
Multi-resolution Spectral Coherence for
Graph Generation with Score-based Diffusion

Hyuna Cho Minjae Jeong Sooyeon Jeon Sungsoo Ahn Won Hwa Kim
POSTECH, South Korea

{hyunacho, minjaetidtid, jsuyeon, sungsoo.ahn, wonhwa}@postech.ac.kr

Abstract

Successful graph generation depends on the accurate estimation of the joint distribu-
tion of graph components such as nodes and edges from training data. While recent
deep neural networks have demonstrated sampling of realistic graphs together
with diffusion models, however, they still suffer from oversmoothing problems
which are inherited from conventional graph convolution and thus high-frequency
characteristics of nodes and edges become intractable. To overcome such issues
and generate graphs with high fidelity, this paper introduces a novel approach that
captures the dependency between nodes and edges at multiple resolutions in the
spectral space. By modeling the joint distribution of node and edge signals in a
shared graph wavelet space, together with a score-based diffusion model, we pro-
pose a Wavelet Graph Diffusion Model (Wave-GD) which lets us sample synthetic
graphs with real-like frequency characteristics of nodes and edges. Experimental
results on four representative benchmark datasets validate the superiority of the
Wave-GD over existing approaches, highlighting its potential for a wide range of
applications that involve graph data.

1 Introduction

The flexible representation of graphs lets us investigate a variety of real-world phenomena such as
social networks [8,39], traffic flows [43,45], molecule structure [18,19,34,44], and brain networks [2,
22, 28]. The rich expressive power of graphs inherits from embodying various combinations of nodes
and edges within an irregular structure. However, the analysis of graph data is challenging due to
the arbitrary and heterogeneous structure, as it becomes difficult to characterize robust patterns both
within a graph and across different graphs for a downstream machine learning task.

The same issue arises in graph generation, where the objective is to learn the underlying graph
distribution from training samples and thereby synthetic graphs with similar characteristics to the
training data can be generated, i.e., sampled. For this, accurately estimating the joint distribution
of the measurements from node features and graph structures is essential. Recent graph generative
methods [13,35,37] have been successful in sampling realistic node and edge features, however, their
generated samples often fail to embed the true relationships especially given in sparse connections
between nodes. This problem often occurs as existing methods derive separate embeddings of
nodes and edges considering them as different entities [37]. Moreover, successive layers of graph
convolution [13,35] aggravate this issue by overly averaging signals on graphs, such that local details
(i.e., high-frequency characteristics) become intractable.

Key ideas. Notice that the edge signals, e.g., edge weights and connectivity, should be coherent to
node signals as the edges should properly explain the relationships between the nodes. Based on
this homophily assumption, to address the aforementioned issues, we propose a novel generative
model that precisely captures the dependency between nodes and edges in multiple resolutions on
local-to-global structures. This is realized via spectral graph wavelet transform (SGWT) [9], which
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Figure 1: An example of SGWT with diverse scales that impacts the graph representation. (a) An undirected
graph with an adjacency matrix A, (b) Disconnectivity between nodes with dashed lines for A. (c) Result
from graph transform of A with a band-pass kernel k(s) = sxe−sx at scale s = 1 and (d) corresponding
disconnectivity to (c). (e) Result from graph transform of A using the same band-pass kernel at s = 0.1. (f)
Corresponding disconnectivity for (e). The edge thickness denotes the magnitude of connectivity, which is
controlled by a scale parameter. Compared to A, the sparse connection (orange) is significantly strengthened via
SGWT at s = 1, and disconnectivities (blue) are also emphasized at the same scale.

enables the filtering of graph signals at a specific level of granularity. We transform the node and
edge signals into a common graph wavelet space and obtain their underlying cross-characteristics,
i.e., spectral coherence, via their inner product at different scales. We expect that sparse connections
between nodes (i.e., higher variation) can be captured with high fidelity as high-frequency components
in the spectral space. Fig. 1 shows an example of such an effect with wavelet transforms on edges,
which accentuates certain connectivity and disconnectivity over a template graph. These accentuated
(dis-)connectivities at specific scales can be characterized by a generative model with multiresolution
wavelet filtering. Also, we further show that the scale-specific node and edge features computed in
the spectral space can be easily and jointly obtained in a spatial graph convolutional form by applying
wavelet filtering to either nodes or edges for efficiency.

Proposed Framework. We leverage this spectral coherence to model the joint distribution of graph
node and edge features embedded in a common graph wavelet space with a score-based diffusion
model [36]. As opposed to conventional approaches [13] where the scores for the joint distribution of
nodes and edges are modeled with graph multi-head attention (GMH) [1] involving graph convolutions
of the raw node and edge signals, our model calculates the scores over multiple scales of nodes and
edges to capture different frequency characteristics. With diffusion and reverse denoising processes
in multi-resolution, our Wavelet Graph Diffusion Model (Wave-GD) accurately estimates the joint
distribution of the node and edge features preserving their graph frequency characteristics.

Contributions. To this end, we summarize our main contributions as follows: 1) To obtain representa-
tive graph characteristics of different fidelity, we propose a novel concept to capture spectral coherence
between nodes and edges in multiple scales in a common graph wavelet space. 2) Furthermore, we
show that spectral coherence can be obtained in the graph domain as a spatial graph convolutional
formulation, which allows us to perform the SGWT only on the edge signals for efficiency. 3) We
propose a training scheme on the multi-resolution at which the optimal joint frequency characteristics
of graph nodes and edges can be captured from training samples. The Wave-GD was tested on
four representative benchmarks for graph generation which demonstrated outperforming results over
state-of-the-art baselines. Extensive experiments on real-world, synthetic, and biochemical graph
datasets validate the generality of the method, suggesting its potential for diverse applications with
graph samples.

2 Related Work
Deep graph generative models aim to learn the underlying distribution of node and edge signals from
the training set. They can be categorized into (1) autoregressive models that construct graphs by the
iterative generation of a node or an edge signal at each step or (2) one-shot models that simultaneously
update all the signals at once.

Autoregressive models. Autoregressive models are widely used for graph generation since they
are based on a straightforward way to iteratively update the graph structure conditioned on an
incomplete graph generated so far. Prior works have parameterized the autoregressive models using
recurrent neural network (RNN) [29,41,42], variational autoencoder (VAE) [11,12], and normalizing
flow [20, 34]. However, they suffer from high complexity since the required number of updates to
generate the graph grows with the size of the graph. Furthermore, their generation is sensitive to the
order of nodes being generated, i.e., autoregressive models may assign different probabilities for the
construction of the same graph executed in a different way.
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One-shot models. One-shot models alleviate the issues of autoregressive models by simultaneous
generation of node and edge signals. This potentially reduces the complexity of generation since the
number of generation steps no longer depends on the graph size. Furthermore, their generation is
often permutation invariant and assigns the same probability for generating a graph regardless of the
permutation. Researchers have considered parameterizing these models using generative adversarial
network (GAN) [4], VAE [21], normalizing flow models [23, 44], and diffusion models [13, 25, 37].

Diffusion models. In particular, diffusion models are recently catching attention due to their
extraordinary capability in learning the joint distributions of graph components such as nodes and
edges. They are based on (1) defining a forward diffusion process to sequentially corrupt a graph
using noise distributions and (2) training a reverse diffusion process parameterized by a graph neural
network to reconstruct the original graph. Existing works mainly differ by defining the diffusion
processes in the continuous space [13] or the discrete space [10, 25, 37].

3 Generating Graphs with Robust Spectral Characteristics
3.1 Preliminary: Graph Wavelet Transform
Let G = (X,A) be an undirected graph, where X ∈ RN×F represents F -dimensional node features
for N nodes and A ∈ RN×N is an adjacency matrix representing connectivity among the nodes.
The graph Laplacian is defined as L = D−A, where D is a diagonal degree matrix. As the L is
real and positive semi-definite, it has a set of orthonormal eigenvectors U = [u1, u2, ..., uN ] and
corresponding non-negative real eigenvalues Λ = diag(λ1, ..., λN ). Decomposing this Laplacian
as L = UΛUT , the connectivity, complexity, and spectral properties of the graph are characterized.
Specifically, its eigenvectors and eigenvalues identify the frequencies and mode of vibrations of
a graph. Eigenvectors with small eigenvalues represent large connected components in a graph
structure and slow-varying signals among nodes. On the other hand, eigenvectors associated with
large eigenvalues indicate the sparse and disconnected signals in the graph [22, 26, 40].

To capture localized characteristics of signals on arbitrary graph structures, the spectral graph wavelet
transform [9] is defined by constructing a set of graph wavelet bases ψs = (ψs1 , ψs2 , ..., ψsJ ) with
J scales where ψs = Uk(sΛ)UT . The ψs is a realization of a kernel function k(·) in the spectral
domain localized with δn in the graph space, which captures the local characteristics of the graph at
each node. The scale s selects a specific bandwidth in the spectral space which corresponds to the
range of locality in the original graph space. The choice of wavelet basis, i.e., mother wavelet, depends
on the shape of k(·), which may vary depending on a target task such as smoothing or band-pass
filtering. In this work, we used both types of kernel functions: (1) a band-pass kernel k(s) = sxe−sx

to capture both low and high frequency of graphs and (2) a low-pass kernel k(s) = e−sx to capture
cluster-like and smoothed features from graphs.

Using the bases ψs, graph wavelet transform projects a signal x (e.g., node feature or connectivity)
from the graph domain into the spectral domain as

Wx(s) =< ψs, x >= ψsx, (1)

which yields a wavelet coefficient Wx(s). This wavelet coefficient is a scale-filtered signal defined
in the wavelet space. When admissibility condition on k(·) is satisfied [24], the inverse transform
completely reconstructs the signal x by projecting Wx(s) back to the graph domain as follows:

x =
1

Ck

∫ ∞

0

ψs ·Wx(s)
ds

s
(2)

with an admissibility constant Ck =
∫∞
0

k(x)2

x dx <∞.

3.2 Adaptive Multi-Resolution Representation of Nodes and Edges
To capture both fine and coarse graph features from an irregular graph structure, the filtering operation
is performed over multiple scales. The multi-resolution representations of graph nodes and edges are
derived by decomposing the graph signals X and A with scales {si}Ji=1 using (1), which result in
{WX(si)}Ji=1 and {WA(si)}Ji=1 in the spectral domain. These are wavelet coefficients that contain
different levels of local and global details of graph node and edge signals in a multi-resolution fashion.

To obtain the multi-resolution representations of these graph signals in the graph space, the inverse
transform in the Eq. 2 is performed on the filtered coefficients using the bases ψs at the same scales.
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(a) Diffusion process
scheme of Wave-GD.

(b) Overview of the model architecture.

Figure 2: (a) Schematic diagram of Wave-GD with multi-resolution diffusion. Note that the scale-filtering is
applied to the A0, not to the At. (b) Overview of Wave-GD that jointly estimates partial scores of node features
X and edges A along with scale-filtered edges As. We first perform multi-resolution filtering on the given
edges A0 at t = 0 using graph wavelet basis ψs with trainable scale s. Forward diffusion processes smoothly
transform X, A, and As into noises in parallel and they are reconstructed by solving reverse-time SDEs. During
the reconstruction, the knowledge across multi-resolution is shared in the score-based model Aϕ,t. Also, the
information in separate edge and node components is effectively entangled by obtaining their spectral coherence
at various resolutions.

As the Eq. 2 is the superposition of multi-resolution representation of x over scales at s ∈ [0,∞), it
allows us to define a scale-filtered signal in the graph space at specific s as

xs = ψs ·Wx(s) = Uk2(sΛ)UTx, (3)

where k2(sΛ) = diag(k2(sλ1), ..., k
2(sλN )) is a diagonal matrix [14, 22]. Therefore, the X and A

at multiple resolutions in the spatial domain are defined as {Xsi}Ji=1 = {Uk2(siΛ)UTX}Ji=1 and
{Asi}Ji=1 = {Uk2(siΛ)UTA}Ji=1, respectively. Within our proposed framework, we make these
scales trainable such that the local-to-global characteristics can be obtained adaptively.

3.3 Refining Spectral Coherence between Nodes and Edges in Multi-resolution Fashion
As the graph features X and A should be coherent, i.e., connectivities should explain the relationship
among features from different nodes, we hypothesize that they should share similarities even when
observed from different resolutions. To capture the key components that are shared on both edges and
nodes at multi-resolution, we measure the underlying cross-characteristics between nodes and edges
in each scale in the spectral space. We quantify their coherence as a dot product as WA(s) ·WX(s)
and use this spectral coherence as a feature that represents a graph at a specific resolution s, which is
used to estimate the score function in multiple resolutions later in Section 3.5.

Lemma 1. Let G be an undirected graph, with a node signal X and a symmetric adjacency matrix
A. Given wavelet coefficients WA(s) and WX(s), which are spectral representations of X and A at
a specific scale s, a dot product of these wavelet coefficients is equivalent to the product between the
scale-filtered edge signals and the node signals in the graph space, i.e., WA(s) ·WX(s) = AsX.

By Lemma 1, we can efficiently extract multi-resolution coherence by applying the filtering only
on the edges. Using the J number of As along with the given data G = (A,X), we introduce our
simple yet effective graph generative framework through the stochastic differential equations (SDEs)
in Sec. 3.4 and explain how Lemma 1 is used in the generative model in Sec. 3.5. The proof of
Lemma 1 is given in Appendix A.

3.4 Wave-GD: Wavelet Graph Diffusion Model via Multi-resolution
Now we describe our graph generative model which captures the dependency of node and edge on
both local and global structures with adaptive spectral filtering. The overall description of Wave-GD
is given in Fig. 2, which demonstrates (a) multi-resolution diffusion strategy and (b) overall model
architecture. In particular, we enhance the existing diffusion models for graphs [13] using the spectral
coherence introduced in Lemma 1. The building blocks of our model are as follows: 1) the forward
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diffusion to corrupt the graph distribution in a continuous domain, 2) the reverse diffusion to recover
the original graph, and 3) the training objective for our model.

Multi-resolution forward diffusion process. Building upon the work of GDSS [13], we propose
a new diffusion process that sequentially corrupts a graph structure at different levels of resolution
based on the Itô SDE [32]. As the forward diffusion process is modeled by a SDE which describes a
process of random variables, {Xt, {Asi

t }Ji=0} with As0
t = At at timestep t ∈ [0, T ] are diffused as

follows:
dXt = fX(Xt, t)dt+ σX,tdwX,

dAsi
t = fAsi (A

si
t , t)dt+ σAsi ,tdwAsi ,

(4)

where fX : RN×F → RN×F and fAsi : RN×N → RN×N are drift functions, σX,t and σAsi ,t

are scalar diffusion coefficients, and wX and wAsi are standard Wiener processes for Xt and
{Asi

t }Ji=0, respectively. As this diffusion process is simulated at varying levels of granularity in a
multi-resolution scheme, it is likely that certain frequency characteristics are accentuated and the
highlighted information will be preserved from corruption. In other words, at an arbitrary timestep
t, the scale-filtered edges {Asi

t }Ji=1 are highly likely to contain richer information of edges for
score estimation than the given At as their edge signals are adaptively controlled and highlighted by
trainable scales.

Learning the reverse diffusion process. Let Gt = (Xt,At) be a given graph at timestep t and
{Gsi

t = (Xt,Asi
t )}Ji=0 be a set of graphs for multiple scales at the same timestep. Given the multi-

resolution forward diffusion process, we generate graphs from solving the associated SDE backward
in time. To be specific, the reverse diffusion process can be formulated as follows:

dXt = [fX(Xt, t)− σ2
X,t∇Xt log pt(Gt)]dt̄+ σX,tdw̄X,

dAsi
t = [fAsi (A

si
t , t)− σ2

Asi ,t∇A
si
t
log pt(G

si
t )]dt̄+ σAsi ,tdw̄Asi ,

(5)

where pt(Gt) and pt(Gsi
t ) denote the distribution of the forward diffusion process evaluated at time

t. This reverse-time SDE recovers the original data distribution p0(X0, {Asi
0 }Ji=0) with the standard

reverse-time Wiener processes w̄X and w̄Asi in which the direction of time is reversed as dt̄.

However, since the score functions of the joint distribution, i.e., ∇Xt
log pt(Gt) and

∇A
si
t
log pt(G

si
t ), are unknown, we train a neural network to estimate them using the denoising score

matching loss [38]:

LX = min
θ

Et

[
λX(t)EG0,Gt|G0

[∥Xθ,t(Gt)−∇Xt
log p0t(Xt|X0)∥22]

]
, (6)

LA = min
ϕ,s

Et

[
λA(t)EG0,Gt|G0

[∥Aϕ,t(Gt)−∇At
log p0t(At|A0)∥22]

+λAsi (t)

J∑
i=1

EG
si
0 ,G

si
t |Gsi

0
[∥Aϕ,t(G

si
t )−∇A

si
t
log p0t(A

si
t |Asi

0 )∥22]
]
,

(7)

where p0t(·) denotes the transition distribution from p0 to pt, Xθ,t,Aϕ,t are score-based models which
are graph neural networks trained to approximate the true score functions. The λX(t), λA(t), λAsi (t)
are time-varying scaling factors for individual loss terms and are defined as in [36].

Both our method and GDSS perform denoising score-matching to the partial scores of Xt and At.
However, our method additionally models the joint probability space of Xt and Asi

t via SDEs. This
is realized by the loss in Eq. 7, and this operation allows a model to flexibly estimate the complex
dependency between nodes and edges with multi-resolution SGWT. Also, note that the scales of
SWGT {si}Ji=1 in Eq. 7 are trainable so that multi-level granularities that characterize a graph
distribution can be adaptively captured during training.

Remark. While we solve the reverse SDEs for {Xt, {Asi
t }Ji=0} in the training, we only need to solve

the reverse diffusion processes (5) only for the node signal X and the non-filtered graph A = As0

in the sampling phase. In other words, we do not generate {Asi}Ji=1 in the sampling phase. Also
note that the parameters of the networks Aϕ,t are shared across different scales so that they can
learn generalizable representations over different resolutions. As the shared parameters in the score
function do not overfit to a specific scale, it also promotes stable training.
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3.5 Score-based Joint Density Estimation with Multi-Resolution Coherence
Finally, we describe the score-based models Xθ,t and Aϕ,t to better capture the spectral coherence
over different resolutions. In particular, we revise the graph multi-head attention (GMH) [1] layer to
better incorporate the spectral coherence between the edge and the node attributes. In the original
GMH layer, node and edge attributes were encoded into query Q, key K, and value V as follows:

Q = AtXtWQ, K = AtXtWK , V = AtXtWV , (8)

where WQ,WK ,WV are trainable weights. This layer is repeated for each {si}Ji=1 as follows:

Qsi = Asi
t XtWQ, Ksi = Asi

t XtWK , V si = Asi
t XtWV , (9)

which incorporate spectral coherence at a specific scale si as given in Lemma 1. Using Qsi , Ksi , V si

as the new query, key, and value for the GMH layer, one can incorporate the spectral coherence when
training W ’s. Consequently, the score-based models consist of multiple GMH layers followed by a
multi-layer perceptron (MLP). We used the original GMH layer for the parameterization of Xθ,t, and
the modified GMH layer is used for Aϕ,t. Note that this parameterization preserves the permutation
invariance of the original GMH layer, hence our score-based models are also permutation invariant.

4 Experiment
In this section, we quantitatively and qualitatively evaluate our method in comparison to various
recent graph generative methods on four benchmark datasets. Ablation studies are also introduced to
empirically analyze the roles of individual components within Wave-GD.

4.1 Datasets
We evaluated Wave-GD on four public datasets with varying sizes and characteristics, demonstrating
its robustness and generalizability to generate high-quality graphs for diverse graph domains. Ego-
small [33] consists of 200 small real sub-graphs from the Citeseer network dataset with 4 ≤ N ≤ 18.
Community-small consists of 100 randomly generated synthetic graphs with 12 ≤ N ≤ 20.
The graphs are constructed by two equal-sized communities and each community is generated
by E-R model [5] and 0.05N inter-community edges are added with uniform probability as in
previous works [17, 25]. Grid consists of randomly generated 100 standard 2D grid graphs with
100 ≤ N ≤ 400. As all nodes are arranged in a regular lattice, the maximum number of edges per
node is 4. QM9 [31] is a molecular dataset with 133,885 molecules that are represented by attributed
graphs with 1 ≤ N ≤ 9, four node types, and three edge types.

4.2 Experimental Setup
For all datasets, we used 80% of the whole data as a train set and the rest 20% as a test set with the
same split as in [13, 42]. As in [13], we sampled 10,000 molecules from the QM9 dataset, and for the
remaining generic datasets, we sampled an equal number of data as the number of test data in each
respective dataset. Also, the predictor-corrector sampler (PC-sampling) proposed in [36] was used to
sample data with 1000 predictor and 1000 corrector steps.

We set two wavelet kernels k(s): one is a low-pass filter k(s) = e−sx that captures signals in the
low-frequency and the other k(s) = sxe−sx is a band-pass filter which is 0 at the origin. To obtain
the combined effect of the low-pass and band-pass filters using a total of J scales, edges at one
scale are filtered using the low-pass filter. For the remaining J − 1 scales, the band-pass filter is
applied. This approach enables selective extraction and processing of different frequency components
across the spectral domain. The number of scales J was set to 11, 6, 4, and 6 for the Ego-small,
Community-small, Grid, and QM9 datasets, respectively. More detailed experimental settings are
given in Appendix B.

4.3 Experiment on Generic Graphs
To assess the versatility of Wave-GD, we used both real-world and synthetic datasets with varying
sizes and characteristics. Experimental results on these diverse generic datasets demonstrate the
robustness of Wave-GD in sampling graphs of various characteristics.

Baselines and metrics. For experiments on generic graph datasets (i.e., Ego-small, Community-small,
and Grid), we compared the performance of our proposed method with the following autoregres-
sive and one-shot graph generation methods: DeepGMG [16], GraphRNN [42], GraphAF [34],
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Table 1: Generation results on generic graph datasets. MMD statistics between sampled graphs and test data are
given, where smaller values indicate that the generated samples are more similar to the test set. The baseline
results are from [13, 20, 25]. Mean from three replicates are reported, and their standard deviations are reported
in Appendix C.

Method Ego-small Community-small Grid
Degree Cluster Orbit Avg. Degree Cluster Orbit Avg. Degree Cluster Orbit Avg.

A
ut

or
eg

. DeepGMG [16] 0.040 0.100 0.020 0.053 0.220 0.950 0.400 0.523 - - - -
GraphRNN [42] 0.090 0.220 0.003 0.104 0.080 0.120 0.040 0.080 0.064 0.043 0.021 0.043
GraphAF [34] 0.030 0.110 0.001 0.047 0.180 0.200 0.020 0.133 - - - -
GraphDF [20] 0.040 0.130 0.010 0.060 0.060 0.120 0.030 0.070 - - - -

O
ne

-s
ho

t

GraphVAE [35] 0.130 0.170 0.050 0.117 0.350 0.980 0.540 0.623 1.619 0.0 0.919 0.846
GNF [17] 0.030 0.100 0.001 0.044 0.200 0.200 0.110 0.170 - - - -

EDP-GNN [25] 0.052 0.093 0.007 0.051 0.053 0.144 0.026 0.074 0.455 0.238 0.328 0.340
GDSS [13] 0.021 0.024 0.007 0.017 0.045 0.086 0.007 0.046 0.111 0.005 0.070 0.062

DiGress [37]† 0.017 0.021 0.010 0.016 0.028 0.115 0.009 0.050 - - - -
Wave-GD (Ours) 0.012 0.010 0.005 0.009 0.007 0.058 0.002 0.022 0.144 0.004 0.021 0.056

-: results not reported in the original manuscripts, †: results obtained with the official public code.

Table 2: Converged scales of generic graph datasets.
Dataset J low-pass band-pass

Ego-small 11 45.4 46.8 46.6 43.7 40.6 38.1 37.0 31.3 29.0 25.6 20.0
Community-small 6 32.8 44.7 31.0 27.5 21.4 16.5 - - - - -

Grid 4 35.8 25.4 18.1 12.0 - - - - - - -

Table 3: Generation results on generic graph datasets using a larger number of samples. We compared 1024
generated samples with the given test set and evaluated their MMDs.

Method Ego-small Community-small
Degree Cluster Orbit Avg. Degree Cluster Orbit Avg.

GraphRNN [42] 0.040 0.050 0.060 0.050 0.030 0.010 0.010 0.017
GNF [17] 0.010 0.030 0.001 0.014 0.120 0.150 0.020 0.097

EDP-GNN [25] 0.010 0.025 0.003 0.013 0.006 0.127 0.018 0.050
GDSS [13] 0.023 0.020 0.005 0.016 0.029 0.068 0.004 0.034

Wave-GD (Ours) 0.010 0.018 0.005 0.011 0.016 0.077 0.001 0.031

GraphDF [20], GraphVAE [35], GNF [17], EDP-GNN [25], GDSS [13] and DiGress [37]. To
evaluate the generation quality of the generated graphs, we used Maximum Mean Discrepancy
(MMD) [7] to statistically measure similarities between probability distributions of sampled data and
the real test data. Following prior works [13, 42], we compared distributions of three different graph
statistics–degree, clustering coefficient, and orbit counts–to compute MMD between generated and
test graphs.

Main results. Table 1 shows the comparisons of degree, clustering, orbit, and their averaged MMDs
between the graphs generated from baselines and our method. The results show that our model
significantly outperforms all baseline models for all metrics on Ego-small and Community-small
datasets. Specifically, on the Ego-small dataset, Wave-GD demonstrated far smaller average MMDs
by a margin of 0.108 over GraphVAE and at least 0.007 lower than DiGress. For the Community-
small data, our method exhibited up to 0.601 lower MMD compared to GraphVAE and at least 0.024
better than GDSS. For the Grid dataset, our method outperformed all baselines in terms of orbit
MMD and outperformed all one-shot baselines for the averaged MMD. Note that, while one-shot
models struggle to generate large graphs due to their intricate and complex structures, our method
achieved comparable results to GraphRNN on large grid graphs (with 100 ≤ N ≤ 400). This
highlights the effectiveness of our approach in learning graphs with varying sizes and structures
through multi-resolution learning.

Table 2 shows converged scales for different datasets. Interestingly, the scales of the large Grid dataset
(with 100 ≤ N ≤ 400 nodes) were generally smaller compared to the Ego-small (4 ≤ N ≤ 18) and
Community-small (12 ≤ N ≤ 20) datasets. Specifically, the converged scales of Ego-small ranged
within [20, 47] and the scales of Grid ranged within [12, 36]. Note that the smaller scales capture
local graph features with higher frequencies. Therefore, the results demonstrate that capturing local
and detailed graph representations is more critical when dealing with complex and large graphs, in
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Figure 3: Visualization of training samples and generated graphs on Ego-small (top), Community-small
(middle), and QM9 (bottom). The generated molecules from the QM9 dataset (bottom panel) are represented
with the pairwise Tanimoto similarity based on the Morgan fingerprints [15], which show the one-to-one
similarity to the real training samples at the same location in the upper panel.

(a) Degree (b) Clustering (c) Orbit (d) Average
Figure 4: Comparison of the MMDs between GDSS and Wave-GD on the Ego-small. The sample quality of
Wave-GD is stable and converges faster for a) Degree, b) Clustering, c) Orbit, and d) their average.

comparison to smaller graphs. In other words, for the Ego-small and Community-small datasets,
features in relatively low frequency (e.g., cluster-related features) were captured with larger scales.

Experiments with larger sample size. To provide a more definitive assessment of the generated
sample quality, we conducted additional experiments by generating a larger number of samples
compared to the test data, as in previous works [13, 17, 25]. For this, we sampled 1024 graphs for
evaluating the MMD metrics for the Ego-small and Community-small datasets. As shown in Table 3,
the lower MMDs of Wave-GD demonstrate superior performance to the baselines on Ego-small. For
the Community-small dataset, GraphRNN performed better than ours on the averaged MMD, however,
our method still surpasses recent score-based models [13, 25] and normalizing flow model [17] with
at most 0.066 margin. Along with these quantitative results, we present the actual visualization of the
generated samples from Wave-GD in Fig. 3, which are highly similar to the training samples.

Stability analysis. In addition to MMDs, we present a stability analysis of Wave-GD in Fig. 4. The
figure presents a comparison of the averaged MMDs between GDSS and our method on the Ego-small
dataset. Specifically, between 2000-5000 epochs, while the difference between the maximum and
minimum values of the averaged MMD of GDSS is 0.016, Wave-GD shows better stability with
a difference of ∼0.0018 at the same epochs, indicating that our method can much more robustly
generate high-quality samples.

4.4 Experiment on Molecular Graphs
In addition to the generic graphs, we evaluated Wave-GD on a molecular benchmark dataset, which
contains complex chemical bonds between atoms (i.e., nodes) and edges. By evaluating Wave-GD on
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Table 4: Generation results on QM9 molecular dataset. The baseline results are taken from [13, 20, 34] and all
results are presented without validity correction. We report the mean of three runs and their standard deviations.
The best performance is marked in bold and the second-best result is indicated by an underline.

Method Validity (%) ↑ Novelty (%) ↑ Uniq. (%) ↑ Avg. (%) ↑ NSPDK ↓ FCD ↓ time (s) ↓
A

R GraphAF [34] 67 88.83 94.51 83.45 0.020 ± 3e−3 5.27 ± .4 2.52e3

GraphDF [20] 82.67 98.10 97.62 92.80 0.063 ± 1e−3 10.82 ± .0 5.35e4

O
ne

-s
ho

t

MoFlow [44] 91.36 ± 1.2 94.72 ± .8 98.65 ± .6 94.91 0.017 ± 3e−3 4.47 ± .6 4.60e0
EDP-GNN [25] 47.52 ± 3.6 86.58 ± 1.9 99.25 ± .1 77.78 0.005 ± 1e−3 2.68 ± .2 4.40e3

GraphEBM [18] 8.22 ± 2.2 97.01 ± .2 97.90 ± .1 67.71 0.030 ± 4e−3 6.14 ± .4 3.71e1

GDSS [13] 95.72 ± 1.9 86.27 ± 2.3 98.46 ± .6 93.48 0.003 ± .0 2.90 ± .3 1.14e2

DiGress [37]† 99.37 ± .0 35.31 ± .0 96.74 ± .0 77.14 1.4e−4 ± .0 0.07 ± .0 6.14e2

Wave-GD (Ours) 96.95 ± .3 89.79 ± .5 98.87 ± .2 95.20 0.003 ± .0 3.85 ± .1 1.21e2

†: results obtained with the official public code.

the molecular graph generation task, we validated its ability to capture the complex dependencies
between nodes and edges. Notably, Wave-GD successfully generated plausible graphs while adhering
to the chemical valency rule, ensuring the realistic representation of molecular structures.

Baselines and evaluation metrics. In this experiment, we compared the results from seven baselines
and Wave-GD on a real molecular QM9 dataset. Among the baselines, two are autoregressive flow-
based models, namely GraphAF [34] and GraphDF [20], which employ discrete latent variables. Five
others are one-shot generative models, which include MoFlow [44], GraphEBM [18], EDP-GNN [25],
GDSS [13], and DiGress [37]. Following the standard procedure as in [20, 34], the molecule data
were kekulized by the RDKit library [15] and hydrogen atoms were removed.

We evaluated the quality of generated molecular samples with six metrics as in [13]: 1) Validity
is the fraction of valid molecules that hold chemical rules. In our experiment, we did not apply
any valency correction or edge resampling. 2) Novelty measures the proportion of valid molecules
that are not present in the training set. 3) Uniqueness is the proportion of generated molecules that
are not duplicated. 4) Neighborhood subgraph pairwise distance kernel (NSPDK) [3] is the MMD
between the generated molecules and test molecules which considers both the nodes and edges for
evaluation. 5) Fréchet ChemNet Distance (FCD) [30] evaluates the distance between distributions of
the training and generated sets using the activations of the ChemNet layer. 6) Time quantifies the
duration required to generate 10,000 molecules in the RDKit molecule format. In addition to these
metrics, we also report the average values of validity, novelty, and uniqueness to present a unified
evaluation over various aspects of the generated graphs.

Results. As shown in Table 4, our model outperformed all baselines on the average of validity,
novelty, and uniqueness and showed the second-best results on validity, uniqueness, and NSPDK. To
be specific, our method showed at most 27.49%p gain over GraphEBM and 18.06%p margin over
DiGress in terms of the averaged statistic. Note that, DiGress performed better than our model in
NSPDK and FCD, however, its lower novelty (35.31%) inherently leads to lower FCD and NSPDK
scores. As the molecular generation task aims to create previously unseen molecular structures,
novelty may be a more critical measure on which Wave-GD performed better.

In general, Wave-GD outperformed most of the baselines, excelling not only in generation quality
but also in generation speed. It was faster than all autoregressive models, showing 442× speed up
compared to GraphDF and 21× speed up compared to GraphAF. Moreover, our method requires
a shorter generation time than discrete-time diffusion models. For example, our method was 36×
faster than EDP-GNN and 5× faster than DiGress. These results demonstrate that employing a
continuous-time diffusion process for converting graphs into noise and vice versa is considerably
more efficient compared to the discrete-step noise perturbation utilized in EDP-GNN and DiGress.

4.5 Ablation Studies

Ablation study on oversmoothing. In Fig. 5, we present the effect of the number of GMH layers
(i.e., depth D) on the quality of generated samples. With larger D, while the sample quality of GDSS
is decreased with high averaged MMDs (blue line) due to the oversmoothing, the average MMD of
Wave-GD (yellow line) is consistently low representing high fidelity in the generated samples. This
is because Wave-GD captures diverse graph frequency characteristics by adaptive multi-resolution
filtering, which allows the model to preserve fine-grained details even in deeper layers.
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C
om
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ity
-s

m
al

l J Deg. ↓ Clus. ↓ Orb. ↓ Avg. ↓
3 0.011 0.072 0.003 0.028
4 0.017 0.070 0.007 0.031
5 0.006 0.065 0.002 0.024
6 0.007 0.058 0.002 0.022
7 0.005 0.069 0.009 0.027

Q
M

9
J Val. ↑ Uniq. ↑ Nov. ↑ Avg. ↑
4 97.73 79.21 92.68 89.87
5 96.82 88.68 99.07 94.85
6 96.70 88.95 98.91 94.85
7 96.36 88.10 98.82 94.42

Table 5: Ablation studies on the number of scales.

Figure 5: Comparison between Wave-GD (yellow
line) and GDSS (blue line) for GMH depths D on
Community-small. Bar graphs are MMDs of Wave-GD.

Ablation study on the number of scales. In Table 5, we report degree, cluster, orbit MMDs, and
their averaged value on the Community-small by changing the numbers of scales J . Also, validity,
uniqueness, novelty, and their averaged value are presented on the QM9 dataset for multiple J’s. All
experiments were replicated three times and the averaged results are reported. We observed that the
averaged MMD slightly depends on the number of scales, however, the overall quality of generated
samples is still better than existing baselines in most settings.

4.6 Limitations
Although Wave-GD is robust to varying numbers of scales as shown in Table 5, the choice of J
differs across datasets which should be carefully chosen by a user. Also, as Wave-GD performs
multi-resolution diffusion, it requires larger resources than conventional models during training.
However, the diffusion processes are performed in parallel so there is no overhead in time. Moreover,
as sampling is performed without multi-resolution filtering, the generation process is still quite
efficient.

5 Conclusion
In this paper, we proposed Wave-GD which leverages spectral dependencies between node and
edge signals to better characterize their joint distributions via a score-based diffusion model. By
capturing their multi-resolution coherence, the model is able to generate graphs of high-fidelity
preserving frequency characteristics of the graphs from the training samples. Extensive validation on
various datasets and superior performance of Wave-GD highlights its significant potential for various
application domains for graph modeling and generation.
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Appendix
In this appendix, we present 1) the proof of Lemma 1 given in the main paper, 2) additional
implementation details of Wave-GD, 3) standard deviations of MMDs for generic datasets, 4)
additional ablation studies on the number of scales on Ego-small and Grid datasets, 5) holistic
architecture of two score-based models Xθ and Aϕ, and 6) qualitative comparison of generated
samples for all datasets which were not included in the main manuscript due to the page limit.

A Proof of Lemma 1

Lemma 1. Let G be an undirected graph, with a node signal X and a symmetric adjacency matrix
A. Given wavelet coefficients WA(s) and WX(s), which are spectral representations of X and A at
a specific scale s, a dot product of these wavelet coefficients is equivalent to the product between the
scale-filtered edge signals and the node signals in the graph space, i.e., WA(s) ·WX(s) = AsX.

Proof. With ψs = Uk(sΛ)UT as the basis, the wavelet coefficients of the edge and node signals are
given as follows:

WA(s) = ψs ·A = Uk(sΛ)UTA

WX(s) = ψs ·X = Uk(sΛ)UTX.
(10)

As the k(sΛ) is a diagonal matrix and U is a set of orthonormal eigenvectors, the dot product of
WA(s) and WX(s) is computed as

WA(s) ·WX(s) = (Uk(sΛ)UTA)T (Uk(sΛ)UTX)

= ATUkT (sΛ)UTUk(sΛ)UTX

= AUk(sΛ)k(sΛ)UTX

= AUk2(sΛ)UTX.

(11)

From Eq. (3) in the main paper, As = ψs ·WA(s) = Uk2(sΛ)UTA, and Eq. (11) becomes

WA(s) ·WX(s) = (As)TX

= AsX.
(12)

as As is symmetric. Therefore, a dot product of wavelet coefficients of the edge and node signals
can be replaced with a spatial graph convolution form in the graph domain by applying an inverse
transform only to the edge coefficients.
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B Additional implementation setting

We utilized the PyTorch framework to implement Wave-GD and trained the model using a single
NVIDIA GeForce RTX 3090 GPU. In Table 6, we provide details of the implementation settings
of Wave-GD. For a fair comparison, we followed the same settings of data splitting and node
features as in [13, 17, 25, 42]. For generic datasets, the node features are initialized as a one-hot
encoding of the degrees and the generated adjacency matrices are quantized with the operator 1x>0.5

to obtain binary edges. As in [13], we used two types of SDEs: Variance Preserving (VP) SDE
and Variance Exploding (VE) SDE [36] for diffusion processes. To solve the SDEs, we used the
predictor-corrector sampler (PC sampler) [36] with either the Euler-Maruyama (EM) predictor or the
reverse diffusion predictor (Rev), which discretizes the reverse-time SDE. As the corrector for the PC
sampler, Langevin MCMC [6, 27] was employed.

Table 6: Hyperparameters of Wave-GD for all datasets. We provide hyperparameters and detailed
settings for training two score-based models Xθ and Aϕ and diffusion processes with SDE.

Hyperparameter Ego-small Community-small Grid QM9

Xθ

Number of attention heads 4 4 4 4
Number of initial channels 2 2 2 2
Number of hidden channels 8 8 8 8
Number of final channels 4 4 4 4
Number of GCN layers 5 5 7 3

Hidden dimension 32 32 32 16

Aϕ

Number of scales J 11 6 4 6
Number of attention heads 4 4 4 4
Number of initial channels 2 2 2 2
Number of hidden channels 8 8 8 8
Number of final channels 4 4 4 4
Number of GCN layers 5 5 7 3

Hidden dimension 32 32 32 16

SDE for X

Type VP VP VP VE
Number of sampling steps 1000 1000 1000 1000

βmin 0.1 0.1 0.1 0.1
βmax 1.0 1.0 1.0 1.0

SDE for {Asi}Ji=0

Type VP VP VP VE
Number of sampling steps 1000 1000 1000 1000

βmin 0.1 0.1 0.2 0.1
βmax 1.0 1.0 0.8 1.0

Solver
Type EM EM + Langevin Rev. + Langevin Rev. + Langevin
SNR - 0.05 0.1 0.2

Scale coefficient - 0.7 0.7 0.7

Train

Optimizer Adam Adam Adam Adam
Learning rate 8 × 10−4 5 × 10−3 1 × 10−3 2 × 10−3

Weight decay 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Batch size 128 128 8 1024
Number of epochs 5000 5000 6000 300

Exponential Moving Average - - 0.999 -
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C Generation results with standard deviation on generic datasets

In Table 1 and Table 3 of the main manuscript, we reported the mean MMDs of three independent
runs on generic datasets, using different model parameter initializations. In Table 7, we provide the
standard deviation of degree, clustering, and orbit MMDs, as well as the time required to generate
samples for each generic dataset. The generation time slightly increases in the experiments where
more samples (i.e., 1024 samples) are generated on Ego-small and Community-small datasets.
Furthermore, as the graph becomes more complicated with more nodes and edges, the generation
time also increases accordingly.

Table 7: Generation results of Wave-GD on the generic datasets. The results are the mean MMDs of
three runs and their standard deviation.

Ego-small
# of test data # of samples Degree Cluster Orbit time (s)

40 40 0.012 ± 0.001 0.010 ± 0.001 0.005 ± 0.001 40.03
1024 0.010 ± 0.001 0.018 ± 0.003 0.005 ± 0.002 40.95

Community-small

20 20 0.007 ± 0.002 0.058 ± 0.004 0.002 ± 0.0 89.80
1024 0.016 ± 0.003 0.077 ± 0.006 0.001 ± 0.002 94.75

Grid
20 20 0.144 ± 0.004 0.004 ± 0.001 0.021 ± 0.001 733.79

D Ablation studies on the number of scales

Along with Table 5 in the main paper, we report the ablation studies on the number of scales J for
Ego-small and Grid datasets in Table 8. All experiments with different J were replicated three times
and their averaged results were reported. We found that the average MMDs on the Ego-small slightly
differ depending on the J and that of Grid is relatively consistent along the J’s. In general, the
number of scales affects the sample quality depending on the datasets, however, the averaged MMD
of Wave-GD is still better than existing methods in most settings.

Table 8: Ablation studies on the number of scales.
Ego-small Grid

J Deg. Clus. Orb. Avg. J Deg. Clus. Orb. Avg.
8 0.019 0.016 0.011 0.015 3 0.142 0.003 0.034 0.059
9 0.016 0.001 0.015 0.011 4 0.144 0.004 0.021 0.056

10 0.015 0.008 0.005 0.009 5 0.161 0.001 0.015 0.059
11 0.012 0.010 0.005 0.009 6 0.168 0.005 0.015 0.062
12 0.018 0.016 0.013 0.016 - - - - -
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E The architecture of the score-based models of Wave-GD

Figure 6: The architecture of Xθ that estimates the partial score ∇Xt
log pt(Gt).

Figure 7: The architecture of Aϕ that estimates the partial scores ∇At
log pt(Gt) and

{∇A
si
t
log pt(G

si
t )}Ji=1.

Here we illustrate the architecture of score-based models Xθ,t and Aϕ,t in Figure 6 and Figure 7,
respectively, which are described in Section 3.5 in the main manuscript. Basically, we utilized graph
multi-head attention (GMH) [1] as in GDSS [13], which is an iterative attention mechanism using
graph convolutions as query, key, and values.

Given Ht,0 = Xt, the attention operation GMH(·) is performed D times to estimate the partial scores
∇Xt

log pt(Xt,At) and {∇Asi
t
log pt(Xt,Asi

t )}Ji=0 as follows:

Xθ,t(Gt) = MLPθ([{GMHθ(Ht,d,At,d)}Dd=0]),

Aϕ,t(G
si
t ) = MLPϕ([{GMHϕ(Ht,d,Asi

t,d)}
D
d=0]),

(13)

respectively, where [·] represents the concatenation of GMH outputs and Ht,d+1 = GNN(Ht,d,At,d).

As shown in Figure 7, the score-based model Aϕ is shared across the multi-resolution edges and
the given adjacency matrices. During training, it estimates the partial scores in parallel along the
J +1 graphs using a graph convolution with node features X in the GMH layers, so that the model is
able to capture generalized spectral coherence across different resolutions. However, in the sampling
process, only the partial score of At (i.e., ∇At

log pt(Xt,At)) is estimated from Aϕ as generating
samples of multi-resolution edges is not our aim. For the other score-based model Xθ, it produces the
partial score ∇Xt

log pt(Xt,At) in both training and the sampling processes as it does not rely on
multi-resolution approach.
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F Qualitative evaluation of generated samples

F.1 Comparison with state-of-the-art baselines on generic datasets

In Figures 8, 9, and 10, we qualitatively compare the generation results of Wave-GD on the generic
datasets with two state-of-the-art diffusion models for graph generation: DiGress [37] and GDSS [13].
The visualized graphs demonstrate the superiority of Wave-GD which closely simulates training data
compared to the SOTA baselines.

Figure 8: Non-curated samples generated by Wave-GD, DiGress, and GDSS trained on the Ego-small
dataset.

Figure 9: Non-curated samples generated by Wave-GD, DiGress, and GDSS trained on the
Community-small dataset.

Figure 10: Non-curated samples generated by Wave-GD, DiGress, and GDSS trained on the Grid
dataset.
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F.2 Comparison with state-of-the-art baselines on QM9 dataset

In Figure 11, we provide the visualization of training datasets and generated samples of Wave-GD
for the molecular dataset. Along with the visualization, a quantitative comparison is also provided
by measuring Tanimoto similarity based on Morgan fingerprints, which are calculated by the RDKit
library [15]. For each generated molecule, the pairwise similarity between the training sample is
calculated. As shown in the figure, Wave-GD successfully generates high-quality molecules that
closely resemble the training data, whereas other baseline methods produce molecules that deviate
from the training distribution.

Figure 11: Visualization of the sampled graphs on the QM9 dataset with maximum Tanimoto
similarity. For each graph, we display the one-to-one similarity to the real training samples at the
same location in the upper panel.
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