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Abstract

Graph property prediction tasks are important and numerous. While each task offers
a small size of labeled examples, unlabeled graphs have been collected from various
sources and at a large scale. A conventional approach is training a model with the
unlabeled graphs on self-supervised tasks and then fine-tuning the model on the
prediction tasks. However, the self-supervised task knowledge could not be aligned
or sometimes conflicted with what the predictions needed. In this paper, we propose
to extract the knowledge underlying the large set of unlabeled graphs as a specific
set of useful data points to augment each property prediction model. We use a
diffusion model to fully utilize the unlabeled graphs and design two new objectives
to guide the model’s denoising process with each task’s labeled data to generate
task-specific graph examples and their labels. Experiments demonstrate that our
data-centric approach performs significantly better than fifteen existing various
methods on fifteen tasks. The performance improvement brought by unlabeled data
is visible as the generated labeled examples unlike the self-supervised learning.

1 Introduction

Graph data such as molecules and polymers are found to have attractive properties in drug and
material discovery (Böhm et al., 2004; Huang et al., 2021), but annotating them requires specialized
knowledge, as well as lengthy and costly experiments in wet labs (Cormack and Elorza, 2004). So, it
is important for graph property predictors to learn useful knowledge from unlabeled graphs.

Self-supervised learning (Hu et al., 2019; Rong et al., 2020; You et al., 2021; Kim et al., 2022) utilizes
unlabeled graphs to learn through predictive tasks or contrastive tasks to represent and transfer the
knowledge as model parameters. Despite the empirical success in language and vision (Brown et al.,
2020; He et al., 2022), their performance on graph data applications remains unsatisfactory because
of the significant gap between the graph self-supervised task and the graph label prediction task.
Models trained on node attribute prediction (Hu et al., 2019) as a simple predictive self-supervised
task extract too limited knowledge from the graph structure, which has been observed after too fast
convergence (Sun et al., 2022). More complex tasks like graph context prediction (Hu et al., 2019;
Zhang et al., 2021) may transfer knowledge that conflicts with downstream tasks. Aromatic rings, for
instance, are a prevalent structure in molecules (Maziarka et al., 2020) and are considered valuable in
context prediction tasks (Zhang et al., 2021). However, graph properties such as oxygen permeability
can be more related to non-aromatic rings in some cases (Liu et al., 2022a), which is overlooked if
not using tailored predictive tasks specifically for downstream tasks. As predictive tasks strive for
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Figure 1: Comparing the diagrams of the existing approach and the proposed approach to learning
from unlabeled graphs for a variety of graph property prediction tasks.

universality, the transferred knowledge may force models to focus more on aromatic rings, leading to
poor prediction.

On the other line, contrastive tasks (You et al., 2021; Kim et al., 2022) aim to learn the similarity
between original and perturbed graphs. However, the learned similarity can hardly generalize across
tasks (Kim et al., 2022). First, perturbations without domain knowledge, e.g., bioisosteres, do not
preserve broad biological properties (Sun et al., 2021). Second, it is difficult, if not impossible, to find
universal perturbations that generalize to diverse property prediction tasks. For example, bioisosteric
(subgraph) replacements produce similar biological properties for molecules. And they may reduce
toxicity (Brown, 2014). So, contrastive tasks with bioisosteric replacement enforce the similarity
between toxic and non-toxic molecules. However, models pre-trained on such contrastive tasks hurt
the performance on downstream tasks, e.g., toxicity prediction.

Our data-centric idea avoids the use of self-supervised tasks that are not appropriate. We use a
diffusion probabilistic model (known as diffusion model) to capture the data distribution of unlabeled
graphs, leveraging its capability of distribution coverage, stationarity, and scalability (Dhariwal and
Nichol, 2021). At the stage of performing a particular property prediction task, the reverse process,
guided by novel task-related optimization objectives, generates new task-specific labeled examples.
Minimal sufficient knowledge from the unlabeled data is transferred into these examples, instead of
uninterpretable model parameters, and then to enhance the training of prediction models.

To implement our idea, we propose a Data-Centric Transfer framework (DCT) based on a diffusion
model for graph data, as shown in Figure 1b. It aims to transfer minimal sufficient knowledge from
unlabeled graphs to property predictors by data augmentation. The diffusion model gradually adds
Gaussian noise to a graph from which a score function (i.e., the gradient of the log probability density)
is then learned to estimate the noise step by step to reverse the process. DCT trains the diffusion
model on the unlabeled graphs to get ready to augment any labeled dataset. Given a labeled graph
from a particular task (i.e., type of property), the diffusion model adds noise to perturb it by a few
steps and then generates a new graph through the score function. The new graph could be close
to the distribution of the unlabeled graphs for diversity, however, it would lose the relatedness to
the target task. So, we add two task-related objectives into the score function to guide the reverse
process. When a predictor model f has been trained on the task, given an original labeled graph G,
the first objective is to optimize the new graph G′ to sufficiently preserve the label of G with f . The
second objective is to optimize G′ to be very different from (i.e., minimally similar to) G. These two
objectives ensure that G′ carries minimal sufficient knowledge from the unlabeled graphs to be an
augmentation of G. DCT iteratively generates new examples to augment the labeled dataset and
progressively trains the prediction model with it.

We test DCT on fifteen graph property prediction datasets from three fields: chemistry (molecules),
material science (polymers), and biology (protein-protein interaction graphs). DCT achieves the
best performance over all these tasks. We find that the state-of-the-art self-supervised methods
often struggle to transfer knowledge to regression tasks, etc. DCT reduces the mean absolute error
relatively by 13.4% and 10.2% compared to the best baseline on the molecule and polymer graph
regression tasks, respectively.
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2 Problem Definition

Given K property prediction tasks, there are N [k] labeled graph examples for the k-th task. They are
{(Gi, yi) | Gi ∈ G[k], yi ∈ Y [k]}N [k]

i=1 , where G[k] is the graph space and Y [k] is the label space of the
task. The prediction model with parameters θ is defined as f [k]

θ : G[k] → Y [k]. f [k]
θ consists of a GNN

and a multi-layer perceptron (MLP). Without the loss of generality, we consider Graph Isomorphism
Networks (GIN) (Xu et al., 2019) to encode graph structures. Given a graph G = (V, E) ∈ G[k] in
the task k, GIN updates the representation vector of node v ∈ V at l-layer:

hl
v = MLPl

(1 + ϵ) · hl−1
v +

∑
u∈N (v)

hl−1
u

 , (1)

where ϵ is a learnable scalar and u ∈ N (v) is one of node v’s neighbor nodes. After stacking L
layers, the READOUT function (e.g., summation) gets the graph representation across all the nodes.
The predicted label is:

ŷ = MLP
(

READOUT
({

hL
v | v ∈ G

}))
. (2)

f
[k]
θ is hard to be well-trained because it is hard to collect graph labels at a large scale (N [k] is small).

Fortunately, regardless of the tasks, a large number of unlabeled graphs are usually available from
the same or similar domains. Self-supervised learning methods (Hu et al., 2019) rely on hand-crafted
tasks to extract knowledge from the unlabeled examples {Gj ∈ G[U ], j = 1, . . . , N} as pre-trained
model parameters θ. The uninterpretable parameters are transferred to warm up the prediction models
{f [k]

θ }Kk=1 on the K downstream graph property prediction tasks. However, the gap and even conflict
between the self-supervised tasks and the property prediction tasks lead to suboptimal performance of
the prediction models. In the next section, we present the DCT framework that transfers knowledge
from the unlabeled graphs with a data-centric approach.

3 The Data-Centric Transfer Framework

3.1 Overview of Proposed Framework

The goal of data-centric approaches is to augment training datasets by generating useful labeled
data examples. Under that, the goal of our data-centric transfer (DCT) framework is to transfer the
knowledge from unlabeled data into the data augmentation. Specifically, for each graph-label pair
(G[k] ∈ G[k], y[k] ∈ Y [k]) in the task k, the framework is expected to output a new example G′[k]

with the label y′[k] such that (1) y′[k] = y[k] and (2) G′[k] and G[k] are from the same graph space
G[k]. However, if the graph structures of G′[k] and G[k] were too similar, the augmentation would
duplicate the original data examples, become useless, and even cause over-fitting. So, the optimal
graph data augmentation should enrich the training data with good diversity as well as preserve the
labels of the original graphs. To achieve this, DCT utilizes a diffusion probabilistic model to first
learn the data distribution from unlabeled graphs (Section 3.2). Then DCT adapts the reverse process
in the diffusion model to generate task-specific labeled graphs for data augmentation (Section 3.3).
Thus, the augmented graphs will be derived from the distribution of a huge collection of unlabeled
data for diversity. To preserve the labels, DCT controls the reverse process with two task-related
optimization objectives to transfer minimal sufficient knowledge from the unlabeled data. The first
objective minimizes an upper bound of mutual information between the augmented and the original
graphs in the graph space. The second objective maximizes the probability of the predicted label of
augmented graphs being the same as the label of original graphs. The first is for minimal knowledge
transfer, and the second is for sufficient knowledge transfer. DCT integrates the two objectives into
the reverse process of the diffusion model to guide the generation of new labeled graphs. DCT
iteratively trains the graph property predictor (used in the second objective) and creates the augmented
training data. To simplify notations, we remove the task superscript [k] in the following sections.

3.2 Learning Data Distribution from Unlabeled Graphs

The diffusion process for graphs in Figure 2 applies to both graph structure and node features. The
diffusion model slowly corrupts unlabeled graphs to a standard normal distribution with noise. For
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Figure 3: Relative improvement (increased AUC or reduced MAE) from three data-centric methods
(over ten runs), compared to the basic GIN: Blue is for self-training with selected real unlabeled
graphs. Green is for self-training with graphs directly generated by a standard diffusion model. Red
is for DCT that generates task-specific labeled graphs. The first two often make little or negative
impact. Our DCT has consistent and significant improvement shown as the percentages in red.

graph generation, the model samples noise from the normal distribution and learns a score function
to reverse the perturbed noise. Given an unlabeled graph G, we use continuous time t ∈ [0, T ]
to index multiple diffusion steps {G(t)}Tt=1 on the graph, such that G(0) follows the original data
distribution and G(T ) follows a prior distribution like the normal distribution. The forward diffusion
is a stochastic differential equation (SDE) from the graph to the noise:

dG(t) = f
(
G(t), t

)
dt+ g(t) dw, (3)

where w is the standard Wiener process, f(·, t) : G → G is the drift coefficient and g(t) : R → R
is the diffusion coefficient. f(G(t), t) and g(t) relate to the amount of noise added to the graph at
each infinitesimal step t. The reverse-time SDE uses gradient fields or scores of the perturbed graphs
∇G(t) log pt(G

(t)) for denoising and graph generation from T to 0 (Song et al., 2021):

dG(t) =
[
f(G(t), t)− g(t)2∇G(t) log pt(G

(t))
]
dt+ g(t)dw, (4)

where pt(G(t)) is the marginal distribution at time t in forward diffusion. w is a reverse time standard
Wiener process. dt here is an infinitesimal negative time step. The score ∇G(t) log pt(G

(t)) is
unknown in practice and it is approximated by the score function s(G(t), t) with score matching
techniques (Song et al., 2021). On graphs, Jo et al. (2022) used two GNNs to develop the score
function s(G(t), t) to de-noise both node features and graph structures and details are in appendix B.3.

3.3 Generating Task-specific Labeled Graphs

Self-training approaches would propose to either (1) select unlabeled graphs by a graph property
predictor or (2) generate graphs directly from the standard diffusion model, and then use the predictor
to assign them labels so that the training data could be enriched. However, we have observed that
neither of them can guarantee positive impact on the prediction performance. In fact, as shown
in Figure 3, they make very little or even negative impact. That is because the selected or directly-
generated graphs are too different from the labeled graph space of the target tasks. Task details of
ten datasets are in appendix C.
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Given a labeled graph (G, y) from the original dataset of a specific task, the new labeled graph (G′, y′)
is expected to provide useful knowledge to augment the training set. We name it the augmented graph
throughout this section. The augmented graph is desired to have the following two properties, as
in Section 3.1: Task relatedness: As an effective training data point, G′ ∈ G and y′ ∈ Y are from
the graph/label spaces of the specific task where (G, y) come from and thus transfer sufficient task
knowledge into the training set; Diversity: If G′ was too similar to G, the new data point would
cause severe over-fitting on the property prediction model. The augmentation aims to learn from
unlabeled graph to create diverse data points, which should contain minimal task knowledge about G.

The selected unlabeled graphs used in self-training have little task relatedness because the unlabeled
data distribution might be too far from the one of the specific task. Existing graph data augmentation
methods could not create diverse graph examples because they manipulated labeled graphs and did not
learn from the unlabeled graphs. Our novel data-centric approach DCT works towards both desired
properties by transferring minimally sufficient knowledge from the unlabeled graphs: Sufficiency
is achieved by maximizing the possibility for label preservation (i.e., y′ = y). It ensures that the
knowledge from unlabeled graphs is task-related; Minimality refers to the minimization of graph
similarity between G′ and G to ensure that the augmentation introduces diversity. Both optimizations
can be formulated using mutual information I(· ; ·) to generate task-specific labeled data (G′, y′):
Definition 3.1 (Sufficiency for Data Augmentation). The augmented graph G′ sufficiently preserves
the label of the original graph G if and only if I(G′; y) = I(G; y).
Definition 3.2 (Minimal Sufficiency for Data Augmentation). The Sufficiency is minimal for data
augmentation if and only if I(G′;G) ≤ I(Ḡ;G), ∀Ḡ represents any augmented graph that sufficiently
preserves the original graph’s label.

Self-supervised tasks applied a similar philosophy in pre-training (Soatto and Chiuso, 2016), however,
they did not use labeled data from any specific tasks. So the optimizations were unable to extract
useful knowledge and transfer it to the downstream (Tian et al., 2020). In our DCT that performs
task-specific data augmentation, the augmented graphs can be optimized toward the objectives using
any labeled graph G and its label y:

min
I1

max
I2

EG [I1 (G′;G) + I2 (G′; y)] . (5)

For the first objective, we use the leave-one-out variant of InfoNCE (Poole et al., 2019; Oord et al.,
2018) as the upper bound estimation. For the i-th labeled graph (Gi, yi),

I1 ≤ Ibound(G
′
i;Gi) = log

p(G′
i|Gi)∑M

j=1,j ̸=i p(G
′
i|Gj)

, (6)

where G′
i is the augmented graph. When G′

i is optimized, Gi makes a positive pair; {Gj} (j ̸= i)
are M − 1 negative samples of labels that do not equal yi. (M is a hyperparameter.) We use cosine
similarity and a softmax function to calculate p(G′

i|Gj) =
exp(sim(G′

i,Gj))∑M
j=1 exp(sim(G′

i,Gj))
. In practice, we

extract statistical features of graphs to calculate their similarity. Details are in appendix B.2.

For the second objective, we denote the predicted label of the augmented graph G′ by fθ(G
′). We

maximize the log likelihood log p (y|fθ(G′)) to maximize I2(G′; y). Specifically, after the predictor
fθ is trained for several epochs on the labeled data, we freeze its parameters and use it to optimize
the augmented graphs so they are task-related:

L(G′) = Ibound (G
′;G)− log p (y|fθ(G′)) . (7)

Framework details: As shown in Figure 2, after the diffusion model learns the data distribution
from unlabeled graphs, given a labeled graph G from a specific task, DCT perturbs it for D (D ≪ T )
steps. The perturbed noisy graph, denoted by G̃(D), stays inside the task-specific graph and label
space, rather than the noise distribution (at step T ). To reverse the noise in it and generate a task-
specific augmented example G′, DCT integrates the loss function in Eq. (7) into the score function
s(·, t) for minimal sufficient knowledge transfer:

dG̃(t) =
[
f(G̃(t), t)− g(t)2

(
s(G̃(t), t)− α∇G̃(t)L(G̃(t))

)]
dt+ g(t)dw, (8)

where α is a scalar for score alignment between s and ∇L to avoid the dominance of any of them:
α = ∥s(G̃(t),t)∥2

∥∇
G̃(t)L(G̃(t))∥2

. Because G̃(t) is an intermediate state in the reverse process, the noise in it
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Table 1: Statistics of datasets for graph property prediction in different domains.
Data Type Dataset # Graphs Prediction Task # Task Avg./Max # Nodes Avg./Max # Edges

Molecules

ogbg-HIV 41,127 Classification 1 25.5 / 222 54.9 / 502
ogbg-ToxCast 8,576 Classification 617 18.8 / 124 38.5 / 268
ogbg-Tox21 7,831 Classification 12 18.6 / 132 38.6 / 290
ogbg-BBBP 2,039 Classification 1 24.1 / 132 51.9 / 290
ogbg-BACE 1,513 Classification 1 34.1 / 97 73.7 / 202
ogbg-ClinTox 1,477 Classification 2 26.2 / 136 55.8 / 286
ogbg-SIDER 1,427 Classification 27 33.6 / 492 70.7 / 1010
ogbg-Lipo 4200 Regression 1 27 / 115 59 / 236
ogbg-ESOL 1128 Regression 1 13.3 / 55 27.4 / 124
ogbg-FreeSolv 642 Regression 1 8.7 / 24 16.8 / 50

Polymers

GlassTemp 7,174 Regression 1 36.7 / 166 79.3 / 362
MeltingTemp 3,651 Regression 1 26.9 / 102 55.4 / 212
ThermCond 759 Regression 1 21.3 / 71 42.3 / 162
O2Perm 595 Regression 1 37.3 / 103 82.1 / 234

Proteins PPI 88000 Classification 40 49.4 / 111 890.8 / 11556

may fail the optimizations. So, we design a new sampling method named double-loop sampling
for accurate loss calculation. It has an inner-loop sampling using Eq. (4) to sample Ĝ(t), as the
denoised version of G̃(t) at the reverse time t. Then ∇ĜL(Ĝ(t)) is calculated as an alternative for
∇G̃(t)L(G̃(t)). Finally, an outer-loop sampling takes one step to guide denoising using Eq. (8).

DCT iteratively creates the augmented graphs (G′, y′), updates the training dataset {(Gi, yi)}, and
trains the graph property predictor fθ. In each iteration, for task k, n ≪ N [k] labeled graphs of the
lowest property prediction loss are selected to create the augmented graphs.The predictor is better
fitted to these graphs for more accurate sufficiency estimation of the augmentation.

4 Experiments

In this section, we present and analyze experimental results to demonstrate the outstanding perfor-
mance of DCT, the usefulness of new optimization objectives, the effect of hyperparameters and
iterative process, and the interpretability of “visible” knowledge transfer from unlabeled graphs.

4.1 Experimental Setup

Tasks and metrics: Experiments are conducted on 15 graph property prediction tasks in chemistry,
material science, and biology, including seven molecule classification, three molecule regression
tasks from open graph benchmarks (Hu et al., 2020), four polymer regression tasks, and protein
function prediction (PPI) (Hu et al., 2019). Dataset statistics is presented in Table 1. We use the area
under the ROC curve (AUC) to evaluate classifiers and mean absolute error (MAE) for regressors.

Baselines and implementation: Besides GIN, there are three lines of baseline methods: (1) self-
supervised learning methods including EDGEPRED, ATTRMASK, CONTEXTPRED in (Hu et al.,
2019), INFOMAX (Velickovic et al., 2019), JOAO (You et al., 2021), GRAPHLOG (Xu et al., 2021),
MGSSL Zhang et al. (2021) and D-SLA (Kim et al., 2022), (2) semi-supervised learning methods
including self-training with selected unlabeled graphs (ST-REAL) and generated graphs (ST-GEN)
and INFOGRAPH (Sun et al., 2020), and (3) graph data augmentation (GDA) methods including
FLAG (Kong et al., 2022), GREA (Liu et al., 2022a), and G-MIXUP (Han et al., 2022). For
self-supervised pre-training, we follow their own settings and directly use their pre-trained models
if available. For semi-supervised learning methods and DCT, we use 113K QM9 (Ramakrishnan
et al., 2014) and 306K PPI graphs (Hu et al., 2019) as unlabeled data sources for the tasks on
molecules/polymers and proteins, respectively. For DCT, we tune three major hyper-parameters: the
number of perturbation steps D ∈ [1, 10], the number of negative samples M ∈ [1, 10], and top-n %
labeled graphs of lowest property prediction loss selected for data augmentation.

4.2 Outstanding Property Prediction Performance

We report the model performance using mean and standard deviation over 10 runs Table 2. DCT is
the best on all 15 tasks compared to the state-of-the-art baselines. Our observations are:
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Table 2: Mean(Std) on tasks from different fields. The best mean is bold. The best baseline is underlined.
Results are highlighted if unlabeled graphs bring significant negative impacts compared to GIN. The MAE for
ThermCond is scaled × 100. G-MIXUP was proposed for classification. MGSSL was proposed for molecules.

Molecule Classification: AUC (%) ↑
ogbg-HIV ogbg-ToxCast ogbg-Tox21 ogbg-BBBP ogbg-BACE ogbg-ClinTox ogbg-SIDER

# Training Graphs 32,901 6,860 6,264 1,631 1,210 1,181 1,141

GIN 77.4(1.2) 66.9(0.2) 76.0(0.6) 67.5(2.7) 77.5(2.8) 88.8(3.8) 58.1(0.9)

Se
lf-

Su
pe

rv
is

ed EDGEPRED 78.1(1.3) 63.9(0.4) 75.5(0.4) 69.9(0.5) 79.5(1.0) 62.9(2.3) 59.7(0.8)
ATTRMASK 77.1(1.7) 64.2(0.5) 76.6(0.4) 63.9(1.2) 79.3(0.7) 70.4(1.1) 60.7(0.4)
CONTEXTPRED 78.4(0.1) 63.7(0.3) 75.0(0.1) 68.8(1.6) 75.7(1.0) 63.2(6.5) 60.7(0.8)
INFOMAX 75.4(1.8) 61.7(1.0) 75.5(0.4) 69.2(0.5) 76.8(0.2) 73.0(0.2) 58.6(0.5)
JOAO 76.2(0.2) 64.8(0.3) 74.8(0.5) 69.3(2.5) 75.9(3.9) 69.4(4.5) 60.8(0.6)
GRAPHLOG 74.8(1.1) 63.2(0.8) 75.4(0.8) 67.5(2.3) 80.4(3.6) 69.0(6.6) 57.0(0.9)
MGSSL 77.1(1.1) 65.7(0.4) 77.2(0.3) 66.9(0.9) 81.3(2.4) 69.8(5.0) 63.6(1.0)
D-SLA 76.9(0.9) 60.8(1.2) 76.1(0.1) 62.6(1.0) 80.3(0.6) 78.3(2.4) 55.1(1.0)

Se
m

i-
SL INFOGRAPH 73.3(0.7) 61.5(1.1) 67.6(0.9) 61.6(4.4) 75.9(1.8) 62.2(5.5) 56.3(2.3)

ST-REAL 78.3(0.6) 64.5(1.0) 76.2(0.5) 66.7(1.9) 77.4(1.8) 82.2(2.4) 60.8(1.2)
ST-GEN 77.9(1.6) 65.1(1.0) 75.8(0.9) 66.3(1.5) 78.4(3.0) 87.3(1.3) 59.3(1.3)

G
D

A FLAG 74.6(1.7) 59.9(1.6) 76.9(0.7) 66.6(1.0) 79.1(1.2) 85.1(3.4) 57.6(2.3)
GREA 79.3(0.9) 67.5(0.7) 77.2(1.2) 69.7(1.3) 82.4(2.4) 87.9(3.7) 60.1(2.0)
G-MIXUP 77.1(1.1) 55.6(1.1) 64.6(0.4) 70.2(1.0) 77.8(3.3) 60.2(7.5) 56.8(3.5)

DCT (Ours) 79.5(1.0) 68.1(0.2) 78.2(0.2) 70.8(0.5) 85.6(0.6) 92.1(0.8) 63.9(0.3)

Molecule Regression: MAE ↓ Polymer Regression: MAE ↓ Bio: AUC (%)↑
ogbg-Lipo ogbg-ESOL ogbg-FreeSolv GlassTemp MeltingTemp ThermCond O2Perm PPI

# Training Graphs 3,360 902 513 4,303 2,189 455 356 60,715

GIN 0.545(0.019) 0.766(0.016) 1.639(0.146) 26.4(0.2) 40.9(2.2) 3.25(0.19) 201.3(45.0) 69.1(0.0)

Se
lf-

Su
pe

rv
is

ed EDGEPRED 0.585(0.008) 1.062(0.066) 2.249(0.150) 27.6(1.4) 47.4(2.8) 3.69(0.50) 207.3(41.7) 63.7(1.1)
ATTRMASK 0.573(0.009) 1.041(0.041) 1.952(0.088) 27.7(0.8) 45.8(2.6) 3.17(0.32) 179.9(30.8) 64.1(1.8)
CONTEXTPRED 0.592(0.007) 0.971(0.027) 2.193(0.151) 27.6(0.3) 46.7(1.9) 3.15(0.24) 191.2(35.2) 62.0(1.2)
INFOMAX 0.581(0.009) 0.935(0.018) 2.197(0.129) 27.5(0.8) 46.5(2.8) 3.31(0.25) 231.0(52.6) 63.3(1.2)
JOAO 0.596(0.016) 1.098(0.037) 2.465(0.095) 27.5(0.2) 46.0(0.2) 3.55(0.26) 207.7(43.7) 61.5(1.2)
GRAPHLOG 0.577(0.010) 1.109(0.059) 2.373(0.283) 29.5(1.3) 50.3(3.3) 3.01(0.17) 229.7(48.3) 62.1(0.6)
MGSSL 0.569(0.007) 0.998(0.031) 1.956(0.077) 26.9(0.4) 42.7(1.2) 3.10(0.14) 201.1(31.9) N.A.
D-SLA 0.563(0.004) 1.064(0.030) 2.190(0.149) 27.5(1.0) 51.7(2.5) 2.71(0.08) 257.8(30.2) 65.0(1.2)

Se
m

i-
SL INFOGRAPH 0.793(0.094) 1.285(0.093) 3.710(0.418) 30.8(1.2) 51.2(5.1) 2.75(0.15) 207.2(21.8) 67.7(0.4)

ST-REAL 0.526(0.009) 0.788(0.070) 1.770(0.251) 26.6(0.3) 42.3(1.2) 2.64(0.07) 256.0(17.5) 68.9(0.1)
ST-GEN 0.531(0.031) 0.724(0.082) 1.547(0.082) 26.8(0.3) 42.0(0.9) 2.70(0.03) 262.2(10.1) 68.6(0.6)

G
D

A FLAG 0.528(0.012) 0.755(0.039) 1.565(0.098) 26.6(1.3) 44.2(2.0) 3.05(0.10) 177.7(60.7) 69.2(0.2)
GREA 0.586(0.036) 0.805(0.135) 1.829(0.368) 26.7(1.0) 41.1(0.8) 3.23(0.18) 194.0(45.5) 68.8(0.2)

DCT (Ours) 0.516(0.071) 0.717(0.020) 1.339(0.075) 23.7(0.2) 38.0(0.8) 2.59(0.11) 165.6(24.3) 69.5(0.2)

(1) GIN is the most competitive baseline and outperforms self-supervised learning methods. On
7 of 15 tasks, GIN outperforms all the 7 self-supervised learning methods. Because self-supervised
pre-training imposes constraints on the model architecture, it undermines the true power of GNNs
and under-performs the GNNs that are properly used.

(2) Self-training and GDA methods perform better than GIN but cannot effectively learn from
unlabeled data. Self-training (ST-REAL and ST-GEN) is often the best baseline in regression tasks.
GDA (GREA and G-MIXUP) methods outperform self-training in most classification tasks except
ogbg-SIDER, because they are often designed to exploit categorical labeled data and remain under-
explored for regression. Although self-training benefits from selecting unlabeled examples in some
graph regression tasks, they are negatively affected by the unlabeled graphs in the classification tasks
such as ogbg-ToxCast and ogbg-ClinTox. As indicated in Figure 3, it is inappropriate to pseudo-label
unlabeled graphs in self-training due to the huge gap between the unlabeled data and target task.

(3) DCT transfers useful knowledge from unlabeled data by data augmentation. DCT outper-
forms the best baseline relatively by +3.9%, +13.4%, and +10.2% when there are only 1,210, 513,
and 4,303 training graphs on ogbg-BACE, ogbg-FreeSolv, and GlassTemp, respectively. Compared
to the self-supervised baselines, the improvement from DCT is more significant, so the knowledge
transfer is more effective. For example, on ogbg-FreeSolv and O2Perm, DCT performs better than
the best self-supervised baselines relatively by +45.8% and +8.0%, respectively. On regression tasks
that involve knowledge transfer across domains (e.g., from molecules to polymers), DCT reduces
MAE relatively by 1.9% ∼ 10.2% compared to the best baseline. All these results demonstrate the
outstanding performance of task-specific data augmentation in DCT.
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Table 3: Comprehensive ablation studies for DCT on tasks ogbg-BACE, ogbg-SIDER, ogbg-FreeSolv, and
O2Perm. Objectives include minimizing I1(G′, G) and/or maximizing I2(G′, y).

Objectives Classification Regression

I1(G′, G) I2(G′, y) BACE SIDER FreeSolv O2Perm

Top Baseline Method 82.4(2.4) 60.8(1.2) 1.547(0.082) 177.7(60.7)

U
nl

ab
el

ed
D

at
a

So
ur

ce
s

Q
M

9

✗ ✗ 84.4(2.6) 63.7(0.3) 1.473(0.192) 177.4(27.3)

✓ ✗ 85.2(1.3) 63.7(0.2) 1.415(0.145) 171.4(14.0)

✗ ✓ 84.7(1.8) 63.8(0.5) 1.344(0.096) 172.6(32.9)

✓ ✓ 85.6(0.6) 63.9(0.3) 1.339(0.075) 165.6(24.3)

Z
IN

C

✗ ✗ 82.8(1.8) 63.5(0.7) 1.524(0.219) 175.5(11.9)

✓ ✗ 83.3(2.2) 63.5(0.7) 1.455(0.207) 172.4(60.8)

✗ ✓ 84.3(0.6) 63.5(0.6) 1.514(0.214) 171.5(26.0)

✓ ✓ 84.9(0.4) 63.7(0.7) 1.408(0.092) 169.3(15.3)
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Figure 4: Effect of hyper-parameters, including the number of perturbation steps D ∈ [1, 10], the
number of negative graphs M ∈ [1, 10], and top-n % labeled graphs whose labels are predicted the
most accurately and that are selected for data augmentation, where n ∈ [10, 100].

4.3 Ablation Studies and Performance Analysis

Comprehensive ablation studies: In Table 3, we investigate how the task-related objectives in Eq. (5)
impact the performance of DCT. First, DCT outperforms the top baseline even if the two task-related
optimization objectives are disabled. This is because DCT generates new training examples based
on original labeled graphs: the data augmentation has already improved the diversity of the training
dataset a little bit. Second, adding the objective I1 further improves the performance by encouraging
the generation of diverse examples, because it minimizes the similarity between the original graph
and augmented graph in the graph space. Third, we receive the best performance of DCT when it
combines I1 and I2 objectives to generate task-related and diverse augmented graphs. When we
change the unlabeled data source from QM9 to the ZINC dataset from (Jo et al., 2022), similar
observations confirm the necessity of the task-related objectives.

Effect of hyper-parameters: The impacts of three hyper-parameters of DCT are studied: the number
of perturbation steps D, the number of negative samples M in Eq. (6), and the number of augmented
graphs in each iteration (i.e., top-n % selected graph for augmentation). Results from Figure 4 show
that DCT is robust to a wide range of D and M valued from 0 to 10. They suggest that D and M
can be set as 5 in most cases. As for the number of the augmented graphs in each iteration, results
show that noisy graphs are often created when n is higher than 30%, because the predictor cannot
effectively guide the data augmentation for those labeled graphs whose labels are hard to predict. So,
10% is suggested as the default of top-n%.

Iterative process: Figure 5 investigates the relationship between the quality of augmented graphs
and the accuracy of property prediction models. We save a predictor checkpoint every 20 epochs
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Figure 5: Data augmentation and
model training mutually enhance each
other over epochs. The predictor is
saved every 20 epochs to guide the
generation of augmented graphs. The
performance of GIN trained on these
augmented graphs reflects the quality
of the augmented data.
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Figure 6: Case studies of augmented
graphs. The green highlighted sub-
graphs are from GIN with top-k pool-
ing. Examples show that the aug-
mented graphs from DCT preserve
the core structures of original graphs.
Key concepts in the unlabeled graphs
like chemical validity are transferred
to downstream tasks. Domain knowl-
edge such as the relationship be-
tween the permeability and the fluo-
rine atom/methyl group is captured to
guide task-specific generation.

to guide the generation of the augmented examples. We evaluate the quality of augmented graphs
by using them to train GIN and report AUC/MAE. The data augmentation gradually decreases the
training loss of property prediction. On the other hand, the increased GIN performance indicates
that the quality of augmented examples is also improved over epochs. The data augmentation and
predictor training mutual enhance each other.

4.4 Interpretability of Visible Knowledge Transfer
Knowledge transfer by data augmentation gives visible examples, allowing us to study what is
learned. We visualize a few augmented graphs in DCT using ogbg-BACE and O2Perm. We adapt
top-k pooling (Knyazev et al., 2019) to select the subgraphs that GIN used for prediction. The
selected subgraphs are highlighted in green in Figure 6. The three examples show that the augmented
graphs can identify and preserve the core structures that GIN uses to predict property values. These
augmented graphs are chemically valid, showing that concepts such as some chemical rules from the
unlabeled graphs are successfully transferred to downstream tasks. More results are in appendix D.2.
Regarding task-specific knowledge, it is known that the fluorine atom and the methyl group are usually
negatively and positively correlated to the permeability, respectively (Park et al., 2003; Corrado and
Guo, 2020). The augmented examples show that DCT captures this domain knowledge with the
task-related objectives. In example (b), DCT replaces most of the fluorine atoms with the methyl
groups. It encourages GIN to learn the positive relationship between the methyl group and the
permeability so that GIN predicts a high label value. In example (c), DCT replaces the methyl groups
with fluorine atoms. It encourages GIN to learn the negative relationship between the fluorine atom
and the permeability so that GIN predicts a low label value.

5 Related Work

5.1 Graph Property Prediction

Graph neural networks (GNNs) (Kipf and Welling, 2017; Xu et al., 2019) are commonly used for
graph property prediction in chemistry and polymer informatics tasks (Otsuka et al., 2011; Hu et al.,
2020; Zhou et al., 2022). However, it is hard to annotate enough labels in these domains. Recent
work used self-supervised tasks such as node attribute prediction and graph structure prediction (Hu
et al., 2019; You et al., 2021; Kim et al., 2022) to pre-train architecture-fixed GNNs. Sun et al.
(2022) observed that the existing methods might fail to transfer knowledge from unlabeled graph data.
Flexible GNN architectures for downstream tasks would be desirable.
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Graph data augmentation (GDA) methods do not restrict GNN architecture choices to improve
prediction accuracy (Trivedi et al., 2022; Zhao et al., 2022, 2023; Ding et al., 2022). They learn
to create new examples that preserve the properties of original graphs (Liu et al., 2022b,a; Kong
et al., 2022; Han et al., 2022; Luo et al., 2022). However, they purely manipulate labeled examples
and thus cannot utilize the knowledge in unlabeled graphs. Our DCT combines the knowledge
from the unlabeled dataset and the labeled task dataset. It creates label-preserved graph examples
with the knowledge transferred from the unlabeled data. It allows the GNN models to have flexible
architectures.

5.2 Learning from Unlabeled Data

Pre-training on self-supervised tasks such as masked image modeling and autoregressive text genera-
tion is effective for large language and vision models (Brown et al., 2020; He et al., 2022). However,
the hand-crafted self-supervised tasks could hardly help models learn useful knowledge from unla-
beled graphs due to the gap between these label-agnostic tasks and the downstream prediction tasks
towards drug discovery and material discovery (Sun et al., 2021; Kim et al., 2022; Inae et al., 2023).
A universal self-supervised task to learn from the unlabeled graphs remains under-explored (Sun
et al., 2022; Trivedi et al., 2022).

Semi-supervised learning assumes that unlabeled and labeled data are from the same source (Liu
et al., 2023). The learning objective in the latent space is usually mutual information maximization
that encourages similarity between the representations of unlabeled and labeled graphs (Sun et al.,
2020). However, the distributions of the unlabeled and labeled data could be very different due to the
different types of sources (Hu et al., 2019), leading to negative impacts on the property prediction
on the labeled graphs. Self-training, as a specific type of semi-supervised learning method, selects
the unlabeled graphs of confidently predictable labels and assigns pseudo-labels for them (Lee
et al., 2013; Iscen et al., 2019). Many studies have explored improving uncertainty estimation (Gal
and Ghahramani, 2016; Tagasovska and Lopez-Paz, 2019; Amini et al., 2020) to help the model
filter out noise for reliable pseudo-labels. Recently, pseudo-labels have been applied in imbalanced
learning (Liu et al., 2023) and representation learning (Ghiasi et al., 2021). However, self-training is
restricted to confidently predictable labels and may ignore the huge number of any other unlabeled
graphs (Huang et al., 2022). Therefore, it cannot fully utilize the knowledge in the unlabeled graphs.

In contrast, our DCT employs a diffusion model to extract knowledge (as the diffusion and reverse
processes) from all the unlabeled graphs. DCT represents the knowledge as task-specific labeled
examples to augment the target dataset, instead of uninterpretable pre-trained model parameters.
We note that self- or semi-supervised learning does not conflict with DCT, and we leave their
combinations for future work.

5.3 Diffusion Models on Graphs

Recent works have improved the diffusion models on graphs (Niu et al., 2020; Jo et al., 2022; Vignac
et al., 2022; Kong et al., 2023; Chen et al., 2023). EDP-GNN (Niu et al., 2020) employed score
matching for permutation-invariant graph data distribution. GDSS (Jo et al., 2022) extended the
continuous-time framework [6] to model node-edge joint distribution. DiGress (Vignac et al., 2022)
used the transition matrix to preserve the discrete natures of the graph structure. GraphARM (Kong
et al., 2023) introduced a node-absorbing autoregressive diffusion process. EDGE (Chen et al., 2023)
focused on efficiently generating larger graphs. Instead of improving the generation performance of
the diffusion model, our model builds on score-based diffusion models (Jo et al., 2022; Song et al.,
2021) for predictive tasks, i.e., , graph classification and graph regression.

6 Conclusion

In this work, we made the first attempt to transfer minimal sufficient knowledge from unlabeled graphs
by data augmentation. We proposed a data-centric framework to use the diffusion model trained on
the unlabeled graphs and use two task-related objectives to generate task-specific augmented graphs.
Experiments demonstrated the performance of the proposed framework through visible augmented
examples. It is better than self-supervised learning, self-training, and graph data augmentation
methods on as many as 15 tasks.
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A Additional Related Work on Data-Centric Approach

Data Augmentation Data augmentation creates new examples with preserved labels but uses
no unlabeled data (Shorten and Khoshgoftaar, 2019; Kashefi and Hwa, 2020; Balestriero et al.,
2022). Examples of heuristic data augmentation techniques include flipping, distorting, and rotating
images (Shorten and Khoshgoftaar, 2019), using lexical substitution, inserting words, and shuffling
sentences in texts (Kashefi and Hwa, 2020), and deleting nodes and dropping edges in graphs (Zhao
et al., 2021, 2023). While human knowledge can be used to improve data diversity and reduce
over-fitting in heuristic methods, it is difficult to use a single heuristic method to preserve the
different labels for different tasks (Balestriero et al., 2022; Cubuk et al., 2019). So, automated
augmentation (Cubuk et al., 2019) learned from data to search for the best policy to combine a bunch
of predefined heuristic augmentations. Generation models (Antoniou et al., 2017; Bowles et al.,
2018; Han et al., 2022) create in-class examples. Other learning ideas such as FATTEN (Liu et al.,
2018) and GREA (Liu et al., 2022a) learned to split the latent space for data augmentation. However,
learning and augmenting from insufficient labels at the same time may limit the diversity of new
examples and cause over-fitting. DCT leverages unlabeled data to avoid them.

Figure 7: Qualitative relationship of
graphs from different data-centric ap-
proach on the task relatedness and con-
tained knowledge.

1

1 Our Approach

Learn to Augment
(Kong et al.,Liu et al.,etc.)

Heuristic
Augmentation

(Rong et al., etc.)

Task w/ Labels

Unlabeled Data
(Self-Training)

Contained Knowledge

Task Relatedness

Relationship between Data-Centric Approaches As
presented in Figure 7, perturb edges, delete nodes and
mask attributes (Rong et al., 2019; Trivedi et al., 2022) for
graphs are some heuristic ways for data augmentation. The
augmented knowledge from them is mainly controlled by
human prior knowledge on the perturbations and it often
fails to be close to the task, i.e., , random perturbations
hardly preserve labels for the augmented graphs. The learn-
ing to augment approaches learn from labeled graphs to
perturb graph structures (Luo et al., 2022), to estimate
graphons for different classes (Han et al., 2022), or to
split the latent space for augmentation (Liu et al., 2022a).
Although these approaches could preserve labels for the
augmented graphs, they introduce less extra knowledge to
improve the model prediction. In summary, graph data aug-
mentation is effective in expanding knowledge for limited
labels, but it makes no use of unlabeled graphs. Besides,
the diversity and richness of the domain knowledge from augmented graphs are far from that con-
tained in a large number of unlabeled graphs. To learn from unlabeled graphs, data-centric approaches
like the self-training is assumed to be useful when the unlabeled and labeled data are from the same
source. It is less studied when we have a single unified unlabeled source for different tasks.

B Additional Method Details

B.1 Upper bounding the mutual information

In Eq. (6), we use a leave-one-out variant of InfoNCE (Ibound) to derive the upper bound of mutual
information. We summarize the derivation (Poole et al., 2019) here.

I1(G′;G) = Ep(G,G′)

[
log

p(G′|G)

p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)q(G′)

q(G′)p(G′)

]
= Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
−KL(p(G′)||q(G′))

≤ Ep(G,G′)

[
log

p(G′|G)

q(G′)

]
(9)

The intractable upper bound is minimized when the variational approximation q(G′) matches the
true marginal p(G′) (Poole et al., 2019). For each Gi, its augmented output G′

i, and M − 1 negative
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examples with different labels, we could approximate q(G′
i) =

1
M−1

∑
j ̸=i p(G

′
i|Gj). So, we have

I1(G′
i, Gi) ≤ log

p(G′
i|Gi)

1
K−1

∑M
j=1,j ̸=i p(G

′
i|Gj)

= log
p(G′

i|Gi)∑M
j=1,j ̸=i p(G

′
i|Gj)

+ log(M − 1)

= Ibound(G
′
i;Gi) + constant

(10)

B.2 Extraction of Statistical Features on Graphs

For each molecule and polymer graph, we concatenate the following vectors or values for statistical
feature extraction.

• the sum of the degree in the graph;
• the vector indicating the distribution of atom types;
• the vector containing the maximum, minimum and mean values of atoms weights in a

molecule or polymer;
• the vector containing the maximum, minimum, and mean values of bond valence.

For each protein-protein interaction ego-graph in the biology field, we use the sorted vector of node
degree distribution in the graph as the statistical features.

B.3 Technical Details for Graph Data Augmentation with Diffusion Model

The Lookup Table from Atom Type to Node Embedding Space Given a graph G, we assume the
node feature matrix on the graph is X ∈ Rn×Fn , where n is the number of nodes. The edge feature
matrix is E ∈ Rm×Fe , where m is the number of edges. There are two ways for G to represent
the graph structure in practice. We can use either the dense adjacency matrix A ∈ Rn×n or sparse
edge index Ie ∈ R2×m. The diffusion model (Jo et al., 2022) on graphs prefers the former, which is
more straightforward for graph generations. The prediction model prefers the latter because of its
flexibility, and less computational cost and time. The transformation between two types of graph
structure representation takes additional time. Particularly for molecular graphs, the node features
used for generation (one-hot encoding of the atom type) and for prediction (see the official package of
OGBG 1 for details) are different, which introduces extra time to process the graph data. For details,
we (1) first need to extract discrete node attributes given the atom type and its neighborhoods; (2)
we then need to use an embedding table to embed node attributes in a continuous embedding space;
(3) the embedding features of nodes with their graph structure are inputted into the graph neural
networks to get the latent representation for nodes. The reverse process for data augmentation in
DCT may need to repeatedly process graph data with steps (1) and (2). It introduces additional time.
To address these technical problems, we build up a lookup table to directly map the atom type to the
node embedding. We average the node attributes for the same type of node within the batch. We
then use the continuous node attributes as weights to average the corresponding node embedding
according to the table.

Instantiations of SDE on Graphs According to Song et al. (2021), we use the Variance Exploding
(VE) SDE for the diffusion process. Given the minimal noise σmin and the maximal noise σmax, the
VE SDE is:

dG = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dw, t ∈ (0, 1] (11)

The perturbation kernel is derived (Song et al., 2021) as:

p0t(G
(t) | G(0)) = N

(
G(t);G(0), σ2

min

(
σmax

σmin

)2t

I

)
, t ∈ (0, 1] (12)

On graphs, we follow Jo et al. (2022) to separate the perturbation of adjacency matrix and node
features:

p0t(G
(t) | G(0)) = p0t(A

(t) | A(0))p0t(X
(t) | X(0)). (13)

1https://github.com/snap-stanford/ogb/blob/master/ogb/utils/features.py
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The Sampling Algorithm in the Reverse Process for Graph Data Augmentation We adapt
the Predictor-Corrector (PC) samplers for the graph data augmentation in the reverse process. The
algorithm is shown in Algorithm 1.

Algorithm 1 Diffusion-Based Graph Augmentation with PC Sampling
Input: Graph G with node feature X and adjacency matrix A, the denoising function for node feature sX
and adjacency matrix sA, the fine-tune loss Laug, Lagevin MCMC step size β, scaling coefficient ϵ1
A(D) ← A+ zA; zA ∼ N (0, I)

X(D) ← X+ zX ; zX ∼ N (0, I)
for t = D − 1 to 0 do

Ĝ(t+1) ∼ p0t+1(Ĝ(t+1)|G(t+1)) {inner-loop sampling with another PC sampler}
SA = 1

2
sA(G(t+1), t+ 1)− 1

2
α∇A(t)Laug(Ĝ(t+1))

SX = 1
2
sX(G(t+1), t+ 1)− 1

2
α∇X(t)Laug(Ĝ(t+1))

Ã(t) ← A(t+1) + g(t)2SA + g(t)zA; zA ∼ N (0, I) {Predictor for adjacency matrix}
X̃(t) ← X(t+1) + g(t)2SX + g(t)zX ; zX ∼ N (0, I) {Predictor for node features}
A(t) ← Ã(t) + β

2
SA + ϵ1

√
βzA; zA ∼ N (0, I) {Corrector for adjacency matrix}

X(t) ← X̃(t) + β
2
SX + ϵ1

√
βzX ; zX ∼ N (0, I) {Corrector for node features}

end for
return G′ = (A(0),X(0))

The Algorithm of the Framework The algorithm of the proposed data-centric knowledge transfer
framework is presented in Algorithm 2 and Algorithm 3. In detail, Algorithm 2 corresponds to
Section 3.2 and Algorithm 3 corresponds to Section 3.3.

Algorithm 2 The Data-Centric Knowledge Trans-
fer Framework: Learning from Unlabeled Graphs

Input: Given unlabeled graphs from the space G[U ],
randomly initialized score models sX and sA for node
feature and graph adjacency matrix, respectively, the
total diffusion time step T .
while sX and sA not converged do

Sample G = (X,A) ∈ G[U ]

Sample t ∈ Uniform(1, 2, . . . , T )
Sample zA ∼ N (0, I)
Sample zX ∼ N (0, I)

Sample Ĝ with t, zA, zX and Eq. (13)
Optimize sA with the gradient:
∇∥zA − sA(Ĝ, t)∥2

Optimize sX with the gradient:
∇∥zX − sX(Ĝ, t)∥2

end while

Algorithm 3 The Data-Centric Knowledge Transfer
Framework: Generating Task-specific Labeled Graphs

Input: Given task k with the graph-label space (G,Y),
a randomly initialized prediction model fθ , the well-
trained score model s = (sX, sA), the training data set
{Gi, yi}Nt

i , total training epoch e, the hyper-paramtere n
for current epoch ei from 1 to e do

Train fθ on current training data {Gi, yi}Nt
i

if ei is divisible by the augmentation interval then
Select n graph-label pairs with the lowest training
loss from {Gi, yi}Nt

i

Get the augmented examples {G′
i, y

′
i}ni by Algo-

rithm 1 with the selected examples
Update {Gi, yi}Nt

i with {G′
i, y

′
i}ni , e.g., add

{G′
i, y

′
i}ni to {Gi, yi}Nt

i .
end if

end for

C Additional Experiments Set-ups

We perform experiments on 15 datasets, including eight classification and seven regression tasks from
chemistry, material science, and biology. We use Area under the ROC curve (AUC) for classification
performance and mean absolute error (MAE) for regression.

C.1 Molecule Classification and Regression Tasks

Seven molecule classification and three molecule regression tasks are from open graph benchmark (Hu
et al., 2020). They were originally collected by MoleculeNet (Wu et al., 2018) and used to predict
molecule properties. They include (1) inhibition to HIV virus replication in ogbg-HIV, (2) toxicologi-
cal properties of 617 types in ogbg-ToxCast, (3) toxicity measurements such as nuclear receptors and
stress response in ogbg-Tox21, (4) blood–brain barrier permeability in ogbg-BBBP, (5) inhibition to
human β-secretase 1 in ogbg-BACE, (6) FDA approval status or failed clinical trial in ogbg-ClinTox,
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(7) having drug side effects of 27 system organ classes in ogbg-SIDER, (8) predicting the property of
lipophilicity in ogbg-Lipo, (9) predicting the water solubility (log solubility in mols per litre) from
chemical structures in ogbg-ESOL, (10) predicting the hydration free energy of molecules in water in
ogbg-FreeSolv. For all molecule datasets, we use the scaffold splitting procedure as the open graph
benchmark adopted (Hu et al., 2020). It attempts to separate structurally different molecules into
different subsets, which provides a more realistic estimate of model performance in experiments (Wu
et al., 2018).

C.2 Polymer Regression Tasks

Four polymer regression tasks include GlassTemp, MeltingTemp, ThermCond, and O2Perm. They
are used to predict different polymer properties such as glass transition temperature (◦C), melting
temperature (◦C), thermal conductivity (W/mK) and oxygen permeability (Barrer). GlassTemp and
MeltingTemp are collected from PolyInfo, which is the largest web-based polymer database (Otsuka
et al., 2011). The ThermCond dataset is from molecular dynamics simulation and is an extension
from the dataset used in (Ma et al., 2022). The O2Perm dataset is created from the Membrane Society
of Australasia portal, consisting of a variety of gas permeability data (Thornton et al., 2012). Since a
polymer is built from repeated units, researchers often use a single unit graph with polymerization
points as polymer graphs to predict properties. Different from molecular graphs, two polymerization
points are two special nodes (see “∗” in Figure 2), indicating the polymerization of monomers
(Cormack and Elorza, 2004). For all the polymer tasks, we randomly split by 60%/10%/30% for
training, validation, and test.

C.3 Protein Classification Task

An additional task is protein function prediction using protein-protein interaction graphs (Hu et al.,
2019). A node is a protein without attributes, an edge is a relation type between two proteins such
as co-expression and co-occurrence. In our DCT, we treat all the relations as the undirected edge
without attributes.

C.4 Baselines and Implementation

When implementing GIN (Xu et al., 2019), we tune its hyper-parameters for different tasks with an
early stop on the validation set. We generally implement pre-training baselines following their own
setting. For molecule and polymer property prediction and protein function prediction, the pre-trained
GIN models with self-supervised tasks such as EDGEPRED, ATTRMASK, CONTEXTPRED in (Hu
et al., 2019), INFOMAX (Velickovic et al., 2019) are available. So we directly use them. For other
self-supervised methods, we implement their codes with default hyper-parameters. Following their
settings, we use 2M ZINC15 (Sterling and Irwin, 2015) to pre-train GIN models for molecule and
polymer property prediction. We use 306K unlabeled protein-protein interaction ego-networks (Hu
et al., 2019) to pre-train the GIN for the downstream protein function property prediction. For
self-training with real unlabeled graphs and INFOGRAPH (Sun et al., 2020), we use 113K QM9 (Ra-
makrishnan et al., 2014). For self-training with generated unlabeled graphs, we train the diffusion
model (Jo et al., 2022) on the real QM9 dataset and then produce the same number of generated
unlabeled graphs. To train the diffusion model in our DCT, we also use QM9 (Ramakrishnan et al.,
2014).

D Additional Experiment Analysis

D.1 The Power of Diffusion Model to Learn from Unlabeled Graphs

In Table 3, when we replace the 133K QM9 with the 249K ZINC (Jo et al., 2022) to train the diffusion
model, which nearly doubles the size of the unlabeled graphs and includes more atom types, we do
not observe any additional improvement, and in some cases, even worse performance. It is possible
because of the constraint of the current diffusion model’s capacity to model the data distribution for a
much larger number of more complex graphs. It encourages powerful generative models in the future,
which could be directly used to benefit predictive models under the proposed framework.
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D.2 Chemical Validity of the Generated Graphs in Downstream Tasks

In Figure 6, we show through some examples that concepts, such as certain chemical rules from the
unlabeled graphs, are successfully transferred to downstream tasks. To further validate this point, we
gathered 1,000 task-specific graphs generated in the intermediate steps on the tasks of ogbg-BACE,
ogbg-BBBP, ogbg-FreeSolv, and O2Perm. We then assessed the chemical validity of these graphs
and observed that the validity is 92.8%, 87.9%, 97.4%, and 62.1%, respectively. Results show that
transferring knowledge from pre-trained molecular data to target molecules yields relatively high
chemical validity. However, the validity drops to 62% when transferring knowledge from pre-trained
molecular data to target polymer data. This finding indicates that the transferability of chemical rules
becomes more challenging when the distribution gap between the pre-training data and downstream
task data is larger.
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