (e.g.,
bus containing human). To make the Transformer reasoner spatiality-aware, the human and object
embeddings retrieved from Eq.3 are concatenated with sinusoidal positional encodings generated
from predicted bounding boxes. Then, given action v and position relationship p, the set of
infeasible interactions (i.e., triplet ⟨human, action, object⟩) {h1, · · · , hM} can be derived:

∀x(v(x) ∧ p(x) → ¬h1(x) ∧ ¬h2(x) ∧ · · · ∧ ¬hM (x)), (7)

where x refer to one human-object pair that is potential to have interactions. In first-order logic, the
semantics of variables (e.g., x) is usually referred to predicates (e.g., launch(x), above(x)). Eq.7
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states that, for instance, if the v is launch, and p is above, then in addition to interactions composed
of actions apart from launch, human-launch-boat should be included in {h1, · · · , hN} as well.
Similarly, given the object category o and position relationship p, we shall have:

∀x(o(x) ∧ p(x) → ¬h1(x) ∧ ¬h2(x) ∧ · · · ∧ ¬hN (x)). (8)

With Eq.7 and Eq.8, both affordances and proxemics properties, and the combination relationship
between them are clearly stated. Next we investigate how to convert the above logical symbols
into differentiable operation. Specifically, logical connectives (e.g., →, ¬, ∨, ∧) defined on discrete
Boolean variables are grounded to functions on continuous variables using product logic[108]:

ψ → ϕ = 1− ψ + ψ · ϕ, ¬ψ = 1− ψ,

ψ ∨ ϕ = ψ + ϕ− ψ · ϕ, ψ ∧ ϕ = ψ · ϕ. (9)

Similarly, the quantifier are implemented in a generalized-mean manner following[109]:

∃x(ψ(x)) = (
1

K

∑K
k=1 ψ(xk)

q)
1
q ,

∀x(ψ(x)) = 1− (
1

K

∑K
k=1(1− ψ(xk))

q)
1
q ,

(10)

Given above relaxation, we are ready to translate properties defined in first-order logical formulae into
sub-symbolic numerical representations, so as to supervise the interactions {h1, · · · , hM} predicted
by the Transformer reasoner. For instance, Eq.7 is grounded by Eq.9 and Eq.10 into:

Gv,p = 1− 1

M

∑M
m=1(

1
K

∑K
k=1(sk[v]·sk[hm])), (11)

where sk[v] and sk[hm] refer to the scores of action v and interaction hm with respect to input sample
xk. Here K refers to the number of all training samples and we relax it to that in a mini-batch.
As mentioned above, the spatial locations of human and objects are concatenated into the query
which means the spatial relation is predetermined and can be effortlessly inferred from the box
predictions (details provided in Supplementary Materials). Thus, we omit p(x) in Eq.11. Then, the
action-position loss is defined as: Lv,p = 1− Gv,p. In a similar way, we can ground Eq.8 into:

Go,p = 1− 1

N

∑N
n=1(

1
K

∑K
k=1(sk[v]·sk[hn])), (12)

where sk[o] refers to the score of object regarding to the input sample xk. The object-position
loss is defined as: Lo,p = 1− Go,p. For Gv,p, it scores the satisfaction of predictions to rules defined
in Eq.7. For example, given a high probability of action ride (i.e., a high value of sk[v]) and the
position relationship is above, if the probability of infeasible interactions (e.g., human-feed-fish")
is also high, then Gv,p would receive a low value so as to punish this prediction. Go,p is similar but it
scores the satisfaction of predictions to Eq.8 with given position and objects such as horse, fish,
etc. Through Eq.11 and Eq.12, we aim to achieve that, given the embeddings and locations of a
group of human and object entities, along with the potential actions happened within the image,
the Transformer reasoner should speculate which pair of human-object engaged in what kind of
interaction, while the prediction should respect to the rules defined in Eq.7 and Eq.8.

3.4 Implementation Details

Network Architecture. To make fair comparison with existing Transformer-based work[9–20], we
adopt ResNet-50 as the backbone. The visual encoder E is implemented as six Transformer encoder
layers, while the three parallel human, object and action decoders Dh, Da, Do are all constructed
as three Transformer decoder layers. For the interaction decoder Dp, we instantiate it with three
Transformer decoder layers as well, but replacing self-attention with our proposed triplet-reasoning
attention. The number of human, object, action queries Nh, No, Na is set to 32 for efficiency, and
the hidden sizes of all the modules are set to D=768. Since the state-of-the-art work[17, 19, 63–66]
usually leverages large-scale visual-linguistic pre-trained models to further enhance the detection
capability, we follow this setup and adopt CLIP [67]. To improve the inference efficiency of our
framework, we further follow [17] which uses guided embeddings to decode humans and objects in
a single Transformer decoder, i.e., merging Dh and Do into a unified one to simultaneously output
both human and object predictions.

6



Training Objectives. LOGICHOI is jointly optimized by the HOI detection loss (i.e., LHOI) and
logic-induced property learning loss (i.e., LLOG):

L = LHOI + αLLOG, LLOG = Lv,p + Lo,p. (13)

Here α is set to 0.2 empirically. Note that LLOG solely update the parameters of the Transformer
reasoner (i.e., interaction decoder Dp) but not the entire network to prevent over-fitting. For LHOI,
it is composed of human/object (i.e., output of Dh and Do, respectively) detection loss, action (i.e.,
output of Da) classification loss as well as interaction (i.e., output of Dp) classification loss.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on two widely-used HOI detection benchmarks:
• V-COCO [53] is a carefully curated subset of MS-COCO [110] which contains 10,346 images

(5,400 for training and 4,946 for testing). There are 263 human-object interactions annotated in
this dataset in total, which are derived from 80 object categories and 29 action categories.

• HICO-DET[54] consists of 47,776 images in total, with 38,118 for training and 9,658 designated
for testing. It has 80 object categories identical to those in V-COCO and 117 action categories,
consequently encompassing a comprehensive collection of 600 unique human-object interactions.

Evaluation Metric. Following conventions[2, 10, 37], the mean Average Precision (mAP) is adopted
for evaluation. Specifically, for V-COCO, we report the mAP scores under both scenario 1 (S1) which
includes all of the 29 action categories and scenario 2 (S2) which excludes 4 human body motions
without interaction to any objects. For HICO-DET, we perform evaluation across three category sets:
all 600 HOI categories (Full), 138 HOI categories with less than 10 training instances (Rare), and the
remaining 462 HOI categories (Non-Rare). Moreover, the mAP scores are calculated in two separate
setups: i) the Default setup computing the mAP on all testing images, and ii) the Known Object setup
measuring the AP for each object independently within the subset of images containing this object.

Zero-Shot HOI Detection. We follow the setup in previous work[17,21,31,106,107] to carry on zero-
shot generalization experiments, resulting in four different settings: Rare First Unseen Combination
(RF-UC), Non-rare First Unseen Combination (NF-UC), Unseen Verb (UV) and Unseen Object (UO)
on HICO-DET. Specifically, the RF and NF strategies in the UC setting indicate selecting 120 most
frequent and infrequent interaction categories for testing, respectively. In the UO setting, we choose
12 objects from 80 objects that are previously unseen in the training set, while in the UV setting, we
exclude 20 verbs from a total of 117 verbs during training and only use them at testing.

Training. To ensure fair comparison with existing work[9–20], we initialize our model with weights

Table 1: Comparison of zero-shot generalization with state-of-the-arts on
HICO-DET [54] test. See §4.2 for details.

Method VL Pretrain Type Unseen Seen Full

VCL [31][ECCV20] RF-UC 10.06 24.28 21.43
ATL [107][CVPR21] RF-UC 9.18 24.67 21.57
FCL [106][CVPR21] RF-UC 13.16 24.23 22.01

GEN-VLKT [17][CVPR22] ✓ RF-UC 21.36 32.91 30.56
SCL [21][ECCV22] RF-UC 19.07 30.39 28.08

LOGICHOI (ours) ✓ RF-UC 25.97 34.93 33.17

VCL [31][ECCV20] NF-UC 16.22 18.52 18.06
ATL [107][CVPR21] NF-UC 18.25 18.78 18.67
FCL [106][CVPR21] NF-UC 18.66 19.55 19.37

GEN-VLKT [17][CVPR22] ✓ NF-UC 25.05 23.38 23.71
SCL [21][ECCV22] NF-UC 21.73 25.00 24.34

LOGICHOI (ours) ✓ NF-UC 26.84 27.86 27.95

ATL [107][CVPR21] UO 5.05 14.69 13.08
FCL [106][CVPR21] UO 0.00 13.71 11.43

GEN-VLKT [17][CVPR22] ✓ UO 10.51 28.92 25.63
LOGICHOI (ours) ✓ UO 15.67 30.42 28.23

GEN-VLKT [17][CVPR22] ✓ UV 20.96 30.23 28.74
LOGICHOI (ours) ✓ UV 24.57 31.88 30.77

of DETR[62] pre-trained on
MS-COCO. Subsequently,
we conducted training for
90 epochs using the Adam
optimizer with a batch size
of 16 and base learning rate
1e−4, on 4 GeForce RTX
3090 GPUs. The learning
rate is scheduled following
a “step” policy, decayed by
a factor of 0.1 at the 60th
epoch. In line with [10, 62,
66], the random scaling aug-
mentation is adopted, i.e.,
training images are resized
to a maximum size of 1333
for the long edge, and min-
imum size of 400 for the
short edge.

Testing. For fairness, we
refrain from implementing
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Table 2: Quantitative results on HICO-DET[54] test and V-COCO[53] test. See §4.3 for details.
VL Default Known ObjectMethod Backbone

Pretrain Full Rare Non-Rare Full Rare Non-Rare APS1
role APS2

role

iCAN [111][BMVC18] R50 14.84 10.45 16.150 16.26 11.33 17.73 45.3 -
UnionDet [58][ECCV20] R50 17.58 11.72 19.33 19.76 14.68 21.27 47.5 56.2

PPDM [59][CVPR20] HG104 21.73 13.78 24.10 24.58 16.65 26.84 - -
HOTR [10][CVPR21] R50 23.46 16.21 25.60 - - - 55.2 64.4
AS-Net [9][CVPR21] R50 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -
QPIC [11][CVPR21] R50 29.07 21.85 31.23 31.68 24.14 33.93 58.8 61.0

CDN [13][NeurIPS21] R50 31.78 27.55 33.05 34.53 29.73 35.96 62.3 64.4
MSTR [14][CVPR22] R50 31.17 25.31 32.92 34.02 28.83 35.57 62.0 65.2

UPT [15][CVPR22] R50 31.66 25.94 33.36 35.05 29.27 36.77 59.0 64.5
STIP [22][CVPR22] R50 32.22 28.15 33.43 35.29 31.43 36.45 65.1 69.7

IF-HOI [18][CVPR22] R50 33.51 30.30 34.46 36.28 33.16 37.21 63.0 65.2
ODM [112][ECCV22] R50-FPN 31.65 24.95 33.65 - - - - -

Iwin [113][ECCV22] R50-FPN 32.03 27.62 34.14 35.17 28.79 35.91 60.5 -

LOGICHOI (ours) R50 34.53 31.12 35.38 37.04 34.31 37.86 63.7 64.9

CTAN [66][CVPR22] R50 ✓ 31.71 24.82 33.77 33.96 26.37 36.23 60.1
SSRT [63][CVPR22] R50 ✓ 30.36 25.42 31.83 - - - 63.7 65.9
DOQ [65][CVPR22] R50 ✓ 33.28 29.19 34.50 - - - 63.5 -

GEN-VLK [17][CVPR22] R50 ✓ 33.75 29.25 35.10 37.80 34.76 38.71 62.4 64.4

LOGICHOI (ours) R50 ✓ 35.47 32.03 36.22 38.21 35.29 39.03 64.4 65.6

any data augmentation during testing. Specifically, we first select K interactions with the highest
scores and further filter them by applying NMS to retrieve the final predictions. Following the
convention[11, 16, 17, 20, 66], we set K to 100.

4.2 Zero-Shot HOI Detection

The comparisons of our method against several top-leading zero-shot HOI detection models[17,21,31,
106, 107] on HICO-DET test are presented in Table 1. It can be seen that LOGICHOI outperforms
all of the competitors by clear margins across four different zero-shot setups.

Unseen Combination. As seen, LOGICHOI provides a considerable performance gain against
existing methods. In particular, it outperforms the top-leading GEN-VLKT[17] by 4.61% and 1.79%
in terms of mAP on unseen categories for RF and NF selections, respectively. These numerical
results substantiate our motivation of empowering Transformer with the reasoning ability and guide
the learning in a logic-induced compositional manner, rather than solely taking Transformer as an
interaction classifier.

Unseen Object. Our approach achieves dominant results under the UO setting, surpassing other
competitors across all metrics. Notably, it yields unseen mAP 15.67% and overall mAP 28.23%, while
the corresponding scores for the SOTA methods[17, 107] are 5.05%, 13.08% and 10.51%, 25.63%,
presenting an improvement up to 5.16% mAP for unseen categories. This reinforces our belief that
empowering Transformer with logic-guided reasoning ability is imperative and indispensable.

Unseen Verb. Our method also demonstrates superior performance in the UV setup. Concretely, it
surpasses GEN-VLKT[17] by 3.61% mAP on unseen categories and achieves 30.77% overall scores.

All of the above improvement on zero-shot generalization confirms the effectiveness of our proposed
Transformer reasoner which learns in a compositional manner, and is informed by affordances and
proxemics knowledge to address novel challenges that was never encountered before.

4.3 Regular HOI Detection

HICO-DET. In Table 2, we present the results of LOGICHOI and other top-performing models
under the normal HOI detection setup. Notably, on HICO-DET[54] test, our solution demonstrates
a significant improvement over previous state-of-the-art[17], with a substantial margin of 1.72%/
2.78%/1.12% mAP for Full, Rare, and Non-Rare categories, under the Default setup. Moreover, in
terms of Known Object, our method attains exceptional mAP scores of 38.21%/35.29%/39.03%.
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Table 3: Analysis of essential components of LOGI-
CHOI on HICO-DET [54]. See §4.4 for details.

TRA LRL Full Rare Non-Rare

31.87 26.14 33.29
✓ 34.32 30.67 35.19

✓ 33.26 29.53 34.56
✓ ✓ 35.47↑3.60 32.03↑5.89 36.22↑2.93

Table 4: Analysis of LRL under the zero-shot setup
of unseen categories. See §4.4 for details.

Setting RF-UC UO UV

TRA 24.01 13.26 23.14
+Lv,p 25.22 15.32 23.68
+Lo,p 25.34 13.91 24.29

LOGICHOI 25.97↑1.96 15.67↑2.41 24.57↑1.43

Table 5: Analysis of number of decoder layer and query on HICO-DET[54] test. See §4.4 for details.

# of layers (L) Full Rare Non-Rare

2 34.61 30.72 35.54
3 35.47 32.03 36.22
4 35.37 31.96 36.09
6 35.61 32.13 36.39

(a) number of the interaction decoder layer.

# of queries (N ) Full Rare Non-Rare

16 35.06 31.36 35.94
32 35.47 32.03 36.22
64 35.26 31.65 36.06
128 34.67 30.98 35.53

(b) number of the queries.

V-COCO. As indicated by the last two columns of Table 2, we also compare LOGICHOI with
competitive models on V-COCO[53] test. Despite the relatively smaller number of images and HOI
categories in this dataset, our method still yields promising results, showcasing its effectiveness. In
particular, it achieves a mean mAP score of 65.0% across two scenarios.

4.4 Diagnostic Experiment

For in-depth analysis, we perform a series of ablative studies on HICO-DET[54] test.

Key Component Analysis. We first examine the efficiency of essential designs of LOGICHOI, i.e.,
triplet-reasoning attention (TRA) and logic-guided reasoner learning (LRL), which is summarized in
Table 3. Three crucial conclusions can be drawn. First, our proposed triplet-reasoning attention leads
to significant performance improvements against the baseline across all the metrics. Notably, TRA
achieves 4.53% mAP improvement on Rare congeries, demonstrating the ability of our Transformer
Reasoner to reason over entities and generate more feasible predictions. Second, we also observe
compelling gains from incorporating logic-guided reasoner learning into the baseline, even with basic
self-attention, affirming its versatility. Third, our full model LOGICHOI achieves the satisfactory
performance, confirming the complementarity and effectiveness of our designs.

Logic-Guided Learning. We guide the learning of Transformer reasoner with two logic-induced
properties. Table 4 reports the related scores of unseen categories under three zero-shot setups. The
contributions of Lv,p and Lo,p are approximately equal in the RF-UC setup, since during training, all
actions and objects can be seen and utilized to guide reasoning. On the other hand, under the UO and
UV setups, the improvements heavily rely on Lv,p and Lo,p respectively, while the other one brings
minor enhancements. Finally, the combination of them leads to LOGICHOI, the new state-of-the-art.

Table 6: Comparison of parameters and running efficiency.

Method Backbone Params FLOPs FPS

Two-stages Detectors:
iCAN [111][BMVC18] R50 39.8 - 5.99

DRG [30][ECCV20] R50-FPN 46.1 - 6.05
SCG [36][ICCV21] R50-FPN 53.9 - 7.13
STIP [22][CVPR22] R50 50.4 - 6.78

One-stages Detectors:
PPDM [59][CVPR20] HG104 194.9 - 17.14
HOTR [10][CVPR21] R50 51.2 90.78 15.18

HOITrans [12][CVPR21] R50 41.4 87.69 18.29
AS-Net [9][CVPR21] R50 52.5 87.86
QPIC [11][CVPR21] R50 41.9 88.87 16.79

CDN-S [13][NeurIPS21] R50 42.1 - 15.54
GEN-VLKs [17][CVPR22] R50 42.8 86.74 18.69

LOGICHOI (ours) R50 49.8 89.65 16.84

Number of Decoder Layer. We fur-
ther examine the effect of the num-
ber of Transformer decoder layer used
in Dp. As shown in Table 5a, LOGI-
CHOI achieves similar performance
when L is larger than 2. For efficiency,
we set L = 3 which is the smallest
among existing work[9–20].

Number of Query. Next we probe
the impact of the number of query for
human, object and action in Table 5b.
Note that the number of these three
kind of queries is identical and we re-
fer it to N . The best performance is
obtained at N = 32 and more queries
lead to inferior performance.
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Runtime Analysis. The computational complexity of our triplet-reasoning attention is squared
compared to self-attention. Towards this, we make some specific designs: i) both the number of
queries and Transformer decoder layers of our method are the smallest when compared to existing
work[9–20], ii) as specified in §3.2, we filter the human, action, object queries and only keep half
of them for efficiency, and iii) triplet-reasoning attention introduces few additional parameters. As
summarized in Table 6, above facets make LOGICHOI even smaller in terms of Floating Point
Operations (FLOPs) and faster in terms of inference compared to most existing work.

5 Conclusion

In this work, we propose LOGICHOI, the first Transformer-based neuro-logic reasoner for HOI
detection. Unlike existing methods relying on predetermined human-object pairs, LOGICHOI
enables the exploration of novel combinations of entities during decoding, improving effectiveness
as well as the zero-shot generalization capabilities. This is achieved by i) modifying the self-
attention mechanism in vanilla Transformer to reason over ⟨human, action, object⟩ triplets, and ii)
incorporating affordances and proxemics properties as logic-induced constraints to guide the learning
and reasoning of LOGICHOI. Experimental results on two gold-standard HOI datasets demonstrates
the superiority against existing methods. Our work opens a new avenue for HOI detection from the
perspective of empowering Transformer with symbolic reasoning ability, and we wish it to pave the
way for future research.
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