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Figure 1: Test-time training significantly improves performance in the presence of distribution shifts
for the task of video object segmentation (VOS). Left: Example using a model trained on synthetic
videos from BL-30K [8] and tested on a real video from DAVIS [38]. Right: Example using a model
trained on DAVIS [38] and YouTube-VOS [51] and tested on a cartoonized video from the corrupted
DAVIS-C benchmark which we introduce in this work. Second-to-bottom row: Results obtained
using the STCN [9] approach. Bottom row: Results after test-time training with the proposed mask
cycle consistency loss (tt-MCC) using the single ground-truth mask provided for the first video frame.

Abstract
The video object segmentation (VOS) task involves the segmentation of an object
over time based on a single initial mask. Current state-of-the-art approaches
use a memory of previously processed frames and rely on matching to estimate
segmentation masks of subsequent frames. Lacking any adaptation mechanism,
such methods are prone to test-time distribution shifts. This work focuses on
matching-based VOS under distribution shifts such as video corruptions, stylization,
and sim-to-real transfer. We explore test-time training strategies that are agnostic
to the specific task as well as strategies that are designed specifically for VOS. This
includes a variant based on mask cycle consistency tailored to matching-based
VOS methods. The experimental results on common benchmarks demonstrate that
the proposed test-time training yields significant improvements in performance. In
particular for the sim-to-real scenario and despite using only a single test video,
our approach manages to recover a substantial portion of the performance gain
achieved through training on real videos. Additionally, we introduce DAVIS-C, an
augmented version of the popular DAVIS test set, featuring extreme distribution
shifts like image-/video-level corruptions and stylizations. Our results illustrate that
test-time training enhances performance even in these challenging cases. Project
page: https://jbertrand89.github.io/test-time-training-vos/
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1 Introduction

In one-shot video object segmentation (VOS), we are provided with a single segmentation mask for
one or more objects in the first frame of a video, which we need to segment across all video frames.
It is a dense prediction task over time and space, and therefore, collecting training data is highly
demanding. Early VOS methods design foreground/background segmentation models that operate
on single-frame input and require a two-stage training process [4, 29]. During the off-line stage, the
model is trained to segment a variety of foreground objects. During the on-line stage for a specific
test video, the model is fine-tuned to adapt to the objects of interest indicated in the provided mask.

Recently, matching-based methods like STCN [9] or XMem [6] have shown impressive performance
on the common VOS benchmarks. These methods propagate the segmentation mask from a memory
of previously predicted masks to the current frame. They only involve an off-line training stage
where the model learns how to perform matching and propagation. Lacking any test-time adaptation
mechanism, however, such methods are highly prone to test-time distribution shifts.

Our goal is to improve the generalization of matching-based VOS methods under distribution shifts
by fine-tuning the model at test time through a single test video. Such one-shot adaptation is a form of
test-time training (TTT), a research direction that is lately attracting much attention in classification
tasks and a promising way for generalizing to previously unseen distributions. We argue that TTT is
a great fit for matching-based VOS, not only because of the additional temporal dimension to exploit,
but also because we are given a ground-truth label for a frame of the test example.

In this work, we focus on two cases of test-time distribution shift for VOS: a) when training on
synthetic data and testing on real data, also known as sim-to-real transfer, and b) when the test data
contain image/video corruption or stylization. We explore three different ways of performing TTT: i)
a task-agnostic approach that borrows from the image classification literature and performs entropy
minimization [34, 46], ii) an approach tailored to the STCN architecture that employs an auto-encoder
loss on the mask provided for the first frame and does not exploit any temporal information, and iii) a
mask cycle consistency approach that is tailored to matching-based VOS, and utilizes temporal cycle
consistency of segmentation masks to update the model. As we show, these different test-time training
strategies do not work equally well, and tailoring TTT to the task and the methods is important and
not trivial.

Our experiments demonstrate that some of the proposed approaches constitute a powerful way of
generalizing to unseen distributions. When starting from a model trained only on synthetic videos,
test-time training based on mask cycle consistency improves STCN by +22 and +11 points in terms
of J&F score on the two most popular VOS benchmarks, YouTube-VOS and DAVIS, respectively.
What is even more impressive is that by simply using test-time training, we recover the bulk of the
performance gain that training the original model on real videos brings: for YouTube-VOS and DAVIS,
TTT recovers 82% and 72% of the performance gains, respectively, that training on real videos brings
compared to synthetic ones, but without requiring any video annotations during off-line training.

We also study the performance of TTT in the presence of image-level or video-level corruptions
and stylization. To that end, we follow a process similar to ImageNet-C [14] and create DAVIS-C,
a version of the DAVIS test set with 14 corruptions and style changes at three strength levels. We
evaluate models with and without TTT on DAVIS-C and analyze how performance changes as the
distribution shift increases. Our results show that TTT significantly improves the performance of
STCN by more than 8 points in terms of J&F score for the hardest case of corruption/stylization. A
qualitative example for both types of distribution shift is shown in Figure 1.

2 Related Work

Foreground/background models with online fine-tuning for VOS. Early approaches train a seg-
mentation model to separate the foreground object from the background. The offline training stage is
followed by an online supervised fine-tuning stage that uses the mask of the first frame for adapting the
model [4, 29]. The fine-tuning process is improved by including pseudo-masks derived from highly
confident predictions [44] or by additionally including hard-negative examples [48]. Maninis et al.
[33] additionally incorporate semantic information about the underlined object categories via an exter-
nal instance-aware semantic segmentation model. Other methods first produce a coarse segmentation
result and then refine it by the guidance of optical flow [15], the appearance cue only [39], or temporal
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consistency [32]. Hu et al. [16] utilize an RNN model to exploit the long-term temporal structures,
while others additionally incorporate optical flow information [16]. The heavy cost of fine-tuning
is reduced by meta-learning in the work of Xiao et al. [49] or Meinhardt and Leal-Taixé [35].

Matching-based VOS. Most recent approaches build upon a matching-based prediction model,
which is trained offline and neither requires nor incorporates any fine-tuning stage. The current test
frame is matched to either the first annotated frame [52, 18, 5, 45, 3], a propagated mask [20, 17, 28],
or a memory containing both [31, 36, 9]. Early methods use simple matching process [18] or are
inspired by classical label propagation [60], while different methods improve the design of the
matching [1, 9, 40, 53, 55, 54], the type and extent of the memory used [6], or exploit interactions
between objects or frames [37, 56], among other aspects.

Hybrid and other VOS methods. Mao et al. [34] borrow from both families of approaches,
i.e. matching-based and those that require online fine-tuning, and jointly integrate two models,
but , unlike our work, the matching model is not updated at test time. Some methods differ
from matching-based in the way they capture the evolution over time, e.g. by RNNs [43] or by
spatio-temporal object-level attention [11].

Cycle consistency in VOS. Matching-based methods require dense video annotations for train-
ing, which is a limitation. To dispense with the need for mask annotations during training, cycle
consistency of pixel or region correspondences over space and time has been successfully used by
prior work [19, 24, 61]. This is an unsupervised loss that is also appropriate for test-time training. In
our case, we tailor cycle consistency to the task of matching-based VOS, and propose a supervised
consistency loss that operates on masks by taking advantage of the provided mask at test-time in
order to better adapt to the object of interest. Mask consistency based on the first frame is used by
prior work during model training. Khoreva et al. [21] synthesize future frames using appearance and
motion priors, while in our case, instead of synthesizing, we use mask predictions of the existing
future video frames. Li et al. [26] and HODOR [1] use a temporal cycle consistency loss on a the
first frame mask during training that allows learning from videos with a single segmentation mask. In
contrast, we utilize the mask frame that is provided at test-time for the first frame of the test video
and we are able to outperform HODOR and other state-of-the-art methods for multiple test-time
distribution shifts.

Test-time training. A family of approaches adapts the test example to the training domain. Kim et al.
[22] chose the appropriate image augmentation that maximizes the loss according to a loss prediction
function, while Xiao et al. [50] updates the features of the test sample by energy minimization with
stochastic gradient Langevin dynamics. Another family of approaches adapts the model to the test do-
main. Entropy minimization is a common way to update either batch-normalization statistics only [46]
or the whole model [59]. Other self-supervised objectives include rotation prediction [42], contrastive
learning [30], or spatial auto-encoding [12]. In our work, we move beyond the image domain and
introduce mask cycle consistency as an objective to adapt the model specifically for video object
segmentation applications. Azimi et al. [2] evaluate some of the aforementioned TTT techniques on
top of self-supervised dense tracking methods under several distribution shifts on videos. Another
recent work [57], concurrent to ours, also studies TTT in the video domain but for a classification
task; we instead fully tailor the TTT on the VOS task and use temporal mask consistency as our loss.

3 Test-time training for matching-based VOS

In this section, we first formulate the task of Video Object Segmentation (VOS) and briefly describe
the basic components of the matching-based VOS methods we build on [9, 6]. We then present
three ways for test-time training: a task-agnostic baseline based on entropy minimization that has
been highly successful in other tasks and two VOS-specific variants that leverage the fact that we
are provided with a ground-truth mask at test time; one using an auto-encoder loss and another a
temporal cycle-consistency loss on the masks.
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Figure 2: The mask cycle consistency loss for a given frame triplet {x0, xi, xj} and mask m0.
Frames x0, xi and xj are shown with a red, green and blue border, respectively. Function f represents
the overall prediction model. It takes as input the current test frame and a memory M of predicted
masks from the previous frames and outputs the predicted mask for the current frame. For the first
frame, the memory contains the ground-truth mask.

3.1 Preliminaries

The goal of VOS is to segment a set of particular objects in a video provided their ground-truth seg-
mentation mask m0 in the first video frame x0

1. Space-Time Correspondence Networks (STCN) [9]
sequentially predict the mask of each frame separately, while the prediction is conditioned on the pro-
vided mask and the predicted masks of earlier frames that are stored in a memory queue. XMem [6] is
an extension of STCN that features a long-term memory and top performance for long-term prediction.
Although we provide here the necessary parts of STCN required for presenting our contribution,
we refer the reader to Cheng et al. [9] for a complete description. Our formulation is generic and
applicable to a wide range of matching-based VOS methods, including the ones that require only a
single forward pass for multiple objects such as AOT [56].

We denote the model that performs the overall process by function f . The predicted mask of frame
xj is given by m̂j = f(xj ;M), where M = {(xi,mi)} is the memory of previous predictions
consisting of frame-mask tuples (xi,mi). The memory always includes (x0,m0), while any other
tuple for i > 0 is formed by using the corresponding predicted mask m̂i since no other ground-truth
mask is available. Note that ground-truth masks for the first frame are binary, while the predicted
ones consist of object probabilities in [0, 1].

The STCN model contains a frame encoder ex that extracts frame representation ui = ex(xi) ∈
RW×H×De and a mask encoder em that extracts mask representation vi = em(mi) ∈ RW×H×Dm .
The latter can take either ground-truth (binary) or predicted (real-value) masks as input. Frame and
mask representations of earlier frames are added to the memory.

During the prediction for the current frame denoted by xj , representation uj is matched (each
De-dimensional vector separately) to the representations of frames in the memory, and the most
similar items are identified. In particular, the full similarity matrix is formed between the current
frame items and the memory items, but only the top-k values per row (rows correspond to the current
frame) are maintained, and the rest are set to 0. By the term item we refer to each De-dimensional
vector, with each frame having W ∗H of them. The corresponding mask representation of these
most similar items is aggregated to obtain v̂j ∈ RW×H×Dm . In this way we compose the mask
representation for frame xj via matching since the mask itself is not available. This process is

1In the following, we assume the presence of a single object for simplicity. In the case of multiple objects,
the prediction process is repeated for each object independently, similar to [6, 9].
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equivalent to a cross-attention operation between the test frame features (queries) and the memory
frame features (keys) that aggregates memory mask features (values). Finally, a mask decoder dm
is used to obtain the predicted mask m̂j = dm([v̂j , uj ]), where [v̂j , uj ] ∈ RW×H×(De+Dm) is the
concatenation of the two representations along the depth dimension.

In this work, we assume that we have access to a matching-based VOS model, trained on real or
synthetic data with mask annotations. These models do not generalize well to extreme distribution
shifts not encountered during supervised training. Our goal is to improve their performance in such
cases by fine-tuning the parameters of the model at test time.

3.2 Test-time training

We explore three different losses to perform TTT for the case of matching-based VOS: (i) based on
entropy minimization (tt-Ent), which forms a paradigm transferred from the image domain (image
classification in particular) and is a task- and method-agnostic loss, (ii) based on an auto-encoder
(tt-AE) that operates on segmentation masks, which is an approach tailored for the STCN architecture,
(iii) based on mask cycle consistency (tt-MCC), which is more general and appropriate for a variety
of matching-based methods. tt-MCC exploits the matching-based nature of STCN and includes mask
propagation via a memory of masks, while the tt-AE variant does not include the matching step
between multiple frames.

Given a test video, we optimize the parameters of the model using the provided mask and either only
the first frame (for tt-AE) or all its frames (tt-Ent, tt-MCC). The test-time loss is optimized, the
model parameters are updated, and the model is used to provide predictions for the specific test video.
Then, the model is re-initialized back to its original parameters before another test video is processed.

For the two TTT variants that use multiple frames, i.e. tt-MCC and tt-Ent, we follow the process
used during the off-line training phase of STCN and XMem and operate on randomly sampled
frame triplets and octuplets, respectively. In the following, we describe the case of triplets which is
extended to larger sequences in a straightforward way. All the triplets include the first video frame,
while the second (third) triplet frame is uniformly sampled among the s frames that follow the first
(second) triplet frame in the video. For triplet x0, xi, xj with 0 < i < j, the first predicted mask
is given by m̂i = f(xi; {(x0,m0)}), and the second by m̂j = f(xj ; {(x0,m0), (xi, m̂i)}), i.e. the
second frame is added to the memory before predicting the last mask of the triplet. Multiple triplets
are sampled during test-time training. The per-pixel losses are averaged to form the frame/mask
loss. We denote the cross entropy loss between a ground-truth mask m and a predicted mask m̂ by
ℓCE(m, m̂).

3.2.1 Entropy (tt-Ent) loss

We start from a task- and method-agnostic loss based on Entropy (tt-Ent) minimization, a common
choice for test-time training on image classification [46]. In this case, we force the model to provide
confident predictions for the triplets we randomly sample. The entropy of mask m̂i is denoted by
H(m̂i) and the loss for a particular triplet is LH = 0.5 ∗ (H(m̂i) +H(m̂j)), which is minimized
over multiple triplets. Prior work on image classification avoids the trivial solution by using a batch
of test examples [46] or augmenting the input example and minimizing the entropy over the average
prediction of the augmented frames [59]. In the task of semantic segmentation, batches or augmenta-
tions are not required since it is a dense prediction task and we have multiple outputs to optimize, i.e.
a prediction per pixel. In the case of VOS, we have even more outputs due to the temporal dimension
and because we are sampling triplets among many frames. However, similar to Wang et al. [46], we
observe that training only the batch normalization parameters is a requirement for tt-Ent to work.

3.2.2 Mask auto-encoder (tt-AE) loss

The STCN model includes a mask encoder and a mask decoder to decode the mask representation
coming from the cross-attention process. We repurpose these components for test-time training and
compose an auto-encoder that reconstructs the input mask. The auto-encoder input is the provided
ground-truth mask, i.e. m0, and the loss is given by LAE = ℓCE(m0, dm([em(m0), ex(x0)])). Note
that, together with the mask encoder that gets optimized to better represent the specific object shape,
we also optimize the frame encoder with the tt-AE loss, since the mask representation is concatenated
with the frame representation in the input of the mask encoder [9].
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Figure 3: Unravelling the tt-MCC loss. (a) a triplet from a video with gaussian noise corruption; (b)
the provided mask; (c) mask predictions after each of the four steps of the cycle, before test-time
training (TTT); (d) the pixel-wise loss before TTT; (e) gradients of mask predictions for each of the 4
steps of the cycle; (f) predictions after test-time training with the mask cycle consistency loss; (f) the
loss after TTT. We see that tt-MCC significantly improves all predicted masks and reduces the loss.
We binarize the predicted masks for visualization purposes; they are otherwise probability maps.

3.2.3 Mask cycle consistency (tt-MCC) loss

After sampling a triplet, we make predictions in a time-forward and time-backward manner to form
a cycle that allows us to use the provided ground-truth mask as a label with a cross-entropy loss. The
cycle consists of four steps. We first obtain masks m̂i and m̂j with time-forward predictions. Then,
we consider the triplet in reverse order going from xj to xi and then to x0, and obtain time-backward
predictions. In particular, m̂j is treated as the only mask in the memory to enable prediction for frame
xi which is given by m̂b

i = f(xi, {(xj , m̂j)}). In the last step, the mask of x0 is given by m̂b
0 =

f(x0, {(xj , m̂j), (xi, m̂
b
i )}). We compare this prediction to the provided ground-truth mask and the

loss to optimize is LMCC = ℓCE(m̂
b
0,m0). The overall process and the four prediction steps are

shown in Figure 2. During the optimization, back-propagation is performed through all the predicted
masks mentioned above. In this way, earlier predictions are also optimized in an indirect way.

For successful object segmentation in m̂b
0, masks m̂i, m̂j , and m̂b

i , in the whole sequence of predic-
tions, are required to have successful object segmentation too. If for example an object part is not
properly segmented in the intermediate predictions, it will be missed in m̂b

0 too. We further experi-
mented with adding an extra mask consistency loss between the forward and backward predictions
for the middle/intermediate frame, i.e. ℓCE(m̂

b
i , m̂i) but did not result in any additional gains.

Figure 3 shows the four predictions during a cycle using a particular triplet before and after tt-MCC.
We see that initially, the object is not properly segmented during internal steps of the cycle and is
fully missed in the last step, of the cycle resulting in large loss values for most of its pixels. After
TTT is performed, not only the mask which is given as input to the loss, i.e. m̂b

0 gets improved, but
so are the predictions during intermediate steps. Note that the prediction of step 4 is not part of the
inference process, but is rather a proxy to optimize predictions for steps 1 and 2 that are part of it.
The gradients of the internal masks are indicating how the loss is affecting their predictions per pixel.
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Figure 4: The 14 types of corruption in DAVIS-C. Corruptions are depicted at “medium” strength.

4 Experiments

In this section, we first describe the training and implementation details. Then, we introduce the
DAVIS-C benchmark and report our experimental results on four datasets and two distribution shifts:
sim-to-real transfer and corrupted/stylized test data.

Initial models. We start from two publicly available models for STCN. STCN-BL30K is the model
trained on synthetic data from BL-30K [8]. STCN-DY is a model initialized by STCN-BL30K and
further trained using the training videos of DAVIS and YouTube-VOS, which include approximately
100K frames annotated with segmentation masks. We use the same two models for XMem, denoted
by XMem -BL30K and XMem -DY, respectively.

Training details. We use learning rates 10−5 and 10−6 for models STCN-BL30K/ XMem -BL30K
and STCN-DY/ XMem -DY, respectively since their training data differ significantly. Jump step s
for sampling training frames is set to 10. For each test example, we train the models with tt-MCC
and tt-Ent for 100 iterations and with tt-AE for 20, using the Adam [23] optimizer and a batch size
of 4 sequences for STCN and 1 for XMem. We consider all target objects in the ground truth mask
during TTT, and the raw videos are used with no augmentations. We develop our methods on top of
the publicly available STCN2 and XMem3 implementations.

4.1 Datasets and evaluation

We report results on the two most commonly used benchmarks for video object segmentation, the
DAVIS-2017 validation set [38] and the YouTubeVOS-2018 validation set [51]. We further report
results on the validation set of the recent MOSE [10] dataset, which includes challenging examples
with heavy occlusion and crowded real-world scenes. Finally, we introduce DAVIS-C, a variant of
the DAVIS test set that represents distribution shifts via corruptions and stylization. We evaluate all
methods using the widely established J&F measure similar to prior work [9, 6].

DAVIS-C: corrupted and stylized DAVIS. To model distribution shifts during the testing, we
process the set of test videos of the original DAVIS dataset to create DAVIS-C. This newly created
test set offers a test bed for measuring robustness to corrupted input and generalization to previously
unseen appearance. It is the outcome of processing the original videos to introduce image-level
and video-level corruption and image-level appearance modification. We perform 14 different
transformations to each video, each one applied at three different strengths, namely low, medium, and
high strength, making it a total of 42 different variants of DAVIS.

2https://github.com/hkchengrex/STCN
3https://github.com/hkchengrex/XMem
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Figure 5: VOS performance under distribution shifts. Left: performance of STCN-BL30K before
and after test-time training for the sim-to-real transfer case on four datasets. Right: performance of
STCN-DY on DAVIS-C for input corruptions with different strength levels.

For the image-level corruptions, we follow the paradigm of ImageNet-C and adopt 7 of their cor-
ruptions, namely gaussian noise, brightness, contrast, saturate, pixelate, defocus blur, and glass
blur. The different transformation strengths are obtained by using severity values 3, 4, and 5 from
ImageNet-C. For the video-level corruptions, we introduce constant rate factor (CRF) compression
for three increasing values of compression and motion blur by averaging every 2, 3, and 4 consec-
utive frames. For the image-level transformations, we create cartoonization using the mean shift
algorithm by increasing the amount of smoothing and image-stylization [13] using four different
styles. For stylization, we do not vary the strength, but we preserve the original video colors (low
and medium strength) while switching to those of the style image (high strength), making it a more
drastic appearance shift. Frame examples for all cases are shown in Figure 4.

Some of the transformations in DAVIS-C do not perfectly represent video distortions. Nevertheless,
several of the transformations constitute common real-world video edits (contrast, brightness, crf
compression, cartoonization, stylization). We believe DAVIS-C provides a valuable benchmark to
study video understanding under distribution shift.

4.2 Results

Sim-to-real transfer. In Figure 5a, we report results with and without test-time training on four
datasets for the case of sim-to-real transfer. All three TTT variants bring gains consistently across
datasets, with tt-MCC improving performance significantly, i.e. a relative gain of more than 39%,
15% and 15% for YouTube-VOS, DAVIS and MOSE, respectively. Moreover, we see that naively
applying task-agnostic entropy minimization test-time training brings only a small percentage of the
gains one can get. It is also worth noting that the gains from TTT are so high that performance using
the mask cycle consistency variant becomes comparable to the performance of a model trained on
video data. Specifically, tt-MCC recovers 82%, 72% and 44% of the performance gains that training
with all the training videos from YouTube-VOS and DAVIS combined brings. This is very promising
in cases where annotated data are scarce but synthetic data is widely available.

Corrupted test examples. We report results for DAVIS-C in Figures 5b, 6, and the right side of
Table 1. Figure 5b clearly shows how tt-MCC outperforms STCN for all corruption levels, with the
gains increasing more as corruption strength increases. The entropy minimization approach does not
offer any gains, while tt-AE is effective but worse than tt-MCC. In Figure 6, we report the J&F
score separately per video of DAVIS-C at the highest strength. We see that the gains come from
many transformations and examples, while we see that TTT is able to improve most videos where the
original J&F score was in the lower side of the spectrum. Finally, on the right side of Table 1, we
further report results on DAVIS-C for XMem and see that gains persist for one more state-of-the-art
method. Interestingly, from Table 1, we also see that the performance gain of XMem over STCN
disappears for the sim-to-real transfer case for YouTube-VOS, as well as for the extreme case a model
trained only on synthetic videos is tested on corrupted inputs.
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Figure 6: Test-time training on DAVIS-C. We plot the J&F score separately per video before
(triangles) and after tt-MCC (circles) for the STCN-DY model on the 14 corruptions of the proposed
DAVIS-C benchmark. We report results for the variants with the highest corruption strength. A red
(grey) vertical line denotes that performance drops (increases) with test-time training.

Table 1: Comparison to the state-of-the-art for two cases of test-time distribution shift. Left part:
Results when using models trained without real videos. The HODOR model is trained on COCO [27]
images, while STCN and XMem on BL-30K. Right part: Results on DAVIS-C for different levels of
corruption. HODOR, STCN and XMem are fine-tuned with DAVIS and YouTube-VOS videos. †

Results from [1].

Method Training without real videos Corrupted test examples (DAVIS-C)
DAVIS DAVIS-C YouTube-VOS MOSE no corr. low med high avg

HODOR [1] 77.5† – 71.7† – 81.3† 69.0 64.5 55.2 65.0

STCN [9] 70.4 41.7 57.3 38.9 85.3 76.6 72.6 58.8 73.3
STCN + tt-MCC (ours) 81.1 70.1 79.4 44.9 86.7 78.3 75.6 67.3 77.0

XMem [6] 78.1 53.9 65.6 40.9 87.7 80.4 77.3 69.4 78.7
XMem + tt-MCC (ours) 82.1 70.1 78.9 44.7 88.1 81.7 78.9 72.2 80.2

Comparison to the state of the art. In Table 1, we additionally report results for our tt-MCC
variant when starting from the state-of-the-art XMem [6] method. Once again, the gains are consistent,
for both cases. It is worth noting that from the fourth column of the table, we can see that tt-MCC
is also able to slightly improve the case when there is no test-time distribution shift, i.e. we report
1.4 and 0.4 higher J&F score on DAVIS for STCN-DY and XMem -DY, respectively. In the table,
we also compare our method to HODOR [1] method that uses cycle consistency during the offline
training stage and reports results when training without real videos. Our STCN-BL30K model with
TTT outperforms HODOR by +3.6 and +8.3 J&F score, on DAVIS and YouTube-VOS respectively.

Impact of sampling longer sequences. Regarding the sequence length used during test-time
training, we adopt the setup used by the base methods during their training phase, i.e. frame triplets
for STCN and octuplets for XMem. We experiment with quadruplets or quintuplets for mask cycle
consistency on top of STCN which achieve performance of 81.7 and 82.4, respectively, on DAVIS
versus 81.1 for triplets. This gain in performance, however, comes with a significant increase in
test-time training time, i.e. 33% and 66%, respectively.

Impact of changing the sampling strategy. Additionally to changing the sequence length, another
way to affect the size of the temporal context is by the value of the jump step, i.e. the interval used to
sample frames xi and xj for a training triplet. Test-time training with tt-MCC over the STCN-BL30K
model achieves 81.1 on DAVIS, with the jump step s parameter set to 10 by default. Varying the jump
step from 1, 2, 25, and 50, achieves 80.6, 81.0, 80.8, and 79.0, respectively. Neither sampling too
close to the first frame nor sampling frames too far from each other is the optimal choice. Switching
to random sampling, without any step as a restriction, causes a performance drop to 79.7, while
sampling only within the last 5% or 10% of the video also causes a drop to 79.8 and 79.7, respectively.
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Across all strategies and hyperparameter values, we see noticeable improvements using tt-MCC; the
base model without TTT, merely achieves 70.4 J&F score on DAVIS.
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Figure 7: Change in J&F score during TTT
compared to the score before TTT. Each curve is
one video and is normalized wrt. the maximum
improvement/decline observed over 200 iterations.

Impact of training iterations. For all results
we use a fixed number of 100 iterations during
TTT. In Figure 7, we present the performance
improvement of tt-MCC for all 30 DAVIS
videos (one curve per video) for a varying num-
ber of iterations. One can clearly see that op-
timal performance is achieved at different iter-
ations per video, and we believe that adaptive
early stopping is a promising future direction
that may boost the overall improvement even
further.

Impact on inference time. We discuss the
effect that test-time training has on inference
speed, by measuring average inference time over
all DAVIS validation videos. The vanilla STCN
model requires roughly 2 seconds per video.
For tt-MCC, tt-Ent, and tt-AE, it takes 67, 29,
and 5.3 seconds, respectively, for 100 iterations.
Since TTT is run per video and its speed is only
affected by the number of iterations, per frame timings vary with video length, i.e. the TTT overhead
reduces as video length increases. It is worth noting here that all timings presented above are estimated
with a non-optimized TTT implementation that leaves a lot of space for further optimization.

Reducing TTT overhead. As discussed, TTT induces a significant overhead at test time, which
is an aspect not often discussed in the relevant literature. The TTT overhead is reduced by training
for less iterations with only a minor decrease in performance. As we show Table 3 of the Appendix,
using 20 instead of 100 iterations is even advantageous in cases, particularly for larger datasets
like YouTube-VOS and MOSE with a model trained on real videos and without a distribution shift.
In a real-world application, applying tt-MCC on all test examples might seem infeasible due to
time overheads. Nevertheless, it is very useful for cases of extreme test-time distribution shifts. In
scenarios involving a few out-of-distribution examples, where rapid adaptation of the current model is
desired for improved performance, tt-MCC constitutes a straightforward and cost-effective solution,
that is far more efficient than retraining the base model, which typically requires approximately 12.5
hours on 2 A100 GPUs to train STCN.

Memory requirements. During inference, STCN requires roughly 8GB of GPU RAM. Test-time
training on top of STCN with tt-AE, tt-Ent and tt-MCC requires 8,16 and 23.5GB, respectively, i.e.
it can still fit in a modest GPU. Note that the calculations for TTT are computed when using a batch
size of 4 (the default). Memory requirements can be further reduced by using a smaller batch size, if
needed, without significant change in performance.

5 Conclusions

In this work we show that test-time training is a very effective way of boosting the performance of
state-of-the-art matching-based video object segmentation methods in the case of distribution shifts.
We propose a mask cycle consistency loss that is tailored to matching-based VOS and achieves top
performance. Its applicability goes beyond the two methods used in this work, as it is compatible
with the general family of matching-based VOS methods [36, 60, 56, 1]. We report very strong gains
over top performing methods for both sim-to-real transfer and the case of corrupted test examples.
We also show that achieving such gains is not trivial and that it is important to tailor the test-time
training method to the task and method at hand. A limitation of the proposed approach is the lack of a
way for performing early stopping, and selecting the best iteration to stop training, a very promising
direction for future work.
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A Datasets and additional implementation details

A.1 Datasets

DAVIS The validation split of the DAVIS-2017 [38] dataset contains 30 videos covering a variety of
real-world scenarios, including indoor and outdoor scenes, different lighting conditions, occlusions,
and complex motion patterns. Each video contains one to three annotated objects of interest.

YouTubeVOS-2018 The validation split of the YouTubeVOS-2018 [51] dataset contains 474 high-
quality videos downloaded from YouTube, including indoor and outdoor scenes, different lighting
conditions, occlusions, and complex motion patterns. Each video contains one to five annotated
objects of interest.

style 1 style 2 style 3 style 4

Figure 8: The four styles in DAVIS-C.
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Table 2: Multiple runs of the proposed method on top of STCN and XMem for two cases of
test-time distribution shift. Mean and standard deviation over 3 different seeds is reported. Left part:
Results for STCN-BL30K and XMem-BL30K. Right part: Results for STCN-DY and XMem-DY on
DAVIS-C for different levels of corruption.

Method Training without real videos Corrupted test examples (DAVIS-C)
DAVIS DAVIS-C YT-VOS MOSE no corr. low med high avg

STCN [9] 70.4 41.7 57.3 38.9 85.3 76.6 72.6 58.8 73.3
STCN + tt-MCC (ours) 81.1±0.1 70.1 ±0.1 79.4 ±0.2 44.9 ±0.2 86.7 ±0.2 78.3 ±0.1 75.6 ±0.1 67.3 ±0.1 77.0

XMem [6] 78.1 53.9 65.6 40.9 87.7 80.4 77.3 69.4 78.7
XMem + tt-MCC (ours) 82.1 ±0.2 70.1 ±0.3 78.9 ±0.2 44.7 ±0.2 88.1 ±0.2 81.7±0.1 78.9 ±0.2 72.2±0.1 80.2

DAVIS-C We refer the reader to the main paper for details. Here, we highlight the 14 different
transformations to each video applied at three different strengths, namely low, medium, and high
strength in Figure 17. The four original images that we use to compute the four stylizations style 1,
style 2, style 3, and style 4 are displayed in Figure 8.

MOSE We further report results on a newer, much larger dataset, i.e. the MOSE dataset [10], which
contains challenging examples with heavy occlusions and crowded real-world scenes. The validation
split of the MOSE dataset contains 311 high-quality videos. Each video contains one to fifteen
annotated objects of interest. In addition, to show the robustness of our method, we also ran our
models on the training split of the MOSE dataset, which contains 1507 high-quality videos with up to
twenty annotated objects of interest. Because the STCN and XMem models are not trained on the
MOSE-train split before, we consider this split as a larger dataset for testing our method. Because
of limited space, we present results on MOSE-train only in the supplementary, and as we show in
Section B, the observations of the main paper also hold in this case.

A.2 Additional implementation details

The model is in evaluation mode during test-time training, i.e. the running statistics of the Batch
Normalization layers remain fixed.

Because the last frame mj of the frame sequence used in our tt-MCC method is the initial frame of
the backward pass, all the target objects in m0 must also be depicted in mj . To guarantee this, we
select only the frames where the network can detect all the target objects, i.e. there is at least one
pixel for each object where it has the largest probability. We do so by extracting pseudo masks for
the video frames and resetting the optimizer every ten iterations.

In the MOSE dataset, some videos have up to twenty annotated objects. Because our method is
linear with the number of annotated objects in the video, we randomly select up to six objects at each
iteration.

B Additional experimental results and analysis

B.1 Measuring the standard deviation of TTT

We report mean and standard deviation after running TTT with 3 different seeds in Table 2 for four
datasets, namely DAVIS, DAVIS-C, YouTube-VOS, and MOSE.

B.2 Extended results on the MOSE dataset

In Figure 9, we report STCN results with and without test-time training on the two splits of the MOSE
dataset for the case of sim-to-real transfer. We can see that on both splits of the MOSE dataset, the
three TTT variants boost the performance, and tt-MCC brings a relative gain of 15% on 18% on the
MOSE-valid and MOSE-train datasets, respectively.

B.3 Results with TTT on top of XMem

In Figure 10, we show the performance comparison with and without TTT on top of XMem. We
observe that the performance benefits are similar to those of using TTT on top of STCN.
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Figure 9: STCN performance on the MOSE dataset for the sim-to-real transfer case. We report
results on both the validation set, as well as the much larger training set of 1507 videos; used as
another test set since it is not used as a training set by the models used in this work.
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Figure 10: XMem performance under distribution shifts. Left: performance of XMem -BL30K
before and after test-time training for the sim-to-real transfer case on four datasets. Right: performance
of XMem -DY on DAVIS-C for input corruptions with different strength levels.

B.4 Varying the number of real video used for training the base model

We increase the number of real videos used to train the STCN model from 0 (BL-30K) to 3531
(DAVIS and YouTube-VOS training sets) and present results in Figure 11. When the model is trained
with little to no real videos, test-time training recovers the bulk of the performance achieved using
models trained on larger annotated datasets while requiring little to no annotation.
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Figure 11: Performance on DAVIS with respect to the number of real videos used during
training. Performance before and after test-time training for models trained using only synthetic
videos (BL-30K) and up to 3531 real videos (DAVIS and YouTube-VOS together).
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Frames and ground-truth masks Frames and ground-truth masks

STCN STCN

STCN + tt-MCC (ours) STCN + tt-MCC (ours)

Figure 12: Additional qualitative examples using a model trained on synthetic videos from
BL-30K [8] and tested on a real video from DAVIS [38]. Second-to-bottom row: Results obtained
using the STCN [9] approach. Bottom row: Results after test-time training using the proposed mask
cycle consistency loss (tt-MCC) on the single ground-truth mask provided for the first video frame.

Frames and ground-truth masks Frames and ground-truth masks

STCN STCN

STCN + tt-MCC (ours) STCN + tt-MCC (ours)

Figure 13: Additional qualitative examples using a model trained on DAVIS [38] and YouTube-
VOS [51] and tested on a corrupted video from the DAVIS-C benchmark. Left: the test example
is corrupted using the glass-blur corruption with medium strength. Right: the test video is stylised
using style 1 with medium strength. Second-to-bottom row: Results obtained using the STCN [9]
approach. Bottom row: Results after test-time training using the proposed mask cycle consistency
loss (tt-MCC) on the single ground-truth mask provided for the first video frame.

B.5 Additional qualitative results

We show more qualitative examples in Figures 12 and 13.

B.6 Results in the case of no distribution shift

In the main part of the manuscript, we focus on scenarios involving test-time distribution shifts.
There, we report results based on 100 iterations, which we’ve found to be optimal for all cases with
such distribution shifts. When a model is trained on real videos and there is no distribution shift in
the test videos, as demonstrated in the left part of Table 3, using fewer iterations is advantageous,
particularly for larger datasets like YouTube-VOS and MOSE. Overall, we observe that tt-MCC does
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Table 3: Additional results for STCN and Xmem. The number of TTT iterations is reported next to
tt-MCC. Left part: Results when starting from a model trained with real videos. Right part: Results
when starting from a model trained only on static images.

Method Training with real videos Training with static images
DAVIS DAVIS-C YT-VOS MOSE DAVIS DAVIS-C YT-VOS MOSE

STCN 85.3 69.3 84.3 52.5 75.7 59.3 76.3 42.0
STCN + tt-MCC-20 (ours) 86.0 72.1 84.6 53.3 78.7 68.8 78.2 43.6
STCN + tt-MCC-100 (ours) 86.7 73.8 84.0 51.8 79.7 70.7 79.4 43.4

XMem 87.7 75.7 86.1 60.4 72.8 56.2 77.0 42.3
XMem + tt-MCC-20 (ours) 88.0 76.8 85.8 60.7 75.9 63.0 76.5 41.7
XMem + tt-MCC-100 (ours) 88.1 77.6 85.1 59.8 78.8 67.2 78.4 42.9
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Figure 14: Performance gain of tt-MCC for the sim-to-real case on the MOSE-train dataset. We
plot the performance gain vs. a) the video length in number of frames, b) the object area in the first
frame normalized by the frame area, c) the object area in the first frame normalized by the maximum
object area over all frames, d) the percentage of the video length where the object is visible.

not negatively impact the performance of state-of-the-art methods in these cases. Instead, it offers a
method to either maintain or enhance state-of-the-art performance across all test-time video scenarios,
whether extreme distribution shifts are present or not.

B.7 Results in the case of training with static images

In this section, we focus on the scenario where the model is trained using only static images. Following
STCN, we employ five datasets of static images [47, 41, 58, 7, 25] for the offline training of the
networks. Given a training image, several deformed versions are generated to compose an artificial
video sequence, which is used for the model training. The corresponding results are presented in
the right part of Table 3 for both STCN and XMem across the four datasets. Notably, for STCN,
tt-MCC yields relative performance gains exceeding 5%, 4%, and 3% on DAVIS, YouTube-VOS,
and MOSE, respectively. These gains represent substantial recovery of the performance achieved by
a model trained with real videos, i.e. amounting to 42%, 39%, and 13%, respectively. Performance
improvement is even more significant on the DAVIS-C dataset, with a 19% relative performance gain,
surpassing the STCN model trained on real videos (70.7 vs. 69.3).

B.8 Performance analysis on a per-video and per-object basis

We conduct a comprehensive analysis using the MOSE-train dataset on a per-video and per-object
basis and present results in Figure 14. Figure 14 (a) examines the performance gain using TTT in
relation to video length, revealing that video length does not significantly affect performance. Figure
14 (b) demonstrates a subtle correlation between performance gain and the size of objects in the
first frame, with larger objects showing positive gains and no negative impact. In Figure 14 (c) , we
explore how the object’s size in the initial frame relative to its maximum size in the video affects
performance. We observe a slight negative impact when the object is less visible in the first frame
compared to subsequent frames. This is attributed to tt-MCC overfitting to the partially annotated
first frame and often segmenting the partial object in future frames. Note that extreme cases of severe
occlusion in the first frame can make the video object segmentation task particularly ambiguous.
Finally, Figure 14 (d) assesses the impact of object visibility duration within the video sequence,

18



0 100 200 300 400 500

−100

−50

0

50

100

number of training iterations
no

rm
.J

&
F

im
pr

ov
em

en
t

Figure 15: Change in J&F score during TTT compared to the score before TTT. Each curve is
one video and is normalized wrt. the maximum improvement/decline observed over 500 iterations.

confirming that tt-MCC is adversely affected when the object is briefly visible. This suggests that
our cycle consistency loss, emphasizing long-term temporal consistency, may introduce bias towards
objects being visible for extended periods.

B.9 Impact of longer test-time training

To better study the effect of longer training at test-time, we run our method for up to 500 iterations on
DAVIS for the sim-to-real case and presents results in Figure 15. In summary, we do not observe
any significant further decrease in performance nor any degenerate outputs after longer training.
More specifically, the number of DAVIS videos for which VOS performance decreases remained the
same from 50 TTT iterations up to approximately 400, i.e. the J&F score decreases in 7 out of 30
videos. Only one extra video shows a decrease in J&F score by 500 iterations. Visually observing
segmentation results, we notice that a common issue is some background pixels of similar appearance
to the object are wrongly segmented. It is also worth noting that increasing the iterations only leads
to a minor overall decrease in VOS performance, i.e. J&F score drops from 81.1 to 81.0/80.4 for
200/500 iterations, respectively.

B.10 Assessing temporal stability

In Figure 16, we present a performance comparison on a per-video basis, both with and without
tt-MCC. The graph illustrates consistent and lasting performance improvements. Importantly, it
highlights the enhanced stability of performance when tt-MCC is employed. In the case of a briefly
visible object (as seen in video 3bfa8379), our use of tt-MCC results in incorrectly segmenting out
the background as the object, significantly impacting the metric in a negative manner.

B.11 Detailed results on DAVIS-C

In Figures 18 and 19, we present the J&F score change before and after test-time training for the
STCN-BL30K and STCN-DY models, respectively, for all three corruption strengths.

B.12 Failure cases

We notice a couple of patterns when inspecting failure cases of our method, and TTT in general.
The most important is that TTT might make the model more confident about a dubious prediction
and propagate it wrongly. Moreover, we observe that TTT might overfit the appearance module
and wrongly add background pixels. E.g. we observe that a red shirt from the background in the
breakdancer video confuses the model more than the STCN case. We refer the reader to the video we
provide on the project webpage, where we visualize a number of such failure cases.
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Figure 16: Performance per frame of STCN and our tt-MCC for the sim-to-real case on selected
videos from DAVIS and MOSE-train. We plot the performance of each method on each frame of
the test video averaged over all objects. The colors of the highlighted areas indicate the winning
method. The average performance for the whole video is reported in the legend per method.

C Broader impact

The proposed method is effective for the two types of distribution shifts evaluated in our work. We
expect it to be valuable for knowledge transfer to very different domains with limited or no annotated
data. For instance, in the bio-medical domain, for a task such as tracking cells or organisms captured
under a microscope. Due to the lack of appropriate datasets, we do not evaluate the proposed approach
in such a use case.

Test-time training methods like ours can also be used to improve the semi-automatic annotation
process for large video collections in the presence of distribution shifts. Such data can then be used
to train and fine-tune other models in other domains and tasks. It is worth noting that whatever
the annotation, societal, or otherwise biases existing in the dataset the base model was trained on
will also be present in the automatically annotated frames and propagated through this process.
Test-time training on a single annotated example is not expected to successfully correct such biases;
understanding the limitations of the base model is therefore crucial for any real-world application of
our method.

D Figures for all TTT losses

We illustrate the tt-Ent and tt-AE losses, as well as the regular cross-entropy loss for the supervised
offline training stage in Figures 20a, 20b, and 20c, respectively.
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Figure 17: Impact of the strength of the corruption for the 14 types of corruption in DAVIS-C
.
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(a) Low strength.
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Figure 18: Test-time training on DAVIS-C for the STCN-BL30K model. We plot the J&F score
separately per video before (triangles) and after tt-MCC (circles) for the STCN-BL30K model on
the 14 corruptions of the proposed DAVIS-C benchmark. We report results for the variants with the
highest corruption strength. A red vertical line denotes that performance drops with test-time training.
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(a) Low strength.

brightness
contrast

saturate
pixelate

gaussian noise

defocus blur
glass blur

crf compression

motion blur
cartoon

style1
style2

style3
style4

0

20

40

60

80

100

&
 sc

or
e

(b) Medium strength.

brightness
contrast

saturate
pixelate

gaussian noise

defocus blur
glass blur

crf compression

motion blur
cartoon

style1
style2

style3
style4

0

20

40

60

80

100

&
 sc

or
e
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Figure 19: Test-time training on DAVIS-C for the STCN-DY model. We plot the J&F score
separately per video before (triangles) and after tt-MCC (circles) for the STCN-DY model on the 14
corruptions of the proposed DAVIS-C benchmark. We report results for the variants with the highest
corruption strength. A red vertical line denotes that performance drops with test-time training.
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time-forward / step 1 time-forward / step 2

(a) The tt-Ent loss for a given frame triplet {x0, xi, xj}. The frames x0, xi and xj are shown with a
red, green and blue border, respectively.

Cross 
attention

(b) The tt-AE loss for a given first frame x0 and mask m0. The functions ex and em represent the frame
and mask encoders. The function dm represents the mask decoder. They are components of function f
which is detailed on the right for STCN.

time-forward / step 1 time-forward / step 2

(c) The regular cross-entropy loss for a given frame triplet {x0, xi, xj} and mask pair {mi,mj}. The
frames x0, xi and xj are shown with a red, green and blue border, respectively.

Figure 20: The tt-Ent, tt-AE, and the cross-entropy loss. The function f represents the overall
prediction model. It takes as input the current test frame and a memory M of predicted masks from
the previous frames and outputs the predicted mask for the current frame.
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